
Chapter 3 

Matrices 

3.1 Practice Problems 
	 ([ ]) [ ] [ ]

3 (2) + 2 (−1) 4
2

 (a) T = − (2) + (−1) = −3−1 −4 (2) − 3 (−1) −5 

	[ ]
3 2 

 A = −1 1
 
−4 −3
 

(b)	

1.	

(c) Because	 n = 3 > m = 2, by Theorem 3.7 T is not onto. To determine if T is one-to-one, we 
row-reduce the corresponding augmented matrix: 

� ⎛[ ] (1/3)R1+R2 ∗R23 2 0	 3 2 0 
(4/3)R1+R3 ∗R3 5−1 1 0 ⊆ ⎞ 0 0 ⎡ 

3 
−4 −3 0 0 − 1 03� ⎛ 

3	 2 0 
(1/5)R2+R3 ∗R3 5⎞ ⎡⊆ 0 03 

0	 0 0 

Because T (x) = Ax = 0 has only the trivial solution, by Theorem 3.5 T is one-to-one. 

[ ] [ ] [ ]
2 −4 −2 

(a) T (u1 + u2) = T (u1) + T (u2) = + = 
3 1 4 

  [ ] [ ]
2 6 

	 (b) T (3u1) = 3T (u1) = 3 = 
3 9 

2.	 

[ ] [ ] [ ]
2 −4 8

(c)	 T (2u1 − u2) = 2T (u1) − T (u2) = 2 − = 
3 1 5 

 

  

0
3. 

([ ]) [ ] [ 
 0 + 2 (0) 0 

]
0 

Because T = = = ,
0 0 − 2 −2

[
0 

]
T is not a linear transformation. ̸
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[ ]
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̸

�	 � 
( [ ]) ([ ]) [ ] [ ] ([ ]) [ ]

0 0 0 − 2 (4) −8 0 0 − 2 (1) 
5. (a) False. T 4 = T = = , but 4T = 4 = 

1 4 3 (0) + 4 2 1 3 (0) + 1  [ ] ( [ ])
−8 0

= T 4 .
4 1 

1 0 0 0 
(b) False. For example, A = 

[
0 1 0 0 is onto.
 
0 0 1 0
 

]
(c) True. By definition, a linear transformation is a function. 

([

[
x

(d) False. For example, T x]) = 

]
satisfies T (x) = 0 if and only x = 0, but T is not onto. 

2x 

3.1 Linear Transformations 
   	    

2 1 −4 −10	 2 1 1 −4 
1. T (u1) = Au1 =	 = , T (u2) = Au2 = = 

3 5 2 2	 3 5 6 33 

[ ] [ ] [ ] [ ] [ ] [ ]
− − − − −[ ] [ ] [ ]	 [ ] [ ] [ ]
1 0 1	 1 0 −5

1	 −5
2. T (u1) = Au1 = 2 −4 = −6 , T (u2) = Au2 = 2 −4 = −10

2	 0
3 3 9	 3 3 −15 

 [ ] 	  [ ][ ] [ ] [ ]3	 4
0 −4 2 −6	 0 −4 2 

3. T (u1) = Au1 =	 2 = , T (u2) = Au2 = −5
3 1 −2 9	 3 1 −2

1	 −2

16 
= 

11 [ ][ ] [ ]	 [ ][ ]−2 5 −2 0 39	 −2 5 −2 3 
4.	 T (u1) = Au1 = 0 −1 −2 7 = −3 , T (u2) = Au2 = 0 −1 −2 5 = 

0 −1 −1 −2 −5 0 −1 −1 −1[ ]
21
 
−3
 
−4
 

5. We consider T (x) = Ax = y, and row-reduce the corresponding augmented matrix: 
 	 [ ] [ ]
1 −2 0 −3 −3R1+R2 ∗R2 1 −2 0 −3⊆
3 2 1 6	 0 8 1 15 

Since there exists a solution x to Ax = y, y is in the range of T . 

6. We consider T (x) = Ax = y, and row-reduce the corresponding augmented matrix: [ ] 	 
1 −2 0 1 −3R1+⊆R2 ∗R2 

[
1 −2 0 1

3 2 1 −4	 0 8 1 −7 

]
Since there exists a solution x to Ax = y, y is in the range of T . 
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7. We consider T (x) = Ax = y, and row-reduce the corresponding augmented matrix: 
	 [ ] [

2
1
 

]
1 −2 0 2 −3R1+R2 ∗R2 1 2 0
3 2 1 7 

−⊆
0 8 1

Since there exists a solution x to Ax = y, y is in the range of T .
 

8. We consider T (x) = Ax = y, and row-reduce the corresponding augmented matrix: [
1 −2 0 4 

]
−3R1+⊆R2 ∗R2 

3

[
1  

 2 1 5 0 
−2 0 4
8 1 −7
 

]	 

Since there exists a solution x to Ax = y, y is in the range of T .
 
 

2 3 13 
T (−2u1 + 3u2) = −2T (u1) + 3T (u2) = 

[
1

[
−

] [
−−2

]
+ 3 = 

2 4 

]
9. 

  
3 1 7 

10.	 T (3u1 − 2u2) = 3T (u1) − 2T (u2) = 3 

[
−1 

]
− 2

[
1 

]
= 

2
−5 

− 4 

[
−14 

]

11. T (−u1 + 4u2 −  3u 3) = −T (u1) + 4T (u2) −  3T (u3)
3 2 0 11 

[ ] [ ] [ ] [ ]
−

= − + 4 − 3 = 
0 −1 5 −19 [ ] [ ] ] [ ]

3 1 6 −5 
 T (u1 + 4u2 − 2u3) = T (u1) + 4T (u2) − 2T (u3) = −1 + 4 1 − 2 0 = 3 

−2 4 0 14 

 [
12.	

13.

[
3 1

 Linear transformation, with A = .−2 4 

]
14. Not a linear transformation, since T (2(1, 1)) = T (2, 2) = (2 − 2, 2(2)) = (0, 4), but 2T (1, 1) = 2(1  

1, 1(1)) = 2(0, 1) = (0, 2). 
−

15. Not a linear transformation, since T (0(0, 0, 0)) = T (0, 0, 0) = (2 cos 0, 3 sin 0, 0) = (2, 0, 0), but 
0 (T (0, 0, 0)) = (0, 0, 0). 

16.

[
0 −5 0 

 Linear transformation, with A = 

]
.

0 0 7 

17.

[
−4 0 1 

 Linear transformation, with A = 

]
.

6 5 0 

18. Not a linear transformation, since T (0(0, 0, 0)) = T (0, 0, 0) = (0, 4, 0), but 0 (T (0, 0, 0)) = (0, 0, 0). [ ]
0 sin � 

19. Linear transformation, with A = 4 .
ln 2 0 

20. Not a linear transformation, since T (0, 0) = (0, 0, 0) but T (0, 1) + T (0, −1) = (3, 5, 0) + (−3, 5, 0) = 
(0, 10, 0) = T (0, 0). ̸

21. We consider T (x) = Ax = b, and row-reduce the corresponding augmented matrix: [ ] [	 ]
1 −3 b1 2R1+R2 ∗R2 1 −3 b1⊆−2 5 b2	 0 −1 2b1 + b2 

Since there exists a unique solution x to Ax = b, by The Unifying Theorem - Version 2, T is both 
one-to-one and onto. 
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22. We consider T (x) = Ax = b, and row-reduce the corresponding augmented matrix: 
	 [ ] [ ]

3 2 b1 −3R1+R2 ∗R2 3 2 b1⊆
9 6 b2	 0 0 −3b1 + b2 

If −3b1 + b2 =
 0, there does not exist a unique solution x to Ax = b. By The Unifying Theorem ­
Version 2, T is neither one-to-one nor onto.
 

̸

23. Since n = 2 < m = 3, by Theorem 3.6 T is not one-to-one. To determine if T is onto, we row-reduce 
the corresponding augmented matrix: [ ] [	 ]

5 4 −2 b1 (−3/5)R1+R2 ∗R2 5 4 −2 b1⊆ − 17 63 −1 0	 b2 0 − 3 b1 + b25 5 5 

Since there exists a solution x to Ax = b for all b, the columns of A span Rn, and by Theorem 3.7 T 
is onto. 

24. Since n = 2 < m = 3, by Theorem 3.6 T is not one-to-one. To determine if T is onto, we row-reduce 
the corresponding augmented matrix: [ ] [	 ]

−1 3 2 b1 4R1+R2 ∗R2 −1 3 2 b1⊆
4 −12 −8 b2	 0 0 0 4b1 + b2 

If 4b1 + b2	 =
 0, there does not exist a unique solution x to Ax = b. By The Unifying Theorem ­
Version 2, T is neither one-to-one nor onto.
 

̸

25. Since n = 3 > m = 2, by Theorem 3.7 T is not onto. To determine if T is one-to-one, we row-reduce 
the corresponding augmented matrix: [ ]	 [ ]3R1+R2 ∗R21 −2 0	 1 −2 0 

−2R1+R3 ∗R3−3 5 0 ⊆ 0 −1 0 
2 −7 0 0 −3 0 [	 ]

1 −2 0 
−3R2+R3 ∗R3⊆	 0 −1 0 

0 0 0 

Since T (x) = Ax = 0 has only the trivial solution, by Theorem 3.5 T is one-to-one. 

26. Since n = 3 > m = 2, by Theorem 3.7 T is not onto. To determine if T is one-to-one, we row-reduce 
the corresponding augmented matrix: [ ]	 [ ](−5/2)R1+R2 ∗R22 −4 0	 2 −4 0 

2R1 +R3 ∗R35 −10 0 ⊆ 0 0 0 
−4 8 0 0 0 0 

Since T (x) = Ax = 0 has non-trivial solution, by Theorem 3.5 T is not one-to-one. 

27. We consider T (x) = Ax = b, and row-reduce the corresponding augmented matrix: [ ] (−3/2)R1+R2 ∗R2 [	 ]
2 8 4 b1	 2 8 4 b1(−1/2)R1+R3 ∗R3
3 2 3 b2 ⊆ 0 −10 −3 (−3/2) b1 + b2 
1 14 5 b3	 0 10 3 (−1/2) b1 + b3 [	 ]

2 8	 4 b1
R2+R3 ∗R3⊆	 0 −10 −3 (−3/2) b1 + b2 

0 0 0 −2b1 + b2 + b3 

If −2b1 + b2 + b3 	= 0, there does not exist a unique solution x to Ax = b.
 By The Unifying Theorem 
- Version 2, T is neither one-to-one nor onto.
 

̸
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28. We consider T (x) = Ax = b, and row-reduce the corresponding augmented matrix: [ ] [	 ]−3R1+R2 ∗R21 2 −5 b1	 1 2 −5 b1
2R1+R3 ∗R33 7 −8 b2 ⊆ 0 1 7 −3b1 + b2 

−2 −4 6 b3 0 0 −4 2b1 + b3 

Since there exists a unique solution x to Ax = b, by The Unifying Theorem - Version 2, T is both 
one-to-one and onto. 

29. 

30. 

31. 

32. 

[ ]
2 0 

T (x) = x
3 0 33. 

[ ]
0 1 

T (x) = 0 4 x 
0 5 

34.	 

[ ]
7/3 0 

T (x) = x
0 0 35. 
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36

[ ]
7/3 0 0

 T (x) =	 x
0 −1	 0 .

1 2 
[ ]

−
T (x) = x

3 1 37. 

38.
1 0

 T (x) = x

[ ]
−2 3 

39.	 (a) False. For instance T : R2 ∼ R2 defined by T (x) = 0 for all x has range(T ) = {0
equal

} but codomain 
 to R2 . 

(b) True, by Theorem 3.8. 

  x
40. (a) False. For instance T : R2 ∼ R defined by T

([
1 

])
= x

x 1 + x2 has range(T ) = R, which is not 
2


a subset of R2, the domain of T .
 

(b) True, by definition of an onto transformation. 

41. (a) True, by definition of the range of T . 

(b) True. Suppose z is in the codomain of W . Then z is in the codomain of S, and because S is onto, 
there exists y in the domain of S such that S (y) = z. Because y is in the domain of S, y is in 
the codomain of T , so because T is onto, there exists x in the domain of T such that T (x) = y. 
We now have z = S (y) = S (T (x)) = W (x), and therefore W is onto. 

42.	 (a) False. Suppose T (x) =1 for all x ⇒ R1.Then T (1 [1]) = 1 (T ([1])), but T is not linear. 
3.1.42b 

1 
(b) False. For example, let T ([x1]) = A [x1] = 

[ ]
[x1] . Then the codomain of T is R2 , but {[ ]} 0

 
1 

col (A) = span = R2.
0 ̸

43. (a) True. If T is linear, then T (0) = 0 and so b = 0. If b = 0, then T is linear by Theorem 3.2. 

(b) True, by Theorem 3.9, (d) implies (c). 

x
44. (a) False. If T is not one-to-one, the image is a segment, or just the origin. For   instance, if T 1 = 

x2

0 

([ ])
[ ]

, then the image of the unit square is the origin. 
0

(b) True, by Theorem 3.9, (e) implies (b). 

45.	 (a) False. W will be linear, but not necessarily one-to-one. Consider T2(x) = −T1(x) where T1 is 
one-to-one. 

(b) True. Let A be n×m. Since T is one-to-one, by Theorem 3.6, n ◦ m. Since T is onto, by Theorem 
3.7, n � m. Hence n = m, and A is a square matrix. 

46. (a) False. W will be linear, but not necessarily onto. Consider T2(x) = −T1(x), where T1 is onto. 
	 

(b) False. For example, if A = 

[
1 0	 

]
0 

, then T (x) = Ax is not one-to-one, and Ax = b = 
0 0 1 

does not have a solution. 

[ ]

47. (a) False, by Theorem 3.5. 

(b) True, by Theorem 3.7(b). 

48. (a) True, by The Unifying Theorem - Version 2. 
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1
(b) False. For example, if A =

[
 
]
, then T (x) = Ax is not onto R2 .

0 

49.

[
r 0 

 (a) A = 
0 r 

]

(b) 

50. (a) 

T 

([ 
x1 
x2 
x3 

] 

+ 

[ 
y1 
y2 
y3 

]) 

= T 

([ 
x1 + y1 
x2 + y2 
x3 + y3 

]) 

= 

[ 
x1 + y1 
x2 + y2 

] 

= 

[ 
x1 
x2 

] 

+ 

[ 
y1 
y2 

] 

= T 

([ 
x1 
x2 
x3 

]) 

+ T 

([ 
y1 
y2 
y3 

]) 

and 

T 

(
r 

[ 
x1 
x2 
x3 

]) 

= T 

([ 
rx1 
rx2 
rx3 

= 

[ 
rx1 
rx2 

] 

= r 

[ 
x1 
x2 

] 

= rT 

([ 
x1 
x2 
x3 

]) 

]) 

, 

hence T is a linear transformation. 
 

(b) T (x) = 

[
1 0 0 
0 1 0 

] 

x 

(c) x = (0, 0, x3) where x3 is any real number. 
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51. Let u = (u1, . . . , un).Then 

T (x + y) = u · (x + y) 
= (u1, . . . , un) · ((x1, . . . , xn) + (y1, . . . , yn)) 
= (u1, . . . , un) · (x1 + y1, . . . , xn + yn) 
= u1(x1 + y1) + · · · + un(xn + yn) 
= (u1x1 + u1y1) + · · · + (unxn + unyn) 
= (u1x1 + · · · + unxn) + (u1y1 + · · · + unyn) 
= u · x + u · y 
= T (x) + T (y), 

and 

T (rx) = u · (rx) 
= (u1, . . . , un) · (r(x1, . . . , xn)) 
= (u1, . . . , un) · (rx1, . . . , rxn) 
= u1(rx1) + · · · + un(rxn) 
= r (u1x1 + · · · + unxn) 
= ru · x 
= rT (x). 

Thus T is a linear transformation. 

52. Let u = (u1, u2, u3).Then 

T (x + y) = u × (x + y)
 
= (u1, u2, u3)×((x1, x2, x3) + (y1, y2, y3))
 
= (u1, u2, u3)×(x1 + y1, x2 + y2, x3 + y3)
 
= (u2(x3 + y3) − u3(x2 + y2), u3(x1 + y1) − u1(x3 + y3), u1(x2 + y2) − u2(x1 + y1)) 
= (u2x3 − u3x2, u3x1 − u1x3, u1x2 − u2x1) + (u2y3 − u3y2, u3y1 − u1y3, u1y2 − u2y1)
 
= u × x + u × y
 
= T (x) + T (y),
 

and 

T (rx) = u × (rx) 
= (u1, u2, u3)×(r(x1, x2, x3)) 
= (u1, u2, u3)×(rx1, rx2, rx3) 
= (u2 (rx3) − u3 (rx2) , u3 (rx1) − u1 (rx3) , u1 (rx2) − u2 (rx1)) 
= (r (u2x3 − u3x2) , r (u3x1 − u1x3) , r (u1x2 − u2x1)) 
= r(u2x3 − u3x2, u3x1 − u1x3, u1x2 − u2x1)
 
= r (u × x)
 
= rT (x).
 

Thus T is a linear transformation. 

53. Let u1 = (1, 0, 0), u2 = (0, 1, 0), and u3 = (0, 0, 1). Since T (u1), T (u2), T (u3) are three vectors in R2 , 
they must be linearly dependent, and therefore there exist scalars c1, c2, and c3 with at least one ci = 0 
and c1T (u1)+c2T (u2)+c3T (u3) = 0. Since T is a linear transformation, T (c1u1 + c2u2 + c3u3) = 0. 
Also, since u1, u2, and u3 are linearly independent and one of the ci = 0, it follows that c1u1 + c2u2 + 
c3u3 = 0. Noting that T (0) = 0, T (c1u1 + c2u2 + c3u3) = 0, and c1u1 + c2u2 + c3u3 =
  0, we conclude 
that T is not one-to-one.
 

̸

̸
̸ ̸
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54. Let u1 = (1, 0) and u2 = (0, 1). Since T (u1) and T (u2) are two vectors in R4, they do not span R4 , 
and there exists a vector v ⇒R4 which is not in the span of T (u1) and T (u2). Let u be any vector in 
R2, then since u1 and u2 span R2 there are scalars c1 and c2 such that u = c1u1 + c2u2. Since T is a 
linear transformation, T (u) = T (c1u1 + c2u2) = c1T (u1) + c2T (u2) = v, since v is not in the span of 
T (u1) and T (u2). Thus v is not in the range of T , and therefore T is not onto. 

̸

55.	 T (0) = T (0 + 0) = T (0) + T (0)  T (0) = 0, upon subtracting T (0) from both sides. 
(Another proof, using the scalar pr

⊂
operty: T (0) = T (2(0)) = 2T (0) ⊂ T (0) = 0, upon subtracting 

T (0) from both sides. ) 

56. Let u = (u1, u2, . . . , un) and A = [a1 a2  an]. Then T (u) = Au = u1a1 + u2a2 +  + unan = 0, 
and since u = 0 at least one of the ui =
 

·
0.
·
 
·
As a result, we may conclude that the columns

· · ·
 of A are

linearly dependent.
 
̸ ̸

57.	 T (ru) = A(ru) = r(Au) = rT (u) for all scalars r and all vectors u. 

58. (a) T (rx + sy) = T (rx) + T (sy) = rT (x) + sT (y) for all scalars r and s and all vectors x and y. 

(b) We have T (x + y) = T (1 (x)+1 (y)) = 1T (x)+1T (y) = T (x)+ T (y), and T (rx) = T (r(x + 0)) = 
T (rx + r0) = rT (x) + rT (0) = rT (x) + r0 = rT (x). Thus T is a linear transformation. 

59. Suppose T : Rm ∼ Rn is one-to-one, and let T (u) = T (v) = w. Since there exists at most one vector 
whose image under T is w, it follows that u = v. Now suppose T (u) = T (v) implies u = v. Let 
w ⇒ Rn, and suppose T (u) = T (v) = w. Then we must have u = v, and therefore there is at most 
one vector whose image under T is w. Hence T is one-to-one. 

60. Since u1 and u2 are linearly dependent, there exist scalars c1 and c2 such that c1u1 + c2u2 = 0 and 
with at least one ci = 0. Apply the linear transformation T to the equation c1u1 + c2u2 = 0 to obtain 
c1T (u1) + c2T (u2) = T (0) = 0. As one of the ci = 0, this shows that T (u1) and T (u2) are linearly 
dependent. 

̸
̸

61. Consider	 c1u1 + c2u2 = 0, and apply the linear transformation T to obtain c1T (u1) + c2T (u2) = 
T (0) = 0. Since T (u1) and T (u2) are linearly independent, c1 = c2 = 0. This shows that u1 and u2 
are linearly independent. 

 
1 0

62. For example, if T (x) = 0 for all x in R2, then T is a linear transformation. If u1 = 

[ ]
and u  

0 2 = , 
1

then u1 and u2 are linearly independent, but T (u1) = 0 and T (u ) = 0 are

[ ]
2  linearly dependent. 

63. Since y is in the range of T , there exists a vector w such that T (w) = y. For each r  R define the 
vector xr = w + ru. Then T (xr) = T (w + ru) = T (w) + rT (u) = y + r0 = y for every

⇒
 r. Moreover, 

each xr is distinct, for if xr = xs, then w + ru = w + su ⊂ (r  s)u = 0  r = s, since u = 0. 
Therefore there are infinitely many vectors x such that T (x) = 0. 

− ⊂ ̸

64. Suppose u1 < v1 and u2 < v2, and let w = (w1, w2) be a point on the segment joining u and v at a 
distance sL from u, where L is the distance between u and v, and 0 � s � 1. Write w = u + (a, b). 
By considering similar triangles, we have a : sL = (v1 − u1) : L, hence a = s(v1 − u1). Likewise, we 
also have that b : sL = (v2 − u2) : L, hence b = s(v2 − u2). We thus determine the vector 

w = (w1, w2) 
= (u1 + a, u2 + b) 
= (u1 + s(v1 − u1), u2 + s(v2 − u2)) 
= ((1 − s)u1 + sv1, (1 − s)u2 + sv2) 
= (1 − s)(u1, u2) + s(v1, v2) 
= (1 − s)u + sv 

We conclude that the set of points joining u and v is the same as the set of points (1 − s)u + sv, 
0 � s � 1. The proof in the cases where u1 ◦ v1 or u1 ◦ v1 is handled similarly. 
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65. Let u = (1, 0) and v = (0, 1), and A = [ a1 a2 ]. The unit square consists of all vectors x = su + tv 
where 0 � s � 1 and 0 � t � 1. The image consists of all vectors T (x) = T (su+tv) = s (Au)+t (Av) = 
sa1 + ta2. If the columns of A are linearly independent, then a1, a2  is linearly independent, and 
neither vector is a multiple of the other. Thus {sa1 + ta  

{ }
2 : 0  s  1, 0  t  1  is a parallelogram. 

If the columns of A are linearly dependent, then a1, a2  is linearly
� �

 dep
�
enden

�
t,
}

 so one vector is a 
multiple of the other, and {sa1 + ta2 : 0  s  1, 0 

{
 t  1

}
 is a segment. In the linearly dependent 

case, if a1 = a2 = 0, then 
� � � � }

{sa1 + ta2 : 0 � s � 1, 0 � t � 1} = {0}, a point. 

66.	 (a) The number of 1’s in the jth row (or column) is the number of edges connected to node j. One 
can determine this by evaluating T (x) = Ax, using x = (1, 1, 1, 1, 1), which gives each row sum: 

⎞ ⎞⎡ ⎡ ⎞ ⎡
� � � ⎛⎛⎛ 

0 1 0 1 1 1 3 ⎤⎤⎤
 

1 0 1 0 1 
0 1 0 1 0 
1 0 1 0 0 

⎤⎤⎤
 

⎣⎣⎣
 

1 
1 
1 

⎣⎣⎣
 
= 
⎤⎤⎤

 

3 
2 
2 

⎣⎣⎣
 
. 

1 1 0 0 0 1 2 

(b) The total number of graph edges will be the total number of ones in the adjacency matrix divided 
by two, since each edge corresponds to two vertices. In this case, we have (3 + 3 + 2 + 2 + 2) /2 = 
6 edges in our graph. 

67.	 (a) Let p 2	
1(x) = a1x + b x 2

1  + c1 and p2(x) = a2x + b2x + c2 be two polynomials of degree 2 or less, 
and r a constant. Then 

[
(

= (a1 + a2)x

(
)

[2 + (b1 + b2) x + (c1 + c2)

)
2 2(p1 + p2) (x) = + b1x + c1 + b2x + c2+a1x a2x 

] ] [ ]
a1 + a2 a1 a2 

≈ b1 + b2 b1 b2+=
c1 + c2 c1 c2

≈ p1(x) + p2(x) 

and )
2 + (rb1) x + (rc1) 

≈ R (p1(x)) 

(
[= (ra1) x 

2(rp1)(x) = r + b1x + c1a1x 

] [ ]
ra1 a1 
rb1 b1≈ = r
rc1 c1

Therefore addition of polynomials corresponds to addition of vectors, and scalar multiplication of 
polynomials corresponds to scalar multiplication of vectors. 
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(b) With p1 and p2 as above, we have 

(( ) ( ))′ 2	 2T (p1(x) + p2(x)) = a1x + b1x + c1 + a2x + b2x + c2(	 )′ 
= (a1 + a2)x 2 + (b1 + b2) x + (c1 + c2)

= (2(a1 + a2))x + (b1 + b2) [ ] [ ] [ ]
0 0 0 

≈ 2(a1 + a2) = 2a1 + 2a2 
b1 + b2 b1 b2 

≈ (2a1x + b1) + (2a2x + b2) ( )′ ( )′ 
= a1x 2 + b1x + c1 + a2x 2 + b2x + c2
= T (p1(x)) + T (p2(x)) 

and 

T (rp1(x)) = (rp1(x)) 
′ (	 )′ 

= ra1x 2 + rb1x + rc1
= (2ra1x + rb1) [ ] [ ]

0 0 
≈ 2ra1 = r 2a1 

rb1 b1 

≈ R (2a1x + b1) ( )′ 
= r a1x 2 + b1x + c1
= rT (p1(x)) 

Thus T is a linear transformation. 

(c) Since p(x) = ax2 + bx + c has derivative p′  (x) = (2a)x + b, we can represent T by 

[ ]
0 0 0 

T (x) = Ax = 2 0 0 x 
0 1 0 

(d)	 T is not onto, as there is no polynomial p(x) of degree 2 or less with p′  (x) = x2. T is not 
one-to-one, as T (x2) = T (x2 + 1). One can also use the Unifying Theorem - Version 2, and the 
observation that the columns of the matrix A are linearly dependent to conclude that T is neither 
onto nor one-to-one. 

68.	 (a) Let p 1x
3

1(x) = a + b x2	 
1 + c1x + d1 and p2(x) = a2x3 + b 2

2x + c2x + d2 be two polynomials of 
degree 3 or less, and r a constant. Then (	 ) ( )

3 2	 3 2(p1 + p2) (x) = a1x + b1x + c1x + d1 + a2x + b2x + c2x + d2

= (a1 + a2)x 3 + (b1 + b2) x 2 + (c1 + c2) x + (d1 + d2)� ⎛ � ⎛ � ⎛ 
a1 + a2 a1 a2
 ⎤ b1 + b2 ⎣ ⎤ b1 ⎣ ⎤ b2 ⎣
≈ ⎞ ⎡ = ⎞ ⎡ + ⎞ ⎡ c1 + c2 c1 c2 
d1 + d2 d1 d2 

≈ p1(x) + p2(x) 
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and (	 )
3 2(rp1)(x) = r a1x + b1x + c1x + d1

= (ra1) x 3 + (rb1) x 2 + (rc1) x + (rd1)� ⎛ � ⎛ 
ra1 a1
 ⎤ rb1 ⎣ ⎤ b1 ⎣
≈ ⎞ ⎡ = r ⎞ ⎡ rc1 c1 
rd1 d1 

 R (p1(x)) ≈

Therefore addition of polynomials corresponds to addition of vectors, and scalar multiplication of 
polynomials corresponds to scalar multiplication of vectors. 

