Chapter 02 - Appendix A Least-Squares Regression Computations

		Question Type			słsoo łonpoad pue pouə	LO3: Variable, fixed, and mixed costs			LO6: Direct and indirect costs	LO7: Decision-making cost classifications			ID	Origin	CMA/CPA origin
	1	T/F	E								x		New,6/27/97,E	E.N.	
	2	T/F	E								x		3/14/2010 M1	E.N.	
	3	T/F Conceptual	H								X		3/14/2010 N2	E.N. David	
	4	M/C Conceptual	E				X				x x		8/e:ATB6-29 3-17-2010 Conceptual	Keyes	
	5	M/C	M								x		A 8/22/2004 Single MC	E.N.	
	6	M/C	H								X		H4 8/22/2004 Single MC	E.N.	
	7	M/C	H								x		G4	E.N.	
	8	M/C	H								X		New,6/28/97,A9	E.N.	
$\begin{aligned} & 2 A- \\ & 1 \\ & 2 A- \end{aligned}$	$\begin{aligned} & 9- \\ & 10 \end{aligned}$	Multipart M/C	M								X		8/21/2004 Multi MC G4	E.N.	
2 A -	12 $13-$	Multipart M/C	H								X		7/e: 6-59 to 60	Authors	
3 $2 A$	14 $15-$	Multipart M/C	M								X		8/21/2004 Multi MC 14	E.N.	
4	16	Multipart M/C	M								X		8/21/2004 Multi MC H4	E.N.	
	17	Problem	H				X				X		LD9e:CH05P2	Larry	

				Deppe	
18	Problem	H	x	$8 / 22 / 2004$ Problem J4	E.N.
19	Problem	H		x	New,6/29/97,A9
20	Problem	H	x	x	$6 / e: 5-62$
21	Problem	H		x	$8 / 21 / 2004$ Problem H4
22	Problem	H		E.N.	
			$8 / 21 / 2004$ Problem I4	E.N.	

Chapter 02

Appendix A Least-Squares Regression Computations

True / False Questions

1. In least-squares regression, independent variables are not included in the computations of the slope and intercept.
True False
2. Least-squares regression selects the values for the intercept and slope of a straight line that minimize the sum of the squared errors.
True False
3. When analyzing a mixed cost, you should always plot the data in a scattergraph, but it is particularly important to check the data visually on a scattergraph when the R2 is very high. True False

Multiple Choice Questions

4. Which of the following methods of analyzing mixed costs can be used to estimate an equation for the mixed cost?

	High-Low	Least-Squares
A)	Yes	Yes
B)	Yes	No
C)	No	Yes
D)	No	No

A. Option A
B. Option B
C. Option C
D. Option D
5. The least-squares regression method:
A. fits a line to data by minimizing the sum of the squared errors from the line.
B. is generally less accurate than the high-low method.
C. can be used only if the fixed cost element is larger than the variable cost element.
D. can be used only if the fixed cost element is smaller than the variable cost element.
6. The management of Ferry Corporation would like for you to analyze their repair costs, which are listed below:

	Machine-Hours	Repair Costs
February..	2,131	\$33,085
March.................	2,160	\$33,103
April	2,117	\$33,070
May....................	2,180	\$33,137
June..	2,102	\$33,013
July	2,196	\$33,167
August................	2,128	\$33,054
September	2,191	\$33,140

Management believes that repair cost is a mixed cost that depends on the number of machinehours. Using the least-squares regression method, the estimates of the variable and fixed components of repair cost would be closest to:
A. $\$ 1.64$ per machine-hour plus $\$ 29,566$ per month
B. $\$ 0.92$ per machine-hour plus $\$ 31,132$ per month
C. $\$ 1.37$ per machine-hour plus $\$ 30,157$ per month
D. $\$ 15.39$ per machine-hour plus $\$ 33,096$ per month
7. Moeller Inc.'s inspection costs are listed below:

	Units Produced	Inspection Costs
March..............	125	\$9,079
April	152	\$10,473
May....................	121	\$8,884
June	175	\$11,689
July	191	\$12,507
August................	180	\$11,939
September	182	\$12,055
October..............	177	\$11,795

