Chapter 2

Euclidean Space

2.1 Vectors

1. Determine $3 u+v-2 w$,where
$\mathbf{u}=\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-3 \\ 2 \\ 3\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{r}-1 \\ 3 \\ 0\end{array}\right]$
Ans: $\left[\begin{array}{r}5 \\ -1 \\ 0\end{array}\right]$
2. Express the given vector equation as a system of linear equations.

$$
x_{1}\left[\begin{array}{r}
3 \\
-2
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

Ans: $3 \mathrm{x}_{1}+2 \mathrm{x}_{2}=4$

$$
-2 x_{1}+5 x_{2}=1
$$

3. Express the given vector equation as a system of linear equations.

$$
x_{1}\left[\begin{array}{l}
2 \\
0 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{r}
-1 \\
4 \\
7
\end{array}\right]+x_{3}\left[\begin{array}{l}
5 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right]
$$

Ans: $2 \mathrm{x}_{1}-\mathrm{x}_{2}+5 \mathrm{x}_{3}=-1$

$$
4 x_{2}+3 x_{3}=2
$$

$$
5 x_{1}+7 x_{2}=1
$$

4. Express the given system of linear equations as a single vector equation.

$$
\begin{aligned}
& x_{1}+2 x_{2}-3 x_{3}=6 \\
& -x_{1}+x_{3}=3
\end{aligned}
$$

Ans: $x_{1}\left[\begin{array}{r}1 \\ -1\end{array}\right]+x_{2}\left[\begin{array}{l}2 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{r}-3 \\ 1\end{array}\right]=\left[\begin{array}{l}6 \\ 3\end{array}\right]$
5. Express the given system of linear equations as a single vector equation.

$$
2 x_{1}+x_{2}-2 x_{3}=1
$$

$$
\begin{aligned}
& -x_{1}+x_{2}+x_{3}=1 \\
& 7 x_{1}+3 x_{2}-x_{3}=1
\end{aligned}
$$

Ans: $x_{1}\left[\begin{array}{r}2 \\ -1 \\ 7\end{array}\right]+x_{2}\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]+x_{3}\left[\begin{array}{r}-2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
6. The general solution to a linear system is given. Express this solution as a linear combination of vectors.

$$
\begin{aligned}
& \mathrm{x}_{1}=3-\mathrm{s}_{1} \\
& \mathrm{x}_{2}=\mathrm{s}_{1} \\
& \text { Ans: }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]+s_{1}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

7. The general solution to a linear system is given. Express this solution as a linear combination of vectors.

$$
\begin{aligned}
& \mathrm{x}_{1}=3-\mathrm{s}_{1}+3 \mathrm{~s}_{2} \\
& \mathrm{x}_{2}=\mathrm{s}_{1} \\
& \mathrm{x}_{3}=3+\mathrm{s}_{2} \\
& \mathrm{x}_{4}=\mathrm{s}_{2}
\end{aligned}
$$

Ans: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 3 \\ 0\end{array}\right]+s_{1}\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 0\end{array}\right]+s_{2}\left[\begin{array}{l}3 \\ 0 \\ 1 \\ 1\end{array}\right]$
8. Find the unknowns in the given vector equation.
$2\left[\begin{array}{l}1 \\ a\end{array}\right]+4\left[\begin{array}{c}b \\ -2\end{array}\right]=\left[\begin{array}{l}-2 \\ -6\end{array}\right]$
Ans: $\mathrm{a}=1, \mathrm{~b}=-1$
9. Find the unknowns in the given vector equation.

$$
2\left[\begin{array}{l}
1 \\
a \\
b
\end{array}\right]-\left[\begin{array}{l}
a \\
0 \\
1
\end{array}\right]+3\left[\begin{array}{r}
-1 \\
c \\
0
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
-3
\end{array}\right]
$$

Ans: $\mathrm{a}=2, \mathrm{~b}=-1, \mathrm{c}=0$
10. Express \mathbf{b} as a linear combination of the other vectors, if possible.
$\mathbf{a}_{1}=\left[\begin{array}{l}4 \\ 2\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}-1 \\ 4\end{array}\right], \mathbf{b}=\left[\begin{array}{l}14 \\ -2\end{array}\right]$

Ans: $3 \mathrm{a}_{1}-2 \mathrm{a}_{2}=\mathrm{b}$
11. Express \mathbf{b} as a linear combination of the other vectors, if possible.

$$
\begin{aligned}
& \mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
-1 \\
3 \\
-1
\end{array}\right] \\
& \text { Ans: }-2 \mathrm{a}_{1}+2 \mathrm{a}_{2}+\mathrm{a}_{3}=\mathrm{b}
\end{aligned}
$$

True or False: If \mathbf{u} and \mathbf{v} are vectors, and c and d are scalars, then $\mathrm{c}(\mathrm{du}+\mathrm{v})=(\mathrm{cd}) \mathrm{u}+\mathrm{v}$. Ans: False
13. True or False: If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors, then $u-(v+w)=(u-v)+(u-w)$.