(b) With p1 and p2 as above, we have ((	 ) ( ))′ 3 2	 3 2T (p1(x) + p2(x)) = a1x + b1x + c1x + d1 + a2x + b2x + c2x + d2(	 )′ 
= (a1 + a2)x 3 + (b1 + b2) x 2 + (c1 + c2) x + (d1 + d2)

= (3(a1 + a2))x 2 + (2 (b1 + b2))x + (c1 + c2)� ⎛ � ⎛ � ⎛ 
0 0 0 ⎤ 3(a1 + a2) ⎣ ⎤ 3a1 ⎣ ⎤ 3a2 ⎣≈ ⎞ ⎡ = ⎞ ⎡ + ⎞ ⎡2 (b1 + b2) 2b1 2b2 

c1 + c2 c1 c2 ( ) (	 )
≈ 3a1x 2 + 2b1x + c1 + 3a2x 2 + 2b2x + c2(	 )′ ( )′ 3 2	 3 2 = a1x + b1x + c1x + d1 + a2x + b2x + c2x + d2
= T (p1(x)) + T (p2(x)) 

and 

 T (rp1(x)) = (rp1(x))
′ 

   = 
(
ra1x 3 + rb1x

2(  + rc1x + rd1
′

	
= �3ra1x 2 +⎛2rb1x �+ rc1

  

)
0 0 ⎞⎤ 3ra1 ⎡⎣ ⎞⎤ 3a≈  

)
 = r 1

2rb1 2b1 

⎛

(rc1 c1 
	

⎣
≈ R 3a1x

2  + 2b1x 
 r

( + c1

⎡
	  

= a 1x
2

1x 3 + b   + c1x +

)
 d1
)′

= rT (p1(x)) 

Thus T is a linear transformation. 

(c) Since p(x) = ax3 + bx2 + cx + d has derivative p ′ (x) = (3a)x2 + (2b)x + c, we can represent T by � ⎛
0 0 0 0 ⎤ 3 0 0 0 ⎣

T (x) = Ax =  x0 2 0 0 
0 0 1 0 

 

⎞ ⎡
(d)	 T is not onto, as there is no polynomial p(x) of degree 3 or less with p′  (x) = x3. T is not 

one-to-one, as T (x3) = T (x3 + 1). One can also use the Unifying Theorem - Version 2, and the 
observation that the columns of the matrix A are linearly dependent to conclude that T is neither 
onto nor one-to-one. 
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69.
( )′ 

(a) T (x2 + sin x) = x2 + sin x = 2x + cos x 
′ 

(b)	 i. T (f(x) + g(x)) = (f(x) + g(x)) = f ′ (x) + g ′ (x) = T (f(x)) + T (g(x))
 
′
 

ii. T (rf(x)) = (rf(x)) = rf ′ (x) = rT (f(x)) 

 

( ) ∫ 1 ( ) ( )
(a) T 4x3 − 6x2 + 1 = 4x3 − 6x2 + 1 dx = x4 − 2x3 + x |1 

00 
= (1 − 2 + 1) − (0 − 0 + 0) = 0 ∫ 1	 ∫ 1 ∫ 1

(b) i. T (f(x) + g(x)) = (f(x) + g(x)) dx = f(x) dx + g(x) dx
0	 0 0 

= T (f(x)) + T (g(x))
 1  1

ii. T (rf(x)) = (rf(x)) dx = r f(x) dx = rT (f(x))
0	 0 

70. 

 [ ][ ]57 73 
T (x) = Ax = 93 101 x1 , so 

x229 34 ([ ]) [ ] [ ] [ ]
57 73 723

5	 5 
T = 93 101 = 1071 .

6	 6
29 34 349 

71. 

∫ ∫

72.

[ ][ ]57 73 
 T (x) = Ax = 93 101 x1 , so 

x229 34 ([ ]) [ ] [ ] [ ]
57 73 1072

6	 6 
T = 93 101 = 1568 .

10	 10
29 34 514 

 

[ ] [ ]57 73 
. T (x) = Ax = 93 101 x1 , so 

x229 34 ([ ]) [ ] [ ] [ ]
57 73 1624

8	 8 
T = 93 101 = 2360 .

16	 16
29 34 776 

73

 [ ]
74

[ ]57 73 
. T (x) = Ax = 93 101 x1 , so 

x229 34 ([ ]) [ ] [ ] [ ]
57 73 2144

12	 12 
T = 93 101 = 3136 .

20	 20
29 34 1028 

75. Using a computer algebra system, the matrix has row-reduced echelon form �	 ⎛[	 ]
4 2 −5 2 6 1 0 0 −6 13 
7 −2 0 −4 1 ⊆ ⎞ 0 1 0 −19 45 ⎡ 

− 64 1360 3 −5 7 −1 0 0 1 5 5 

Hence T is onto, since Ax = b has solutions for all b. T is not one-to-one, since Ax = 0 has nontrivial 
solutions. 

76. Using a computer algebra system, the matrix has row-reduced echelon form 
	 13 3 5� ⎛[	 ] 1 04 −2 5 2 1	 11 11 11 ⎤	 9 ⎣− 3 − 55 14 4 −5 8 ⊆ ⎞ 0 1	 ⎡22 11 22 

−1 6 −2 −3 2 
0 0 0 0 0 

Hence T is not onto, since Ax = b does not have solutions for all b. T is not one-to-one, since Ax = 0 
has nontrivial solutions. 



� 
77. Using a computer algebra system, the matrix has row-reduced echelon form � 1 0 0 − 37 

23 

0 1 0 − 42 
23 

0 0 1 8 
23 

⎛ 
2 −1 4 0 ⎣⎡ ⊆ 

⎤⎤⎤
 

⎣⎣⎣
 

3 −3 1 1 
1 −1 8 3 

⎤⎞ 

0 −2 1 4 
0 0 0 0 

Hence T is not onto, since Ax = b does not have solutions for all b. T is not one-to-one, since Ax = 0 
has nontrivial solutions. 

78. Using a computer algebra system, the matrix has row-reduced echelon form � � ⎛⎛ 
3 2 0 5 1 0 0 0 ⎤

 
0 1 2 −3 

−2 −1 3 1 
⎣ ⊆ ⎤ 

0 1 0 0 
0 0 1 0 

⎣
 

4 −2 3 −1 0 0 0 1 

Hence T is onto, since Ax = b has a solution for all b. T is one-to-one, since Ax = 0 has only the 
trivial solution. 

79. Using a computer algebra system, the matrix has row-reduced echelon form � � ⎛⎛ 
2 −3 5 1 1 0 0 0 ⎤⎤

 

6 0 3 −2 
−4 2 1 1 
8 2 3 −4 

⎣⎣
 
⊆ 
⎤⎤

 

0 1 0 0 
0 0 1 0 
0 0 0 1 

⎣⎣⎣
 

1 2 5 3 0 0 0 0 

Hence T is not onto, since Ax = b does not have solutions for all b. T is one-to-one, since Ax = 0 has 
only the trivial solution. 

80. Using a computer algebra system, the matrix has row-reduced echelon form � � ⎛⎛ 
4 3 −2 9 1 0 0 2 ⎤⎤⎤

 

−1 0 1 −1 
3 0 −2 4 
2 −4 3 3 

⎣⎣⎣
 
⊆ 
⎤⎤⎤

 

0 1 0 1 
0 0 1 1 
0 0 0 0 

⎣⎣⎣
 

5 7 0 3 0 0 0 0 

Hence T is not onto, since Ax = b does not have solutions for all b. T is not one-to-one, since Ax = 0 
has nontrivial solutions. 

3.2 Practice Problems 
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⎛ 

⎞ ⎡

⎞ ⎡ ⎞ ⎡

⎤⎞ ⎣⎡ ⎤⎞ ⎡
− −

⎞ ⎡ ⎞ ⎡
−

[ ] [ ] [ ]
1. 

2 5 3 1 5 6 
(a) A + B = + =−4 −5 −93 4 7 . AC is not defined. 

(b) 

[ ] [ ] [ ]
3 1 1 0 

0 1
0 1 

B − 3I2 − 3= =−5 −84 4 
 

CB =

[ ][
=

[ ]]
=

[ ] [ ] [ ]−32 1 
5 4 

10 −103 1 2 5 2 5 
3 −4

19 
; A2−1531 =−5 −4 −64 3 31−1 −40 5

. DB is not defined. 

(c) 

(d

[ ]T
2 1 
5 4 
0 −1

[ ] [ ]
−
[ ] [ ]

; 
−2 −3 −2 −32 2 5 0 2 0 7 3 

1 1 −2
) CT − D = − = =−10 3 1 1 4 0 3 1] [ 

2 1−2 −3
]
=

[
DC =

[ ]
−6 −3 
15 11

2 
5 4

0 3 1 
0 −1
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2. Set A2 = A, [ ]2 [ ]
a 2 a 2 

= −1 1 −1 1 [ ] [ ]
a2 − 2 2a + 2 a 2 

= −a − 1 −1 −1 1 

Because row 2, column 2 requires −1 = 1, we conclude that there are no solutions. 
 [ ] [ ]

1 2 1 3 
3. We have T1 (x) = 

−
x, and T2 (x) = 

−
x.

1 3 1 1 − −

(a)

[ ]([ ] [ ])
1 −2 −1 3 x1 T1 (T2 (x)) = = −1 3 1 −1 x2([ ] [ ])[ ] [ ] [ ] [ ]

1 −2 −1 3 x1 −3 5 x1 −3 5 
= , so A = .−1 3 1 −1 x2 4 −6 x2 4 −6 

   [ ]([ ] [ ])
−1 3 −1 3 x1 T2 (T2 (x)) = = 
1 −1 1 −1 x2([ ] [ ])[ ] [ ] [ ] [ ]

−1 3 −1 3 x1 4 −6 x1 4 −6 
= , so A = .

1 −1 1 −1 x2 −2 4 x2 −2 4 

(b)

4. (a) −2R1 + R2  R2 ∼
(b) 4R2  R2 ∼
(c) 3R1 + R2  R2 ∼
(d) R1  R3 ≈

5. (a) True, because A2 = AA is defined only if n = m. 

(b) True, as the transpose operation distributes over addition and scalar multiplication. 
   

(c) False. For example, 

[ ] [ ] [ ]
1 1 1 0 2 1

AB = = 
0 1 1 1 1 1 is not diagonal. 

(d) False. For example, 

[ ] [ ] [ ]
2 0 1 0 2 0 

E1E2 = = 
0 1 0 2 0 2 is not an elementary matrix. 

3.2 Matrix Algebra 

1. (a) 

[ ] [ ] [ ]
−3 1 0 4 −3 5 

A + B = + = 
2 −1 −2 5 0 4 [ ] [ ] [ ] [ ] [ ] [ ]
−3 1 0 4 1 0 −2 −7 1 0 −1 −7 

 AB + I2 = + = + = 
2 −1 −2 5 0 1 2 3 0 1 2 4 (b)

(c) A + C is not possible, since A and C are different sizes. 

2. (a) AC is not possible, since A has 2 columns, and C has 3 rows. 

(b)

(c) CB + I2 is not possible, since CB is a 3 × 2 matrix, and I2 is a 2 × 2 matrix. 

[ ] [ ]T 
[ ] [ ] [ ]

5 0 5 0 1 −2 6 −2
1 0 −3 

 C + DT = −1 4 + = −1 4 + 0 5 = −1 9−2 5 −1
3 3 3 3 3 1 0 2 − −

([ ] [ ])T [ ]T [ ]
T −3 1 0 4 −2 −7 −2 2 

(AB) = = = 
2 −1 −2 5 2 3 −7 3 3. (a)
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(b) CE is not defined, since C has 2 columns, and E has 3 rows. 

(c) 

([ ] [ ])[ ]
−3 1 0 4 1 0 −3 

(A − B) D = −
2 −1 −2 5 −2 5 −1 [ ] [ ] [ ]

−3 −3 1 0 −3 3 −15 12 
= = 

4 −6 −2 5 −1 16 −30 −6 

  

([ ] [ ])[ ]
−3 1 −3 1 −3 1 

A3 = = 
2 −1 2 −1 2 −1 [ ] [ ] [ ]

11 −4 −3 1 −41 15 
= −8 3 2 −1 30 −11 

 

 T [ ] [ ] [ ] [ ] [ ]5 0
0 4 0 4 5 −1 3 0 16 12 

BCT = −1 4 = = −2 5 −2 5 0 4 3 −10 22 9
3 3 

) 

4. (a)

(b

(c) EC + I3 is not possible, since EC is a 3 × 2 matrix, and I3 is a 3 × 3 matrix. 

5. (a) (C + E) B is not possible, since C and E are different sizes. 

(b) 

� �  ( ) [ ] [ ]T [ ]5 0
0 4 1 0 −3 

B CT + D = ⎨ −1 4 + ⎬ 
−2 5 −2 5 −1

3 3 [ ]([ ] [ ])
0 4 5 −1 3 1 0 −3 

= +−2 5 0 4 3 −2 5 −1 [ ] [ ] [ ]
0 4 6 −1 0 −8 36 8 

= = −2 5 −2 9 2 −22 47 10 [ ] [ ][ ]1 4 −5 5 0 
1 0 −3 

E + CD = −2 1 −3 + −1 4 −2 5 −1
0 2 6 3 3 [ ] [ ] [ ]

1 4 −5 5 0 −15 6 4 −20
 
= −2 1 −3 + −9 20 −1 = −11 21 −4
 

0 2 6 −3 15 −12 −3 17 −6
 

 

 

  T
5 0[ ] [ ]

−3 1 1 0 −3 
AD − CT = − −1 4

2 −1 −2 5 −1 
3 3 

  
−5 5 8 5 −1 3 −10 6 5 

= − = 
4 −5 −5 0 4 3 4 −9 −8 

[ ]
) [ ] [ ] [ ]

(c)

6. (a

(b) 

[ ] [ ] [ ] [ ]
5 0−3 1 0 4 1 0 −3 

AB − DC = − −1 4
2 −1 −2 5 −2 5 −1 

3 3 
 

−2 −7 −4 −9 2 2 
= − = 

2 3 −18 17 20 −14 

[ ] [ ] [ ]
(c) DE + CB is not possible, since DE is a 2 × 3 matrix and CB is a 3 × 2 matrix. 

7. 

  [ ] [ ] [ ] [ ]
2 a b −3 2b − a 2a − 6 3 −8 

= = ⊂
3 −2 −1 2 3b + 2 −13 5 c
 

c = 13, 3b + 2 = 5  b = 1, 2a  6 = 8  a = 1.
 − ⊂ − − ⊂ −

8. 

[ ] [ ] [ ] [ ]
1 4 2 −1 4b + 2 11 6 d 

= = ⊂ 4b + 2 = 6 ⊂ b = 1, d = 11,
a 7 b 3 2a + 7b 21 − a 11 c
 

2a + 7b = 11 ⊂ 2a + 7(1) = 11 ⊂ a = 2, 21 − a = c ⊂ 21 − (2) = c ⊂ c = 19.
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[ ] [ ] [ ] [ ]2 −1 
a 3 −2 2a − 2c 3b − a − 2 4 d

 0 b = = ⊂
3 −2 4 4c + 6 1 − 2b −6 −5 

c 1 
4c + 6 = −6 ⊂ c = −3, 1 − 2b = −5 ⊂ b = 3, 2a − 2c = 4 ⊂ 2a − 2(−3) = 4 ⊂ a = −1, 
3b  a  2 = d  3(3)  ( 1)  2 = d  d = 8 

9.

− − ⊂ − − − ⊂

10.

[ ] [ ] [ ] [ ]
1 a 3 − 2a a + c 2a + d −3 3 7

3 c d
 0 −2 = 4 −2 −4 = e −2 −4 ⊂−2 1 2

5 b 15 − 2b b + 5c 2b + 5d f −2 1 
3 − 2a = −3 ⊂ a = 3, a + c = 3 ⊂ 3 + c = 3 ⊂ c = 0, 2a + d = 7 ⊂ 2(3) + d = 7 ⊂ d = 1, 
4 = e ⊂ e = 4, b+2c = −2 ⊂ b+2(0) = −2 ⊂ b = −2, 15−2b = f ⊂ 15−2(−2) = f ⊂ f = 19 

 

[   
2 5 −10 5 10 25  10a 10 

11. A = = . Setting this equal to A, we obtain 25  
a −4 a

− −

 = 2.

]
 16

−
−4 a  −− 10a
 

10a = 5  a  

[
We check that

]
 all

[
 entries of A2 and A 

]
are equal when a = 2.
 ⊂([ ] [ ])[ ] [ ] [ ]

2 2 2 2 2 2 2 2a  4 2 2
12. A3 =

− − −
= [ −1 a −1 a −1 a] 2 − a a2 

−
− 2 

−
1 a

 
−

2 
−2a a (2a 

= (
2 

) − 4) + 4 2 2 4 4
. Setting this equal to 2A = 2 −a + 2a − 2 a a − 2 − 2a + 4 

obtain 

[
−

]
= 

[
−

]
we −1 a −2 2a 

−2a = −4 ⊂ a = 2. We check that all entries of A3 and 2A are equal when a = 2. 
 

3 5 2 9
13. We first determine that T1 (x) = A1x = 

[ ]
and T2 (x) = A2x =

[
−

]
.−2 7 0 5 

(a) T1 (T2 (x)) = T1 (A2x) = A1 (A2x) = (A1A2) x.[ ] [ ] [ ]
3 5 −2 9 −6 52 

So A = A1A2 = = −2 7 0 5 4 17 

(b) T2 (T1 (x)) = T2 (A1x) = A2 (A1x) = (A2A1) x.[ ] [ ] [ ]
−2 9 3 5 −24 53

So A = A2A1 = = 
0 5 −2 7 −10 35 

(c) T1 (T1 (x)) = T1 (A1x) = A1 (A1x) = (A1A1) x.[ ] [ ] [ ]
3 5 3 5 −1 50 

So A = A1A1 = = −2 7 −2 7 −20 39 

(d) T2 (T2 (x)) = T2 ([A2x) =  A]2 [(A2x) = (A2A2)  ] [ x.
2 9 2 9 4 27 

So A = A2A2 =
− −

= 
0 5 0 5 0 25 

]
 

2 3 4 5
14. We first determine that T1 (x) = A1x = 

[
−
1 6 

]
and T2 (x) = A2x =

[
−

]
.

1 5 

(a) T1 (T2 (x)) = T1 (A2x) = A1 (A2x) = (A1A2) x.[ ] [ ] [ ]
−2 3 4 −5 −5 25 

So A = A1A2 = = 
1 6 1 5 10 25 

(b) T2 (T1 (x)) = T2 (A1x) = A2 (A1x) = (A2A1) x.[ ] [ ] [ ]
4 −5 −2 3 −13 −18

So A = A2A1 = = 
1 5 1 6 3 33 

(c) T1 (T1 (x)) = T1 (A1x) = A1 (A1x) = (A1A1) x.[ ] [ ] [ ]
−2 3 −2 3 7 12 

So A = A1A1 = = 
1 6 1 6 4 39 

(d) T2 (T2 (x)) = T2 (A2x) = A2 (A2x) = (A2A2) x.[ ] [ ] [ ]
4 −5 4 −5 11 −45 

So A = A2A2 = = 
1 5 1 5 9 20 
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15. (A + I) (A  I) = A(A  I) + I(A  I) = A(A)  A(I) + (A  I) = A2  A + A  I = A2  I − − − − − − − −
 ( ) ( ) ( ) ( ) ( )

16. (A + I) A2 + A = A A2 + A + I A2 + A = A A2 + A (A) + A2 + A
= A3 + A2 + A2 + A = A3 + 2A2 + A ( )

17.	 A + B2 (BA − A) = A (BA − A) + B2 (BA − A) = A (BA) − A(A) + B2 (BA) − B2A 
= ABA − A2 + B3A − B2A 

18.	 A (A + B) + B (B − A) = A (A) + A(B) + B(B) − B(A) = A2 + AB + B2 − BA 

 2
19. (A + B) = (A + B) (A + B) = A (A + B) + B (A + B) = A2 + AB + BA + B2 . This only is equal to 

A2 +2AB + B2 when AB + BA = 2AB  AB = BA , which in general is not true. For example, →[ ] [ ]	 [ ]2 
1	 0 0 1 2 1 1 1 1 

let A = and B = , then (A + B) = = , but A2 + 2AB + B2 = 
0	 0 0 0 0 0 0 0 [ ]2 [ ] [ ] [ ]2 [ ]

1	 0 1 0 0 1 0 1 1 2 
+ 2	 + = .

0	 0 0 0 0 0 0 0 0 0 

[ ]

2
20. (A − B) = (A − B) (A − B) = A (A − B) − B (A − B) = A2 − AB − BA + B2 . This only is equal 

to A2  2AB + B2 when AB  BA = 2AB  AB = BA , which in general is not true. − − − − →[ ] [ ] [ ]2 [ ]
1 0 0 1 2 1 −1 1 −1

For example, let A = and B = , then (A − B) = = , but 
0	 0 0 0 0 0 0 0 

2    2 
1 0 1 0 0 1 0 1 1 −2 

A2 − 2AB + B2 = − 2	 + = .
0 0 0 0 0 0 0 0 0 0 

[ ] [ ] [ ] [ ] [ ]
( )

 (A − B) (A + B) = A (A + B)−B (A + B) = A2+AB−BA−B2 = A2 − B2 +AB−BA, so A2−B2 = 
(A − B) (A + B) − AB + BA. This only is equal to (A − B) (A + B) when −AB + BA = 0n×n →[ ] [ ]

1	 0 0 1 
AB = BA, which in general is not true. For example, let A = and B = , then 

0	 0 0 0 [ ]2 [ ]2 [ ]	 [ ] [ ]
1	 0 0 1 1 0 1 −1 1 1

A2 − B2 = − = , but (A − B) (A + B) =	 = 
0	 0 0 0 0 0 0 0 0 0[ ]

1	 1 
.

0	 0 

21.

22
( ) ( ) ( )

. (A + B) A2 − AB + B2 = A A2 − AB + B2 + B A2 − AB + B2 = A3 − A2B + AB2 + BA2 −( ) ( ) ( ) ( )
BAB + B3 = A3 + B3 − A AB − B2 + B A2 − AB = A3 + B3 − A(A − B)B + BA (A − B),( )
so A3 + B3 = (A + B) A2 − AB + B2 + [A (A − B)] B − B [A(A − B)]. This only is equal to( )
(A + B) A2 − AB + B2 when [A (A − B)] B−B [A(A − B)] = 0n×n → [A (A − B)] B = B [A(A − B)],[ ] [ ]

1	 0 0 1
which in general is not true. For example, let A = and B = , then A3 + B3 = 

0	 0 0 0 [ ]3 [ ]3 [ ] ( )1	 0 0 1 1 0 
+ = , but (A + B) A2 − AB + B2 = 

0	 0 0 0 0 0 [ ]([ ]2 [ ] [ ] [ ]2) [ ]
1	 1 1 0 1 0 0 1 0 1 1 −1−	 + = .
0	 0 0 0 0 0 0 0 0 0 0 0 

23.	 AB is 4  5, 4 rows and 5 columns. ×

24.	 BA is not defined. 

25.

[	
4	 0 0 

	 E = 0 1 0 
0 0 1 

]
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[ ]
1 0 0 

26.	 E = 0 −3 0 
0 0 1 [	 ]
0 1 0 

27.	 E = 1 0 0 
0 0 1 [	 ]
1 0 0 

28.	 E = 0 0 1 
0 1 0 [	 ]
1 0 0 

29.	 E = 0 1 0 
2 0 1 [ ]
1 0 0 

30.	 E = 0 1 −4 
0 0 1 [ ]	 [ ]

1 0 0	 1 0 0 
31.	 {−2R1 + R2 ∼ R2} ≈ E1 = −2 1 0 and {5R3 ∼ R3} ≈ E2 = 0 1 0 . Thus B = 

0 0 1 0 0 5[	 ][ ] [ ]
1 0 0 1 0 0 1 0 0
 

E2E1 = 0 1 0 −2 1 0 = −2 1 0 .
 
0 0 5 0 0 1 0 0 5
 [ ]	 [ ]

1 0 0	 0 0 1 
32.	 {−6R2 + R3 ∼ R3} ≈ E1 = 0 1 0 and {R1 ≈ R3} ≈ E2 = 0 1 0 . Thus B = 

0 −6 1 1 0 0[	 ][ ] [ ]
0 0 1 1 0 0 0 −6 1
 

E2E1 = 0 1 0 0 1 0 = 0 1 0 .
 
1 0 0 0 −6 1 0 0 1
 [ ]	 [ ]

0 1 0	 1 0 0 
33.	 {R2 ≈ R1} ≈ E1 = 1 0 0 and {3R1 + R2 ∼ R2} ≈ E2 = 3 1 0 . Thus B = E2E1 = 

0 0 1 0 0 1[	 ][ ] [ ]
1 0 0 0 1 0 0 1 0
 
3 1 0 1 0 0 = 1 3 0 .
 
0 0 1 0 0 1 0 0 1
 [ ]	 [ ]−2 0 0	 1 0 0 

34.	 {−2R1 ∼ R1} ≈ E1 = 0 1 0 and {7R2 + R3 ∼ R3} ≈ E2 = 0 1 0 . Thus B = 
0 0 1 0 7 1[	 ][ ] [ ]

1 0 0 −2 0 0 −2 0 0
 
E2E1 = 0 1 0 0 1 0 = 0 1 0 .
 

0 7 1 0 0 1 0 7 1
 [ ]	 [ ]−3 0 0	 0 1 0 
35.	 {−3R1 ∼ R1} ≈ E1 = 0 1 0 . {R1 ≈ R2} ≈ E2 = 1 0 0 

0 0 1 0 0 1[	 ]
1 0 0
 

And {4R1 + R2 ∼ R2} ≈ E3 = 4 1 0 . Thus B = E3E2E1
 
0 0 1
[	 ][ ][ ] [ ]

1 0 0 0 1 0 −3 0 0 0 1 0
 
= 4 1 0 1 0 0 0 1 0 = −3 4 0 .
 