Management believes that inspection cost is a mixed cost that depends on the number of units produced. Using the least-squares regression method, the estimates of the variable and fixed components of inspection cost would be closest to:
A. $\$ 51.76$ per unit plus $\$ 2,621$ per month
B. $\$ 51.99$ per unit plus $\$ 2,584$ per month
C. $\$ 67.86$ per unit plus $\$ 11,053$ per month
D. $\$ 52.23$ per unit plus $\$ 2,550$ per month
8. Your boss would like you to estimate the fixed and variable components of a particular cost. Actual data for this cost over four recent periods appear below.

	Activity	Cost
Period 1...........	24	$\$ 378$
Period 2 $\ldots \ldots \ldots \ldots$.	23	$\$ 367$
Period 3	20	$\$ 342$
Period 4...........	25	$\$ 386$

Using the least-squares regression method, what is the cost formula for this cost?
A. $Y=\$ 156.64+\$ 9.20 \mathrm{X}$
B. $Y=\$ 0.00+\$ 16.01 \mathrm{X}$
C. $Y=\$ 164.54+\$ 8.86 \mathrm{X}$
D. $Y=\$ 169.97+\$ 6.10 X$

Descoteaux Inc.'s inspection costs are listed below:

	Units Produced	Inspection Costs
February.............	415	$\$ 6,100$
March..................	$\mathbf{3 6 5}$	$\$ 5,624$
April	434	$\$ 6,315$
May......................	449	$\$ 6,453$
June	391	$\$ 5,874$
July	366	$\$ 5,627$
August..............	441	$\$ 6,380$
September	392	$\$ 5,887$

Management believes that inspection cost is a mixed cost that depends on units produced.
9. Using the least-squares regression method, the estimate of the variable component of inspection cost per unit produced is closest to:
A. $\$ 9.87$
B. $\$ 14.84$
C. $\$ 9.26$
D. $\$ 9.97$
10. Using the least-squares regression method, the estimate of the fixed component of inspection cost per month is closest to:
A. $\$ 1,979$
B. $\$ 6,033$
C. $\$ 5,624$
D. $\$ 2,021$

Carr Company reports the following data for the first six months of the year:

Month	Machine Hours	Electrical Cost
January	$\mathbf{4 0 0}$	$\$ 40$
February.........	$\mathbf{3 0 0}$	$\$ 30$
March...............	$\mathbf{4 0 0}$	$\$ 50$
April	$\mathbf{3 0 0}$	$\$ 40$
May.................	$\mathbf{2 0 0}$	$\$ 30$
June	$\mathbf{2 0 0}$	$\$ 20$

11. Using the least-squares regression method, the estimated variable electrical cost per machine hour is closest to:
A. \$0.91
B. $\$ 0.10$
C. $\$ 0.20$
D. $\$ 0.25$
12. Using the least-squares regression method, the estimated monthly fixed component of the electrical cost is closest to:
A. $\$ 5$
B. $\$ 20$
C. \$6
D. $\$ 10$

Gelrud Corporation's recent utility costs are listed below:

	Machine-Hours	Utility Costs
March.................	2,443	\$19,941
April	2,419	\$19,804
May.....................	2,483	\$20,161
June	2,424	\$19,801
July	2,475	\$20,127
August................	2,409	\$19,733
September	2,453	\$19,983
October	2,480	\$20,147

Management believes that utility cost is a mixed cost that depends on machine-hours.
13. Using the least-squares regression method, the estimate of the variable component of utility cost per machine-hour is closest to:
A. $\$ 8.15$
B. $\$ 5.78$
C. $\$ 5.57$
D. $\$ 5.85$
14. Using the least-squares regression method, the estimate of the fixed component of utility cost per month is closest to:
A. \$19,733
B. $\$ 5,809$
C. \$19,962
D. $\$ 5,628$

Recent maintenance costs of Prideaux Corporation are listed below:

	Machine-Hours	Maintenance Costs
February.............	632	$\$ 8,774$
March..................	$\mathbf{5 8 7}$	$\$ 8,334$
April	666	$\$ 9,093$
May......................	620	$\$ 8,667$
June	$\mathbf{5 8 0}$	$\$ 8,275$
July	$\mathbf{5 7 5}$	$\$ 8,241$
August...............	617	$\$ 8,650$
September	$\mathbf{5 8 8}$	$\$ 8,368$

Management believes that maintenance cost is a mixed cost that depends on machine-hours.
15. Using the least-squares regression method, the estimate of the variable component of maintenance cost per machine-hour is closest to:
A. $\$ 9.36$
B. $\$ 9.49$
C. $\$ 14.06$
D. $\$ 9.23$
16. Using the least-squares regression method, the estimate of the fixed component of maintenance cost per month is closest to:
A. $\$ 2,859$
B. $\$ 8,241$
C. $\$ 8,550$
D. $\$ 2,782$

Essay Questions

17. The Stephens Leadership Center provides training seminars in personal development and time management. The company is relatively new and management is seeking information regarding the Center's cost structure. The following information has been gathered since the inception of the business in January of the current year:

Month	Seminars Offered	Costs Incurred
January	10	$\$ 17,000$
February.........	12	$\$ 18,800$
March...............	15	$\$ 20,900$
April	18	$\$ 23,762$
May..................	16	$\$ 21,800$
June	13	$\$ 19,400$

Required:
a. Using the high-low method, estimate the variable cost per seminar and the total fixed cost per month.
b. Using the least-squares method, estimate the variable cost per seminar and the total fixed cost per month.
18. Dillenbeck Printing Corp., a book printer, has provided the following data:

	Titles Printed	Press Setup Cost
February.............	33	$\$ 3,170$
March..................	34	$\$ 3,203$
April	46	$\$ 3,688$
May.....................	28	$\$ 2,996$
June	44	$\$ 3,607$
July	$\mathbf{4 2}$	$\$ 3,551$
August..............	43	$\$ 3,586$
September	39	$\$ 3,413$

Management believes that the press setup cost is a mixed cost that depends on the number of titles printed. (A specific book that is to be printed is called a "title". Typically, thousands of copies will be printed of each title. Specific steps must be taken to setup the presses for printing each title-for example, changing the printing plates. The costs of these steps are the press setup costs.)

Required:

Estimate the variable cost per title printed and the fixed cost per month using the least-squares regression method.
19. Below are cost and activity data for a particular cost over the last four periods. Your boss has asked you to analyze this cost so that management will have a better understanding of how this cost changes in response to changes in activity.

	Activity	Cost
Period 1...........	46	$\$ 292$
Period 2	40	$\$ 271$
Period 3	42	$\$ 279$
Period 4...........	41	$\$ 267$

Required:

Using the least-squares regression method, estimate the cost formula for this cost.
20. Executive Training, Inc., provides a personal development seminar that is popular with many companies. The number of seminars offered over the last five months, along with the total costs of offering these seminars, follows:

	Seminars Offered	Costs Incurred
April	$\mathbf{5 5}$	$\$ 15,400$
May..............	$\mathbf{4 5}$	$\$ 14,000$
June	$\mathbf{6 0}$	$\$ 18,000$
July	$\mathbf{5 0}$	$\$ 14,700$
August.........	$\mathbf{7 5}$	$\$ 19,000$

Required:

a. Using the high-low method, estimate the variable cost per seminar and the total fixed cost per month.
b. Using the least-squares regression method, compute the variable cost per seminar and the total fixed cost per month. (Round off to the nearest whole dollar.)
21. Galarneau Inc. maintains a call center to take orders, answer questions, and handle complaints. The costs of the call center for a number of recent months are listed below:

	Calls Taken	Call Center Cost
February.............	$\mathbf{7 , 8 5 1}$	$\$ 85,115$
March...............	$\mathbf{7 , 8 2 0}$	$\$ 84,934$
April	$\mathbf{7 , 8 6 1}$	$\$ 85,178$
May...................	$\mathbf{7 , 8 6 0}$	$\$ 85,161$
June	$\mathbf{7 , 8 2 5}$	$\$ 84,965$
July	$\mathbf{7 , 8 3 6}$	$\$ 85,009$
August...............	7,879	$\$ 85,262$
September	$\mathbf{7 , 8 6 6}$	$\$ 85,201$

Management believes that the cost of the call center is a mixed cost that depends on the number of calls taken.