Ans: False
14. True or False: If $u+v=w$, then $v=w-u$.

Ans: True
15. Sketch the graph of $\mathbf{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$, and then use the Parallelogram Rule to sketch the graph of $u+v$.
Ans:

16. Determine how to divide a total mass of 18 kg among the vectors

$$
\mathbf{u}_{1}=\left[\begin{array}{r}
2 \\
-1 \\
3
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{r}
-3 \\
2 \\
-4
\end{array}\right] \text { so that the center of mass is }\left[\begin{array}{l}
2 / 9 \\
2 / 9 \\
2 / 9
\end{array}\right] .
$$

Ans: Place 10 kg at $\mathbf{u}_{1}, 1 \mathrm{~kg}$ at \mathbf{u}_{2}, and 7 kg at \mathbf{u}_{3}.
17. Find an example of a linear system with two equations and three variables that has $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]+s\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ as the general solution.

Ans: A possible answer is
$\mathrm{x}_{1}+\mathrm{x}_{2}-5 \mathrm{x}_{3}=5$
$\mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}=-1$

2.2 Span

1. Find four vectors that are in the span of the given vectors.
$\mathbf{u}_{1}=\left[\begin{array}{l}2 \\ 3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$
Ans: For example, $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{r}1 \\ -1\end{array}\right]$, and $\left[\begin{array}{l}3 \\ 2\end{array}\right]$
2. Find five vectors that are in the span of the given vectors.
$\mathbf{u}_{1}=\left[\begin{array}{r}-1 \\ 4 \\ 3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}5 \\ 5 \\ 1\end{array}\right]$
Ans: For example, $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 4 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}5 \\ 5 \\ 1\end{array}\right]$, and $\left[\begin{array}{c}6 \\ 10 \\ 6\end{array}\right]$
3. Determine if \mathbf{b} is in the span of the other given vectors. If so, write \mathbf{b} as a linear combination of the other vectors.

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}
-1 \\
3 \\
1
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
3 \\
-1 \\
0
\end{array}\right]
$$

Ans: $\mathrm{b}=\mathrm{a}_{1}-\mathrm{a}_{2}$
4. Determine if \mathbf{b} is in the span of the other given vectors. If so, write \mathbf{b} as a linear combination of the other vectors.
$\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{b}=\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$
Ans: \mathbf{b} is not in the span of \mathbf{a}_{1} and \mathbf{a}_{2}.
5. Find A, \mathbf{x}, and \mathbf{b} such that $\mathrm{Ax}=\mathrm{b}$ corresponds to the given linear system.

$$
\begin{gathered}
x_{1}+x_{2}-2 x_{3}=1 \\
-x_{1}+2 x_{2}+4 x_{3}=8
\end{gathered}
$$

Ans: $A=\left[\begin{array}{rrr}1 & 1 & -2 \\ -1 & 2 & 4\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 8\end{array}\right]$
6. Find A, \mathbf{x}, and \mathbf{b} such that $\mathrm{Ax}=\mathrm{b}$ corresponds to the given linear system.

$$
x_{1}-x_{3}=1
$$

$2 \mathrm{x}_{2}+4 \mathrm{x}_{3}=3$
$-\mathrm{x}_{1}+5 \mathrm{x}_{3}=1$
Ans: $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 2 & 4 \\ -1 & 0 & 5\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$
7. Express the given system of linear equations as a vector equation.
$2 x_{1}-x_{3}+x_{4}=1$
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+4 \mathrm{x}_{3}-\mathrm{x}_{4}=0$
Ans: $x_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 2\end{array}\right]+x_{3}\left[\begin{array}{r}-1 \\ 4\end{array}\right]+x_{4}\left[\begin{array}{r}1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
8. Determine if the columns of the given matrix span R^{2}.
$\left[\begin{array}{ll}4 & 2 \\ 1 & 0\end{array}\right]$
Ans: Yes, the columns span R^{2}.
9. Determine if the columns of the given matrix span R^{3}.
$\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$
Ans: No, the columns do not span R^{3}.
10. Determine if the system $A x=b$ (where \mathbf{x} and \mathbf{b} have the appropriate number of components) has a solution for all choices of \mathbf{b}.