0 0 1 0 0 1 0 0 1 0 0 1
 



36. {−3R1 + R2 ∼ R2} ≈ E1 =

[ ]
. {2R1 + R3 ∼ R3} ≈ E2 =

[
1 0 0 
0 1 0 
2 0 1

]
1 0 0 

0[−3 1 0 
0 1 ]

1 0 0 

1]And {−R2 + R3 ∼ R3} ≈ E3 = 0 1 0 Thus B = E3E2E1. 
0 −1 

=

[ ][ ][ 
1 0 0 1 0 0 
0 1 0 0 1 0 
0 −1 1 2 0 1

[ ]
1 0 0 1 0 0 

−3 −31 0 1 0= . 
−10 0 1 5 1

� ⎛ 1 −2 −1 31 −2 −1 3 [ ]⎤⎤
 

⎣⎣
 

−2 0 1 4 

−1 2 −2 0 
A11 A12 

A21 A22

−2 0 1 4 
−1 2 −2 0 

⎤
 

⎣
37. A = = =

0 1 2 1 0 1 2 1 

� 

� � ⎛⎛ 2 0 −1 12 0 −1 1 [ ]⎤⎤⎞ 
⎣⎣⎡ 

−3 1 2 1 

0 −1 −2 3 
B11 B12 

B21 B22

−3 1 2 1 
0 −1 −2 3 

⎤⎞ 
⎣⎡B = = =

2 2 −1 −2 2 2 −1 −2 

� ⎛ 
−1 
1 

−2 
−1 

0 
−1 

2 
3 

−1 
−2 

3 
−1 

0 
3 

−3 
3 

⎣⎣[
A11 − B11 A12 − B12 

A21 − B21 A22 − B22

]
= 
⎤⎤(a) A − B =

� ⎛ 
14 5 −6 −10 
4 7 −4 −7

[ ] ⎤
 

⎣
 

A11B11 + A12B21 A11B12 + A12B22 

A21B11 + A22B21 A21B12 + A22B22
(b) AB = = 

−8 4 9 −5 
1 1 3 5 � 
3 −5 2 7 
−7 11 2 −4 

⎛ [ ] ⎤⎤⎞ 
⎣⎣⎡ 

B11A11 + B12A21 B11A12 + B12A22 

B21A11 + B22A21 B21A12 + B22A22
(c) BA = = 

4 −1 9 −1 
−1 −8 −2 12 

� � 

� 
� 

  �

 � ⎛ 
14 5 −6 −10 
4 7 −4 −7 

−8 4 9 −5 
−1 1 −3 5 

(b) AB =

[ ]
= 

A11B11 + A12B21 A11B12 + A12B22 

A21B11 + A22B21 A21B12 + A22B22

⎤⎞ 
⎣⎡ 

⎛
3 −2 −2 4 

−5 1 3
[

A11 + B11 A12 + B12 

A21 + B21 A22 + B22

]
= 

5⎤⎞ 
⎣⎡(a) A + B = −1 1 −4 3 

2 3 1 −1 

⎛ ⎛ 
1 −2 −1 31 −2 −1 3 [ ]

−2 0 1 4 
−1 2 −2 0 

A11 A12 

A21 A22

−2 0 1 4 
−1 2 −2 0 

⎤⎞ 
⎣⎡ = ⎤⎞ 

⎣⎡38. A = =

0 1 2 1 0 1 2 1 ⎛ ⎛ 2 0 −1 1
2 0 −1 1 [ ]⎤⎤⎤⎞ 

⎣⎣⎣⎡ 

−3 1 2 1 
0 −1 −2 3 

B11 B12 

B21 B22

−3 1 2 1 
0 −1 −2 3 

⎤⎞ 
⎣⎡B = = =

2 2 −1 −2 2 2 −1 −2 
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⎛
⎞ ⎡⎞ ⎡

⎡⎞

⎤⎞ ⎣⎡
− −



� ⎛
3 −5 2 7 

−7 11 2 −4 
4 −1 9 −1 
1 8 2 12 

B11A11 + B12A21 B11A12 + B12A22
 (c) BA = = 

B21A11 + B22A21 B21A12 + B22A22

[ ]  

� � 

� � 

⎛⎛ 
31 −2 −1 3 1 −2 −1 

=

[ ]
A11 A12 

A21 A22

−2 0 1 4 
−1 2 −2 0 

⎣⎡ = ⎤⎞ 
−2 0 1 4 
−1 2 −2 0 

⎤⎞ 
⎣⎡39. A = 

0 1 2 1 0 1 2 1 ⎛⎛ 
2 0 −1 1 2 0 −1 1 

=

[ ]
B11 B12 

B21 B22

−3 1 2 1 
0 −1 −2 3 

⎣
= ⎤ 

−3 1 2 1 
0 −1 −2 3 

⎤
 

⎣
B = 

2 2 −1 −2 2 2 −1 −2 � ⎛ 
1 2 0 −2[

A11 − B11 A12 − B12 

A21 − B21 A22 − B22

]
= ⎤ 

⎣
 

−1 1 1 −3 
1 −3 0 3

(a) B − A =

2 1 −3 −3 � ⎛ 
14 5 −6 −10 

(b) AB =

[ ]
= 

A11B11 + A12B21 A11B12 + A12B22 

A21B11 + A22B21 A21B12 + A22B22

⎤
 

⎣
 

4 7 −4 −7 
−8 4 9 −5 
1 1 3 5 

� 
3

[
−5 

B21A11 + B22A21⎛
]
3

[
⎛ 

B11A11 + B12A21 B11A12 + B12A22 A11 +
B21A12 + B22A22 A21�� −2 −12 7 1

]
−7 

A12 = 
A22

4 1 10 
−7 11 2 −4 0 1 4 ⎤

 
⎣ ⎤

 
⎣−2 

+ = 11 3−9 0 

(c) BA + A =

⎤
 

⎛ ⎣
4 −1 9 −1 −1 2 −2 −10 3 1 7 

−1 −8 −2 12 0 1 2 1 −1 −7 0 13 � � 

� � 

⎛⎛ −2 −1 31 −2 −1 3 1 ⎣⎡ =

[ ]
A11 A12 

A21 A22

−2 0 1 4 
−1 2 −2 0 

⎣⎡ = ⎤⎞ 
−2 0 1 4 
−1 2 −2 0 

⎤⎞40. A = 

0 1 2 1 0 1 2 1 ⎛⎛ 
0 −1 12 0 −1 1 2 

=

[ ]
B11 B12 

B21 B22

−3 1 2 1 
0 −1 −2 3 =  

−3 1 2 1 
0 −1 −2 3  B = 

2 2 1 2 2 2 1 2 �

 �

  �
3 −5 2 7 

⎛[ ]
B11A11 + B12A21 B11A12 + B12A22 

B21A11 + B22A21 B21A12 + B22A22

⎤
 

⎣
 

−7 11 2 −4 
4 −1 9 −1

(c) BA = = 

−1 −8 −2 12 

⎛ 
14 5 −6 −10[ ]

A11B11 + A12B21 A11B12 + A12B22 

A21B11 + A22B21 A21B12 + A22B22

⎤⎞ 
⎣⎡ 

4 7 −4 −7 
−8 4 9 −5

(b) AB = = 

−1 1 −3 5 

⎛
3 −2 −2 4[

A11 + B11 A12 + B12 

A21 + B21 A22 + B22

]
= ⎤ 

⎣
 

−5 1 3 5 
−1 1 −4 3

(a) A + B =

2 3 1 −1 
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− − −

⎤⎞ ⎣⎡

⎡ ⎞⎞ ⎡

⎞ ⎡

⎞ ⎡
− −

⎞⎡ ⎞ ⎡⎞ ⎡

⎣⎡ ⎤⎞⎤⎞ ⎣⎡
− − − −

 

⎞ ⎡

⎞ ⎡

41. (a) E =

[ ]
0 1 0 
1 0 0 
0 0 1
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[	 ]
0 0 1 

(b)	 E = 0 1 0
 
1 0 0
 [ ]
1 0 0 

(c)	 E = 0 −2 0
 
0 0 1
 � ⎛
0 0 1 0
 ⎤ 0 1 0 0 ⎣


42. (a) E = 
1 0 0 0
 
0 0 0 1
 

 

⎞ ⎡
� ⎛ 

1 0 0 0
 ⎤ 0 0 1 0 ⎣

(b) E = 

0 1 0 0
 
0 0 0 1
 

⎞ ⎡
� ⎛ 

1 0 0 0
 
 0 1 0 0 


(c) E = 
0 0 −2 0
 
0 0 0 1
 

⎤ ⎣⎞ ⎡
[	 ] [ ]

0 1 0 1 0 0 
43. For example, A = 0 0 0 , B = 0 0 0 . 

0 0 0 0 0 0 [	 ] [ ]
0 0 0 0 1 0
 

Then AB = 0 0 0 , and BA = 0 0 0 .
 
0 0 0 0 0 0
 [	 ] [ ]

1 0 0 0 0 0 
44. For example, A = 0 0 0 , B = 0 1 0 . 

0 0 0 0 0 0 [	 ] [ ]
0 0 0 0 0 0
 

Then AB = 0 0 0 , and BA = 0 0 0 .
 
0 0 0 0 0 0
 [ ] [ ] [ ]

0 1 1 0	 0 0 
45. For example, A = , B = . Then AB = .

0 0 0 0	 0 0 [	 ] [ ] [ ]
0 1 0 1 0 0	 0 0 0 

46. For example, A = 0 0 0 , B = 0 0 0 . Then AB = 0 0 0 . 
0 0 0 0 0 0 0 0 0 [ ] [ ] [ ]
1 1 1 1	 0 0 

47. For example, A = , B = . Then AB = .
1 1 −1 −1	 0 0 [	 ] [ ] [ ]
1 1 1 2 2 2	 0 0 0 

48. For example, A = 1 1 1 , B = −1 −1 −1 . Then AB = 0 0 0 . 
1 1 1 −1 −1 −1 0 0 0 

	[ ] [ ] [ ] [ ]
1 2 2 1 1 1	 3 3 

49. For example, A = , B = , C = . Then AC = BC = .
2 1 1 2 1 1	 3 3 

	   [ ] [ ] [ ]
1 2 3 2 3 1 1 1 1 

50. For example, A = 2 3 1 , B = 3 1 2 , C = 1 1 1 . 
3 1 2 1 2 3 1 1 1 [	 ]
6 6 6
 

Then AC = BC = 6 6 6 .
 
6 6 6
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51.	 (a) False. Consider A = [1], B = [ 1]. −(	 T  
(b) True. A + BT =  T

AT + BT = AT + B. 
) ( )

52.	 (a) True. If i = j, then Aij = Bij = 0, so (A − B)ij = 0, and A − B is diagonal. 
   

̸ [ ] [ ] [ ]
1 0 0 0 0 0 

(b) False. For example, AB =	 = is not upper triangular. 
0 1 1 0 1 0 

53.	 (a) True. If i < j, then (AT )ij = Aji = 0, since A is upper triangular. [ ] [ ] [ ]
0 1 1 1 0 0 

(b) False. For example, AB =	 = .
0 1 0 0 0 0 

54.	 (a) False. Consider B = In , then AB = AIn = A = InA = BA. 
  T [ ] [ ] [ ]
0 0 0 0 0 0 

(b) False. For example, AAT =	 = = I2.0 0 0 0 0 0 ̸

55.	 (a) False. C = [0], I1 = [1], but C + I1 = [1] = [0] = C. ̸
(b) True. The composition of linear transformations is a linear transformation. 

56.	 (a) True. Since (A + In)ij = Aij + (In)ij = Aji + (In)ji = (A + In)ji, so A + In is symmetric. (	 ) ( )
(b) True. If i = j, then BT = Bji = 0 = B , and BT 

ij = Bii.ij	 ii 
̸ ( )

57.	 (a) True. Using Theorem 3.15(c), we  T T
have (ABC)T = ((AB) C) = CT (AB) = CT BT AT = 

CT BT AT . 

(b) False. For example,	 

[
1 1

]T [ ] [ 
1 1 1 1 

= 
0 0 0 0 1 1 

]
58.	 (a) False. For example, A = B = 0nn. 

	 
0 1 0 0	 1 0 

(b) False. For example, if A = 

[ ]
and B = 

[ ]
, then ABAB = , but A2B2 = 

0 0 1 0	 0 0 
2 2 

0 1 0 0 0 0 

[ ]
= .

0 0 1 0 0 0 

[ ] [ ] [ ]
T

59.	  T
(a) True. Using Theorem 3.15(a,c) and Theorem 3.11(a), we have (AB + C) = (C + AB) = 

CT 	T 
+ (AB) = CT + BT AT . 

(b)

[ ]  
1 0 0 1	 0 1 

 False. For example, let A = and B = 

[ ]
. Then AB = 

[ ]
, but BA = [ ] 0 0 0 0	 0 0

0 0 
.

0 0 

60.	 (a) False. For example, the 2 × 2 elementary matrix corresponding to interchanging rows 1 and 2 is 
0 1 

E = .
1 0 

[ ]
(b) True. If one multiplies row i by c, then the corresponding elementary matrix E will be the identity 

matrix, except for c in the ith diagonal. [ ] [ ] [ ][ ]
0 1 0 1 0 0	 0 1 0 1 0 0 

61.	 (a) False. If E1 = 1 0 0 and E2 = 0 0 1 , then E1E2 = 1 0 0 0 0 1 
0 0 1 0 1 0 0 0 1 0 1 0 [ ] [ ][ ] [ ]

0 0 1	 1 0 0 0 1 0 0 1 0 
=	 1 0 0 , but E2E1 = 0 0 1 1 0 0 = 0 0 1 = E1E2. 

0 1 0 0 1 0 0 0 1 1 0 0 
̸
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(b) True.	 If E is the matrix corresponding to the operation Ri ≈ R 2
j , then E  represents Ri ≈ Rj 

executed twice. The result will restore both rows Ri and Rj to their original row, and thus E2 

will represent the identity operation. Hence E2 = In. 

[
0 1 
1 0

]
]2 [

0 1 1 0 

[ ]
2 
= 

([ ] [ ])2
 
0 1 1 0
 
1 0 0 0
 

1 0
62. (a) False. For example, if A = , and B , then (AB)=

0 0[
[

]2 [
[
] [ ]2 

0 0 
1 0 

0 0 
0 0

, but A2B2= = =
1 0 0 0 

. 

]] [ 
1 0 1 0

]
1 0 

= =
0 1 0 0 0 0

3 3
(b) False. (In + In) = (2In) = 23I3 = 8In = 3In.n 

� � � ⎛ ⎛⎛
b11 · · · b1ma11 · · · a1m c11 · · · c1m ⎞ ⎡, B = ⎞ ⎡, C = ⎞ ⎡ and s and t scalars.. . . . . . . . . . . .63. Let A = . . . . . . 

an1 · · · anm bn1 · · · bnm cn1 · · · cnm 

� � 

� � 

� � 

⎛ ⎛
b11 · · · b1ma11 · · · a1m ⎞ . . . . ⎡ + ⎞ ⎡. . . .(a) A + B = . . . . 

an1 · · · anm bn1 · · · bnm ⎛ ⎛ 
a11 + b11 · · · a1m + b1m b11 + a11 · · · b1m + a1m ⎞ .	 . ⎡ = ⎞ ⎡.	 . .	 .= .	 . . .	 . . 
an1 + bn1 · · · anm + bnm bn1 + an1 · · · bnm + anm ⎛⎛
b11 · · · b1m a11 · · · a1m ⎞ ⎡ + ⎞ ⎡ = B + A. . . . . . . .= . . . . 
bn1 · · · bnm an1 · · · anm 

 

� � 

� � 

�� ⎛ � ⎛�
a11 a12 · · · a1m b11 b12 · · · b1m 

= s 
⎤⎤⎞ 

⎪⎪⎨ 
a21 a22 · · · a2m 
. . . . . . 

⎣⎣⎡+ 
⎤⎤⎞ 

b21 b22 · · · b2m 
. . . . . . 

⎝⎝⎬ 
⎣⎣⎡(b) s (A + B) 

. . . . . . 
an1 an2 · · · anm bn1 bn2 · · · bnm � ⎛ ⎤⎤⎞ 

sa11 + sb11 sa12 + sb12 · · · sa1m + sb1m 
sa21 + sb21 sa22 + sb22 · · · sa2m + sb2m 

. . . . . . . . . 
san1 + sbn1 san2 + sbn2 · · · sanm + sbnm 

⎣⎣⎡ 

⎛⎛ 
sa11 sa12 · · · sa1m sb11 sb12 · · · sb1m 

= 

sa21 sa22 · · · sa2m 
. . . . . . 

⎣⎣⎡+ 
⎤⎤⎞ 

sb21 sb22 · · · sb2m 
. . . . . . 

⎤⎤⎞ 
⎣⎣⎡ = 

. . . . . . 
san1 san2 · · · sanm sbn1 sbn2 · · · sbnm ⎛⎛ 
a11 a12 · · · a1m b11 b12 · · · b1m 
a21 a22 · · · a2m 
. . . . . . 

⎣⎣⎡+ s 
⎤⎤⎞ 

b21 b22 · · · b2m 
. . . . . . 

⎤⎤⎞ 
⎣⎣⎡ = sA + sB=	 s 

. . . . . . 
an1 an2 · · · anm bn1 bn2 · · · bnm 

̸



Section 3.2: Matrix Algebra 401 

� 
a11 · · · a1m 

⎛ � 
(s + t) a11 · · · (s + t) a1m 

⎛ 

(c) (s + t) A = (s + t) ⎞ . . . 
. . . ⎡ = ⎞ . . . 

. . . ⎡ 

� 
an1 

sa11 + ta11 

· · · 
· · · 

anm (s + t) an1 · · · 
sa1m + ta1m 

⎛ � 
sa11 

(s + t) anm 

· · · sa1m 
⎛ � 

ta11 · · · ta1m 
⎛ 

= ⎞ . . . . ⎡ = ⎞ . . . . ⎡ + ⎞ . . . . ⎡ 
. . . . . . 

san1 + tan1 · · · sanm + tanm san1 · · · sanm tan1 · · · tanm � ⎛ � ⎛ 
a11 · · · a1m a11 · · · a1m 

= s  . . . .  + t  . . . .  = sA + tA . . . . 
an1    anm an1    anm 

⎞ ⎡ ⎞ ⎡
· · · · · ·�� 
a11 · · · a1m b11 · · · b1m c11 · · · c1m 

(d) (A + B) + C = ⎨⎞ . . . 
. . . ⎡ + ⎞ . . . 

. . . ⎡⎬ + ⎞ . . . 
. . . ⎡ 

an1 · · · anm bn1 · · · bnm cn1 · · · cnm � 
a11 + b11 · · · a1m + b1m 

⎛ � 
c11 · · · c1m 

⎛ 

= ⎞ . . . . ⎡ + ⎞ . . . . ⎡ 
. . . . 

an1 + bn1 · · · anm + bnm cn1 · · · cnm � 
(a11 + b11) + c11 · · · (a1m + b1m) + c1m 

⎛ 

= ⎞ . . . . ⎡ 
. . 

� 
(an1 + bn1) + cn1 

a11 + (b11 + c11) 
· · · 
· · · 

(anm + bnm) + cnm 

a1m + (b1m + c1m) ⎛ 

= ⎞ . . . . ⎡ 
. . 

� 
an1 + (bn1 + cn1) 
a11 · · · a1m 

⎛ 
· · · � 

anm + (bnm + cnm) 
b11 + c11 · · · b1m + c1m 

⎛ 

= ⎞ . . . . ⎡ + ⎞ . . . . ⎡ 
. . . . 

an1 · · · anm bn1 + cn1 · · · bnm + cnm � 
a11 · · · a1m 

⎛ �� 
b11 · · · b1m 

⎛ � 
c11 · · · c1m 

⎛� 

= ⎞ . . . . ⎡ + ⎨⎞ . . . . ⎡ + ⎞ . . . . ⎡⎬ 
. . . . . . 

an1 · · · anm bn1 · · · bnm cn1 · · · cnm 

= A + (B + C) 

⎛ � ⎛� � ⎛ 

� 
a11 · · · a1m 

⎛ � 
0 · · · 0 ⎛ 

(f) A + 0nm = ⎞ . . . 
. . . ⎡ + ⎞ . . . 

. . . ⎡ 

an1 · · · anm 0 · · · 0 � 
a11 + 0 · · · a1m + 0 ⎛ � 

a11 · · · a1m 
⎛ 

=  . . . .  =  . . . .  = A . . . . 
an1 + 0    anm + 0 an1    anm 

⎞ ⎡ ⎞ ⎡
· · · · · ·

64. (a) Let A = [aij ] be n × m, B = [bij ] be m × p, and C = [cij ] be p × q. Let D = [dij ] = BC, 
E = [eij ] = A (BC) = AD, F = [fij ] = AB, and G = [gij ] = (AB) C = F C. Then 

eij = ai1d1j + ai2d2j + · · · + aimdmj 

= ai1 (b11c1j + b12c2j + · · · + b1pcpj ) + ai2 (b21c1j + b22c2j + · · · + b2pcpj ) 
+ · · · + aim (bm1c1j + bm2c2j + · · · + bmpcpj ) 

= (ai1b11 + ai2b21 + · · · + aimbm1) c1j + (ai1b12 + ai2b22 + · · · + aimbm2) c2j 

+ · · · + (ai1b1p + ai2b2p + · · · + aimbmp) cpj 

= fi1c1j + fi2c2j + · · · + fipcpj 

= gij . 



402 Chapter 3: Matrices 

Therefore, E = G, and hence A (BC) = (AB) C. 

(b) Let A = [aij ] be n × m, B = [bij ] be m × p, and C = [cij ] be m × p. Let D = [dij ] = B + C, E = 
[eij ] = A (B + C) = AD, F = [fij ] = AB, G = [gij ] = AC, and H = [hij ] = AB + AC = F + G. 
Then 

eij	 = ai1d1j + ai2d2j + · · · + aimdmj 

= ai1 (b1j + c1j ) + ai2 (b2j + c2j ) + · · · + aim (bmj + cmj ) 
= (ai1b1j + ai2b2j + · · · + aimbmj ) + (ai1c1j + ai2c2j + · · · + aimcmj ) 
= fij + gij
 

= hij .
 

Therefore, E = H, and hence A(B + C) = AB + AC. 

(d) Let A = [aij ] be n × m, B = [bij ] be m × p, and s a scalar. Let D = [dij ] = AB, E = [eij ] = sD = 
s (AB), F = [fij ] = sA, G = [gij ] = FB = (sA) B, H = [hij ] = sB, and L = [lij ] = AH = A (sB). 
Then 

eij	 = sdij 

= s (ai1b1j + ai2b2j + · · · + aimbmj ) 
= s (ai1b1j ) + s (ai2b2j ) + · · · + s (aimbmj ) 
= (sai1) b1j + (sai2) b2j + · · · + (saim) bmj 

= fi1b1j + fi2b2j + · · · + fimbmj 

= gij . 

Therefore, E = G,and hence s (AB) = (sA) B. Likewise, 

eij	 = sdij 

= s (ai1b1j + ai2b2j + · · · + aimbmj ) 
= s (ai1b1j ) + s (ai2b2j ) + · · · + s (aimbmj ) 
= ai1 (sb1j ) + ai2 (sb2j ) + · · · + aim (sbmj ) 
= ai1h1j + ai2h2j + · · · + aimhmj 

= lij . 

Therefore, E = L,and hence s (AB) = A (sB). 

(f) Let A = [ a1 a2 · · · am ] , and In=[ i1 i2 · · · in ]. Then if 
B = [ b1 b2 · · · bm ] = InA, we have 

� � � 

� 

⎛ ⎛ 
= Inaj = a1j i1 + a2j i2 + ·bj · · + anj in ⎛ 

1 0	 0 

= a1j 

⎤⎤⎞ 
0 
. . 
⎣⎣⎡+ a2j 

⎤⎤⎞ 
1 
. . 
⎣⎣⎡+ · · · + anj 

⎤⎤⎞ 
0 
. . 
⎣⎣⎡ . . . 

0 0 1 ⎛ ⎤⎤
 

a1j 
a2j 
. . . 

anj 

⎣⎣
 = = aj , ⎞ ⎡

hence B = A, so A = IA. 

65. (a) Let A = [aij ], B = [bij ], C = [cij ] = A + B, D = [dij ] = AT , E = [eij ] = BT , F = [fij ] = D + E = 
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 T
AT	  

+BT , and G = [g T 
ij ] = C = (A + B) . Then 

gij	 = cji 
= aji + bji 
= dij + eij 

= fij , 

hence G = F , and so (A + B)T = AT + BT . 

(b) Let A = [aij ], B = [bij ] = sA, C = [cij ] = AT , D = [dij ] = sC = sAT , and E = [eij ] = BT = 
T

(sA) . Then 

be = ij ji	 

= saji 
= scij 

= dij , 

 T
hence E = D, and so (sA) = sAT . 

66. Let A = [ a1 a2 · · · am ] , and In=[ i1 i2 · · · in ]. If B = [ b1 b2 · · · bm ] = InA, then 

⎞ ⎡

� � � 

� 

⎛ ⎛ 
= Inaj = a1j i1 + a2j i2 + ·bj · · + anj in ⎛ 

1 0	 0 
0 
. . 
⎣⎣⎡+ a2j 

⎤⎤⎞ 
1 
. . 
⎣⎣⎡+ · · · + anj 

⎤⎤⎞ 
0 
. . = a1j 

⎤⎤⎞ 
⎣⎣⎡ . . . 

0 0 1 ⎛ ⎤⎤
 

a1j 
a2j 
. . . 

anj 

⎣⎣
 = = aj , 

hence B = A, so A = IA 

 T
67. (AB) = BT AT (by Theorem 3.15c) = BA (since A and B are symmetric) = AB. Hence AB is 

symmetric. 
 

1 1 2 0 1 1 2 0 
68. Not necessarily.. Consider for example, A = and D = . Then AD = = [  

2	 1 2 0 1 1 

[ ] [ ] [ ] [ ]
, A 

[ [
=

0	 1

]
but D =

0 1 

]
0 1

] [ 0 1 0 1 0 1 0 1

2 2 
0 1

]
. 

69. (a) If A is n  m, then AT is m  n, and so AT A is m  m. × × ×(( ) ( )
70. Let A = [aij ], B = [bij ], and C = [cij ] = AB. If i = j, then 

)
 T T 

(b) ATA = AT AT = AT A, hence AT A is symmetric. 

̸

cij	 = ai1b1j + ai2b2j + · · · + ainbnj 

= aiibij (since aik = 0 if i = k) 
= 0 (since bij = 0 when i = j) 

̸
̸

Thus AB is a diagonal matrix. 
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71. Let A = [aij ], B = [bij ], and C = [cij ]. Then if i > j, 

cij	 = ai1b1j + ai2b2j + · · · + ainbnj 

= aiibij + · · · + ainbnj (since aik = 0 if i > k) 
= 0 (since bkj = 0 when k ◦ i > j). 

Therefore C = AB is upper triangular. 

72. Let A = [aij ], B = [bij ], and C = [cij ]. Then if i < j, 

cij	 = ai1b1j + ai2b2j + · · · + ainbnj 

= ai1b1j + · · · + aiibij (since aik = 0 if i < k) 
= 0 (since bkj = 0 when k  i < j). �

Therefore C = AB is lower triangular. 

73. Proof by induction. Assume An is upper(lower) triangular, and note that when n = 1, A is upper(lower) 
triangular. Since An+1 = AnA, by exercise 57(58), since both An and A are upper(lower) triangular, 
An+1 is upper(lower) triangular. ( ) ( )

 
T 

 
T 

74. A+ AT = AT + AT = AT + A = A + AT . 

75.

[
0 1 2 

	 (a) For example, A = −1 0 3

]
. 

2 3 0 − −

(b) Since AT = −A ⊂ A + AT = 0n, and since the diagonal entry aii of A and AT are the same, we 
have aii + aii = 0, and hence aii = 0. 

 

example, A =

[
1 0 

]
1 0 1 0 1 0

76. (a) For , A2 =	 

[ ] [ ]
=

[ ]
= A, so A is idempotent. 

0 0 0 0 0 0 0 0 

(b) (I − A)2 = (I − A) (I  A) = I (I  A)  A (I  A) = I  A  A + A2 = I  A  A + A (since 
A2 = A) = I − A. Thus

−
 I 

− − − − − − −
− A is idempotent. 

 
T 

77. Let A = [a   
ij ], B = [b T T T

ij ] = A , and C = [cij ] = B = 
(
A
)

. Then cij = bji = aij , hence C = A. 
T 

Therefore A = AT . 
( )

78.

[
2 1 1 

	 (a) For example, A = 1 −1 1 
1 1 −1 

]
(b) Let A = [aij ], B = [bij ], and C = [cij ] = A + B. Then 

tr(A + B) = tr(C) 
= c11 + c22 + · · · + cnn 

= (a11 + b11) + (a22 + b22) + · · · + (ann + bnn) 
= (a11 + a22 + · · · + ann) + (b11 + b22 + · · · + bnn) 
= tr(A) + tr(B) 

(c) Let A = [aij ] and B = [bij ] = AT . Then 

tr(A) = a11 + a22 + · · · + ann 

= b11 + b22 + · · · + bnn 

= tr(B) 
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[ ] [ ]
−1 0 1 0

(d) For example, A = , and B = .Then tr(AB) = 
0 1 0 −1([ ][ ])	 [ ]

−1 0 1	 0 −1 0 
tr	 = tr = −2. Also, tr(A) = 0, 

0 1 0 −1 0 −1
 
tr(B) = 0, and tr(A) tr(B) = 0(0) = 0, so tr(AB) 
= tr(A) tr(B). [ ] [ ]

.80 .05 .05 8000 
. Let	 A = .10 .90 .10 and x = 1500 . Using a computer algebra system, the distribution 

.10 .05 .85 500[ ][ ] [ ]
.80 .05 .05 8000 6500
 

after one year is Ax = .10 .90 .10 1500 = 2200 ;
 
.10 .05 .85 500 1300
[ ][ ] [ ]

.80 .05 .05 6500 5375
 
after two years A (Ax) = .10 .90 .10 2200 = 2760 ;
 

.10 .05 .85 1300 1865
[ ][ ] [ ]
.80 .05 .05 5375 4531( )

after three years A A2x =	 .10 .90 .10 2760 ≤ 3208 ;
 
.10 .05 .85 1865 2261
[ ][ ]	 [ ]

.80 .05 .05 4531	 3898( )
and after four years A A3x ≤	 .10 .90 .10 3208 ≤ 3566 .
 

.10 .05 .85 2261 2535
 

79

[ ] [ ]
.80 .05 .05 5000 

0. Let	 A = .10 .90 .10 and x = 3000 . Using a computer algebra system, the distribution 
.10 .05 .85 2000[ ][ ] [ ]

.80 .05 .05 5000 4250
 
after one year is Ax = .10 .90 .10 3000 = 3400 ;
 

.10 .05 .85 2000 2350
[ ][ ] [ ]
.80 .05 .05 4250 3688
 

after two years A (Ax) = .10 .90 .10 3400 ≤ 3720 ;
 
.10 .05 .85 2350 2592
[ ][ ] [ ]

.80 .05 .05 3688 3266( )
after three years A A2x ≤	 .10 .90 .10 3720 ≤ 3976 ;
 

.10 .05 .85 2592 2758
[ ][ ]	 [ ]
.80 .05 .05 3266	 2949( )

and after four years A A3x ≤	 .10 .90 .10 3976 ≤ 4181 .
 
.10 .05 .85 2758 2870
 

8

	 [ ] [ ]
.85 .40	 760

81. The transition matrix is A = and the initial distribution is x = . 
.15 .60	 240

  	
.85 .40 760 742 

[ ] [ ] [ ]
Using a computer algebra system, the distribution tomorrow is Ax =	 = , 

.15 .60 240 258 [ ] [ ] [	 ]
.85 .40 742 734

the next day A (Ax) =	 ≤ , 
.15 .60 258 266 [ ] [ ] [ ]

.85 .40 734 730 
and the day after that A A2x ≤	 ≤ . 

.15 .60 266 270 

̸

( )
	 

.9 .15	 1 
82. The transition matrix is A = 

[ ]
and the initial distribution is x = . The distribution 

.1 .85	 0 
4 	 

.9 .15 1 0.727 

[ ]
for the fourth person in the chain is A4x =	 

[
= The probability that the 

.1 .85

fourth person in the chain hears the correct news is 0.727

] [
0 

] [
0.273
 

 = 72.7%.
 