Required:
Estimate the variable cost per call and fixed cost per month using the least-squares regression method.
22. The management of Ferriman Corporation would like to better understand the behavior of the company's warranty costs. Those costs are listed below for a number of recent months:

	Product Returns	Warranty Cost
April	24	$\$ 2,972$
May....................	23	$\$ 2,928$
June	27	$\$ 3,141$
July	39	$\$ 3,752$
August..............	36	$\$ 3,569$
September	35	$\$ 3,551$
October	26	$\$ 3,071$
November	37	$\$ 3,636$

Management believes that warranty cost is a mixed cost that depends on the number of product returns.

Required:

Estimate the variable cost per product return and the fixed cost per month using the leastsquares regression method.

Chapter 02 Appendix A Least-Squares Regression Computations Answer Key

True / False Questions

1. In least-squares regression, independent variables are not included in the computations of the slope and intercept.

FALSE

```
AACSB: Reflective Thinking
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Knowledge
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
Level: Easy
```

2. Least-squares regression selects the values for the intercept and slope of a straight line that minimize the sum of the squared errors.

TRUE

AACSB: Reflective Thinking
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Knowledge
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
Level: Easy
3. When analyzing a mixed cost, you should always plot the data in a scattergraph, but it is particularly important to check the data visually on a scattergraph when the R2 is very high. FALSE

[^0]
Multiple Choice Questions

4. Which of the following methods of analyzing mixed costs can be used to estimate an equation for the mixed cost?

	High-Low	Least-Squares
A)	Yes	Yes
B)	Yes	No
C)	No	Yes
D)	No	No

A. Option A
B. Option B
C. Option C
D. Option D

AACSB: Reflective Thinking
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Knowledge
Learning Objective: 02A-04 Analyze a mixed cost using a scattergraph plot and the high-low method
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Easy
5. The least-squares regression method:
A. fits a line to data by minimizing the sum of the squared errors from the line.
B. is generally less accurate than the high-low method.
C. can be used only if the fixed cost element is larger than the variable cost element.
D. can be used only if the fixed cost element is smaller than the variable cost element.

AACSB: Reflective Thinking
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Comprehension
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
Level: Medium
6. The management of Ferry Corporation would like for you to analyze their repair costs, which are listed below:

	Machine-Hours	Repair Costs
February............	2,131	\$33,085
March.................	2,160	\$33,103
April	2,117	\$33,070
May.....................	2,180	\$33,137
June	2,102	\$33,013
July	2,196	\$33,167
August................	2,128	\$33,054
September	2,191	\$33,140

Management believes that repair cost is a mixed cost that depends on the number of machinehours. Using the least-squares regression method, the estimates of the variable and fixed components of repair cost would be closest to:
A. $\$ 1.64$ per machine-hour plus $\$ 29,566$ per month
B. $\$ 0.92$ per machine-hour plus $\$ 31,132$ per month
C. $\$ 1.37$ per machine-hour plus $\$ 30,157$ per month
D. $\$ 15.39$ per machine-hour plus $\$ 33,096$ per month

Using Microsoft Excel, the solution is:

Intercept..............	$\$ 30,157$	Fixed cost
Slope	$\$ 1.37$	Variable cost
RSQ	0.93	

AACSB: Analytic
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Application
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
Level: Hard
7. Moeller Inc.'s inspection costs are listed below:

	Units Produced	Inspection Costs
March.................	125	\$9,079
April	152	\$10,473
May....................	121	\$8,884
June	175	\$11,689
July	191	\$12,507
August................	180	\$11,939
September	182	\$12,055
October	177	\$11,795