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

Ans: Yes, a solution exists.
11. Find all values of h such that the vectors span R^{2}.

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
h \\
2
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}
2 \\
h
\end{array}\right]
$$

Ans: All real numbers, except $\mathrm{h} \neq \pm 2$.
12. For what value(s) of h do the given vectors span R^{3} ?

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
h \\
6
\end{array}\right],\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

Ans: All real numbers, except $\mathrm{h} \neq 5$.
13. True or False: Suppose a matrix A has n rows and m columns, with $\mathrm{m}<\mathrm{n}$. Then the
columns of A do not span R^{n}.
Ans: True
14. True or False: Suppose a matrix A has n rows and m columns, with $\mathrm{m}>\mathrm{n}$. Then the columns of A span R^{n}.

Ans: False
15. True or False: If the columns of a matrix A with n rows and m columns do not span \mathbf{R}^{n}, then there exists a vector \mathbf{b} in R^{n} such that $\mathrm{Ax}=\mathrm{b}$ does not have a solution.

Ans: True
16. True or False: If the columns of a matrix A with ${ }_{n}$ rows and m columns spans R^{n}, then $\mathrm{m} \geq$ n.

Ans: True

2.3 Linear Independence

1. Determine if the given vectors are linearly independent.
$\mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
Ans: Linearly independent
2. Determine if the given vectors are linearly independent.
$\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{v}=\left[\begin{array}{r}2 \\ 0 \\ -2\end{array}\right], \mathbf{w}=\left[\begin{array}{r}0 \\ -4 \\ -8\end{array}\right]$
Ans: Not linearly independent
3. Determine if the given vectors are linearly independent.
$\mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 3\end{array}\right], \mathbf{v}=\left[\begin{array}{r}0 \\ 2 \\ 0 \\ -2\end{array}\right], \mathbf{w}=\left[\begin{array}{l}2 \\ 4 \\ 1 \\ 0\end{array}\right]$
Ans: Linearly independent
4. Determine if the columns of the given matrix are linearly independent.
$\left[\begin{array}{rr}3 & 2 \\ -2 & -3\end{array}\right]$
Ans: Linearly independent
5. Determine if the columns of the given matrix are linearly independent.

$$
A=\left[\begin{array}{rrr}
2 & -1 & 2 \\
1 & 2 & 0 \\
3 & 2 & 2
\end{array}\right]
$$

Ans: Linearly independent
6. Determine if the columns of the given matrix are linearly independent.
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
Ans: Not linearly independent
7. Determine if the homogeneous system $\mathrm{Ax}=0$ has any nontrivial solutions, where
$A=\left[\begin{array}{rr}3 & -1 \\ 2 & 2 \\ 0 & 1\end{array}\right] .$.
Ans: $\mathrm{Ax}=0$ has only the trivial solution.
8. Determine if the homogeneous system $A x=0$ has any nontrivial solutions, where

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Ans: $\mathrm{Ax}=0$ has nontrivial solutions.
9. Determine by inspection (that is, with only minimal calculations) if the given vectors form a linearly dependent or linearly independent set. Justify your answer.
$\mathbf{u}=\left[\begin{array}{r}9 \\ -4\end{array}\right], \mathbf{v}=\left[\begin{array}{r}2 \\ 20\end{array}\right], \mathbf{w}=\left[\begin{array}{r}1 \\ -4\end{array}\right]$
Ans: Linearly dependent, by Theorem 2.14
10. Determine if one of the given vectors is in the span of the other vectors.
$\mathbf{u}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right], \mathbf{v}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right], \mathbf{w}=\left[\begin{array}{r}0 \\ 1 \\ -2\end{array}\right]$
Ans: Yes, since $\mathrm{w}=-\mathrm{u}+\mathrm{v}$.
11. True or False: Suppose matrix A has n rows and m columns, with $n<m$. Then the columns of A are linearly dependent.
Ans: True
12. True or False: Suppose a matrix A has n rows and m columns, with $\mathrm{n} \geq \mathrm{m}$. Then the columns of A are linearly independent.

Ans: False
13. True or False: Suppose there exists a vector x such that $\mathrm{Ax}=\mathrm{b}$. Then the columns of A are linearly independent.

Ans: False
14. True or False: If $A x \neq 0$ for every $x \neq 0$, then the columns of A are linearly independent.

Ans: True
15. True or False: If $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\},\left\{\mathrm{u}_{1}, \mathrm{u}_{3}\right\}$, and $\left\{\mathrm{u}_{2}, \mathrm{u}_{3}\right\}$ are all linearly independent, then $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\}$ is linearly independent.

Ans: False