]



� � � ⎛⎛⎛ 
2 −1 0 4 −6 2 −3 1 −4 1 −3 5 

83. (a) A + B =  
0 3 3 −1 
6 8 1 1 +  

−5 2 0 3 
0 3 −1 4 =  

−5 5 3 2 
6 11 0 5  

5 3 1 2 8 5 2 0 13 2 1 2 � � � 

� 

⎛⎛⎛ −6 2 −3 1 2 −1 0 4 1 0 0 0 
−5 2 0 3 
0 3 −1 4 

0 3 3 −1 
6 8 1 1 

⎤⎞ 
⎤⎞ 

⎣⎡ 
⎣⎡− ⎤⎞ 

0 1 0 0 
0 0 1 0 

⎣⎡(b) BA − I4 = 

8 5 −2 5 −3 1 −20⎛ 

 

0 0 0 1 
−26 −15 4 −31 

5 1 9 −28 
14 −11 11 −12 
4 9 13 24 

= 

(c) D + C is not possible, since they are not the same size. � � � ⎛⎛⎛ 
2 −1 0 4 2 0 1 1 1 27 11 12 10 7 

84. (a) AC = ⎤ 
0 3 3 −1 
6 8 1 1 

⎤
 

⎣
 

5 1 2 4 3 
6 2 4 0 8

⎣
= ⎤ 

26 6 15 9 31 
65 13 29 41 40 

⎣
 

5 −3 1 −2 7 3 3 3 2 −13 −7 −3 −13 0 

(b) CT − DT is not possible, since CT is 5 × 4 and DT is 4 × 5. 

(c) CB + I2 is not possible, since C has 5 columns, and B has 4 rows. � � � ⎛⎛⎛ 
2 −1 0 4 −6 2 −3 1 25 22 −14 −1 
0 3 3 −1 
6 8 1 1 

⎤
 

⎣
 

−5 2 0 3 
0 3 −1 4 

⎣
= ⎤ 

−23 10 −1⎤
 

21 ⎣
85. (a) AB = −68 36 −21 34 

5 −3 1 −2 8 5 −2 0 −31 −3 −12 0 � 
� � 

⎛⎛ ⎛5 2 0 0
2 0 1 1 1 14 21 17 7⎤⎤⎤

 

⎣⎣⎣
 
= 

2 5 1 3 
0 7 1 4 
3 6 9 2 

⎤⎞ 
5 1 2 4 3 
6 2 4 0 8 

⎣⎡ 
⎤⎞ 

42 65 60 22 
42 82 62 30 

⎣⎡(b) CD = 

7 3 3 3 2 52 76 47 29
1 4 7 1 

 

(c) (A − B) CT is not possible, as A − B has 4 columns and CT has 5 rows. 

� � ⎛ ⎛4−6 2 −3 −319 669 −5051 1827 
−5 −220 832 −459⎤

 
2 0 3 ⎣

 
⎤

 
1972 ⎣

86. (a) B4 = = 
0 3 −1 4 −58 469 −1411106 
8 5 −2 0 −3071 850 −1383 1011 

(b) BCT is not possible, since B has 4 columns, and CT has 5 rows. 

(c) D + I4 is not possible, since D is 5 × 4 and I4 is 4 × 4. 

87. (a) (C + A)B is not possible since C and A are different sizes. � � 

� 

⎛ ⎛T 5 2 0 0
2 0 1 1 1 2 0 1 1 1⎪⎪⎪⎨ 

+ 
⎤⎤⎤⎞ 

⎝⎝⎝⎬ 

⎣⎣⎣⎡ 

2 5 1 3 
0 7 1 4 
3 6 9 2

(
CT + D

)
= ⎤⎞ 

5 1 2 4 3 
6 2 4 0 8 

⎣⎡ 
⎤⎞ 

5 1 2 4 3 
6 2 4 0 8 

⎣⎡(b) C

7 3 3 3 2 7 3 3 3 2 
1 4 7 1⎛ ⎤⎞ 

21 40 41 29 
61 120 124 84 
66 146 182 106 
74 138 123 109 

⎣⎡= 

� � � 
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⎤⎞ ⎣⎡ ⎤⎞ ⎣⎡ ⎤⎞ ⎣⎡
− − − − −

⎣⎡
−

⎤⎞

⎞ ⎞⎡ ⎡ ⎞ ⎡

⎞⎡ ⎡ ⎞⎞ ⎡
 

⎞ ⎡

⎞ ⎡ ⎞ ⎡

⎛
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(c) A + CD = 

� ⎤ ⎞ 

2 
0 
6 
5 � 

−1 
3 
8 

−3 

0 
3 
1 
1 ⎛ 

4 
−1 
1 

−2 

⎛ ⎣ ⎡ + 

� ⎤ ⎞ 

2 
5 
6 
7 

0 
1 
2 
3 

1 
2 
4 
3 

1 
4 
0 
3 

1 
3 
8 
2 

⎛ ⎣ ⎡ 
⎤ ⎤ ⎤ ⎞ 

5 
2 
0 
3 
1 

2 
5 
7 
6 
4 

0 
1 
1 
9 
7 

0 
3 
4 
2 
1 

⎣ ⎣ ⎣ ⎡ 

16 20 17 11 

= ⎤ ⎞ 
42 
48 

68 
90 

63 
63 

21 
31 
⎣ ⎡ 

57 73 48 27 

� ⎛ 

88. (a) AB − DT is not possible, since AB is 4 × 4 and DT is 4 × 5. 

(b) AB − DC is not possible, since AB is 4 × 4 and DC is 5 × 5. 

(c) D + CB is not possible, since C has 5 columns and B has 4 rows. 

3.3 Practice Problems 

[ ]−1 [ ] [ ] [ ]
2 11 1 5 −11 5 −11 −5 11

1. = = −1 = 
1 5 2(5) − 11(1) −1 2 −1 2 1 −2 

[ ] [ ]
2 11 5

2. The linear system is equivalent to Ax = b, with A = , and b = . Thus, x = A−1b = 
1 5 2 [ ]−1 [ ] [ ] [ ] [ ]

2 11 5 −5 11 5 −3 
= = . Therefore, x1 = −3 and x2 = 1. 

1 5 2 1 −2 2 1 

([ ]) [ ]
3 2 

3. T
x1 = T (x) = Ax, where A = . We determine A−1: 
x2 5 3 

[ ] [ ]
3 2 1 0 (−5/3)R1+R2 ∗R2 3 2 1 0 ⊆
5 3 0 1 0 − 1 − 5 13 3[ ]

6R2+R1 ∗R1 3 0 −9 6 ⊆ − 1 − 50 13 3 

(1/3)R1 ∗R1 [ ]
−3R2 ∗R2 1 0 −3 2⊆ ,

0 1 5 −3 

[ ]−1 [ ]
3 2 −3 2 

so A−1 = = .
5 3 5 −3([ ]) ([ ])

x1 −3x1 + 2x2Consequently, T −1 = T −1 (x) = A−1x = . 
x2 5x1 − 3x2 
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[	 ] [ ]−2R1+R2 ∗R21 −2 1 1 0 0	 1 −2 1 1 0 0 
2R1+R3 ∗R34.	 2 1 0 0 1 0 ⊆ 0 5 −2 −2 1 0
 

−2 0 −1 0 0 1 0 −4 1 2 0 1
 �	 ⎛ 
1 −2 1 1 0 0 

(4/5)R2+R3 ∗R3 ⎞ 0 5 −2 −2 1 0	 ⎡⊆ 
2 4− 30 0	 15 5 5[	 ]

1 −2 1 1 0 0 
5R3 ∗R3⊆	 0 5 −2 −2 1 0 

0 0 −3 2 4 5�	 ⎛ 
5 4 5(−2/3)R3+R2 ∗R2 1 −2 0 3 3 3 

(1/3)R3+R1 ∗R1 ⎤	 ⎣ −10 − 10− 5⊆ ⎞	 0 5 0 ⎡3	 3 3 

0 0 −3 2 4 5 �	 ⎛ 
1 2 11 0 0 3 3 3 

(2/5)R2+R1 ∗R1 ⎤	 ⎣ − 10	 − 5 − 10⊆ ⎞	 0 5 0 ⎡3	 3 3 

0 0	 −3 2 4 5 �	 ⎛ 
1 2 1(1/5)R2 ∗R2 1 0 0 3 3 3 

(−1/3)R3 ∗R3 ⎤	 ⎣⊆ ⎞	 0 1 0 − 2 − 1 −2 ⎡ ,3 3 3 

− 2 − 4 −50 0	 1 3 3 3�	 ⎛[ ]−1 1 2 1 
1 −2 1 3 3 3 ⎤	 ⎣ 

so	 2 1 0 =  − 2 −1 − 2 .3 3 3 
−2	 0 −1 − 2 −4 − 5 

3 3 3 

⎞ ⎡
5.	 (a) True. For if Ax = 0, then x = A−10 = 0.
 

(b) −1 
True, because (AB) = B−1A−1
. 

(c) True, because A can be row-reduced to the identity matrix. 
	 

0 0	 1 
(d) False. For example, if A = 

[ ]
is singular, but Ax = 

[ ]
has no solutions. 

0 0	 0 

3.3 Inverses [ ]−1 [ ] [ ] [ ]
7 3 1	 1 −3 1 1 −3 1 −3 

1. =	 = = 
2 1 7(1) − 3(2) −2 7 1 −2 7 −2 7 

 [ ]−1	 [ ] [ ] [
3 2 

]
5 −2 1 3 2 1 3 2 7 72. =	 = = 

4 5−4	 3 5(3) − (−2)(−4) 4 5 7 4 5 
7 7
 [ ]−1
 

2 −5
3.	 does not exist, since 2(10) − (−5)(−4) = 0. −4 10 [ ]−1 [ ] [ ] [ ]

−6 2 1 −1 −2 1 −1 −2 
1
4 

1
24. =	 = = 

5 35 −1 (−6)(−1) − (2)(5) −5 −6 −4 −5 −6 
4 2 

	 [ ] [ ]
1 4	 1 0 −2R1+R2 ∗R2 1 4 1 0 

5.	 ⊆
2 9	 0 1 0 1 −2 1 [	 ]

−4R2+R1 ∗R1 1 0 9 −4⊆	 ,
0 1	 −1 1 [ ]−1 [ ]

1 4 9 −4
 
so

2 9 = −2 1
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[ ]	 [ ]
4 13 1	 0 (−1/4)R1+R2 ∗R2 4 13 1 0 

6.	 ⊆
1 3 0	 1 0 − 1 − 1 14 4[	 ]

52R2+R1 ∗R1 4 0 −12 52 ⊆ 
0 − 14 − 14 1 

(1/4)R1 ∗R1 [ ]
−4R2 ∗R2 1 0 −3 13⊆	 ,

0 1 1 −4 [ ]−1 [ ]
4 13 −3 13 

so = .
1 3 1 −4 [ ] [	 ]

1 0	 1 1 0 0 1 0 1 1 0 0 
−R1+R3 ∗R37.	 0 1 0 0 1 0 ⊆ 0 1 0 0 1 0
 

1 1 1 0 0 1 0 1 0 −1 0 1
 [	 ]
1 0	 1 1 0 0 

−R2+R3 ∗R3⊆ 0 1 0 0 1 0 , 
0 0	 0 1 1 1 

and we conclude that the inverse does not exist, since
−
 the left

−
 part of the augmented matrix cannot be 

reduced to the identity matrix. [	 ] [ ]
0 1	 1 1 0 0 1 0 1 0 0 1 

R1◦R38.	 0 1 0 0 1 0 ⊆ 0 1 0 0 1 0
 
1 0 1 0 0 1 0 1 1 1 0 0
 [	 ]

1 0	 1 0 0 1 
−R2+R3 ∗R3⊆	 0 1 0 0 1 0 

0 0 1 1 −1 0 [	 ]
1 0	 0 −1 1 1 

−R3+R1 ∗R1⊆	 0 1 0 0 1 0 , 
0 0 1 1 −1 0 [	 ]−1 [ ]

0 1	 1 −1 1 1 
so 0 1 0 = 0 1 0 .
 

1 0 1 1 −1 0
 [	 ] [ ]−3R3+R2 ∗R21 2	 −1 1 0 0 1 2 0 1 0 1 
R3+R1 ∗R19.	 0 1 3 0 1 0 ⊆ 0 1 0 0 1 −3
 

0 0 1 0 0 1 0 0 1 0 0 1
 [	 ]
1 0	 0 1 −2 7 

−2R2+R1 ∗R1⊆	 0 1 0 0 1 −3 , 
0 0 1 0 0 1 [ ]−1 [ ]

1 2	 −1 1 −2 7 
so 0 1 3 = 0 1 −3 .
 

0 0 1 0 0 1
 [	 ] [ ]4R1+R2 ∗R2 
R1+R3 ∗R3 

1 2 −1 1 0 0	 1 2 −1 1 0 0 
10.	 −4 −7 7 0 1 0 ⊆ 0 1 3 4 1 0 

−1 −1 5 0 0 1 0 1 4 1 0 1 [	 ]
1 2	 −1 1 0 0 

−R2+R3 ∗R3⊆	 0 1 3 4 1 0 
0 0 1 −3 −1 1 [	 ]−3R3+R2 ∗R2 1 2	 0 −2 −1 1 

R3+R1≤R1⊆	 0 1 0 13 4 −3 
0 0 1 −3 −1 1 [	 ]
1 0	 0 −28 −9 7 

−2R2+R1 ∗R1⊆	 0 1 0 13 4 −3 , 
0 0 1 −3 −1 1 
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[ ]−1 [	 ]
1 2 −1 −28 −9 7 

so −4 −7 7 = 13 4 −3 . 
−1 −1 5 −3 −1 1 

11. 

[	 ] [ ]−2R1+R2 ∗R21 −3 1 1 0 0	 1 −3 1 1 0 0 
2R1+R3 ∗R32 −5 4 0 1 0 ⊆ 0 1 2 −2 1 0 

−2 3 −8 0 0 1 0 −3 −6 2 0 1 [	 ]
1 −3 1 1 0 0 

3R2+R3 ∗R3⊆ 0 1 2 −2 1 0 , 
0 0 0 4 3 1   

and we conclude that the inverse does not exist, since the left 
−
part of the augmented matrix cannot be 

reduced to the identity matrix. 

12. 

�	 ⎛[	 ] (−1/3)R1+R2 ∗R2 3 −1 9 1 0 03 −1 9 1 0 0 
(−2/3)R1+R3 ∗R3

1 −1 4 0 1 0 ⊆ ⎞ 0 − 3
2 1 − 3

1 1 0 ⎡ 
2 −2 10 0 0 1 − 4 − 20 4 0 13 3�	 ⎛ 

3 −1 9 1 0 0 
−2R2+R3 ∗R3⊆ ⎞ 0 − 2 1 − 1 1 0 ⎡ 

3 3 

0	 0 2 0 −2 1 �	 ⎛ 
(−1/2)R3+R2 ∗R2 3 −1 0 1 9 − 9 

2 
(−9/2)R3+R1 ∗R1 ⎤	 ⎣ − 2 − 1 −1⊆ ⎞ 0 0 2 ⎡3 3 2 

0	 0 2 0 −2 1 �	 ⎛ 
3 −153	 0 0 6 

(−3/2)R2+R1 ∗R1 ⎤ 2 4 ⎣⊆ ⎞ 0 − 2 0 − 1 2 −1 ⎡3 3 2 

0 0 2 0 −2 1 
(1/3)R1 ∗R1 �	 ⎛ 

1 − 5(−3/2)R2 ∗R2 1 0 0 22 4 
(1/2)R3 ∗R3 ⎤	 ⎣1 3⊆ ⎞ 0 1 0 2 −3 4 ⎡ , 

10 0 1 0 −1 2� ⎛ [ ]−1 1 2 − 5 
3 −1 9 2 4 

1 3 so	 1 −1 4 =  
2 −3 4 

 
. 

2 −2 10 10 1 2 

13. 

� ⎛ � ⎛ 
0 0 1 0 1 0 0 0 R1◦R2 

1 0 0 0 0 1 0 0 ⎤ ⎞ 
1 
0 

0 
0 

0 
0 

0 
1 

0 
0 

1 
0 

0 
1 

0 
0 
⎣ ⎡ 

R3→R4⊆ ⎤ ⎞ 
0 
0 

0 
1 

1 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
1 
⎣ ⎡ 

0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 � ⎛ 
1 0 0 0 0 1 0 0 

R2◦R3⊆ ⎤ ⎞ 
0 
0 

1 
0 

0 
1 

0 
0 

0 
1 

0 
0 

0 
0 

1 
0 
⎣ ⎡ , 

0 0 0 1 0 0 1 0 � 
0 0 1 0 

⎛−1 � 
0 1 0 0 

⎛ 

so ⎤ ⎞ 
1 
0 

0 
0 

0 
0 

0 
1 
⎣ ⎡ = ⎤ ⎞ 

0 
1 

0 
0 

0 
0 

1 
0 
⎣ ⎡. 

0 1 0 0 0 0 1 0 

⎞⎤ ⎡⎣
−



411 Section 3.3: Inverses 

� � 

� 

� 

� 

� � 

⎛⎛ 
1 0 0 −2 1 0 0 0 1 0 0 −2 1 0 0 0 

−1 0 0 1 0 0 −1 0 0 1 0 0 
14.

⎤⎞ 
0 1 ⎣⎡ 

−2R2+R4 ∗R4⊆ ⎤⎞ 
0 1 ⎣⎡0 −2 0 −23 0 0 0 1 0 3 0 0 0 1 0 

2 0 0 −3 0 0 0 1 0 0 0 1 −2 0 0 1 ⎛ ⎤⎞ 

1 0 0 −2 1 0 0 0 
0 1 −1 0 0 1 0 0 
0 0 1 0 0 2 1 0 
0 0 0 1 −2 0 0 1 

⎣⎡ 
2R2+R3 ∗R3⊆ 

⎛ ⎤⎞ 

1 0 0 0 −3 0 0 2 
0 1 −1 0 0 1 0 0 
0 0 1 0 0 2 1 0 
0 0 0 1 −2 0 0 1 

⎣⎡ 
2R4+R1 ∗R1⊆ 

⎛ ⎤⎞ 

1 0 0 0 −3 0 0 2 
0 1 0 0 0 3 1 0 
0 0 1 0 0 2 1 0 
0 0 0 1 −2 0 0 1 

⎣⎡R3+R2 ∗R2⊆ , 

⎛ 
1 0 0 −2 

⎛ −3 0 0 2
−1 

0 1 −1 0 
0 −2 3 0    

0 3 1 0 
0 2 1 0 so = . 

2 0 0 3 2 0 0 1 � � 

� 

� 

� � 

⎛ ⎛−R4+R3 ∗R31 3 1 −4 1 0 0 0 1 3 1 0 1 0 0 4−2R4 +R2 ∗R2 
0 1 −2 2 0 1 0 0 
0 0 1 1 0 0 1 0 

−2 0 0 1 0 −2⎤⎞ 
⎣⎡ 

⎤⎞ 
0 1 ⎣⎡ 

4R4+R1 ∗R1⊆15. −10 0 1 0 0 0 1 
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 ⎛ 

1 3 0 0 1 0 −1 52R3+R2 ∗R2 ⎤⎞ 
0 1 0 0 0 1 2 −4 
0 0 1 0 0 0 1 −1 
0 0 0 1 0 0 0 1 

⎣⎡ 
−R3+R1≤R1⊆ 

⎛ 
1 0 0 0 1 −3 −7 17 
0 1 0 0 0 1 2 −4 
0 0 1 0 0 0 1 −1 
0 0 0 1 0 0 0 1 

⎣⎡⎤⎞ 
−3R2 +R1 ∗R1⊆ , 

⎛ ⎛−1−4 1 −3 −71 3 1 17 
0 1 −2 −4⎤

 
2 ⎣

 
⎤

 
0 1 2 ⎣

so = .−10 0 1 1 0 0 1 
0 0 0 1 0 0 0 1 � � 

� 

� 

� 

⎛ ⎛−2R1+R2 ∗R2−3 1 −2 1 −3 1 −21 1 0 0 0 1 0 0 03R1+R3 ∗R3 
−5 4 −2 −2 1 0 0⎤⎞ 

2 0 1 0 0 ⎣⎡ 
⎤⎞ 

0 1 2 2 ⎣⎡ 
−4R4+R4 ∗R4⊆16. −3 9 −2 0 0 1 −15 0 0 1 0 3 0 1 0 

4 −12 4 −7 0 0 0 1 0 0 0 1 −4 0 0 1 ⎛R4+R3 ∗R3 1 −3 1 0 −7 0 0 2−2R4+R2≤R2 
0 1 2 0 6 1 0 −2 
0 0 1 0 −1 0 1 1 
0 0 0 1 −4 0 0 1 

⎤⎞ 
⎣⎡ 

2R4+R1 ∗R1⊆ 

⎛ 
1 −3 0 0 −6 0 −1 1−2R3+R2 ∗R2 
0 1 0 0 8 1 −2 −4⎤⎞ 

⎣⎡ 
−R3+R1≤R1⊆ 

0 0 1 0 −1 0 1 1 
0 0 0 1 −4 0 0 1 
1 0 0 0 18 3 −7 −11 
0 1 0 0 8 1 −2 −4 

⎛ ⎤⎞ 
⎣⎡ 

3R2+R1 ∗R1⊆ 
0 0 1 0 −1 0 1 1 
0 0 0 1 −4 0 0 1 

⎣⎡⎤⎞ ⎤⎞ ⎣⎡
− −

⎞ ⎡ ⎞ ⎡
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�	 ⎛−1 � ⎛ 
1 −3 1 −2 18 3 −7 −11 ⎤ 2 −5 4 −2 ⎣ ⎤ 8 1 −2 −4 ⎣ 

so 	  = .−3 9 −2 5 −1 0 1 1 
4 −12 4 −7 −4 0 0 1 

⎞ ⎡ ⎞ ⎡
4 13 3 

17. The linear system is equivalent to Ax = b, with A = 

[ ]
, and b = 

[
−

]
.Thus x = A−1b = [

4
] [ 1 3	 2 
−1 ] [ ] [  

 13 −3 −3 13 −3 
] [

35 
=	 = 

1 3 2 1 −4 2 −11 

]
.Hence x1 = 35 and x2 = −11.

[ ] [ ]
1 2 1	 2 

18. The linear system is equivalent to	 Ax = b, with A = 
− −

−4 −7 7 , and b = 1 .Thus [ ] [ −1 −1 5 1 
1 [ ] 	   

−
1 2 −

x = A
−1 −2 

1b = 4 7 7 1 = 
−28 −9 7 

− − 4

][ −2 
− 13  −3 1

]
=

[
40 

 −19 

]
. Hence x1 = 40, 

−1 −1 5 −1 −3 −1 1 
x = 19 and x = 4. 

−1 4 
2 − 3 

 [ ] [ ]
3 −1 9	 4 

19. The linear system is equivalent to Ax = b, with A = 1 −1 4 , and b = −1 .Thus x = 
2 −2 10 3� ⎛ � ⎛[ ]−1 [ ] 1 − 5 [ ] − 1523 −1 9 4 2 4 4 4 ⎤ 1 3 ⎣ ⎤ 29 ⎣ 

= − 15A−1b = 1 −1 4 −1 = ⎞ −3 ⎡ −1 = ⎞ ⎡ . Hence x1 , x2 = 2 4 4 4 
2 −2 10 3 0 −1 1 

2 
3 5 

2 
29 
4 and x3 = 5 .2 

 

⎡ . Hence x1 = 1, x2 = −4, x3 = −2, and x4 = 1. 

� ⎛ � ⎛ 
1 0 0 −2 −1 

20. The linear system is equivalent to Ax = b, with A = ⎞ 
⎤ 0 

0 
1 

−2 
−1 
3 

0 
0 
⎣ ⎤ ⎡, and b = ⎞ 

−2 
2 
⎣ ⎡ .Thus 

2 0 0 −3 −1 � 
1 0 0 −2 

⎛−1 � −1 
⎛ � −3 0 0 2 

⎛ � −1 
⎛ 

x = A−1b = ⎞ 0 
⎤ 0 1 

−2 
−1 
3 

0 
0 
⎣ ⎡ 

⎤ ⎞ 
−2 
2 
⎣ ⎤ ⎡ = ⎞ 

0 
0 

3 
2 

1 
1 

0 
0 
⎣ ⎤ −2 ⎡ ⎞ 2 

⎣ ⎡ 

� ⎛ 2 0 0 −3 −1 −2 0 0 1 −1 
1 ⎤ −4 ⎣ 

=  −2 
1 

⎞
([ ])	 [ ]

x1	 4 3
21. T = T (x) = Ax, where A = . We determine A−1: 

x2	 3 2 [ ]	 [ ]
4 3 1 0 (−3/4)R1+R2 ∗R2 4 3 1 0 ⊆
3 2 0 1	 0 − 1 − 3 14 4[	 ]

12R2+R1 ∗R1 4 0 −8 12 ⊆ − 1 − 30 14 4 

(1/4)R1 ∗R1 [ ]
−4R2 ∗R2 1 0 −2 3⊆	 ,

0 1 3 −4 [ ]−1 [ ]	 ([ ])
4 3 −2 3	 x1hence A−1 = = . Consequently, T −1 = T −1 (x) = A−1x = 
3 2 3 −4	 x2([ ])

−2x1 + 3x2 .
3x1 − 4x2 
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x
 

([  
22.

])	 2 5 
T	 1 = T (x) = Ax, where A = 

[ −
−1 4 

]
. Since A is not square, A−1 does not exist, and

x2 1 1
 
hence T −1 does not exist.
 

	 

 

([ ]) [ ]
x1	 1 5 

23. T = T (x) = Ax, where A = 
−

. We seek to determine A−1: 
x2	 −2 10 [	 ] [ ]

1 −5 1 0 2R1+R2 ∗R2 1 −5 1 0⊆	 .−2 10 0 1	 0 0 2 1 

Thus A−1 does not exist, and so T −1 does not exist. 

24.

([ ])	 
x1	 1 0 1 

	 T x2 = T (x) = Ax, where A =

[
0 1 −1 

]
. We determine A−1: 

x3 1 −1 1 [ ] [	 ]
1 0 1 1 0 0	 1 0 1 1 0 0 

−R1+R3 ∗R30 1 −1 0 1 0 ⊆ 0 1 −1 0 1 0 
1 −1 1 0 0 1	 0 −1 0 −1 0 1 [	 ]

1 0 1 1 0 0 
R2+R3 ∗R3⊆	 0 1 −1 0 1 0 

0 0 −1 −1 1 1 [	 ]−R3+R2 ∗R2 1 0 0 0 1 1 
R3+R1 ∗R1⊆	 0 1 0 1 0 −1 

0 0 −1 −1 1 1 [	 ]
1 0 0	 0 1 1 

−R3 ∗R3⊆	 0 1 0 1 0 −1 
0 0 1 1 −1 −1 

[ ]−1 [ ]	 ([ ])
1 0 1 0 1 1	 x1 

hence A−1 = 0 1 −1 = 1 0 −1 . Consequently, T −1 x2 = T −1 (x) = 
1 −1 1 1 −1 −1 x3([ ])

x2 + x3
 
A−1
x = x1 − x3 .
 

x1 − x2 − x3
 

	 

25.

([
x1 

 

])
1 2 1 

 T	 x2 = T (x) = Ax, where A = 

[
−

]
. Since A is not square, A−1 does not exist, 

1 1 −1 
x3
 

and hence T −1 does not exist.
 
	 ([ ]) [ ]

x1	 1 1 1 
26.	 T x2 = T (x) = Ax, where A = 0 1 

−
−1 . We determine (if possible) A−1: 

x3 1 −1 1 [ ] [	 ]
1 1 −1 1 0 0	 1 1 −1 1 0 0 

−R1+R3 ∗R30 1 −1 0 1 0 ⊆ 0 1 −1 0 1 0 
1 −1 1 0 0 1	 0 −2 2 −1 0 1 [	 ]

1 1 −1 1 0 0 
2R2+R3 ∗R3⊆	 0 1 −1 0 1 0 

0 0 0 −1 2 1 

Since the left half of R3 consists of zeroes, the left half of the matrix cannot be transformed to I3 and 
hence A does not have an inverse. 



([ ]) [ ] ([ ])
x1 2 1 x127. T1 = T1 (x) = A1x, where A1 = , and T2 = T2 (x) = A2x, where 
x2 1 1 x2

3 2 
A2 = .

1 1 [ ]−1 [ ]
2 1 1 −1 

(a) T −1 (T2 (x)) = Ax = A−1A2x, so A = A−1A2. Now A−1 = = ,1 1 1 1 1 1 −1 2[ ] [ ] [ ]
1 −1 3 2 2 1 

so A = = .−1 2 1 1 −1 0 ( ) [ ]−1 [ ]
3 2 1 −2 

T −1(b) T1 (x) = Ax = A1A
−1 x, so A = A1A

−1 . Now A−1 = = ,2 2 2 2 1 1 −1 3
 

2 1 1 −2 1 −1 
so A = = .