Management believes that inspection cost is a mixed cost that depends on the number of units produced. Using the least-squares regression method, the estimates of the variable and fixed components of inspection cost would be closest to:
A. $\$ 51.76$ per unit plus $\$ 2,621$ per month
B. $\$ 51.99$ per unit plus $\$ 2,584$ per month
C. $\$ 67.86$ per unit plus $\$ 11,053$ per month
D. $\$ 52.23$ per unit plus $\$ 2,550$ per month

Using Microsoft Excel, the solution is:

Intercept...............	$\$ 2,584$	Fixed cost
Slope	$\$ 51.99$	Variable cost
RSQ	1.00	

8. Your boss would like you to estimate the fixed and variable components of a particular cost. Actual data for this cost over four recent periods appear below.

	Activity	Cost
Period 1..........	24	$\$ 378$
Period 2..........	23	$\$ 367$
Period 3..........	20	$\$ 342$
Period 4...........	25	$\$ 386$

Using the least-squares regression method, what is the cost formula for this cost?
A. $Y=\$ 156.64+\$ 9.20 \mathrm{X}$
B. $Y=\$ 0.00+\$ 16.01 X$
C. $Y=\$ 164.54+\$ 8.86 \mathrm{X}$
D. $Y=\$ 169.97+\$ 6.10 X$

Using Microsoft Excel, the slope and intercept are:

Intercept............	$\$ 164.54$
Slope	$\$ 8.86$
RSQ	1.00

Therefore, the cost formula is $\$ 164.54$ per activity plus $\$ 8.86$ per unit or: $\mathrm{Y}=\$ 164.54+\$ 8.86 \mathrm{X}$

AACSB: Analytic
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Application
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
Level: Hard

Descoteaux Inc.'s inspection costs are listed below:

	Units Produced	Inspection Costs
February.............	415	$\$ 6,100$
March..................	365	$\$ 5,624$
April	434	$\$ 6,315$
May......................	449	$\$ 6,453$
June	391	$\$ 5,874$
July	366	$\$ 5,627$
August...............	441	$\$ 6,380$
September	392	$\$ 5,887$

Management believes that inspection cost is a mixed cost that depends on units produced.
9. Using the least-squares regression method, the estimate of the variable component of inspection cost per unit produced is closest to:
A. \$9.87
B. $\$ 14.84$
C. $\$ 9.26$
D. $\$ 9.97$

Using Microsoft Excel functions, the solution is:
Variable cost per unit produced $=$ Slope $=\$ 9.97$

AACSB: Analytic
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Application
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
Level: Medium
10. Using the least-squares regression method, the estimate of the fixed component of inspection cost per month is closest to:
A. $\$ 1,979$
B. $\$ 6,033$
C. $\$ 5,624$
D. $\$ 2,021$

Using Microsoft Excel functions, the solution is:
Fixed cost per month $=$ Intercept $=\$ 1,979$

[^1]Carr Company reports the following data for the first six months of the year:

Month	Machine Hours	Electrical Cost
January	400	\$40
February..........	300	\$30
March...............	400	\$50
April	300	\$40
May..................	200	\$30
June	200	\$20

11. Using the least-squares regression method, the estimated variable electrical cost per machine hour is closest to:
A. $\$ 0.91$
B. $\$ 0.10$
C. $\$ 0.20$
D. $\$ 0.25$

Using Microsoft Excel functions, the solution is:
Variable electrical cost per machine hour $=$ Slope $=\$ 0.10$

AACSB: Analytic
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Application
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Hard
12. Using the least-squares regression method, the estimated monthly fixed component of the electrical cost is closest to:
A. $\$ 5$
B. $\$ 20$
C. $\$ 6$
D. $\$ 10$

Using Microsoft Excel functions, the solution is:
Fixed electrical cost per month $=$ Intercept $=\$ 5.00$

[^2]Gelrud Corporation's recent utility costs are listed below:

	Machine-Hours	Utility Costs
March..................	2,443	\$19,941
April	2,419	\$19,804
May.....................	2,483	\$20,161
June	2,424	\$19,801
July	2,475	\$20,127
August................	2,409	\$19,733
September	2,453	\$19,983
October	2,480	\$20,147

