Chapter 2 Solutions for Introduction to Robotics

1. a) Use (2.3) to obtain

$$
{ }_{B}^{A} R=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

b) Use (2.74) to get

$$
\begin{aligned}
& \alpha=90 \text { degrees } \\
& \beta=90 \text { degrees } \\
& \gamma=-90 \text { degrees }
\end{aligned}
$$

2. a) Use (2.64) to obtain

$$
{ }_{B}^{A} R=\left[\begin{array}{ccc}
.330 & -.770 & .547 \\
.908 & .418 & .0396 \\
-.259 & .483 & .837
\end{array}\right]
$$

b) Answer is the same as in (a) according to (2.71)
3. Use (2.19) to obtain the transformation matrices. The rotation is X-Y-Z fixed angles, so use (2.64) for that 3×3 submatrix, with angles

$$
\begin{aligned}
\gamma & =0 \text { degrees } \\
\beta & =-\sin ^{-1}\left(\frac{\text { tripod_height }}{\text { distance_along_optical_axis }}\right)=-\sin ^{-1}\left(\frac{1.5}{5}\right)=-107 \text { degrees } \\
\alpha_{C} & =0 \text { degrees } \\
\alpha_{D} & =120 \text { degrees } \\
\alpha_{E} & =240 \text { degrees }
\end{aligned}
$$

The position vectors to the camera-frame origins are

$$
\begin{aligned}
{ }^{B} P_{C O R G}= & {\left[\begin{array}{c}
\text { horizontal_distance } \\
0 \\
\text { tripod_height }
\end{array}\right]=\left[\begin{array}{c}
4.77 \\
0 \\
1.50
\end{array}\right] } \\
{ }^{B} P_{D O R G}= & {\left[\begin{array}{c}
\text { horizontal_distance } \times \cos \alpha_{D} \\
\text { horizontal_distance } \times \sin \alpha_{D} \\
\text { tripod_height }
\end{array}\right]=\left[\begin{array}{c}
-2.39 \\
4.13 \\
1.5
\end{array}\right] } \\
{ }^{B} P_{E O R G}= & {\left[\begin{array}{c}
\text { horizontal_distance } \times \cos \alpha_{E} \\
\text { horizontal_distance } \times \sin \alpha_{E} \\
\text { tripod_height }
\end{array}\right]=\left[\begin{array}{c}
-2.38 \\
-4.13 \\
1.50
\end{array}\right], }
\end{aligned}
$$

where horizontal_distance $=\sqrt{(\text { distance_along_optical_axis })^{2}-(\text { tripod_height })^{2}}$. Combining the rotation and translation yields the transformation matrices via (2.19) as

$$
\begin{aligned}
& { }_{C}^{B} T=\left[\begin{array}{cccc}
-.300 & 0 & -.954 & 4.77 \\
0 & 1.00 & 0 & 0 \\
.954 & 0 & -.300 & 1.50 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& { }_{D}^{B} T=\left[\begin{array}{cccc}
.150 & -.866 & .477 & -2.39 \\
-.260 & -.500 & -.826 & 4.13 \\
.954 & 0 & -.300 & 1.50 \\
0 & 0 & 0 & 41
\end{array}\right] \\
& { }_{E}^{B} T=\left[\begin{array}{cccc}
.150 & .866 & .477 & -2.39 \\
.260 & -.500 & .826 & -4.13 \\
.954 & 0 & -.300 & 1.50 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

4. The camera-frame origin is located at ${ }^{B} P_{C O R G}=\left[\begin{array}{lll}7 & -2 & 5\end{array}\right]^{\top}$. Use (2.19) to get the transformation, ${ }_{C}^{B} T$. The rotation is Z-Y-X Euler angles, so use (2.71) with

$$
\begin{aligned}
& \alpha=0 \text { degrees } \\
& \beta=-110 \text { degrees } \\
& \gamma=-20 \text { degrees }
\end{aligned}
$$

to get

$$
{ }_{C}^{B} T=\left[\begin{array}{cccc}
-.342 & .321 & -.883 & 7.00 \\
0 & .940 & .342 & -2.00 \\
.940 & .117 & -.321 & 5.00 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

5. Let

$$
{ }^{B} P_{1}={ }^{B} P_{0}+5{ }^{B} V_{0}=\left[\begin{array}{lll}
9.5 & 1.00 & -1.50
\end{array}\right]^{\top}
$$

The object's position in $\{A\}$ is

$$
{ }^{A} P_{1}={ }_{B}^{A} T^{B} P_{1}=\left[\begin{array}{lll}
-4.89 & 2.11 & 3.60
\end{array}\right]^{\top}
$$

6. (2.1)

$$
\begin{aligned}
R & =\operatorname{rot}(\hat{Y}, \phi) \operatorname{rot}(\hat{Z}, \theta) \\
& =\left[\begin{array}{ccc}
\mathrm{c} \phi & 0 & \mathrm{~s} \phi \\
0 & 1 & 0 \\
-\mathrm{s} \phi & 0 & \mathrm{c} \phi
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{c} \theta & -\mathrm{s} \theta & 0 \\
\mathrm{~s} \theta & \mathrm{c} \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mathrm{c} \phi \mathrm{c} \theta & -\mathrm{c} \phi \mathrm{~s} \theta & \mathrm{~s} \phi \\
\mathrm{~s} \theta & \mathrm{c} \theta & 0 \\
-\mathrm{s} \phi \mathrm{c} \theta & \mathrm{~s} \phi \mathrm{~s} \theta & \mathrm{c} \phi
\end{array}\right]
\end{aligned}
$$

7. (2.2)

$$
\begin{aligned}
& R=\operatorname{rot}(\hat{X}, 60) \operatorname{rot}\left(\hat{\hat{y}^{6}},-45\right) \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & .500 & -.866 \\
0 & .866 & .500
\end{array}\right]\left[\begin{array}{ccc}
.707 & 0 & -.707 \\
0 & 1 & 0 \\
.707 & 0 & 707
\end{array}\right] \\
& =\left[\begin{array}{ccc}
.707 & 0 & -.707 \\
-.612 & .500 & -.612 \\
.353 & .866 & .353
\end{array}\right]
\end{aligned}
$$

8. (2.12) Velocity is a "free vector" and only will be affected by rotation, and not by translation:

$$
\left.\begin{array}{rl}
{ }^{A} V & ={ }_{B}^{A} R^{B} V=\left[\begin{array}{ccc}
.707 & 0 & -.707 \\
-.612 & .500 & -.612 \\
.353 & .866 & .353
\end{array}\right]\left[\begin{array}{l}
30.0 \\
40.0 \\
50.0
\end{array}\right] \\
& =[-14.1-29.0 \\
62.9
\end{array}\right]^{\top} .
$$

9. (2.31)

$$
{ }_{B}^{C} T=\left[\begin{array}{cccc}
0 & 0 & -1 & 2 \\
.500 & -.866 & 0 & 0 \\
-.866 & -.500 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

10. (2.37) Using (2.45) we get that

$$
{ }^{B} P_{A O R G}=-{ }_{B}^{A} R^{\mathrm{T} A} P_{A O R G}=-\left[\begin{array}{ccc}
.25 & .87 & .43 \\
.43 & -.50 & .75 \\
.86 & .00 & -.50
\end{array}\right]\left[\begin{array}{c}
5.0 \\
-4.0 \\
3.0
\end{array}\right]=\left[\begin{array}{c}
.94 \\
-6.4 \\
-2.8
\end{array}\right]
$$