1 1 1 3 0 1 [ ]−1 [ ]
3 2 1 −2

(c) T −1 (T1 (x)) = Ax = A−1A1x, so A = A−1A1. Now A−1 = = ,2 2 2 2 1 1 −1 3
   

1 −2 2 1 0 −1 
so A = = .  ( ) [ ]−1 [ ]

2 1 1 −1 
T −1(d) T2 (x) = Ax = A2A

−1 x, so A = A2A
−1 . Now A−1 = = ,1 1 1 1 1 1 −1 2

 
3 2 1 −1 1 1 

so A = = .
1 1 1 2 0 1 ([ ]) [ ] ([ ])

x1 3 5 x128. T1 = T1 (x) = A1x, where A1 = , and T2 = T2 (x) = A2x, where 
x2 4 7 x2[ ]
2 9 

A2 = .
1 5 [ ]−1 [ ]

3 5 7 −5 
A−1 A−1(a) T1 

−1 (T2 (x)) = Ax = 1 A2x, so A = 1 A2. Now A−
1
1 = = , so 

4 7 −4 3[ ] [ ] [ ]
7 −5 2 9 9 38

A = = .−4 3 1 5 −5 −21 ( ) [ ]−1 [ ]
2 9 5 −9 

T −1(b) T1 (x) = Ax = A1A
−1 x, so A = A1A

−1 . Now A−1 = = , so 2 2 2 2 1 5 −1 2
  

3 5 5 −9 10 −17 
A = = .

4 7 1 2 13 22 [ ]−1 [ ]
2 9 5 −9

A−1 A−1(c) T −1 (T1 (x)) = Ax = A1x, so A = A1. Now A−1 = = , so 2 2 2 2 1 5 −1 2[ ] [ ] [ ]
5 −9 3 5 −21 −38 

A = = .−1 2 4 7 5 9 ( ) [ ]−1 [ ]
3 5 7 −5 

T −1 A2A
−1 A2A

−1(d) T2 (x) = Ax = x, so A = . Now A−1 = = , so 1 1 1 1 4 7 −4 3
  

2 9 7 −5 −22 17 
A = = .

1 5 4 3 13 10 � ⎛[ ] 0 01A11 A12 ⎞29. A = = 2 7 ⎡, so 0 
A21 A22 0 1 4 
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[ ]

[ ] [ ] [ ]
−

[ ] [ ] [ ]
−1 3 1 1 1 2

[ ] [ ] [ ]
−

[ ] [ ] [ ]
− −

[ ] [ ] [ ]
− −



� � ⎛⎛ 
0 011−1 0 0 

A−1 01211 ⎤
 

⎣
= ⎞ 0 4 −7 ⎡A−1 = = .

0 2 7

[ ]
0

[
1 4 

]−1 

A−1021 22 0 −1 2 

 �
� � 

⎛
30. A =

[ ] 5 2 0 
2 1 0 ⎡, so 
0 0 1 

A11 A12 

A21 A22

⎞= 

⎛[ ]−1 
5 2 0 
2 1 

⎛[ ]
= 

1 −2 0 
−2 5 0 

0 0 1 

A−1 01211 

A−1021 22

⎤ ⎣0A−1 = = . 

1−10 0 
 � 

� 

⎛
2 5 0 0 

31. A =

[ ] ⎤⎤⎞ 
⎣⎣⎡A11 A12 

A21 A22

3 8 0 0 

0 0 1 4 
= , so 

0� ⎤⎤⎤
 

0 1 3 ⎛[ ]−1 
2 5 0 0 
3 8 

⎛ 
8 

−3 
−5 
2 

0 
0 

0 
0 

0 
0 

0 
0 

−3 
1 

4 
−1 

[ ]
= 

⎣⎣⎣
 

A−1 
11 

0 0012 ⎤⎤
 

⎣⎣A−1 = = .
−1A−1021 22 0 0 1 4 

1 30 0

⎞ ⎡ ⎞ ⎡

⎞ ⎡

  �

� � 

  
1 3 0 0 0 

�

� 

� 

⎛
3 8 0 0 0 

−1 2 1 2 −2

[ ]
=

[ ]
A−1 

11 012 

A−1−A−1A21A
−1 

22 11 22

⎤⎤⎤⎞ 

⎣⎣⎣⎡4 3 0 1 0 

A11 A12 

A21 A22

, so A−133. A = =

1 −2 0 0 1 [
]−1 [−2 −1 

]−1 
1 3 
3 8 

⎛ 
0 0 0 ⎤⎤⎤⎤⎞ 

⎣⎣⎣⎣⎡ 

0 0 0 [ ] [ 
1 3 
3 8 

]−1
[ ]−1= 1 2 −2 

0 1 0 
0 0 1 

1 2 2 
0 1 0 4 3− ⎛ ⎣⎣

 

−20 0 1 1 
−8 3 0 0 0 
3 −1 0 0 0 

−32 13 1 −2 2 
23 −9 0 1 0 
14 5 0 0 1 

⎤⎤
 

= . ⎣
−

⎤
  � ⎛

7 2 0 0 0[
A11 A12 

A21 A22

]
= =

[ ]
A−1 

11 
⎤⎤⎤⎞ 

⎣⎣⎣⎡4 1 0 0 0 
1 3 1 0 0 

−2 3 0 1 −2 
5 −2 0 3 −5 

012 
, so A−134. A =

A−1−A−1A21A
−1 

22 11 22

⎡⎞

⎛
1 
3 

3 
8 

0 
0 

0 
0 

−1 
4 

2 
3 

2 
1 

5 
3 

[ ] [
A−1 01211 

A−1−A−1A21A
−1 

22 11 22

]⎤⎤⎞ 
⎣⎣⎡A11 A12 

A21 A22

, so A−132. A = = =

⎛[ ]−1 
1 3 0 0 
3 8 

⎛ 
−8 3 0 0⎤⎤⎤⎤

 

⎣⎣⎣⎣
 

0 0 ⎤⎤⎞ 
⎣⎣⎡ 

3 −1 0 0 

−157 60 3 −5 
= = [

2 5 
1 3 

]−1 [ ] [ ]−1
1 3 
3 8

[ ]−1 −1 2 
4 3 

2 5 
1 3 60 −23 −1− 2 

⎞ ⎡

⎤⎞ ⎣⎡ ⎞ ⎡[ ]
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� 

� 

⎤ ⎤⎤= [⎤ 1 0	 0⎞ −	 0 1 −2 
0 3 −5 

−1 2 ⎤ 4 −7⎤ 
= ⎤ −11 19 

 96	 −173 
55 −99 

[ ]−1 ⎛ 
7 2 0 0 0
 
4 1
 0 0 0 ⎣ ⎣[ ]−1 ⎣ ⎣]−1 [ 

1 3 
] [ ]−1 1 0 0 ⎡7 2−2 3 0 1 −2

4 1
5 −2 0 3 −5⎛ 

0 0 0 
0 0 0	 ⎣ ⎣
1 0	 0 ⎣ 
0 −5	 2 
0 −3	 1 
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[ ]
1 0 0 

35.	 A = 0 1 0 
0 0 1 [	 ]
1 1 1 

36.	 A = 1 1 1 
1 1 1 [ ]
1 0 

37.	 A = , B = 
0 1 

[ ]
3 0 
0 3 

, B = 0 −2 0
 
0 0 −2
 

[ ]
1 0 0 

38.	 A = 0 1 0 
0 0 1 

[ ]−2 0	 0 

[ ] [ ] [ ] [ ] [ ]1 0	 1 0
1 0 0	 1 0 0 1 0 

39.	 A = , B = 0 1 . Then AB = 0 1 = = I2, but BA = 
0 1 0	 0 1 0 0 1

0 0	 0 0[ ][ ] [ ]
1 0	 1 0 0

1 0 0
0 1 = 0 1 0 = I3.0 1 0
0 0	 0 0 0 

̸

�	 ⎛ � ⎛ [ ] 1 0 0	 1 0 0 0
1 0 0 0 ⎤ 0 1	 0 ⎣ ⎤ 0 1 0 0 ⎣

40.	 A = 0 1 0 0 , B =  Then AB = I3, but BA =  .	 = I4.0 0 1	 0 0 1 0
0 0 1 0 

0 0 0	 0 0 0 0 

⎞ ⎞ ⎡ ̸⎡
⎤ ⎣

41. For example, A = 

�
0

⎛ 
0 0 0
 

 1 1 0 0 

 .1 1 1 0
 

1 1 1 1
 

⎞ ⎡
[ ] 

1 0 0 0	 1 0
42. For example, B =	 , then BBT = is nonsingular. 

0 1 0 0	 0 1 

[ ]
43.	 (a) False. If A is invertible, then Ax = b will have one solution for all vectors b. 

(b) True, by Definition 3.20 of invertible matrices. 

44.	 (a) True. A matrix is equivalent to In if and only if it is invertible, and since A−1 is invertible, A−1 

is equivalent to In. 

(b) False. By The Unifying Theorem (Version 3), if A is singular, and therefore not invertible, then 
the columns of A are not linearly independent. 

45.	 (a) True. As shown in the example, the Caesar cipher corresponds to an invertible matrix. ( ) ( ) ( ) ( )
 

T	 T − 1 T 
(b) True. BT B−1 = B 1B = IT = I, so BT −

= B−1 . 

⎞
	

	

⎡
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46.	 (a) False. By The Unifying Theorem (Version 3), if the columns of A span Rn then A is invertible, 
so A is not singular. 

(b) False. The expression A is not defined for matrices. B (	  
47. (a) True, since B−1A−1 (AB) = B−1 A−1A B = B−1InB = B−1B = In. 

) ( )
(b) True.	 A is invertible if and only if Ax = b has a solution for all b. This is only the case if every 

echelon form of A has a pivot in each row. 

48. (a) False. For example, let A = In, and B = In, then A + B = 0n, which is not invertible. −
(b) True. The columns of BT will span Rn . By Theorem 3.27, BT is invertible, so B is invertible. ( )

 
1 

49. (a) True, since A(A−1) = In we conclude that the inverse of A−1 is A, so A−1 −
= A. 

(b) True.	 If S and T are invertible linear transformations represented by invertible matrices A and 
B respectively, then S (T (x)) = S (Bx) = A (Bx) = (AB) x. So the composition of S and T is 
represented by the invertible matrix AB. Thus, the composition of S and T is an invertible linear 
transformation. [  

0
] 2 0 0

1 0 0 
 0 2 0 

50. (a) False. Let A = 0 1 0 0 , B = 

� ⎛
. Then AB = 2I3, but BA = 2I3.0 0 2

0 0 1 0 

⎤ ⎣⎞ ⎡ ̸
0 0 0 

(b) False The columns of AT will be linearly dependent, and therefore the matrix AT is not invertible, 
by Theorem 3.27. Consequently A is not invertible. ( )

51.	 AX = B ⊂ A−1 (AX) = A−1B ⊂ A−1A X = A−1B ⊂ InX = A−1B ⊂ X = A−1B. 

−1
52.	 BX = A + CX ⊂ BX − CX = A ⊂ (B − C) X = A ⊂ X = (B − C) A. ( )−1−1	 −1
53.	 B (X + A) = C  (X + A) = B−1C  X + A = B−1C = C−1B  X = C−1B  A. ⊂ ⊂ ⊂ −

−1
54.	 AX (D + BX) = C ⊂ AX = C (D + BX) = CD + CBX ⊂ AX − CBX = CD ⊂ 

−1
(A − CB) X = CD ⊂ X = (A − CB) CD. ( )	 a	 b a b a b

A−1 A255. If A−1 = A, then A = = I2. If A = , then A2 =	 = 
c d	 c d c d[	 ] [ ]

2a + bc	 ab + bd 1 0 
= . From ab + bd = 0 we determine that either b = 0 or d = −a. 

ac + cd d2 + bc 0 1
 
From ac + cd = 0, we have that c = 0 or d = −a. Case 1: d −a. Then b = 0 and c =
= 0, and so 
a + bc = 1 ⊂ a = ±1. Since d −a, we have from d2 + bc = 1 that d =2 =	 ±1, and hence either [ ] [ ]

1 0 −1 0 
a = d = 1 or a = d = −1. We now have two matrices and . Case 2: d = −a.

0 1 0 −1 
2Then we need to satisfy a + bc = 1. If b = 0, then this implies a = ±1, so d = ∓1, and we get the [ ] [ ]

21 0 −1 0 1−amatrices and . If b = 0, then we may freely choose a and b, and obtain c = ,b0 −1 0 1 
a b 
2and the family of matrices .1 a 

[ ] [ ] [ ]

̸
̸

̸[ ]
− −ab 

56.	 A is not invertible. Consider the augmented matrix corresponding to Ax = 0. Apply the row operation 
−R1 + R2 ∼ R2, which produces a new row 2 consisting entirely of zeroes. The row-reduced form 
will then have a zero row, and hence a free variable. Thus Ax = 0 will have non-trivial solutions, and 
hence A is not invertible. 

57. With two equal columns, the columns of A are not linearly independent. By The Unifying Theorem 
A is not invertible. 
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[
a 0

58. A =

]
is invertible provided the columns of A are linearly independent, which will be the case

0 d
 
as long as a = 0 and d 
= 0. ̸ ̸[

1 1 
59. A = 2 

]
is invertible provided the columns of A are linearly independent, which will be the case 

c c

if c = c2.	 Thus we require that c = 0 and c = 1. ̸ ̸ ̸ [  

  −1	  −1 −1    −1 4 6 2 3
60. Since (cA) = c A , we have (2A) = 1

−
=

−
.2 2 14 1 7 

] [ ]
61. Suppose that Ax = b has solution xb. If A is n  n and not invertible, then it follows that the system 

Ax = 0 has a nontrivial solution x0. Then A(x
×
b + x0) = Axb + Ax0 = b + 0 = b. Therefore Ax = b 

does not have a unique solution, a contradiction. ) ( ) ( ) ( )
62. A2 = P DP −1	 P DP −1 = PD P −1P DP −1 = P D2 P −1 . A3 = A2A

(
 

= P D2 P −1 P DP −1 = PD2 P −1P DP −1 = PD3P −1 . By induction, we can establish the 
general result An = PDnP −1 . 

( ( ) ) ( ) ( )
( )

63. AC = CB  C−1 (AC) = C−1 (CB)  C−1AC = C−1C B  C−1AC = B. ⊂ ⊂ ⊂( )
64. AX = B  A−1 (AX) = A−1B  A−1A X = A−1B  InX = A−1B  X = A−1B. ⊂ ⊂ ⊂ ⊂( )
65. (B − C) A = 0nm ⊂ ((B − C) A) A−1 = 0nmA−1 ⊂ (B − C) AA−1 = 0nm ⊂ (B − C) Im = 

0nm  B  C = 0nm  B = C. ⊂ − ⊂

66. Since B is invertible, so is B−1 . Since AB is invertible, by Theorem 3.23 the product (AB)B−1 is 
invertible. But (AB)B−1 = A(BB−1) = A, so A is invertible. 

67. Since B is singular, there exists x = 0 such that Bx = 0. Thus, (AB) x = A (Bx) = A (0) = 0, and 
hence AB is singular. 

̸

68. Consider (AB) x = b. If this equation has a solution x for all b, then A(Bx) = b shows that Ay = b 
has a solution y for all b, specifically y = Bx. But A is singular, so by the Unifying Theorem, there 
exists a b such that Ay = b has no solution y, and hence the equation (AB) x = b has no solution. 
Therefore AB is singular. 

69. Let x = T (y), then T −1 (rx) = T 
−1 

(rT (y)) = T −1 (T (ry)) = ry = rT −1 (x). ( ) ( )
70. (a) If AC = AD, then A−1 (AC) = A−1 (AD)  A−1A C = A−1A D  A = D ⊂ ⊂

(b) If AC = 0nm, then A−1 (AC) = A−10nm ⊂ A−1A C = 0nm ⊂ C = 0nm 

  

( )
[ ][ ]

57 73 81 x1 
71.	 T (x) = Ax = 93 101 113 x2 , so T −1 (x) = A−1x = 

29 34 38 x3 [ ]−1 [ ] [	 ][ ]
57 73 81 x1 4 20 −68 x1
 

1
93 101 113 x2 = 257 183 −1092 x2 .116 
29 34 38 x3 −233 −179 1032 x3[ ] [	 ][ ] [ ]

2150 4 20 −68 2150 9 
1Evaluate A−1 3114 = 257 183 −1092 3114 = 8 , so the desired produc­116 

1027 −233 −179 1032 1027 13
 
tion level is 9 j8’s, 8 j8+’s, and 13 j9’s.
 

  
   

[ ][ ]
57 73 81 x1 

72.	 T (x) = Ax = 93 101 113 x2 , so T −1 (x) = A−1x = 
29 34 38 x3 [ ]−1 [ ] [	 ][ ]

57 73 81 x1 4 20 −68 x1
 
93 101 113 x2 = 1 257 183 −1092 x2 .
116 
29 34 38 x3 −233 −179 1032 x3 
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[ ] [	 ][ ] [ ]
2152 4 20 −68 2152 17 

1Evaluate A−1 3228 = 257 183 −1092 3228 = 4 , so the desired produc­116 
1047 −233 −179 1032 1047 11 

tion level is 17 j8’s, 4 j8+’s, and 11 j9’s. [ ][ ]
57 73 81 x1 

73.	 T (x) = Ax = 93 101 113 x2 , so T −1 (x) = A−1x = 
29 34 38 x3 [ ]−1 [ ] [	 ][ ]

57 73 81	 x1 4 20 −68 x1 
93 101 113	 x2 = 1 257 183 −1092 x2 .116 
29 34 38	 x3 −233 −179 1032 x3[ ] [	 ][ ] [ ]

2946 4 20 −68 2946 12 
1Evaluate A−1 4254 = 257 183 −1092 4254 = 21 , so the desired produc­116 

1404 −233 −179 1032 1404 9
 
tion level is 12 j8’s, 21 j8+’s, and 9 j9’s.
 

  

[ ][ ]
57 73 81 x1 

74.	 T (x) = Ax = 93 101 113 x2 , so T −1 (x) = A−1x = 
29 34 38 x3 [ ]−1 [ ] [	 ][ ]

57 73 81	 x1 4 20 −68 x1 
93 101 113	 x2 = 1 257 183 −1092 x2 .116 
29 34 38	 x3 −233 −179 1032 x3[ ] [	 ][ ] [ ]

5062 4 20 −68 5062 19 
1Evaluate A−1 7302 = 257 183 −1092 7302 = 19 , so the desired produc­116 

2413 −233 −179 1032 2413 32
 
tion level is 19 j8’s, 19 j8+’s, and 32 j9’s.
 

[ ]	 [ ]−1
29 18 50	 29 18 50 

75.	 T (x) = Ax = 3 25 19 x, T −1 (y) = A−1y = 3 25 19 y 
4 6 9 4 6 9[ ] ([ ]) [	 ][ ] [ ]

111 138 −908 409 111 138 −908 409 3 
= 49 61 −401 y, thus T −1 204 = 49 61 −401 204 = 4 

−82 −102 671 81 −82 −102 671 81 5 

[ ]	 [ ]−1
29 18 50	 29 18 50 

76.	 T (x) = Ax = 3 25 19 x, T −1 (y) = A−1y = 3 25 19 y 
4 6 9 4 6 9[ ] ([ ]) [	 ][ ] [ ]

111 138 −908 439 111 138 −908 439 7 
= 49 61 −401 y, thus T −1 147 = 49 61 −401 147 = 2 . 

−82 −102 671 76 −82 −102 671 76 4 

[ ]	 [ ]−1
29 18 50	 29 18 50 

77.	 T (x) = Ax = 3 25 19 x, T −1 (y) = A−1y = 3 25 19 y 
4 6 9 4 6 9[ ] ([ ]) [	 ][ ] [ ]

111 138 −908 1092 111 138 −908 1092 10 
= 49 61 −401 y, thus T −1 589 = 49 61 −401 589 = 14 . 

−82 −102 671 223 −82 −102 671 223 11 

[ ]	 [ ]−1
29 18 50	 29 18 50 

78.	 T (x) = Ax = 3 25 19 x, T −1 (y) = A−1y = 3 25 19 y 
4 6 9 4 6 9[ ] ([ ]) [	 ][ ] [ ]

111 138 −908 744 111 138 −908 744 0 
= 49 61 −401 y, thus T −1 428 = 49 61 −401 428 = 8 . 

−82 −102 671 156 −82 −102 671 156 12 
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79. A−1 

[ 
41 7 
161 79 

−306 −142 

] 

= 

[ 
1 −3 
2 −7 

−4 14 

message is 

{[ 
12 
1 

16 

] 

, 

[ 
20 
15 
16 

]} 

∼ 

{[ 

2 
9 

−17 

]−1 [ 
41 7 
161 79 

−306 −142 

] 

= 

l 
a 
p 

] 

, 

[ 
t 
o 
p 

]}
, i.e. “laptop”. 

[ 
12 
1 

16 

20 
15 
16 

]
. Hence the decoded 

80. A−1 

[ −30 1 
−45 22 
96 −39 

] 

= 

[ 
1 −3 2 
2 −7 9 

−4 14 −17 

sage is 

{[ 
3 

15 
6 

] 

, 

[ 
6 
5 
5 

]} 

∼ 

{[ 
c 
o 
f 

] 

, 

[ 

]−1 [ −30 1 
−45 22 
96 −39 

] 

= 

f 
e 
e 

]}
, i.e. “ coffee”. 

[ 
3 

15 
6 

6 
5 
5 

]
. Hence the decoded mes­

81. A−1 

[
−

7 
75 
136 

−25 
−37 
79 

47 
158 

−303 

]
= 

[
−4 

1 
2 

−3 
−7 
14 

2 
9 

−17 

]−1 [
−

7 
75 

136 

−25 
−37 
79 

47 
158 

−303 

]
= 

[
14 

6 
9 

1 
12 
5 

24 
1 

13 

]
. Hence {[ ] [ ] [ ]} {[ ] [ ] [ ]}

6 1 24 f a x 
the decoded message is 9 , 12 , 1 ∼ i , l , a , i.e. “ final exam”. 

14 5 13 n e m 

      

[	 ] [ ]−1 [ ]
44 −46 23 40 1 −3 2 44 −46 23 40 

82.	 A−1 157 −105 88 152 = 2 −7 9 157 −105 88 152 
−300 211 −167 −289 −4 14 −17 −300 211 −167 −289[ ]	 {[ ] [ ] [ ] [ ]}

19 6 14 19 19 6 14 19 
= 1 18 3 3 . Hence the decoded message is 1 , 18 , 3 , 3 ∼ 

14 1 9 15 14 1 9 15{[ ] [ ] [ ] [ ]}
s f n s 
a , r , c , c , i.e. “ San Francisco”. 
n a i o � ⎛8 − 14 − 23 4�	 ⎛−1 145 145 145 293 1 −2 0 ⎤ 67 64 43 − 10 ⎣ ⎤ 2 2 5 1 ⎣ ⎤ 145 145 145 29 ⎣83. A−1 = ⎞ ⎡ = ⎤	 ⎣.−3 0 −2 2 − 27 11 − 13 1	

145 145 145 294 1 2 3 5 7 
29 29 29 29− 3 − 2 

	

⎞ ⎡
	 1� ⎛−
5 2 −1 0 ⎤ 2 −3 1 4 ⎣

84. A−1 = ⎞	 ⎡ does not exist. 
2 1 −3 2 
3 5 −2 −4 

	� ⎛−1
5 1 2 1 2 ⎤ −3 2 2 1 0 ⎣ ⎤	 ⎣

85. A−1 = ⎤ 2 3 1 0 1 ⎣ does not exist. ⎞	 ⎡5 −1 −1 −1 3 
0 0 3 2 1 �	 ⎛ 

91 1647 201 248 − 1006� ⎛	 −12 811 12 811 12 811 12 811 12 811 2 2 9 0 4 −1 ⎤	 ⎣− 2394 1017 1346 − 1597 1829⎤	 ⎣⎤ 9 5 5 2 1 ⎣ 12 811 12 811 12 811 12 811 12 811 ⎤	 ⎣ ⎤⎤ 1313 28 − 1070 82 126 
⎣⎣86. A−1 = ⎤ 2 3 0 0 5 ⎣ = − −	 .⎤ 12 811 12 811 12 811 12 811 12 811 ⎣⎞ 9 5 0 7 0 ⎡ ⎤ 1593 − 2844 703 2652 13 ⎣ ⎞	 − − ⎡12 811 12 811 12 811 12 811 12 811 4 9 9 5 1 

1400 − 1269 1835 859 695−12 811 12 811 12 811 12 811 12 811 
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3.4 Practice Problems 

	 

 

[
1 0 1	 1 

1. (a) Solve Ly = b, y = , using back substitution, to obtain y = . Now solve [ 3] 1
 

 

] [
3	 

]
0 

−
[ ]	

 1
2 5 1

[ ]
Ux = y, x = , using back substitution, to obtain x =

[
− 2

]
.

0 1 0 0 

 	
1 0 0 1	 1 

(b) Solve Ly = b, 

[
3 1 0 

]
y = 

[ −
2 

]
, using back substitution, to obtain y = 

−
5 . Now 

−2 1 1 1 

[
−6	

]
 

 	 − 7 
3 1 1 1 

 6  
solve Ux = y, 

[
0 2 

− −
−2 

]
x = 

[
5 

]
, using back substitution, to obtain x = 

�
⎞⎤ − 1 

 

⎛⎣
.

2 
0 0 2 −6 −3 

⎡

[ ]	 [ ] [ ]−2R1+R2 ∗R22 1 −1	 2 1 −1 1 0 0 
R1+R3 ∗R32.	 (a) 4 4 0 ⊆ 0 2 2 ⊂ L = 2 1 0 

−2 1 6 0 2 5 −1 • 1 [ ]	 [ ] [ ]
2 1 −1	 2 1 −1 1 0 0 

−R2+R3 ∗R30 2 2 ⊆ 0 2 2 ⊂ L = 2 1 0 
0 2 5 0 0 3 −1 1 1[ ] [ ]

1 0 0 2 1 −1
 
Thus L = 2 1 0 and U = 0 2 2 .
 

−1 1 1 0 0 3
 

� ⎛ �	 ⎛ � ⎛ 
2 1 3 −1	 2 1 3 −1 1 0 0 0−R1 +R3 ∗R3 ⎤ 0 1 0 2 ⎣ −R1 +R4 ∗R4 ⎤ 0 1 0 2 ⎣ ⎤ 0 1 0 0 ⎣

(b)	 ⎞ ⎡ ⊆ ⎞ ⎡ ⊂ L = ⎞ ⎡2 3 2 4 0 2 −1 5 1 • 1 0 
2 1 2 2 0 0 −1 3 1 • • 1 � ⎛ �	 ⎛ � ⎛ 

2 1 3 −1 2 1 3 −1 1 0 0 0 ⎤ 0 1 0 2 ⎣ −2R2+R3 ∗R3 ⎤ 0 1 0 2 ⎣ ⎤ 0 1 0 0 ⎣ ⎞ ⎡ ⊆ ⎞	 ⎡ ⊂ L = ⎞ ⎡0 2 −1 5 0 0 −1 1 1 2 1 0 
0 0 −1 3 0 0 −1 3 1 0 • 1 � ⎛ �	 ⎛ � ⎛ 
2 1 3 −1 2 1 3 −1 1 0 0 0 ⎤ 0 1 0 2 ⎣ −R3 +R4 ∗R4 ⎤ 0 1 0 2 ⎣ ⎤ 0 1 0 0 ⎣ ⎞ ⎡ ⊆ ⎞	 ⎡ ⊂ L = ⎞ ⎡0 0 −1 1 0 0 −1 1 1 2 1 0 
0 0 −1 3 0 0 0 2 1 0 1 1� ⎛ �	 ⎛ 

1 0 0 0 2 1 3 −1
 ⎤ 0 1 0 0 ⎣ ⎤ 0 1 0 2 ⎣

Thus L =  and U = 	 .

1 2 1 0 0 0 −1 1 
1 0 1 1 0 0 0 2 

⎞ ⎡ ⎞ ⎡
[	 ] [ ] [ ]−R1+R2 ∗R22 1 0 −2	 2 1 0 −2 1 0 0 

2R1+R3 ∗R3(c)	 2 2 3 −1 ⊆ 0 1 3 1 ⊂ L = 1 1 0
 
−4 0 7 8 0 2 7 4 −2 • 1
 [ ]	 [ ] [ ]
2 1 0 −2	 2 1 0 −2 1 0 0 

−2R2+R3 ∗R30 1 3 1 ⊆ 0 1 3 1 ⊂ L = 1 1 0 
0 2 7 4 0 0 1 2 −2 2 1 [ ] [ ]

1 0 0 2 1 0 −2
 
Thus L = 1 1 0 and U = 0 1 3 1 .
 