Management believes that utility cost is a mixed cost that depends on machine-hours.
13. Using the least-squares regression method, the estimate of the variable component of utility cost per machine-hour is closest to:
A. \$8.15
B. $\$ 5.78$
C. \$5.57
D. $\$ 5.85$

Using Microsoft Excel functions, the solution is:
Utility cost per machine-hour $=$ Slope $=\$ 5.85$

AACSB: Analytic

AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Application
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
Level: Medium
14. Using the least-squares regression method, the estimate of the fixed component of utility cost per month is closest to:
A. \$19,733
B. $\$ 5,809$
C. $\$ 19,962$
D. $\$ 5,628$

Using Microsoft Excel functions, the solution is:
Fixed utility cost per month $=$ Intercept $=\$ 5,628$

AACSB: Analytic
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Application
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
Level: Medium

Recent maintenance costs of Prideaux Corporation are listed below:

	Machine-Hours	Maintenance Costs
February.............	632	$\$ 8,774$
March.................	$\mathbf{5 8 7}$	$\$ 8,334$
April	666	$\$ 9,093$
May....................	620	$\$ 8,667$
June	580	$\$ 8,275$
July	$\mathbf{5 7 5}$	$\$ 8,241$
August...............	617	$\$ 8,650$
September	$\mathbf{5 8 8}$	$\$ 8,368$

Management believes that maintenance cost is a mixed cost that depends on machine-hours.
15. Using the least-squares regression method, the estimate of the variable component of maintenance cost per machine-hour is closest to:
A. $\$ 9.36$
B. $\$ 9.49$
C. \$14.06
D. $\$ 9.23$

Using Microsoft Excel functions, the solution is:
Maintenance cost per machine-hour $=$ Slope $=\$ 9.49$

AACSB: Analytic
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Application
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
Level: Medium
16. Using the least-squares regression method, the estimate of the fixed component of maintenance cost per month is closest to:
A. $\$ 2,859$
B. $\$ 8,241$
C. $\$ 8,550$
D. $\$ 2,782$

Using Microsoft Excel functions, the solution is:
Fixed maintenance cost per month $=$ Intercept $=\$ 2,782$

[^3]
Essay Questions

17. The Stephens Leadership Center provides training seminars in personal development and time management. The company is relatively new and management is seeking information regarding the Center's cost structure. The following information has been gathered since the inception of the business in January of the current year:

Month	Seminars Offered	Costs Incurred
January	10	$\$ 17,000$
February.........	12	$\$ 18,800$
March...............	15	$\$ 20,900$
April	18	$\$ 23,762$
May..................	16	$\$ 21,800$
June	13	$\$ 19,400$

Required:
a. Using the high-low method, estimate the variable cost per seminar and the total fixed cost per month.
b. Using the least-squares method, estimate the variable cost per seminar and the total fixed cost per month.
a. High-Low Method:

Month...	Number of Seminars	Costs Incurred
April (high activity level)	18	$\$ 23,762$
January (low activity level)	$\underline{10}$	$\underline{17,000}$
Change observed.......................	$\underline{8}$	$\underline{\$ 6,762}$

Variable cost $=$ Change in Cost/Change in activity $=\$ 6,762 / 8$ seminars $=\$ 845.25$ per seminar
Fixed cost element $=$ Total cost - Variable cost element
$=\$ 23,762-(\$ 845.25$ per seminar $\times 18$ seminars $)=\$ 8,547.50$
Cost formula for seminar costs: $\$ 8,547.50$ per month plus $\$ 845.25$ per seminar held
b. Least-Squares Method:
$\mathrm{n}=6$
$\operatorname{sumX}=84$
sumY $=121,662$
$\operatorname{sumXY}=1,737,816$
$\operatorname{sumX} X^{\wedge} 2=1,218$
$\mathrm{b}=[\mathrm{n}($ sumXY $)-($ sumX $)($ sumY $)] /\left[\mathrm{n}\left(\operatorname{sumX}^{\wedge} 2\right)-(\text { sumX })^{\wedge} 2\right]$
$=[6(1,737,816)-(84)(121,662)] /\left[6(1,218)-(84)^{\wedge} 2\right]$
$=\$ 822.57$ (rounded to the nearest whole cent)
$\mathrm{a}=[($ sumY $)-\mathrm{b}($ sumX $)] / \mathrm{n}$
$=[(121,662)-822.57(84)] / 6$
$=\$ 8,761$ (rounded to the nearest whole dollar)
The cost formula is $\$ 8,761$ per month plus $\$ 822.57$ per seminar. A similar answer can be obtained using Microsoft Excel.

