# INSTRUCTOR'S MANUAL

to accompany

Linear Algebra: 4th Edition

Stephen H. Friedberg Arnold J. Insel Lawrence E. Spence

Illinois State University



PEARSON EDUCATION, UpperSaddle River, NJ 07458

## **Contents**

| 1 | Vec                                                          | ctor Spaces                                                                                                                                                                                                                                                                                                          | 1                               |  |  |
|---|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
|   | 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6                       | Introduction  Vector Spaces  Subspaces  Linear Combinations and Systems of Linear Equations  Linear Dependence and Linear Independence  Bases and Dimension                                                                                                                                                          | 1<br>1<br>1<br>2<br>2<br>2      |  |  |
| 2 | Line                                                         | ear Transformations and Matrices                                                                                                                                                                                                                                                                                     | 4                               |  |  |
|   | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7                | Linear Transformations, Null Spaces, and Ranges The Matrix Representation of a Linear Transformation Composition of Linear Transformations and Matrix Multiplication Invertibility and Isomorphisms The Change of Coordinate Matrix Dual Spaces Homogeneous Linear Differential Equations with Constant Coefficients | 4<br>4<br>5<br>5<br>5<br>6<br>6 |  |  |
| 3 | Elementary Matrix Operations and Systems of Linear Equations |                                                                                                                                                                                                                                                                                                                      |                                 |  |  |
|   | 3.1<br>3.2<br>3.3<br>3.4                                     | Elementary Matrix Operations and Elementary Matrices The Rank of a Matrix and Matrix Inverses Systems of Linear Equations—Theoretical Aspects Systems of Linear Equations—Computational Aspects                                                                                                                      | 7<br>7<br>8<br>8                |  |  |
| 4 | Det                                                          | erminants                                                                                                                                                                                                                                                                                                            | 10                              |  |  |
|   | 4.1<br>4.2<br>4.3<br>4.4<br>4.5                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | 10<br>10<br>10<br>11<br>11      |  |  |
| 5 | Dia                                                          | gonalization                                                                                                                                                                                                                                                                                                         | 12                              |  |  |
|   | 5.1<br>5.2<br>5.3<br>5.4                                     | Eigenvalues and Eigenvectors                                                                                                                                                                                                                                                                                         | 12<br>13<br>13                  |  |  |

| 6 | Inner Product Spaces |                                                                      |    |
|---|----------------------|----------------------------------------------------------------------|----|
|   | 6.1                  | Inner Products and Norms                                             | 15 |
|   | 6.2                  | The Gram-Schmidt Ortogonalization Process and Orthogonal Complements | 15 |
|   | 6.3                  | The Adjoint of a Linear Operator                                     | 16 |
|   | 6.4                  | Normal and Self-Adjoint Operators                                    | 16 |
|   | 6.5                  | Unitary and Orthogonal Operators and Their Matrices                  | 17 |
|   | 6.6                  | Orthogonal Projections and the Spectral Theorem                      | 17 |
|   | 6.7                  | The Singular Value Decomposition and the Pseudoinverse               | 18 |
|   | 6.8                  | Bilinear and Quadratic Forms                                         | 19 |
|   | 6.10                 | Conditioning and the Rayleigh Quotient                               | 19 |
|   | 6.11                 | The Geometry of Orthogonal Operators                                 | 19 |
| 7 | Can                  | onical Forms                                                         | 20 |
|   | 7.1                  | Jordan Canonical Form I                                              | 20 |
|   | 7.2                  | Jordan Canonical Form II                                             | 20 |
|   | 7.3                  | The Minimal Polynomial                                               | 21 |
|   | 7.4                  | Rational Canonical Form                                              |    |

### **Vector Spaces**

#### 1.1 INTRODUCTION

**2.** (b) 
$$x = (2,4,0) + t(-5,-10,0)$$
 (d)  $x = (-2,-1,5) + t(5,10,2)$ 

3. **(b)** 
$$x = (3, -6, 7) + s(-5, 6, -11) + t(2, -3, -9)$$
  
**(d)**  $x = (1, 1, 1) + s(4, 4, 4) + t(-7, 3, 1)$ 

**4.** (0,0)

#### 1.2 VECTOR SPACES

4. (b) 
$$\begin{pmatrix} 1 & -1 \\ 3 & -5 \\ 3 & 8 \end{pmatrix}$$
 (d)  $\begin{pmatrix} 30 & -20 \\ -15 & 10 \\ -5 & -40 \end{pmatrix}$   
(f)  $-x^3 + 7x^2 + 4$  (h)  $3x^5 - 6x^3 + 12x + 6$ 