−2 2 1 0 0 1 2
 



� � � 

� � � 

� � � 

⎛ ⎛⎛R1+R2 ∗R22 1 2 2 1 2 1 0 0 0−2R1+R3 ∗R3 
−2 −2 −1 
4 2 7 

0 −1 1 
0 0 3 

⎣⎡ ⊂ L = ⎤⎞ 
−1 1 0 0 
2 • 1 0 

⎤⎞ 
⎣⎡ 

⎤⎞ 
⎣⎡ 

−R1 +R4 ∗R4⊆(d) 

2 0 9 0 −1 7 1 • • 1 ⎛⎛⎛ 
2 1 2 2 1 2 1 0 0 0 ⎤⎞ 
0 −1 1 
0 0 3 

⎣⎡ 
−R2 +R4 ∗R4⊆ ⎤⎞ 

0 −1 1 
0 0 3 

⎣⎡ ⊂ L = ⎤⎞ 
−1 1 0 0 
2 0 1 0 

⎣⎡ 

0 −1 7 0 0 6 1 1 • 1 ⎛⎛⎛ 
2 1 2 2 1 2 1 0 0 0 
0 −1 1 
0 0 3 

0 −1 1 
0 0 3 

−1 1 0 0 
2 0 1 0 

⎤⎞ 
⎣⎡ 

−2R3+R4 ∗R4⊆ ⎤⎞ 
⎣⎡ ⎤⎞ 

⎣⎡⊂ L = 

0 

Thus, L = 

0� 6 0�⎛ 0 0 
1 0 0 0 2 1 2 ⎤

 
−1 1 0 0 ⎣

and U = ⎤ 
0 −1 1 

1 1 2 1⎛ 

2 0 1 0 0 0 3
⎣
. 

1 1 2 1 0 0 0 

� 

3. (a) L=

[ ]
=

[ ]−11 0 0 
2 1 0 

−1 1 1

2 1 
0 2 2 
0 0 3

We divide the rows of U by the diagonal entries to obtain . ⎛[ ] 11 − 122 0 0 
0 2 0 
0 0 3

2 
D = and U = 0 1 1 . 

0 0 1 � � 

� � 

⎛⎛ 
1 0 0 0 2 1 3 −1 ⎤⎞ 
0 1 0 0 
1 2 1 0 

⎣⎡. We divide the rows of U = ⎤⎞ 
0 1 0 2 ⎣⎡(b) L = by the diagonal entries to −1 10 0 

1 0 1 1 ⎛ 
0 0 0 2⎛ 

1 3 − 11 22 0 0 0 2 2⎤⎤⎞ 
⎣⎣⎡⎤⎞ 

0 1 0 0 
0 0 −1 0 

⎣⎡ 0 1 0 2 
0 0 1 −1 

obtain D = and U = . 

0 0 0 2 0 0 0 1 

� 

(c) L =

[ ]
. =

[ ]−21 0 0 
1 1 0 

−2 2 1

2 1 0 
0 1 3 1We divide the rows of U by the diagonal entries to ⎛0 0 1 2[ ]

and U = 

11 0 −12 0 0 
0 1 0 
0 0 1

2 
obtain D = 0 1 3 1 . 

0 0 1 2 � � 

� � 

⎛⎛ 
1 0 0 0 2 1 2 

−1 1 0 0 
2 0 1 0 

⎣⎡. We divide the rows of U = ⎤⎞ 
0 −1 1 
0 0 3 

⎤⎞ 
⎣⎡(d) L = by the diagonal entries to 

1 1 2 1 ⎛ 
0 0 0⎛ 

11 12 0 0 0 2⎤⎤
 

⎣⎣0 −1 0 0 
0 0 3 0

obtain D = ⎤ 
⎣ 0 1 −1 

0 0 1 
and U = . 

0 0 0 1 0 0 0 
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⎞ ⎡ ⎞ ⎡

⎞ ⎡

⎡⎞

⎞ ⎡⎞ ⎡

3.4 LU Factorization 

1.

[
1 0 

−7 1 

] [ 
2 2 −3

]
=

[ ]
, so a = 2 and b = −14. 

−32 2 
−4 −14 −130 1 17



423 Section 3.4: LU Factorization 

[ ][ ] [	 ]
1	 0 0 −2 0 3 −2 0 3 

2.	 −4 1 0 0 1 1 = 8 1 −11 , so a = 0, b = −11, and c = 4. 
−2 −1 1 0 0 2 4 −1 −5 [ ][ ] [ ]	 [ ]
1 0 0 5 2 5 2	 5 c 

3.	 3 1 0 0 b = 15 b + 6 . Equating this to 15 9 we obtain that c = 2, 
a 2 1 0 0 5a 2a + 2b 20 14
 

9 = b + 6  b = 3, and 20 = 5a  a = 4. We check that 2a + 2b = 2(4) + 2(3) = 14.
 ⊂ ⊂[ ] [ ] [	 ] [ ]
1 0 4 2 3 b 4 2 3 b	 4 c 3 1 

4. =	 . Equating this to we 
a 1 0 2 3 1 4a 2a + 2 3a + 3 ab + 1 8 6 d 3 

obtain c = 2, b = 1, 4a = 8 ⊂ a = 2, and d = 3a+3 = 3(2)+3 = 9. We check that 6 = 2a+2 = 2(2)+2 
and 3 = ab + 1 = (2)(1) + 1. [ ] [ ]	 [ ]

1 0 2	 2 
5. Solve Ly = b, y = , using back substitution, to obtain y = . Now solve Ux = y,−2 1 2	 6[ ] [ ]	 [ ]

2 −2 2	 3 
x = , using back substitution, to obtain x = .

0	 3 6 2 

 	[ ] [ ] [ ]
1 0 −7	 −7 

6. Solve Ly = b, y = , using back substitution, to obtain y = . Now solve 
3 1 −17	 4[ ] [ ]	 [ ]

1	 4 −7 1
Ux = y, x = , using back substitution, to obtain x = .

0 −2 4	 −2 [ ] [ ]	 [ ]
1	 0 0 4 4 

7. Solve Ly = b, −1 1 0 y = 0 , using back substitution, to obtain y = 4 . Now 
2 −2 1 −4 −4[ ] [ ]	 [ ]

2 −1 3 4 −1
 
solve Ux = y, 0 1 2 x = 4 , using back substitution, to obtain x = 0 .
 

0 0 −2 −4 2
 [ ] [ ]	 [ ]
1 0 0 −4	 −4 

8. Solve Ly = b, −2 1 0 y = 11 , using back substitution, to obtain y = 3 . Now solve 
1 3 1 5 0[ ] [ ]	 [ ]

1 −2 0 −4 −2
 
Ux = y, 0 3 −1 x = 3 , using back substitution, to obtain x = 1 .
 

0 0 −2 0 0
 [ ] [ ]	 [ ]
1 0 0 0	 0 

9. Solve Ly = b, 2 1 0 y = 1 , using back substitution, to obtain y = 1 . Now solve 
−3 4 1 4 0

 	
1 −2 0 

2
Ux = y, 0 1 x = 1 , using back substitution, to obtain x = .

1

[ ] [ ] [ ]
0	 0 0 

� 

[ ] [ ]
1 0 2 

y = 
3 1 13 ] 53

[ ]
, using back substitution, to obtain y = . Now solve Ux = y,

7 
2 

10. Solve Ly = b, [ 
1 −1 2 
0 −2 −1 

⎛[ ] − − s12 22 ⎞ ⎡7 1, using Gaussian elimination, to obtain x =x = − − .s17 2 2
s1 � ⎛ � ⎛	 � ⎛ 

1 0 0 0 0 0 ⎤ −2 1 0 0 ⎣ ⎤ 0 ⎣ ⎤ 0 ⎣
11. Solve Ly = b, ⎞	 ⎡ y = ⎞ ⎡, using back substitution, to obtain y = ⎞ ⎡.0 3 1 0 −1 −1 

2 −1 0 1 0 0 
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� ⎛ � ⎛ � ⎛ 
1 −2 0 −1 0 2
 

 0 1 1 3  0  1 

Now solve Ux = y,  x = , using back substitution, to obtain x = .

0 0 1 −1 −1 −1 
0 0 0 1 0 0 

⎤ ⎣ ⎤ ⎣ ⎤ ⎣⎞ ⎡ ⎞ ⎡ ⎞ ⎡
� ⎛ � ⎛ � ⎛ 

1 0 0 0 −1 −1 ⎤ 2 1 0 0 ⎣ ⎤ −3 ⎣ ⎤ −1 ⎣
12. Solve Ly = b, ⎞ ⎡ y = ⎞ ⎡, using back substitution, to obtain y = ⎞ ⎡. Now −1 3 1 0 −2 0 

−3 0 0 1 3 0� ⎛ � ⎛ 
1 3 1 −1 [ ]

2⎤ 0 1 2 ⎣ ⎤ −1 ⎣
solve Ux = y,  x = , using back substitution, to obtain x = −1 .

0 0 1 0 
0 0 0 0 0 

⎞ ⎡ ⎞ ⎡
13. 

[ 
1 −4 

−2 9 

] 
2R1+R2 ∗R2⊆ 

[ 
1 −4 
0 1 

] 

⊂ L = 

[ 
1 • 

−2 1 

] 

Thus L = 

 
1 0 
2 1 

 

and U = 

 
1 −4 
0 1 . 

[
−

] [ ]
14. 

[ 
2 3 
6 10 

] 
−3R1+R2 ∗R2⊆ 

[ 
2 3 
0 1 

] 

= A1 ⊂ L = 

[ 
1 • 
3 1 

] 

Thus L = 

[ 
1 0 
3 1 

] 

and U = 

[ 
2 3 
0 1 

]
. 

15. 

[ −2 −1 1 
−6 0 4 
2 −2 −1 

] −3R1+R2 ∗R2 
R1+R3 ∗R3⊆ 

[ −2 −1 1 
0 3 1 
0 −3 0 

] 

⊂ L = 

[ 
1 
3 

−1 

• 
1 

−1 

• 
• 
• 

] 

[ −2 −1 1 
0 3 1 
0 −3 0 

] 

Thus L = 

[ 
1 0 
3 1 

−1 −1 

R2+R3 ∗R3⊆ 

[ −2 
0 
0 

0 
0 
1 

] 

and U = 

[ −2 
0 
0 

−1 
3 
0 
−1 
3 
0 

1 
1 
1 

] 

⊂ L = 

[ 
1 
3 

−1 
1 
1 
1 

]
. 

• 
1 

−1 

• 
• 
1 

] 

16. 

[ −3 
−6 
0 

2 
2 

−8 

1 
3 
6 

] 
−2R1+R2 ∗R2⊆ 

[ −3 
0 
0 

2 
−2 
−8 

1 
1 
6 

] 

⊂ L = 

[ 
1 
2 
0 

• 
1 
4 

• 
• 
• 

] 

[ −3 2 1 
0 −2 1 
0 −8 6 

] 

Thus L = 

[ 
1 0 
2 1 
0 4 

−4R2+R3 ∗R3⊆ 

[ −3 
0 
0 

0 
0 
1 

] 

and U = 

[ −3 
0 
0 

2 
−2 
0 
2 

−2 
0 

1 
1 
2 

] 

1 
1 
2 

]
. 

⊂ L = 

[ 
1 
2 
0 

• 
1 
4 

• 
• 
1 

] 

� −1 0 −1 2 
⎛ R1+R2 ∗R2 

−2R1 +R3 ∗R3 

� −1 0 −1 2 
⎛ � 

1 • • • 
⎛ 

17. ⎤ ⎞ 
1 

−2 
3 

−9 
2 

−3 
−2 
3 
⎣ ⎡ 

−R1+R4 ∗R4⊆ ⎤ ⎞ 
0 
0 

3 
−9 

1 
−1 

0 
−1 

⎣ ⎡ ⊂ L = ⎤ ⎞ 
−1 
2 

1 
−3 

• 
• 

• 
• 
⎣ ⎡ 

−1 9 −2 5 0 9 −1 3 1 3 • • � ⎛ � ⎛ � ⎛ −1 0 −1 2 3R2+R3 ∗R3 
−1 0 −1 2 1 • • • ⎤ ⎞ 

0 
0 

3 
−9 

1 
−1 

0 
−1 

⎣ ⎡ 
−3R2 +R4 ∗R4⊆ ⎤ ⎞ 

0 
0 

3 
0 

1 
2 

0 
−1 

⎣ ⎡ ⊂ L = ⎤ ⎞ 
−1 
2 

1 
−3 

• 
1 

• 
• 
⎣ ⎡ 

0 9 −1 3 0 0 −4 3 1 3 −2 • � ⎛ � ⎛ � ⎛ −1 0 −1 2 −1 0 −1 2 1 • • • ⎤ ⎞ 
0 
0 

3 
0 

1 
2 

0 
−1 

⎣ ⎡ 
2R3+R4 ∗R4⊆ ⎤ ⎞ 

0 
0 

3 
0 

1 
2 

0 
−1 

⎣ ⎡ ⊂ L = ⎤ ⎞ 
−1 
2 

1 
−3 

• 
1 

• 
• 
⎣ ⎡ 

0 0 −4 3 0 0 0 1 1 3 −2 1 
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• • 

• • 

• • 

� � � 

� � � 

� � � 

� 

⎛⎛⎛ −3 2 1 4 −3 2 1 4 1 • • •2R1+R3 ∗R3 ⎤⎞ 
0 2 0 3 
6 −6 −1 −6 

⎣⎡ 
−2R1+R4 ∗R4⊆ ⎤⎞ 

0 2 0 3 
0 −2 1 2 

⎣⎡ ⊂ L = ⎤⎞ 
0 1 

−2 −1 • • 
⎣⎡18. 

−6 2 −1 −9 0 −2 −3 −17 2 −1 • • ⎛⎛⎛ −3 2 1 4 −3 2 1 4 1 • • •R2+R3 ∗R3 
0 2 0 3 
0 −2 1 2 

⎣⎡ 
R2+R4 ∗R4⊆ ⎤⎞ 

0 2 0 3 
0 0 1 5 

⎣⎡ ⊂ L = ⎤⎞ 
0 1 

−2 −1 1 • 
⎣⎡ 

⎤⎞ 

0 −2 −3 −17 0 0 −3 −14 2 −1 −3 • ⎛⎛⎛ −3 2 1 4 −3 2 1 4 1 • • • 
0 1 

−2 −1 1 • 
⎤⎞ 

0 2 0 3 
0 0 1 5 

⎣⎡ 
⎤⎞ 

0 2 0 3 
0 0 1 5 

⎣⎡ ⎤⎞ 
⎣⎡ 

3R3+R4 ∗R4⊆ ⊂ L = 

−3 −14 −1 −30 

Thus L = 

0� ⎤
 

0 0 0 ⎛ ⎣
1 2 1⎛ 

1 0 0 0 −3 2 1 4 
0 1 0 0 

−2 −1 1 0 
⎣
and U = ⎤ 0 2 0 3 

0 0 1 5 . 

2 −1 −3 1 0 0 0 1 

• • 

• • 

[ ] [ ] [ ]4R1+R2 ∗R2 
−2R1+R3 ∗R3⊆

−1 −12 1 3 2 1 3 1 
−7 −7 −17 −3 −5 −4 1 • 

2 2 •
4 0 1 ⊂ L =19.

−2 6 −3 −2 −5 −80 2 [
2 1 3 −1 2 1 3 

−3 −51 −2R2+R3 ∗R3⊆

] [
−30 1 −5 ]2 −5 −8

1 0 0 
−4 1 0 
2 2 1

[ −1 
0and U =
0 

2 
1 
0 

1]0 0 
1 3 

−3 −5 . 
1 2

2

] [ ]−1 1 
−4 1 • 
2 2 1

0 [ ⊂ L =
0 

Thus L =

• • 

• • 

[ ] [ ] [ ]2R1+R2 ∗R2 
−R1+R3 ∗R3⊆

−2 0 −1 −2 0 −11 3 1 3 1 
−1 2 −5 −3 −2 1 • 

1 3 •
4 1 0 1 4 1 ⊂ L =20.

−2 3 −8 −714 5 0 3 13 2[ ] [ ] [ ]
[

−2 0 −1 

3 

−2 0 −1 1 
−2 1 • 
1 3 1]

1 3 

2

1 3 
−3R2+R3 ∗R3⊆−3 0 1 −30 1 4 1 4 1 ⊂ L =

−7 −10 13 0 0 2 1[ ]−2 0 −11 0 0 1 3 
−2 0 1 −31 0 4 1Thus L = and U = . 

0 0 2 1 −11 3 1

• • 
• • 

• • 

• • 

� � � 

� � � 

� � � 

⎛⎛⎛ 
1 1 0 1 1 0 1 • • •−R1+R2 ∗R2 

−1 −1 −1⎤⎞ 
1 0 ⎣⎡ 

−R1+R3 ∗R3⊆ ⎤⎞ 
0 ⎣⎡ ⊂ L = ⎤⎞ 

1 1 ⎣⎡21. 
1 −1 −2 00 0 1 2 
0 1 −1 0 1 −1 0 −1 • • ⎛⎛⎛ 
1 1 0 1 1 0 1 • • •−2R2+R3 ∗R3 

−1 −1 ⎣⎡ 
R2+R4 ∗R4⊆ ⎤⎞ 

0 −1 −1 
0 0 2 

⎣⎡ ⊂ L = ⎤⎞ 
⎤⎞ 

0 1 1 ⎣⎡−2 0 •0 1 2 1 
0 1 −1 0 0 −2 0 −1 −1 • ⎛⎛⎛ 
1 1 0 1 1 0 1 • • • 
0 −1 −1 
0 0 2 

⎣⎡ 
R3+R4 ∗R4⊆ ⎤⎞ 

0 −1 −1 
0 0 2 

⎣⎡ ⊂ L = ⎤⎞ 
1 1 
1 2 1 • 

⎤⎞ 
⎣⎡ 

0 0 −2 0 0 0 0 −1 −1 1 

� � ⎛⎛ 
1 0 0 0 −1 0 −1 2 

Thus L = ⎤ 
−1 1 0 0 
2 −3 1 0 

⎣
and U = ⎤ 

0 3 1 0 
0 0 2 −1 

⎣
. 

1 3 −2 1 0 0 0 1 

⎞ ⎡ ⎞ ⎡

⎞ ⎡⎡ ⎞



� � ⎛⎛ 
1 0 0 0 1 1 0 

Thus L = ⎤⎞ 
1 1 0 0 
1 2 1 0 

⎣⎡ and U = ⎤⎞ 
0 −1 −1 
0 0 2 

⎣⎡. 
0 −1 −1 1 0 0 0 

� � � 

� � � 

� � � 

⎛ ⎛⎛4R1+R2 ∗R2−1 −1 2 4 1 • • •2 4 −3R1+R3 ∗R3 
−6 −17 −1 ⎣⎡ ⊂ L = ⎤⎞ 

−4 1 • • 
3 −2 • • 

⎤⎞ 
4 ⎣⎡ 

⎤⎞ 
0 2 ⎣⎡ 

2R1+R4 ∗R4⊆22. −3 0 −42 15 3 
2 −4 −9 0 0 −1 −2 0 • • ⎛⎛⎛ −1 2 4 −1 2 4 1 • • • 

−1 ⎣⎡ 
2R2+R3 ∗R3⊆ ⎤⎞ 

0 2 −1 
0 0 1 

⎣⎡ ⊂ L = ⎤⎞ 
−4 1 • • 
3 −2 1 • 

⎣⎡ 
⎤⎞ 

0 2 
0 −4 3 
0 0 −1 0 0 −1 −2 0 8 • ⎛⎛⎛ −1 2 4 −1 2 4 1 • • • 
0 2 −1 
0 0 1 

0 2 −1 
0 0 1 

−4 1 • • 
3 −2 1 • 

⎤⎞ 
⎣⎡ 

R3+R4 ∗R4⊆ ⎤⎞ 
⎣⎡ ⎤⎞ 

⎣⎡⊂ L = 

−10� 0� 0⎛ 0 
1 0 0 0 −1 2 4 ⎤⎞ 

−4 1 0 0 ⎣⎡ and U = ⎤⎞ 
0 2 −1 

−2 0 −1 10 

Thus L = 

⎛ 

3 −2 1 0 0 0 1 
⎣⎡. 

−2 0 −1 1 0 0 0 

� � � 

� � � 

� � � 

� � 

⎛ R1+R2 ∗R2 ⎛⎛ 
−2 1 3 −2R1 +R3 ∗R3 −2 1 3 1 • • • • 
2 0 8 

−4 1 12 
2 0 −10 

⎣⎣⎣⎡ 

R1+R4 ∗R4 
−2R1 +R5 ∗R5⊆ 

⎤⎤⎤⎞ 

⎤⎤⎤⎞ 

⎣⎣⎣⎡ 
⊂ L = 

⎤⎤⎤⎞ 

−1 1 • • • 
2 −1 • • • 

−1 1 • • • 

⎣⎣⎣⎡ 

0 1 11 
0 −1 623. 

−70 1 
−4 2 7 0 0 1 2 0 • • • ⎛ 

1 • • • •⎛⎛ 
−2 1 3 −2 1 3 ⎤⎤⎤⎤⎞ 

−1 1 • • • 
2 −1 1 • • 

−18−1 1 • •17 

⎣⎣⎣⎣⎡ 

0 1 11 
0 −1 6 
0 1 −7 

⎣⎣⎣⎡ 

R2+R3 ∗R3 
−R2+R4 ∗R4⊆ 

⎤⎤⎤⎞ 

0 1 11 
0 0 17 
0 0 −18 

⎣⎣⎣⎡ 

⎤⎤⎤⎞ 
⊂ L = 

10 0 1 0 0 1 2 0 • •17 ⎛⎛⎛ 1 • • • •−2 1 3 −2 1 3 ⎤⎤⎤⎤⎞ 

⎣⎣⎣⎣⎡ 

0 1 11 
0 0 17 
0 0 −18 

⎣⎣⎣⎡ 

(18/17)R3+R4 ∗R4 

(−1/17)R3 +R5 ∗R5⊆ 
⎤⎤⎤⎞ 

0 1 11 
0 0 17 
0 0 0 

−1 1 • • • 
2 −1 1 • • 

−18−1 1 1 017 

⎤⎤⎤⎞ 

⎣⎣⎣⎡ 
⊂ L = 

10 0 1 0 0 0 2 0 0 1⎛ 17⎛1 0 0 0 0 −2 1 3 ⎤⎤⎤⎤⎞ 

⎣⎣⎣⎣⎡ 

−1 1 0 0 0 
2 −1 1 0 0 

− 18−1 1 1 017 

⎤⎤⎤⎞ 

⎣⎣⎣⎡ 

0 1 11 
0 0 17 
0 0 0 

Thus L = and U = . 

1 0 0 02 0 0 117 
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• • • 

• • 

• • 

� � � 

� � � 

� � � 

� 

⎛⎛⎛ 
1 3 2 R1+R2 ∗R2 1 3 2 1 • • • • 

−R1+R4 ∗R4−1 −5 −1 −2 1 −1 1 • • •0 
3R1 +R5 ∗R5⊆0 −6 −3 −6 −3 0 30 ⊂ L =24. 

⎤⎤⎤⎞ 

⎣⎣⎣⎡ 

⎤⎤⎤⎞ 

⎣⎣⎣⎡ 

⎤⎤⎤⎞ 

⎣⎣⎣⎡1 −1 • • •1 5 7 0 2 5 
−3 9 3 0 18 9 −3 −9 • • • ⎛⎛⎛ 
1 3 2 −3R2+R3 ∗R3 1 3 2 1 • • • • ⎣⎣⎣⎡ 

R2+R4 ∗R4 
9R2 +R5 ∗R5⊆ 

⎤⎤⎤⎞ 

⎤⎤⎤⎞ 

⎣⎣⎣⎡ 
⊂ L = 

⎤⎤⎤⎞ 

−1 1 • • • 
0 3 1 
1 −1 −1 • • 

⎣⎣⎣⎡ 

−2 1 0 −20 1 
−6 −3 −60 0 0 

0 2 5 0 0 6 
0 18 9 0 0 18 −3 −9 −3 • • ⎛⎛⎛ 
1 3 2 1 3 2 1 • • • • ⎣⎣⎣⎡ 

R3+R4 ∗R4 
3R3 +R5 ∗R5⊆ 

⎤⎤⎤⎞ 

⎤⎤⎤⎞ 

⎣⎣⎣⎡ 

⎤⎤⎤⎞ 

⎣⎣⎣⎡ 

0 −2 0 −2 −1 1 • • •1 1 
−6 −60 0 0 0 ⊂ L = 0 3 1 

1 −1 −10 0 6 0 0 0 1 0 
−3 −9 −30 

Thus L = 

0� ⎤⎤
 

18 0 0 0 0 1⎛ ⎛ 
1 0 0 0 0 1 3 2 

−1 1 0 0 0 
0 3 1 0 0 
1 −1 −1 1 0 

⎣⎣
 
and U = 

⎤⎤
 

⎣⎣
 

0 −2 1 
−60 0 . 

0 0 0 
3 9 3 0 1 0 0 0 [
−1 

0 1

]
=

[ ] [
2 0 
0 3

]
2 −2 
0 3

1 0
25. L = We divide the rows of U by the diagonal entries to obtain D =.−2 

and U =

[ 1 ]
1 

. 

� 

[ ] [ ]−21 0 0 
−2 1 0 
1 3 1

1 0 
−10 326. L= We divide the rows of U by the diagonal entries to obtain =. 
−20 0⎛[ ]

1 −2 01 0 0 
0 3 0 
0 0 −2

0 1 − 1 
3D = and U = . 

0 0 1 [ ] [ ]
−1 ]1 0 

1
1 2 

27. L= We divide the rows of U by the diagonal entries to obtain D= =. −2 −13 0[ [ ]
1 −1 21 0 

and U = 1 .
0 −2 0 1 2[ ] [ ] [

1 0 
0 1

]
−41 0 1 

28. L= We divide the rows of U by the diagonal entries to obtain D ==.−2 1 0 1[ ]
−41 

and U = .
0 1

� 

]
29. L=

[
=

[ ]−2 −11 0 0 
3 1 0 

−1 −1 1

1 
0 3 1 
0 0 1

We divide the rows of U by the diagonal entries to obtain . ⎛[ ] 1 − 11 2−2 0 0 
0 3 0 
0 0 1

2 
1D = and U = 0 1 . 
3 

0 0 1 

⎤⎞ ⎣⎡ ⎤⎞ ⎣⎡
− − −

⎞ ⎡

⎞ ⎡

[
[

]
] [ ]

]
−1 

0 

1 0 0 2 1 3 
−4 −3 −51 0 0 130. L= We divide the rows of U by the diagonal entries to obtain =. 
2 2 1 0 1 2

and U =

[−1 −2 −1 −30 0 1 
−3 −50 1 0 0 1D = . 

0 0 1 0 0 1 2



� � 

 

32. A−1 = (LU)−1 = U−1L−1 =

[ ]−1 [ ]−1
1 −2 0 1 0 0 
0 3 −1 −2 1 0 
0 0 −2 1 3 1 ⎛⎛ ⎣[ 1 0 0 

2 1 0 
−7 −3 1

]
= ⎤ 

2 1 14 5 1− −1 3 3 33 3 

= ⎤ 
⎣1 1 11 5 1− −0 .3 6 66 6 

1 37 10 0 222 2 � 

� � � 

1 −2 0 −1 −1 −1
1 0 0 0 

−2 1 0 0 
0 3 1 0 

⎤⎞ 
0 1 1 3 
0 0 1 −1 

⎤⎞ 
⎣⎡ 

⎣⎡33. A−1 = (LU)−1 = U−1L−1 = 

0 0 0 1 2 −1 0 1 ⎛⎛⎛ 
1 2 −2 −7 1 0 0 0 17 1 −2 −7 
0 1 −1 −4 
0 0 1 1 

⎤
 

⎣
 

2 1 0 0 
−6 −3 1 0 

⎣
= ⎤ 

−1 −4⎤
 

8 0 ⎣
= .−6 −2 1 1 

0 0 0 1 0 1 0 1 0 1 0 1 [
1 −4 
0 1 

]−1 [ ]−1 
1 0 

−2 1 =

[
1 4 
0 1 

] [ ]
=

[
9 4 
2 1

]
. 