AACSB: Analytic
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Application
Learning Objective: 02A-04 Analyze a mixed cost using a scattergraph plot and the high-low method
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Hard
18. Dillenbeck Printing Corp., a book printer, has provided the following data:

	Titles Printed	Press Setup Cost
February.............	33	$\$ 3,170$
March...................	34	$\$ 3,203$
April	46	$\$ 3,688$
May.......................	28	$\$ 2,996$
June	$\mathbf{4 4}$	$\$ 3,607$
July	$\mathbf{4 2}$	$\$ 3,551$
August..............	$\mathbf{4 3}$	$\$ 3,586$
September	$\mathbf{3 9}$	$\$ 3,413$

Management believes that the press setup cost is a mixed cost that depends on the number of titles printed. (A specific book that is to be printed is called a "title". Typically, thousands of copies will be printed of each title. Specific steps must be taken to setup the presses for printing each title-for example, changing the printing plates. The costs of these steps are the press setup costs.)

Required:

Estimate the variable cost per title printed and the fixed cost per month using the least-squares regression method.

The solution using Microsoft Excel functions is:
Variable cost per title printed $=$ Slope $=\$ 39.53$
Fixed cost per month $=$ Intercept $=\$ 1,875$
The solution using the formulas in the text is:
$\mathrm{n}=8$
$\operatorname{sumX}=309$
sumY $=\$ 27,214$
sumXY $=\$ 1,062,203$
sumX2 $=12,215$
$\mathrm{b}=[\mathrm{n}($ sumXY $)-(\operatorname{sumX})(\operatorname{sum} Y))] /\left[\mathrm{n}\left(\operatorname{sumX} \mathrm{X}^{\wedge} 2\right)-(\operatorname{sumX})^{\wedge} 2\right]$
$=[8(\$ 1,062,203)-(309)(\$ 27,214))] /\left[8(12,215)-(309)^{\wedge} 2\right]$
$=\$ 39.53$
$\mathrm{a}=[($ sumY $)-\mathrm{b}($ sumX $)] / \mathrm{n}$
$=[(\$ 27,214)-\$ 39.53(309)] / 8$
$=\$ 1,875$
Any difference in the solutions is due to rounding errors when the formulas are used.

Chapter 02 - Appendix A Least-Squares Regression Computations

AACSB: Analytic
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Application
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Hard
19. Below are cost and activity data for a particular cost over the last four periods. Your boss has asked you to analyze this cost so that management will have a better understanding of how this cost changes in response to changes in activity.

	Activity	Cost
Period 1...........	46	$\$ 292$
Period 2 $\ldots \ldots \ldots .$.	40	$\$ 271$
Period 3	42	$\$ 279$
Period 4..........	41	$\$ 267$

Required:

Using the least-squares regression method, estimate the cost formula for this cost.