5. 
$$\begin{pmatrix} 8 & 3 & 1 \\ 3 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 9 & 1 & 4 \\ 3 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 17 & 4 & 5 \\ 6 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}$$

**16.** Yes **18.** No, (VS 1) fails. **19.** No, (VS 8) fails.

#### 1.3 SUBSPACES

2. (b) 
$$\begin{pmatrix} 0 & 3 \\ 8 & 4 \\ -6 & 7 \end{pmatrix}$$
 (d)  $\begin{pmatrix} 10 & 2 & -5 \\ 0 & -4 & 7 \\ -8 & 3 & 6 \end{pmatrix}$  (f)  $\begin{pmatrix} -2 & 7 \\ 5 & 0 \\ 1 & 1 \\ 4 & -6 \end{pmatrix}$ 

(h) 
$$\begin{pmatrix} -4 & 0 & 6 \\ 0 & 1 & -3 \\ 6 & -3 & 5 \end{pmatrix}$$
  
The trace is 2.

8. (b) No (d) Yes (f) No

9. 
$$W_1 \cap W_3 = \{0\}, \quad W_1 \cap W_4 = W_1,$$
  
 $W_3 \cap W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 \colon a_1 = -11a_3 \text{ and } a_2 = -3a_3\}$ 

#### 1.4 LINEAR COMBINATIONS AND SYSTEMS OF LINEAR EQUATIONS

- **2. (b)** (-2, -4, -3)
  - (d)  $\{x_3(-8,3,1,0) + (-16,9,0,2): x_3 \in R\}$
  - (f) (3,4,-2)
- 3. (a) (-2,0,3) = 4(1,3,0) 3(2,4,-1)
  - **(b)** (1,2,-3) = 5(-3,2,1) + 8(2,-1,-1)
  - (d) No
  - (f) (-2,2,2) = 4(1,2,-1) + 2(-3,-3,3)
- **4.** (a)  $x^3 3x + 5 = 3(x^3 + 2x^2 x + 1) 2(x^3 + 3x^2 1)$ 
  - **(b)** No
  - (c)  $-2x^3 11x^2 + 3x + 2 = 4(x^3 2x^2 + 3x 1) 3(2x^3 + x^2 + 3x 2)$
  - (d)  $x^3 + x^2 + 2x + 13 = -2(2x^3 3x^2 + 4x + 1) + 5(x^3 x^2 + 2x + 3)$
  - **(f)** No
- **5. (b)** No
- (d) Yes
- **(f)** No
- (h) No
- 11. The span of  $\{x\}$  is  $\{0\}$  if x = 0 and is the line through the origin of  $\mathbb{R}^3$  in the direction of x if  $x \neq 0$ .
- 17. if W is finite

#### 1.5 LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

- 2. (b) Linearly independent
- (d) Linearly dependent
- (f) Linearly independent
- (h) Linearly independent
- (j) Linearly dependent
- **10.** (1,0,0), (0,1,0), (1,1,0)

#### 1.6 BASES AND DIMENSION

- **2. (b)** Not a basis
- (d) Basis

**3. (b)** Basis

- (d) Basis
- 4. No,  $\dim(P_3(R)) = 4$ .
- 5. No,  $\dim(\mathbb{R}^3) = 3$ .

- 8.  $\{u_1, u_3, u_5, u_7\}$
- 10. (b) 12 3x

- (d)  $-x^3 + 2x^2 + 4x 5$
- **14.**  $\{(0,1,0,0,0), (0,0,0,0,1), (1,0,1,0,0), (1,0,0,1,0)\}$  and  $\{(-1,0,0,0,1), (0,1,1,1,0)\}; \dim(W_1) = 4 \text{ and } \dim(W_2) = 2.$
- **16.**  $\dim(W) = \frac{1}{2}n(n+1)$