1 0 
2 1

34. A−1 = (LU)−1 = U−1L−1 =

� � 

[ ]−1 [ ]−1−3 2 1 1 0 0 
0 −2 1 2 1 0 
0 0 2 0 4 1 

35. A−1 = (LU)−1 = U−1L−1 = ⎛⎛ ⎣[ 1 0 0 
−2 1 0 
8 −4 1

]
= ⎤ 

1 11 15− − 3 −3 33 33 ⎤
 

⎣11 13− −0 3= .42 42 
1 1−20 0 42 2 � 

� � 
� 

⎛ −1 0 −1 2 −1 � ⎛−1
1 0 0 0 

−1⎤⎞ 
0 3 1 0 
0 0 2 −1 

⎤⎞ 
⎣⎡ 

1 0 0 ⎣⎡36. A−1 = (LU)−1 = U−1L−1 = −3 1 02 
0 0 0 1 1 3 −2 1 ⎛⎛31 9 35⎛−1 0 − − 322 2 221 0 0 0⎤⎤⎤

 

⎣⎣⎣
 

= 
⎤⎤⎤

 

⎣⎣⎣
 

1 1−6 
1 

1 
6
1 

1 2 1 1− − − −0 ⎤⎞ 
1 1 0 0 
1 3 1 0 

⎣⎡3 2 3 2 6= 
1 13−0 0 322 2 22−2 3 2 1 

0 0 0 1 −2 3 2 1 � � � ⎛⎛⎛ 
1 0 0 1 0 0 0 1 0 0 ⎤

 
0 1 0 
0 0 1 

⎣
= LU = ⎤ 

0 1 0 0 
0 0 1 0 

⎤
 

⎣
 

0 1 0 
0 0 1 

⎣
37. A = 

0 0 0 0 0 0 1 0 0 0 
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31. A−1 = (LU)−1 = U−1L−1 =

[ ]−1 [ ]−1 
2 −2 1 0 
0 3 −2 1 =

[ 
1 0 
2 1

]
=

1 
3
1 
3

7 
6
2 
3

. 
11 
32 
10 3

[ ] ][

⎡ ⎞⎞ ⎡
− −⎛ � ⎛

⎞⎡ ⎡ ⎞⎞ ⎡
 

⎡ ⎞⎞ ⎡

⎞ ⎡ ⎞ ⎡

⎞ ⎡ ⎞ ⎞⎡ ⎡
[ ] [ ][ 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0

1 0 0 
0 1 0 
0 0 1 

38. A = = LU =

 [
1 0 
0 1

]
= LU =

[ ] [ ]
1 0 
0 1 

1 0 
0 1

39. A =

]

 [
1 0 
0 1 
0 0

]
= LU =

[
40. A =

][ ]
1 0 0 
0 1 0 
0 0 1 

1 0 
0 1 
0 0
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� ⎛ � ⎛� ⎛ 
1 0 0 0 1 0 0 0 1 0 0 0
 ⎤ 0 1 0 0 ⎣ ⎤ 0 1 0 0 ⎣⎤ 0 1 0 0 ⎣


41.	 A =  = LU =   0 0 1 0 0 0 1 0 0 0 1 0
 
0 0 0 1 0 0 0 1 0 0 0 1
 

⎞ ⎡ ⎞ ⎡⎞ ⎡
[ ] [ ][ ][ ]

1 0 0 0 1 0 0 1 0 0 1 0 0 0 
42.	 A = 0 1 0 0 = LDU = 0 1 0 0 1 0 0 1 0 0 

0 0 1 0 0 0 1 0 0 1 0 0 1 0 

43. (a) False. If A is m  n, then L is m  m and U is m  n. (See answer to 19.) × × ×
(b) True. If A is n × m, and A = LU is an LU factorization, then L is n × n. 

44.	 (a) True. If row exchanges are required then the matrix L will require row exchanges, and L will not 
be a lower triangular matrix. If row exchanges are not required, this follows by construction as 
shown. 

   
2 0 1 0 2 0 

(b) False. For example, consider the LU factorization 

[ ]
=	 

[ ] [ ]
.

0 2 0 1 0 2 

45.	 (a) False. We would also need that the diagonal entries of A all be non-zero, so that row exchanges 
are not necessary. 

(b) False. If A is 4 × 3, then L is 4 × 4. 

0 1 
46. (a) False. For example, A = 

[ ]
does not have an LU factorization, but A−1 = A exists, so A 

1 0 
is nonsingular. 

(b) True.	 If the matrix E results from the interchange of 2 rows, then EE = I, and E is invertible. 
If E results from multiplying row i by c = 0, then the matrix E ′ obtained from multiplying row i
by c−1 will satisfy E ′ E = I, and thus E is invertible. Finally, if E results from the row operation 
cRi + Rj ∼ Rj , then E ′ obtained from the row operation −cRi + Rj ∼ R  

j will satisfy E ′E = I, 
and E is invertible. 

̸

47. (a) False. For example A = 

[ 
0 0 

] [  
1 0

] [
0 0

=	 

]
is one LU factorization, 

0 0 0 1 0 0
   
0 0 1 0 0 0 

=	 is another. 
0 0 1 1 0 0 

[ ] [ ] [ ]
   
1 0 1 0 1 0 

(b) False. For example, consider the LU factorization 

[ ]
=	 

[ ] [ ]
.

1 1 1 1 0 1 

   
1 0 1 0 1 0 

48. (a) False. For example, consider the LU factorization 

[ ]
=	 

[ ] [ ]
.

1 1 1 1 0 1 
   
0 0 1 0 0 0 

(b) False. For example, consider the LU factorization 

[ ]
=	 

[ ] [ ]
.

0 0 0 1 0 0 

49. Let	 D = [aij ] be an n × n diagonal matrix and U = [uij ] an m × n upper triangular matrix. Let 
B = [bij ] = DU . Then 

bij = di1u1j + di2u2j + · · · + dinunj 

= diiuij 

since dkj = 0 if k = j. Thus the jth column of row i of the product DU is given by the product of the 
diagonal dii in row i with the entry uij in row i and column j of U . Thus the entire ith row of DU is 
given by multiplication with the diagonal entry dii in the ith row of D. 

̸  



50. Write U as a block matrix

[
U11 

U21

]
where U11 is a (n − k) × m matrix and U21 is a k × m zero 

[ L11 

=

] L12 ] and L2 = [ L11 M12 is n × (n − k). 
U11

[matrix. Let L1 

U11

[ ], where L11 Then L1U]
L11U11 + 

= = 

[ L11 L12 [ L11 M12] L11U11 + L12U21 = L11U11 and L2U ]= = 
U21 U21

L12M21 = L11U11. Thus L1U = L2U . 

52.	 (a) Proof by induction on the size n of the n × n matrices L1 and L2. If n = 1, then L2 = L1 = [1], so 
L2L1 = [1], a unit lower triangular matrix. Now suppose L2 and L1 are both n n unit lower trian­
gular matrices, and that the product[ of (n−1)×](n−1) unit lo[wer triangular matrices

×
 is a unit lower 

1 0 1 0 
triangular matrix. Partition L2 = and L1 =

]
where both M and N are 

v M w [N
1(1) + 0w 1 (0) + 0N 

(n − 1) × (n − 1) unit lower triangular matrices. Then L2L1 = = [ ] v(1) + Mw v0 + MN

]
1 0 

, which is a unit lower triangular matrix, since by the induction hypothesis 
v + Mw MN

the product MN is a unit lower triangular matrix. 

1 1 1 0 1 1 
51. True. For example, consider the LU factorization = . More generally, 

0 1 0 1 0 1
if A is an n × n upper triangular matrix with ones on the diagonal, then A = LU
 = IA is an LU 
factorization of A with L = I.
 

(b) Proof by induction on k, the number of factors. If k = 1, then the product is simply L1 which is a 
unit lower triangular matrix. Suppose we have k factors, and that the product of k  1 unit lower 
triangular matrices is a unit lower triangular matrix. Then L L  L = L

−
k k (L  L ) −1 1 k k−1 1

is a unit lower triangular matrix since by the induction hypothesis L
· · ·
k 1 · · · L1 is a unit

·
 
·
lo
·
wer −

triangular matrix, and by part (a) the product of two unit lower triangular matrices is a unit 
lower triangular matrix. 

(c) Since Li is lower triangular, there is a sequence of row operations of the form cRj +Rk ∼ Rk, with 
j < k, that transforms Li into the identity matrix In. Each of these row operations corresponds to 
multiplication by an elementary matrix which is unit lower triangular. Hence there is a sequence of 
elementary matrices such that EkE

1
k 1 · · ·  E1Li = In, and thus L−

i = EkEk 1 · · · E1. Since each − −
Ej is a unit lower triangular matrix, by  part (b) we conclude that L−1

i is a unit lower triangular 
matrix. 

(d) Since (Lk · · · 2L1)
−1 

L = 1
−  L−1L 1 · · · L−1
2 k , the result follows from parts (b) and (c), since we have 

the product of unit lower triangular matrices. 

53. Using a computer algebra system, it is determined that A does not have a LU factorization. Also note 
that A can not be reduced to the a lower triangular matrix without interchanging rows. 

54. Using a computer algebra system, we determine

� ⎛
1 0 0 0 0 0 0 
3 1 0 0 0 0 0 
0 1 0 0 0 0− 2 

5
 
5
0 0 1 0 0 012 

0 0 0 24 
19 1 0 0 

0 0 0 0 − 19 
5 1 0 

0 0 0 0 0 15 
77 1 

⎤⎤⎤⎤⎤⎤⎤⎤⎤⎞ 

⎣⎣⎣⎣⎣⎣⎣⎣⎣⎡
 L = 
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]] [ [][

 

, and U = 



� ⎛
1 2 0 0 0 0 0 
0 −5 1 0 0 0 0 

120 0 
⎤⎤⎤⎤⎤⎤⎤⎤⎤⎞ 

⎣⎣⎣⎣⎣⎣⎣⎣⎣⎡ 

. 

1 0 0 0 
19 

5

0 0 0 1 0 012 

− 50 0 0 0 3 019 
770 0 0 0 0 1 

139 
5

0 0 0 0 0 0 77 

55. Using a computer algebra system, we determine that 

� ⎛ 
1 0 0 0 
1⎤⎤⎤

 

⎣⎣⎣1 0 02
L = ,

1 0 1 0 
23 1− 172 5� ⎛ ⎤⎞ 

10 2 0 −4 2 
0 0 −14 7 21 
0 0 0 −5 0 
0 0 0 0 −16 

⎣⎡U = . 

56. Using a computer algebra system we determine that

� � ⎛ 
⎛1 0 0 0 

−15 −3 21 
0 5 15 
0 0 16 
0 0 0 

2 1 0 0⎤⎤⎤⎞ 

⎣⎣⎣⎡ 
and U = ⎤⎞ 

3

 L = 1 2 .− − 1 03 5

31 7− − 153 4

⎣⎡
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⎞ ⎡

3.5 Practice Problems 

1. (a) Stochastic, because each entry is nonnegative and all column sums are one. 

(b) Not stochastic, because the third column does not sum to one. 

2.	 (a) From column 1, we would need a = 0.7, but then row 1 has sum 1.4. Therefore, A cannot be a 
doubly stochastic matrix. 

(b) Setting column and row sums equal to one, we first obtain a = 0.4 (from row 1), b = 0.3 (from 
column 1), d = [0.4 (from column] 2), and we obtain c = 0.3 from row 3. We check that the 

0.4 0.2 0.4 
resulting matrix 0.3 0.4 0.3 is doubly stochastic. 

0.3 0.4 0.3

3. x1 = Ax0 =

[
0.4 0.7 
0.6 0.3 

] [ 
0.5 
0.5

]
=

[
0.55 
0.45

]
; x2 = Ax1 =

[
0.4 0.7 
0.6 0.3 

] [ 
0.55 
0.45

]
=

[
0.535 
0.465

]
. 

4. (a) Solve (A − I) x = 0 by row-reducing the augmented matrix. [ ]
R1 +R2 ∗R2⊆

[ ]
−0.75 0.5 0 −0.75 0.5 0 
0.75 −0.5 0 0 0 0

2
x

[
/3

and we obtain  = s

]
. Setting the column sum of x equal to one, we need s = 3 , and so [ ] [ ]1 5

3 2/5
x =  2/3  

= .5 1 3/5
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(b) Solve (A  I) x = 0 by row-reducing the augmented matrix. −[ ] (1/2)R1+R2 ∗R2 [	 ]−0.8 0.5	 0.5 0 −0.8 0.5 0.5 0 
(1/2)R1+R3 ∗R3

0.4 −0.5	 0 0 ⊆ 0 −0.25 0.25 0 
0.4 0 −0.5 0	 0 0.25 −0.25 0[	 ]−0.8 0.5	 0.5 0 

R2+R3 ∗R3⊆	 0 −0.25 0.25 0 
0 0 0 0 

obtain

[
5/4 

and we  x = s 1 

]
. Setting the column sum of x equal to one, we need s = 4 , and so 13 � 1 

5

5/4 13
 
4
  4 

⎛
 

x = 1
13	 =  13  .
 

[ ] ⎤ ⎣⎞ ⎡
1 4
 

13 

5.	 (a) False. Entries may be 0. 

(b) True, by Theorem 3.29(c). 

(c) True, by Theorem 3.31(a). 
  T 

1 1	 1 1 1 1 2 0 
(d) False. For example, if A = 

[ ]
, then AAT =	 

[ ] [ ]
= 

0

[ ]
is not doubly 

0 0 0 0 0 0 0 
stochastic. 

3.5 Markov Chains 

1. Stochastic, since each entry is nonnegative and all column sums are one. 

2. Not stochastic, since there is a negative entry. 

3. Stochastic, since each entry is nonnegative and all column sums are one. 

4. Not stochastic, since the first and third columns sums are not one. 

5. Setting column sums equal to one, we obtain a = 0.35 and b = 0.55. 

6. Setting column sums equal to one, we obtain a = 0.45, b = 0.05, and c = 0.4. 

7. Setting column sums equal to one, we obtain a 8 1 = , b = , and c = 1
13 7 10 .

8. Setting column sums equal to one, we obtain a = 0.45, b = 0.15, c = 0.1, and d = 0.55. 

9. Setting column and row sums equal to one, we obtain a = 0.7 and b = 0.7. 

10. Setting column and row sums equal to one, we obtain a = 0.6 and b = 0.4. 

11. Setting column and row sums equal to one, we first obtain a = 0.5 (from row 1 or column 2), c = 0.5 
(from column 3), and d = 0.4 (from row 3). Then we obtain b = 0.4 from either row 2 or column 1. 

12. From column 2, we would need	 c = 0.4, but then row 2 has sum 0.8. Hence A cannot be a doubly 
  stochastic matrix.[	 ] [ ] [ ] [ ] [ ] [ ]

0.2 0.6 0.2 0.52	 0.2 0.6 0.52 0.392 
13. x1 = Ax0 = = , x2 = Ax1 =	 = ,

0.8 0.4 0.8 0.48	 0.8 0.4 0.48 0.608[	 ] [ ] [ ]
0.2 0.6 0.392 0.4432 

x3 = Ax2 =	 = .
0.8 0.4 0.608 0.5568 
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[ ] [ ] [ ]	 [ ] [ ] [ ]
0.5 0.3 0.3 0.36	 0.5 0.3 0.36 0.372

14. x1 = Ax0	 = = , x2 = Ax1 = = ,
0.5 0.7 0.7 0.64	 0.5 0.7 0.64 0.628[ ] [ ] [ ]

0.5 0.3 0.372 0.3744 
x3 = Ax2 =	 = .

0.5 0.7 0.628 0.6256 [ ][ ] [ ] [ ][ ] [ ]
1 2 1 11 1 2 11 169 
3 5 2 30 3 5 30 45015. x1 = Ax0 = = , x2 = Ax1 =	 = , x3 = Ax2 = 
2 3 1 19 2 3 19 281 
3 5 2 30 3 5 30 450[ ][ ] [ ]

1 2 169 2531
 
3 5 450 6750
 = .
2 3 281 4219
 
3 5 450 6750
 [ ][ ] [ ] [ ][ ] [ ]

1 3 1 31 1 3 31 853 
4 7 3 84 4 7 84 235216. x1 = Ax0 = = , x2 = Ax1 =	 = ,
3 4 2 53 3 4 53 1499 
4 7 3 84 4 7 84 2352 [ ][ ] [ ]
1 3 853 23959
 
4 7 2352 65856
 x3 = Ax2 =	 = .
3 4 1499 41897
 
4 7 2352 65856
 

17. Solve (A − I) x = 0 by row-reducing the augmented matrix. [	 ] [ ]
−0.2 0.5 0 R1+R2 ∗R2 −0.2 0.5 0⊆
0.2 −0.5 0	 0 0 0 

 

[
2.5 

and we obtain x = s 

]
. Setting the column sum of x equal to one, we need s = 1 , and so

1 3.5
 

1 2.5 0.71429
x = = .3.5 1 0.28571 

 [ ] [ ]
18. Solve (A  I) x = 0 by row-reducing the augmented matrix. − [	 ] [ ]

−0.7 0.6 0 R1+R2 ∗R2 −0.7 0.6 0⊆
0.7 −0.6 0	 0 0 0 

 
0.6 0.85714

and we obtain x = s 

[
0.7

]
= s 

[ ]
. Setting the column sum of x equal to one, we need 

1 1
  
0.85714 0.46154 

s = 1 ,  
 and so x = 1 = .1.85714 1.85714 1 0.53846 

[ ] [ ]
19. Solve (A − I) x = 0 by row-reducing the augmented matrix. 

[ ] (1/3)R1+R2 ∗R2 [	 ]−0.6 0.5 0.3 0	 −0.6 0.5 0.3 0 
(2/3)R1+R3 ∗R3

0.2 −0.7 0.4 0 ⊆ 0 −0.53333 0.5 0 
0.4 0.2 −0.7 0	 0 0.53333 −0.5 0 [	 ]−0.6 0.5 0.3 0 

R2+R3 ∗R3⊆	 0 −0.53333 0.5 0 
0 0 0 0 

x

[
1.2813 

and we obtain  = s 0.93751 

]
. Setting the column sum of x equal to one, we need s = 1

  , and 3.218 8
1

  
1.2813 0.39806
 

so x = 1 

[
0.93751 

]
= 

[
0.29126 

]
.
3.218 8 

1 0.31068 
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20. Solve (A  I) x = 0 by row-reducing the augmented matrix. − [ ] (2/7)R1+R2 ∗R2 [	 ]−0.7 0 0 0	 −0.7 0 0 0 
(5/7)R1+R3 ∗R3

0.2 0 0 0 ⊆ 0 0 0 0 
0.5 0 0 0	 0 0 0 0 

	[ ] [ ]
0	 0 

and we obtain x = s1	 0 +s2 1 . Setting the column sum of x equal to one, we need s1 +s2 = 1, 
1 0

0 
and so we can write x = 1 − s for any 0 � s � 1.
 

[ ]
s
 

21.	 A is not regular since every power Ak of an upper triangular matrix will be upper triangular, and 
hence will have a zero entry. 

22.	 A is not regular since every power Ak of a lower triangular matrix will be lower triangular, and hence 
will have a zero entry. 

23.	 A is not regular since every power Ak of a block lower triangular matrix will be block lower triangular, 
and hence will have a zero entry. 

2 	
0 0.2 0.5 0.23 0.4 0.1 

24. A2 =

[
0.9 0	 0.5 

]
=

[
0.05 0.58 0.45 

]
; thus A is regular since A is stochastic with A2 

0.1 0.8 0 0.72 0.02 0.45
 
containing all positive entries.
 �	 ⎛ 

0.1 0.1 0.1 0.1
 
 0.2 0.2 0.2 0.2 


25.	 A = .
0.3 0.3 0.3 0.3 
0.4 0.4 0.4 0.4 

⎤ ⎣⎞ ⎡
�	 ⎛ 

0.25 0.25 0.25 0.25
 ⎤ 0.25 0.25 0.25 0.25 ⎣

26.	 A = .

0.25 0.25 0.25 0.25 
0.25 0.25 0.25 0.25 

⎞ ⎡
[ ]

1 1227.	 A = .
1 02 � ⎛ 
1 1 1
 
2 2 2
 ⎤ ⎣1	 1 128.	 A = .4 4 4
 
1 1 1
 
4 4 4
 

⎞ ⎡
[	 

0 0
] [   

1  0	 1 0 0 0 0 
29.	 A = 0 0 1 , x0 = 1 

]
. Then x1 =

[
0 0 1 

][
1

]
=

[
0

]
, [ 0 1 0 ][ ] 0[ 0 1 0 0 1

	  
1 0 0 0 0 

x2 = 0 0 1 0 = 1

]
= x0, and we obtain a Markov chain which cycles between x1 and 

0 1 0 1 0 
x0, and therefore does not converge to a steady-state vector. 

	  
0 1 0	 1/3 

30.	 A = 0 0 1 has only x0 = 1/3 that generates a Markov chain with steady-state vector. For 
1 0 0 [ ] 1/3

	 
a1	 

[
a2 
] [

a3 
] [

a1 
all other vectors x0 =	 a2 we obtain the cycle x1 = a3 , x2 = a1 , x3 = a2 

]
= x0. 

a3 a1 a2 a3 

[ ] [ ]
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1 1	 1 0

31. (a) False. For example, A = 

[ ]
is stochastic, but AT = 

[ ]
is not. 

0 0	 1 0 [ ]	 
1/3 1/3	 1/3 2/3 

(b) False. For example, let A = , then A is stochastic but AT = 
2/3 2/3	

[
1

]
is not. 

/3 2/3 [    
1 1	 1 1 1/2 1 1

32. (a) False. If A = then Ax =	 = = .
0 0	 0 0 1/2 0 1 

] [ ] [ ] [ ] [ ]
̸

(b) True. If Ax = x, then x = A−1x, and so x is a steady-state vector of A−1 . 

33.

[ ] 	 
1 0 1 1	 1 0

 (a) False. If A = and B = 

[ ]
then A and B are stochastic, but ABT = 

[ ]
is

0 1 0 0 1 0 
not.   2 1 1 

0 1/2 0 1/2 
(b) False. For example, A = 

[ ]
is regular, because A2 =

1

[ ]
= 

[
2 4

1 1  

]
.

1/2	 1/2 3
2	 4 

34.	 (a) True. Since row i of A is column i of AT = A, each row sum of A must equal one, and hence A 
is doubly stochastic. [ ] [ ] [ ]

0 1	 1 0 1 
(b) False. For example, let A = . Then A2 = , so is a steady-state vector 

1 0	 0 1 0
	   

1	 0 1 1 0 1 1 
for B = A2 . However, A 

[ ]
=	

[ ] [ ]
= 

[ ]
=	 

[ ]
, so 

[ ]
is not a steady-state 

0 1 0 0 1 0 0
 
vector for A.
 

̸

[ ] [ ]	 [ ] [ ] [ ]
0 1 1	 1 0 1 

35. (a) False. If A = and x0 = , then the Markov chain cycles: , , , . . . , 
1 0 0 0 1 0 

and hence does not converge. 

(b) True. If A − I3 has nonnegative entries, then the diagonal of A must consist of ones. That implies 
that A = I3, and so A  I3 is the zero matrix, which is not stochastic. −

a 1  b 
36. (a) True. The general 2 × 2 stochastic matrix has the form A =	 

[
−

]
, where 0 � a � 1

1 − a	 b
1−b 

and 0 � b � 1. Then if x = 

[
2−a−b

]
, we can check that Ax = x and that x is a probability 

1−a 
2−a−b 

vector. Hence every 2  2 stochastic matrix has a steady-state vector. ×
(b) 1	True. 	(A + B) will consist of nonnegative entries, and the columns of 1 (A + B) will add to 2 2 

1 
 (1 + 1) = 1.2

37. Let	 A be a stochastic matrix and x an initial state vector. Let y = [ 1 1  1 ]. Since each 
column of A has sum one, we have yA = y. Thus y(Ax) = (yA) x = yx = 1, 

·
since
· ·

 the sum of the 
entries of x is one. This shows that the sum of the entries of Ax is one, and we may conclude that 
each state vector is a probability vector. 

38. Let	 A and B be stochastic matrices. Since the entries of A and B are non-negative, the entries of 
AB must be non-negative. Let y = [ 1 1 · · · 1 ]. Since the column sums in A and B are all one, 
we have y (AB) = (yA) B = yB = y, and therefore each column sum in AB is one. Hence AB is a 
stochastic matrix. 

39. We show Ak is stochastic using induction on the power k. If k = 1, then A1 = A is stochastic. Assume 
Ak−1	 is stochastic. Then Ak = A 

(
Ak−1

)
is the product of stochastic matrices, and hence stochastic. 

Thus Ak is stochastic for every integer k ◦ 1. 

40. By Theorem 3.29, A2 is a stochastic matrix. Since A is regular, Ak has strictly positive entries for 
some k ◦ 1. Hence (Ak)(Ak) also has strictly positive entries. Therefore A2k = (A2)k has strictly 
positive entries, so A2 is regular. 
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41. Since all column and row sums are one, we have	 a + b = a + c = 1, and thus b = c = 1  a. Also, 
b + d = 1, so d = 1  b = 1  (1  a) = a. 

−
− − −

  	
0 1 x 	 x

	  x
42. Ax = 

[ ] [
1

]
= 

[
2

]
, and thus for any initial state vector we obtain the cycle 

1 0 x2 x1	 
   

[
1

]
,[ ] [ ] [ ] x2 

x2 x1 x2 , , ,. . . This can only converge if x1 = x2 and requiring x1 + x2 = 1 we obtain 
x1[ 

0
]x2 x1

.5 
x = as the only initial state vector which leads to a steady-state solution. 

0.5 (	
43. Consider Ak+1 = Ak A, with Ak = [bij ]. The entry in the ith row and jth column of Ak+1 will have 

the form 

)
bi1a1j + bi2a2j + · · · + binanj 

None of these terms is negative, and at least one of these must be positive, since every column of A 
has at least one positive entry, and every entry in Ak is positive. Thus we conclude that every entry 
of Ak+1 is positive. By induction we establish that Ak+l is regular for all l ◦ 1, i.e. Ak+1 , Ak+2, . . . 
all have strictly positive entries. 

44. The product of lower	 triangular matrices is lower triangular, and the product of upper triangular 
matrices is upper triangular. Hence for all k, Ak will be lower (upper) triangular if A is lower (upper) 
triangular. If A is n × n with n ◦ 2, this will mean that every Ak will contain at least one entry which 
is zero, and thus A will not be regular. 

45. (a) Every entry of A is non-negative, and each column sum is one. [ ] [ ]2 
� 0 � 0 �2 0

(b) We have A = , A2 = = , A3 
1 − � 1 1 − � 1 1 − �2 1[ ] [ ] [ ]	 [ ]

� 0 �2 0 �3 0	 �k 0 
=	 = , and in general Ak = . Since we 

1 − � 1 1 − �2 1 1 − �3 1 1 − �k 1 
have a zero entry for every Ak , A is not regular. 

 

[ ]

[ ] [ ]
�k 0 0 0 

(c)	 lim Ak = lim = , since for 0 < � < 1, lim �k = 0. 
k∗⇒ k∗⇒ 1 − �k 1 1 1	 k∗⇒ 

	   [ ] [ ] [ ] [ ] [ ] [ ] [ ]
0 � 0 0 0 x1 � 0 x1(d)	 A = = . And A = 
1 1 − � 1 1 1 x2 1 − � 1 x2[ ] [ ]	 [ ]

�x1 x1	 0 
=	 unless x1 = 0, since � = 0. Thus is the unique steady-state =	 

x2 − x1 (� − 1) x2 1
 
vector of A.
 

  

̸ ̸

[ ]
0.85 0.40

46. (a) A = 
0.15 0.60 [ ] [ ]5 [ ] [ ]

760 0.85 0.40 760 727.88
(b)	 A5 = = , so 728 employees will be at work five days 

240 0.15 0.60 240 272.12
 
from now.
 [ ] [ ]8000
 

11
 727.27 
(c)	 x = ≤

3000 272.73 
11 [ ]
0.9 0.15

47. (a) A = 
0.1 0.85 

 
6

[	 ] [ ]6 
 1 0.9 0.15

[
1 

(b)

]
0.67119 

	 A = = 

[ ]
, so the probability that the sixth person in the 

0 0.1 0.85 0 0.32881
 
chain hears the wrong news is 0.32881.
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48. 
0.6 0.15 

(a) A = 
0.4 0.85 

[ ]
[ ] [ ]2 [ ] [ ]

1 0.6 0.15 1 0.42 
(b) A2 = = 

0 0.4 0.85 0 0.58 , so the probability of rain Thursday is 0.42.[ ] [ ]3 [ ] [ ]
0 0.6 0.15 0 0.24788 

(c) A3 = = , so the probability of no rain on Monday is 
1 0.4 0.85 1 0.75213
 

0.75213.
 [ ] [ ] [ ] [ ]
0.3 0.6 0.15 0.3 0.285 

(d) A = = , so the probability of rain tomorrow is 0.285.
0.7 0.4 0.85 0.7 0.715 [ ]

0.27273 
(e) x = 

0.72727 

0.6
(c) x = 

0.4 

[ ]

49. 

[ ]
0.35 0.8

(a) A = 
0.65 0.2 [ ] [ ]2 [ ] [ ]

2 1 0.35 0.8 1 0.6425
(b) i. A = = , so the probability that she will go to Mc­

0 0.65 0.2 0 0.3575
 
Donald’s two Sundays from now is 0.3575.
 [ ] [ ]3 [ ] [ ]

3 1 0.35 0.8 1 0.51088 
ii. A = = , so the probability that she will go to Mc­

0 0.65 0.2 0 0.48913
 
Donald’s two Sundays from now is 0.48913.
 [ ] [ ]2 [ ] [ ]

2 0.4 0.35 0.8 0.4 0.521 
(c) A = = , so the probability that his third fast food 

0.6 0.65 0.2 0.6 0.479
 
experience will be at Krusty’s will be 0.521.
 

[ ]
0.75 0.4

50. (a) The transition matrix is A = .
0.25 0.6 

The probability [ ] [ that a Wahoo is determined two pastries following ] a  is  [ ] [ ] Zot determined by  2  
0 0.75 0.4 0 0.54 

A2 = = ; thus the probability is 0.54.
1 0.25 0.6 1 0.46 [ ] [ ]3 [ ] [ ]

3 0 0.75 0.4 0 0.589 
(b) A = = , so the probability a Zot emerges three pastries 

1 0.25 0.6 1 0.411
 
later is 0.411.
 [ ]

0.61538 
(c) The steady-state vector is x = , hence the long-term probability that a randomly 

0.38462
 
emerging pastry will be a Wahoo is 0.61538.
 

51. 

[ ]
0.4 0.1 0.2 

(a) The transition matrix is A = 0.3 0.7 0.7 . 
0.3 0.2 0.1
 

The probability that a book is at C after two more circulations is determined by
 [ ] [ ]2 [ ] [ ]
1 0.4 0.1 0.2 1 0.25
 

A2 0 = 0.3 0.7 0.7 0 = 0.54 ; thus the probability is 0.21.
 
0 0.3 0.2 0.1 0 0.21 

[ ]
0.55172 

(d) x = 
0.44828 



(b) A3

[
0 
1 
0

]
=

[
0.4 0.1 0.2 
0.3 0.7 0.7 
0.3 0.2 0.1 

]3 [ 
0 
1 
0

]
=

[
0.164 
0.64 
0.196

]
, so the probability that the book is at B after 

three more circulations is 0.64. 

(c) x =

[
0.17105 
0.63158 
0.19737

] 

(a) We compute Ak

1 0 1/3
[52. x0 for a sufficiently large value of k;]10 [ [] ] [ ]

0.625000.5 0.625 
0.375 
0

A10 0.375000 1 1/3 0.25 ≤x0 = =
4.233 8 × 10−60 0 1/3 0.25

(b) We compute Ak

1 0 1/3
[ x0 for a sufficiently large value of k;]10 [ [] ] [ ]

0.300000.2 0.3 
0.7 
0

A10 0.700000 1 1/3 0.6 ≤x0 = =
3.387  10−60 0 1/3 0.2 ×� � 

� � 

9 
0.2 0.3 0.1 0.4 0.25 0.266666636 ⎤⎞ 
0.3 0.5 0.6 0.2 
0.1 0.1 0.2 0.2 

⎤⎞ 
⎣⎡ 

0.25 
0.25 

⎣⎡ = ⎤⎞ 
0.399999867 
0.133333363 

⎣⎡53. A9x0 = 

0.4 0.1 0.1 0.2 0.25 0.200000134 ⎛10 � ⎛⎛ 
0.2 0.3 0.1 0.4 0.25 0.266666677 ⎤⎞ 
0.3 0.5 0.6 0.2 
0.1 0.1 0.2 0.2 

⎤⎞ 
⎣⎡ 

0.25 
0.25 

⎣⎡ = ⎤⎞ 
0.399999968 
0.133333349 

⎣⎡and A10 agree to six decimal places, and x0 = 

0.4 0.1 0.1 0.2 0.25 0.200000004

� ⎛ ⎛⎛ 

� 4 ⎛
15 ⎤ 2 ⎣⎤  ⎣k = 9 is the smallest integer for which this is true. The steady-state vector is x = ⎤ 5
2 ⎣. ⎞  
15 
⎡

1 
5 

  24  � �

  

⎛ � ⎛⎛
0 1 0.2 0.5 0.1 0.317002777471 ⎤⎞ 
0.2 0 0.3 0 
0.5 0 0.4 0.5 

⎤⎞ 
⎣⎡ 

0.2 
0.3 

⎣⎡ = ⎤⎞ 
0.175792530929 
0.374639796701 

⎣⎡54. A24x0 = 

0.3 0 0.1 0 0.4 0.132564894900 
 � �⎛25 � ⎛⎛

0 1 0.2 0.5 0.1 0.317002937719 

 
0.2 0 0.3 0 
0.5 0 0.4 0.5   

0.2 
0.3 =  

0.175792494504 
0.374639754866 and A25 agree to six decimal places, and x0 = 

� 

⎤⎞ ⎤⎞⎣⎡ ⎣⎡ ⎤⎞ ⎣⎡
0.3 0 0.1 0 0.4 0.132564812911 ⎛110 

347 
61 
347 
130 
347 
46 
347 

⎤⎤
 

⎣⎣
 

k = 24 is the smallest integer for which this is true. The steady state vector is x = . ⎤ ⎣
� � � � � � ⎛⎛⎛⎛⎛⎛ 

0 0 0 0 0 0 

 
1 
0 =  

1 
0 so  

1 
0 has itself as its steady-state vector. Also A  

0 
1 =  

0 
1 so  

0 
1 . A has 

0 0 0 0 0 0 

⎤⎞ ⎣⎡ ⎤⎞ ⎣⎡ ⎤⎞ ⎣⎡ ⎤⎞ ⎣⎡ ⎤⎞ ⎣⎡ ⎤⎞ ⎣⎡55

itself as its steady-state vector. 

⎞ ⎡

� � � � � � ⎛⎛⎛⎛⎛⎛ 
1 1 1 0 0 0 

56. A⎤⎞ 
0 
0 
⎣⎡ = ⎤⎞ 

0 
0 
⎣⎡ so ⎤⎞ 

0 
0 
⎣⎡ has itself as its steady-state vector. Also A⎤⎞ 

0 
1 
⎣⎡ = ⎤⎞ 

0 
1 
⎣⎡ so ⎤⎞ 

0 
1 
⎣⎡ has 

0 0 0 0 0 0 
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itself as its steady-state vector. 

Chapter 3 Supplementary Exercises [ ] [ ]	 [ ]
−2 1 3	 −7 

1. T (u1) = Au1 =	 = ;
3 −3 −1 12

   
−2 1 2	 1 

T (u2) = Au2 =	 = 
3 3 5 9 

[ ] [ ] [ ]
− −[ ] [ ][ ]3 0	 3

1
2. T (u1) = Au1 = −2 −1 = 2 ;−4

4 3 −8[ ] [ ] [ ]
3 0 9

3 
T (u2) = Au2 = −2	 −1 = −8

2
4 3 18 

 [ ] [ ]1
5 1 0	 3

3. T (u1) = Au1 =	 −2 = ;−1 2 6 13
3 [ ] [ ] [ ]3

5 1 0	 15 
T (u2) = Au2 =	 0 = −1 2 6 −9

1 

[ ]

−[ ][	 ] [ ]−1 0 4 0 −4 
4.	 T (u1) = Au1 = 3 2 0 −2 = −4 ;
 

2 2 −5 −1 1
[ ][ ] [ ]−1 0 4 2 6
 
T (u2) = Au2 = 3 2 0 4 = 14
 

2 2 −5 2 2
 [ ] [ ] [ ]
3 7 −4

5. T (u1 − u2) = T (u1) − T (u2) = − = −4 1 −5 [ ] [ ] [ ]
3 7 −15

6. T (2u1 − 3u2) = 2T (u1) − 3T (u2) = 2 − 3 = −4 1 −11 

7. T (u1 + u2 − u3) = T (u1) + T (u2) − T (u3) = [ ] [ ] [ ] [ ]
2 −6 5 −9 

+ − = −1 3 0 2 

8. T (−u1 + 2u2 − u3) = −T (u1) + 2T (u2) − T (u3) = [ ] [ ] [ ] [ ]
2 −6 5 −19− + 2 − = −1 3 0 7 

9. We consider T (x) = Ax = b, and row-reduce the corresponding augmented matrix: [ ] [	 ]
−1 1 b1 3R1+R2 ∗R2 −1 1 b1⊆
3 −3 b2	 0 0 3b1 + b2 

If 3b1 + b2 	= 0, there does not exist a unique solution x to Ax = b.
 By The Unifying Theorem, T is
neither one-to-one nor onto.
 

̸

10. Since n = 2 < m = 3, by Theorem 3.6 T is not one-to-one. To determine if T is onto, we row-reduce 
the corresponding augmented matrix: [ ] [	 ]

1 3 −1 b1 −2R1 +R2 ∗R2 1 3 −1 b1⊆
2 6 2 b2	 0 0 4 b2 − 2b1 
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Since there exists a solution x to Ax = b for all b, the columns of A span Rn, and, by Theorem 3.7, 
T is onto. 

11. Since n = 3 > m = 2, by Theorem 3.7, T is not onto. To determine if T is one-to-one, we row-reduce 
the corresponding augmented matrix: 

[ ] (−3/2)R1+R2 ∗R22 1 0 
(−1/2)R1+R3 ∗R3

3 −2 0 ⊆ 
1 4 0 

R2+R3 ∗R3⊆ 

� ⎛ 
2 1 0 ⎤ ⎞ 0 − 7 

2 0 ⎣ ⎡ 
0 7 

2 0 � ⎛ 
2 1 0 ⎞ 0 − 7 

2 0 ⎡ 

0 0 0 

Since T (x) = Ax = 0 has only the trivial solution, by Theorem 3.5, T is one-to-one. 

12. We consider T (x) = Ax = b, and row-reduce the corresponding augmented matrix: 

[	 ]
3 0 −2 b1 (−1/3)R1+R2 ∗R2
1 −2 4 b2 ⊆
 
0 2 5 b3
 

R2+R3 ∗R3⊆ 

� ⎞ 
3 
0 

0 
−2 

−2 
14 
3 

b1 

b2 − 1 
3 b1 

⎛ ⎡ 

� ⎤ 
 

0 
3 
0 

0 

2 
0 

−2 

0 

5 
−2 
14 
3 
29 
3 

b3 
b1 

b2 − 1 
3 b1 

b2 − 1 
3 b1 + b3 

⎛ ⎣ 
 ⎞ ⎡

Since there exists a unique solution x to Ax = b, by The Unifying Theorem, T is both one-to-one and 
onto. 

 [ ] [ ] [ ]
3 −4 4 −2 −1 −2 

13. B − A = − = ; BC is not defined; 
0 6 1 5 −1 1 [ ] [	 ] [ ]4 2 1

3 −2 −5	 2 25 −11 
DE =	 0 3 −3 = 

1 3 4	 12 −9 8
2 −5 4 [ ] [ ] [ ] [ ] [ ]−2 3

1 0 4 −2 9 −2	 3 −2 −5
14. 5I2 + A = 5 + = ; CD = 1 2

0 1 1 5 1 10	 1 3 4
6 −4[	 ] [ ][ ] [ ]−3 13 22 4 2 1 −2 3 0 12
 

= 5 4 3 ; EC = 0 3 −3 1 2 = −15 18
 
14 24 46 2 5 4 6 4 15 20
 − − − − −

 

[ ][ ] [	 ]
4 2 1 4 2 1 18 9 2 

15.	 DA is not defined; E2 = 0 3 −3 0 3 −3 = −6 24 −21 ; 
2 −5 4 2 −5 4 16 −31 33   

4 −2 4 −2 4 −2 38 −118
A3 =	 = 

1 5 1 5 1 5 59 97 

[ ] [ ] [ ] [ ]
[ ]T 

[ ] [ ] [ ] [ ]−2 3 7 6
3 −2 −5	 4 −2 3 −4 

16. 3DT + C = 3 + 1 2 = −5 11 ; AB + DC =	 +
1 3 4	 1 5 0 6

6 −4 −9 8 [ ] [ ] [ ] [ ] [ ] [ ] [ ]−2 3
3 −2 −5	 −26 −3 3 −4 3 −4 4 −2 4 −2

1 2 = ; B2+A2 =	 + = 
1 3 4	 28 19 0 6 0 6 1 5 1

6 −4[ ]
23 −54
 
9 59
 

5 
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[	 ] [ ]
4 −3	 6 2

17. We first determine that T1 (x) = A1x = x and T2 (x) = A2x = x. We −1 5	 1 −5[	 ] [ ]
4 −3	 6 2 

have T1 (T2 (x)) = T1 (A2x) = A1 (A2x) = (A1A2) x. So A = A1A2 =	 = −1 5	 1 −5[	 ]
21 23 

.−1 −27 [ ]
4 −3 

18. We first determine that T1 (x) = A1x = x. We have T1 (T1 (x)) = T1 (A1x) = A1 (A1x) =−1 5
 
(A1A1) x. So A = A1A1 =
 [	 ] [ ] [ ]

4 −3 4 −3 19 −27
 
−1 5 −1 5

= −9 28 .
 

 

[ ]	 [ ]
1 −1 1	 −1 2 −1 

19. We first determine that T1 (x) = A1x = 2 3 −2 x and T2 (x) = A2x = 4 −1 0 x. 
3 0 1 3 1 −1 

We have T2 (T1 (x)) = T2 (A1x) = A2 (A1x) = (A2A1) x. So A = A2A1 = [ ][ ] [ ]−1 2 −1 1 −1 1 0 7 −6
 
4 −1 0 2 3 −2 = 2 −7 6 .
 
3 1 −1 3 0 1 2 0 0
 [ ]−1 2 −1 

20. We first determine that T2 (x) = A2x = 4 −1 0 x. We have T2 (T2 (x)) = T2 (A2x) = 
3 1 −1
 

A2 (A2x) = (A2A2) x. So A = A2A2 =
 [ ][ ] [ ]−1 2 −1 −1 2 −1 6 −5 2
 
4 −1 0 4 −1 0 = −8 9 −4 .
 
3 1 −1 3 1 −1 −2 4 −2
 [	 ]−5 0 0 

21.	 E = 0 1 0 
0 0 1 [	 ]

0 0 1 
22.	 E = 0 1 0 

1 0 0 [	 ]
1 0 0 

23.	 E = 0 1 0 
7 0 1 [	 ]
1 0 0 

24.	 E = 0 1 0 
0 −5 1 � ⎛ 
1 0 0 0
 ⎤ −3 1 0 0 ⎣


25. E = 
0 0 1 0
 
0 0 0 5
 

⎞ ⎡
� ⎛ 

0 0 1 0
 ⎤ 0 1 0 0 ⎣

26. E = 

1 0 0 0
 
0 2 0 1
 

⎞ ⎡
� ⎛ 

0 0 0 1
 ⎤ 0 1 0 0 ⎣

27. E = ⎞ ⎡0 0 1 3
 

−1 0 0 0
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�	 ⎛ 
1 0 0 0 ⎤ 5 1 0 0 ⎣

28. E = 	 −1 0 1 0 
−5 −1 0 1 

⎞ ⎡
[ ]−1 [ ] [ ] [ 

5 
]

−3 
2 3 1 5 −3 1 5 −3 7 7

29. =	 = = 21 5 2(5) − 3(1) −1 2 7 −1 2 − 1 
7 7 

[	 ]−1 [ ] [ ] [ ]
− 1 0−4 0 1 8 0 8 0 4

30. =	 = − 1 = 3 16 8 (−4) (8) − 0(6) −6 −4 32 −6 −4 
16 8 

31. 

[ 
1 
2 
0 

−1 
1 
2 

−3 
−4 
0 

1 
0 
0 

0 
1 
0 

0 
0 
1 

] 
−2R1+R2 ∗R2⊆ 

[ 

� 

1 
0 
0 

−1 
3 
2 

−3 
2 
0 

1 
−2 
0 

0 
1 
0 

0 
0 
1 

] 

⎛ 
1 −1 −3 1 0 0 

(−2/3)R2+R3 ∗R3⊆ ⎞ 0 3 2 −2 1 0 ⎡ 

(3/2)R3+R2 ∗R2 

(−9/4)R3+R1 ∗R1⊆ 

(1/3)R2+R1 ∗R1⊆ 

� ⎞ 

� ⎞ 

0 

1 
0 
0 

1 
0 

0 

−1 
3 
0 

0 
3 

− 4 
3 

4 
3 

0 −2 
0 0 

− 4 
3 

4 
3 

0 −2 
0 0 

− 2 
3 1 
3 
2 − 9 

4 
0 3 

2 
−2 

3 1 

⎛ ⎡ 

3 
2 −7 

4 
0 3 

2 

⎛ ⎡ 

so 

[ 
1 
2 
0 

−1 
1 
2 

−3 
−4 
0 

]−1 

= 

� ⎞ 
−2 
0 

−1 

(1/3)R2 ∗R2 

(−3/4)R3 ∗R3⊆ 

3 
2 − 7 

4 
0 1 

2 
1 
2 − 3 

4 

⎛ ⎡. 

� ⎞ 

0 

1 
0 
0 

0 

0 
1 
0 

− 4 
3 

4 
3 − 2 

3 

0 −2 3 
2 − 7 

4 
0 0 0 1 

2 
1 −1 1 

2 − 3 
4 

1 ⎛ ⎡ 

[	 ] [ ]
3 2 −2 1 0 0	 1 −2 4 0 0 1 

R1◦R332.	 −1 −2 3 0 1 0 ⊆ −1 −2 3 0 1 0 
1 −2 4 0 0 1 3 2 −2 1 0 0 [	 ]R1+R2 ∗R2 1 −2	 4 0 0 1 

−3R1+R3 ∗R3⊆	 0 −4 7 0 1 1 
0 8 −14 1 0 −3 [	 ]
1 −2 4	 0 0 1 

2R2+R3 ∗R3⊆	 0 −4 7 0 1 1 
0 0 0 1 2 1 −

and we conclude that the inverse does not exist, since the left part of the augmented matrix cannot be 
reduced to the identity matrix. 

33. A is not a square matrix, so the inverse of A does not exist. 

34. A is not a square matrix, so the inverse of A does not exist. 



� � 

� 

� 

� 

� 

� 

� 
� 

⎛⎛ 
1 0 −2 0 1 0 0 0 1 0 −2 0 1 0 0 0 

35.
⎤⎞ 

0 1 3 2 0 1 0 0 
0 −2 1 1 0 0 1 0 

⎣⎡ 
2R2+R3 ∗R3⊆ ⎤⎞ 

0 1 3 2 0 1 0 0 
0 0 7 5 0 2 1 0 

⎣⎡ 

0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 ⎛ ⎤⎞ 

1 0 −2 0 1 0 0 0 
0 1 3 2 0 1 0 0 
0 0 1 1 0 0 0 1 
0 0 7 5 0 2 1 0 

⎣⎡ 
R3◦R4⊆ 

⎛ 
1 0 −2 0 1 0 0 0 
0 1 3 2 0 1 0 0⎤⎞ 

⎣⎡ 
−7R3+R4 ∗R4⊆ 

0 0 1 1 0 0 0 1 
0 0 0 −2 0 2 1 −7 

1 0 −2 0 1 0 0 0 
⎛ 

(1/2)R4+R3 ∗R3 

R4+R2 ∗R2⊆ 
⎤⎤⎞ 

⎣⎣⎡ 

⎛ 

0 1 3 0 0 3 1 −7 
0 0 1 0 0 1 1 

2 −5 
2 

0 0 0 −2 0 2 1 −7 
1 0 0 0 1 2 1 −5 

−3R3+R2 ∗R2 
2R3+R1 ∗R1⊆ 

1− 10 1 0 0 0 0 2⎤⎤⎞ 
⎣⎣⎡ 

⎛ ⎣⎣⎣⎡ 

2 
1 −50 0 1 0 0 1 2 2 

0 0 0 −2 0 2 1 −7 
1 0 0 0 1 2 1 −5 

1− 10 1 0 0 0 0 2 2 
1 −50 0 1 0 0 1 2 2 

7− 10 0 0 1 0 −1 2 2 

⎤⎤⎤⎞ 
(−1/2)R4 ∗R4⊆ 

⎛ ⎛−1 1 2 1 −5 
1 0 −2 0 1− 10 0 2 2 

= 
⎤

 

⎣
 

 
0 1 3 2 
0 −2 1 1 1 − 5 

2 
so .0 1 2 

0 0 1 1  1 70 1 2 2 

⎤⎤⎞ ⎣⎣⎡⎤⎞ ⎣⎡
−−

� � 

� 

� 

⎛⎛ −1 1 2 1 1 0 0 0 −1 1 2 1 1 0 0 0−R1+R3 ∗R3 ⎤⎞ 
0 2 0 1 0 1 0 0 

−1 1 2 −1 0 0 1 0 
⎣⎡ 

−2R1 +R4 ∗R4⊆ ⎤⎞ 
0 2 0 1 0 1 0 0 
0 0 0 −2 −1 0 1 0 

⎣⎡36. 

−2 4 4 1 0 0 0 1 0 2 0 −1 −2 0 0 1 ⎛ ⎤⎞ 

−1 1 2 1 1 0 0 0 
0 2 0 1 0 1 0 0 
0 0 0 −2 −1 0 1 0 
0 0 0 −2 −2 −1 0 1 

⎣⎡ 
−R2+R4 ∗R4⊆ 

⎛ 

 

−1 1 2 1 1 0 0 0 
0 2 0 1 0 1 0 0 
0 0 0 −2 −1 0 1 0 
0 0 0 0 1 1 1 1 

 
−R3+R4 ∗R4⊆ ⎤⎞

− − −

⎣⎡
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and we conclude that the inverse does not exist, since the left part of the augmented matrix cannot be 
reduced to the identity matrix. [

1 5 
−3 8

]
[

[ ]
⊂ L =

[ ]
•1 5 13R1+R2 ∗R2⊆37. = A1 −30 23 1] [ ]

1 0 
−3 1

1 5 
Thus L = and U = .

0 23[ ] [ ] [ ]
−4 −4 •3 3 1−4R1+R2 ∗R2⊆ ⊂ L =38. = A112 7 0 23 4 1
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[	 ] [ ]
1 0 3 −4

Thus L = and U = .
4 1 0 23 [ ]	 [ ] [ ]R1 +R2 ∗R2
 

2R1+R3 ∗R3
 
−2 3 1	 −2 3 1 1 • • 

39.	 2 −1 3 ⊆ 0 2 4 ⊂ L = −1 1 • 
4 −2 1 0 4 3 −2 • 1 [ ] [ ]−2 3 1 1 • • 

−2R2+R3 ∗R3⊆	 0 2 4 ⊂ L = −1 1 • 
0 0 −5 −2 2 1[	 ] [ ]

1 0 0 −2 3 1
 
Thus L = −1 1 0 and U = 0 2 4 .
 

−2 2 1 0 0 −5
 [	 ] [ ] [ ]
3 −1 1	 3 −1 1 1 • • 

−3R1+R3 ∗R340.	 9 2 0 ⊆ 0 5 −3 ⊂ L = 3 1 • 
0 −5 6 0 −5 6 0 • 1 [ ] [ ]

3 −1 1 1 • • 
R2+R3 ∗R3⊆	 0 5 −3 ⊂ L = 0 1 • 

0 0 3 3 −1 1[	 ] [ ]
1 0 0 3 −1 1
 

Thus L = 3 1 0 and U = 0 5 −3 .
 
0 −1 1 0 0 3
 [	 ] [ ] [ ]

2 3	 4R1+R2 ∗R2 2 3 1 0 
41.	 ⊆ ⊂ L = −8 7	 0 19 −4 1[	 ] [ ] [ ]

2 3	 2 0 1 3/2
We divide the rows of by the diagonal entries to obtain D = and U = .

0 19	 0 19 0 1 [	 ] [ ] [ ]
−1 3 7R1+R2 ∗R2 −1 3 1 0

42. ⊆	 ⊂ L = 
7 2	 0 23 −7 1[ ]	 [ ]

−1 3	 −1 0 
We divide the rows of by the diagonal entries to obtain D = and U = 

0 23	 0 23[	 ]
1 −3 

.
0 1 [ ]	 [ ] [ ]2R1+R2 ∗R2−1 2 0	 −1 2 0 1 • • 

3R1+R3 ∗R343.	 2 1 1 ⊆ 0 5 1 ⊂ L = −2 1 • 
3 2 −2 0 8 −2 −3 • 1 � ⎛ [ ]−1 2 0 1 0	 0 

(−8/5)R2+R3 ∗R3 ⎞ 0 5 1 ⎡⊆	 ⊂ L = −2 1 0 
− 180 0	 −3 8/5 15� ⎛	 � ⎛ 

−1 2 0 −1 0 0 
We divide the rows of ⎞ 0 5 1 ⎡ by the diagonal entries to obtain D = ⎞ 0 5 0 ⎡ and 

− 18	 − 180 0	 0 05	 5�	 ⎛ 
1 −2	 0 

1	U =	 0 1 .5 
0 0	 1 

⎞ ⎡
[ ]	 [ ] [ ]4R1+R2 ∗R2
 

−3R1+R3 ∗R3
 
2 0 1	 2 0 1 1 • • 

44.	 −8 5 1 ⊆ 0 5 5 ⊂ L = −4 1 • 
6 −1 4 0 −1 1 3 • 1 [	 ] [ ]

2 0 1	 1 0 0 
(1/5)R2+R3 ∗R3⊆	 0 5 5 ⊂ L = −4 1 0 

0 0 2 3 −1/5 1 
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[ ] [ ] 
2 0 1 2 0 0 

We divide the rows of 0 5 5 by the diagonal entries to obtain D = 0 5 0 and U = 
 ⎛ 0 � 0 2 0 0 2   

  1 1 0⎞ 2 
 ⎡0 1 1 . 
0 0 1 

45. Solve (A − I) x = 0 by row-reducing the augmented matrix. [	 
−0.4 0.5 0 R1+R2 ∗R2 0.4 0.5 0
0.4 −0.5 0	 

] [
−⊆

0 0 0 

]
 0.4 
4/5

and we obtain x = s 

[
0.5	

]
= s 

[ ]
. Setting the column sum of x equal to 1, we need s = 1 ,

1 1 9/5
  4 

5 
and  4/ 9

so x = 1

[ ]
=

[ ]
.9/5 1 5

9 

46. Solve (A − I) x = 0 by row-reducing the augmented matrix. [	 ] [ ]
−0.8 0.6	 0 R1+R2 ∗R2 0.8 −0.6 0⊆
0.8 −0.6 0	 0 0 0 [ ] [ ]0.6 

3/4	 10.8and we obtain x = s = s . Setting the column sum of x equal to 1, we need s = ,7/411 [ ] [ 
3	 
]

1 3/4	 7
and so x = = .7/4 1 4 

7 

47. Solve (A − I) x = 0 by row-reducing the augmented matrix. 

[ ] (3/7)R1+R2 ∗R2 [	 ]−0.7 0.5	 0.3 0 −0.7 0.5 0.3 0 
(4/7)R1+R3 ∗R3

0.3 −0.8	 0.4 0 ⊆ 0 −0.586 0.529 0 
0.4 0.3 −0.7 0	 0 0.586 −0.529 0 [	 ]−0.7 0.5 0.3 0 

R2+R3 ∗R3⊆	 0 −0.586 0.529 0 
0 0 0 0 [ ]

1. 073 
1and we obtain x = s 0.902 . Setting the column sum of x equal to 1, we need s = , and so 2. 976 

1.0[ ] [ ]
1. 073	 0.361 

1x = 0.902 = 0.303 .2. 976 
1.0 0.336 

48. Solve (A − I) x = 0 by row-reducing the augmented matrix. [	 ] [ ]−0.7 1 0 0	 −0.7 1 0 0 
R1+R3 ∗R30 −1 0 0 ⊆ 0 −1 0 0 

0.7 0 0	 0 0 1 0 0 [	 ]−0.7 1 0 0 
R2+R3 ∗R3⊆	 0 −1 0 0 

0 0 0 0 
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x

[
0 

and we obtain  = s 0 

]
. Setting the column sum of x equal to 1, we need s = 1, and so 

0
x 1

[ 

 = 0

]
=1 

1.0

[
0
] 1.0

 
0 .
1 

49. A is lower triangular, so Ak will be lower triangular for all k. Therefore, A is not regular. 

1
50. Ak = A = 

[
 0 

]
for every k, so A is not regular. 

0 1 

51. A is block upper triangular, so Ak will be block upper triangular for all k. Therefore, A is not regular. [ ]4 [	
0 .3 .5 0.1156 0.203 0.14 

52.	 A4 = .8 0 0 = 0.224 0.0816 0.136 

]
,so A is regular. 

.2 .7 0 0.2464 0.2164 0.034 
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