The solution using Microsoft Excel functions is:
Variable cost $=$ Slope $=\$ 3.94$
Fixed cost $=$ Intercept $=\$ 110.80$
Therefore, the cost formula is $\$ 110.80$ per period plus $\$ 3.94$ per unit of activity or:
$\mathrm{Y}=\$ 110.80+\$ 3.94 \mathrm{X}$

The solution using the formulas in the text is:
$\mathrm{n}=4$
sumX $=169$
$\operatorname{sum} Y=1,109$
$\operatorname{sumXY}=46,937$
$\operatorname{sum} X^{\wedge} 2=7,161$
$\mathrm{b}=[\mathrm{n}($ sumXY $)-($ sumX $)($ sumY $)] /\left[\mathrm{n}\left(\operatorname{sumX} \mathrm{X}^{\wedge} 2\right)-(\text { sumX })^{\wedge} 2\right]$
$=[4(46,937)-(169)(1,109)] /\left[4(7,161)-(169)^{\wedge} 2\right]$
$=\$ 3.94$ (rounded to nearest whole cent)
$a=[(\operatorname{sum} Y)-b(\operatorname{sumX})] / n$
$=[(1,109)-3.94(169)] / 4$
$=\$ 111$ (rounded to nearest whole dollar)
Cost formula: $\mathrm{Y}=\$ 111+\$ 3.94 \mathrm{X}$.
20. Executive Training, Inc., provides a personal development seminar that is popular with many companies. The number of seminars offered over the last five months, along with the total costs of offering these seminars, follows:

	Seminars Offered	Costs Incurred
April	$\mathbf{5 5}$	$\$ 15,400$
May...............	$\mathbf{4 5}$	$\$ 14,000$
June	$\mathbf{6 0}$	$\$ 18,000$
July	$\mathbf{5 0}$	$\$ 14,700$
August.........	$\mathbf{7 5}$	$\$ 19,000$

Required:

a. Using the high-low method, estimate the variable cost per seminar and the total fixed cost per month.
b. Using the least-squares regression method, compute the variable cost per seminar and the total fixed cost per month. (Round off to the nearest whole dollar.)
a. Using the high-low method, estimate the variable cost per seminar and the total fixed cost per month.

	Cost	Activity
High level of activity	$\$ 19,000$	75
Low level of activity	$\mathbf{1 4 , 0 0 0}$	$\mathbf{4 5}$
Difference............................	$\$ 5,000$	30

Variable cost $=$ Change in cost \div Change in activity
$=\$ 5,000 \div 30$ seminars $=\$ 166.67$ per seminar
Fixed cost $=$ Total cost - Variable cost
$=\$ 19,000-(\$ 166.67$ per seminar $\times 75$ seminars $)$
$=\$ 19,000-\$ 12,500$
$=\$ 6,500$
b. Using Microsoft Excel functions, the estimates are:

Variable cost per seminar $=$ Slope $=\$ 177.92$
Total fixed cost per month $=$ Intercept $=\$ 6,078.30$
Using the formulas in the text, the solution is:
$\mathrm{n}=5$
sumX=285
sum $Y=\$ 81,100$
sumXY $=\$ 4,717,000$
$\operatorname{sum} X^{\wedge} 2=16,775$
Least squares formulas:
$\mathrm{b}=[\mathrm{n}(\operatorname{sumXY})-(\operatorname{sumX})($ sumY $)] \div\left[\mathrm{n}\left(\operatorname{sumX} \mathrm{X}^{\wedge} 2\right)-(\operatorname{sumX})^{\wedge} 2\right]$
$=[5(4,717,000)-(285)(81,100)] \div\left[5(16,775)-(285)^{\wedge} 2\right]$
$=\$ 178$ per seminar
$\mathrm{a}=[($ sumY $)-\mathrm{b}($ sumX $)] \div \mathrm{n}$
$=[(81,100)-178(285)] \div 5$
$=\$ 6,074$ per month
The two solutions differ due to rounding error.
21. Galarneau Inc. maintains a call center to take orders, answer questions, and handle complaints. The costs of the call center for a number of recent months are listed below:

	Calls Taken	Call Center Cost
February.............	7,851	$\$ 85,115$
March................	$\mathbf{7 , 8 2 0}$	$\$ 84,934$
April	7,861	$\$ 85,178$
May.....................	$\mathbf{7 , 8 6 0}$	$\$ 85,161$
June	7,825	$\$ 84,965$
July	$\mathbf{7 , 8 3 6}$	$\$ 85,009$
August...............	7,879	$\$ 85,262$
September	$\mathbf{7 , 8 6 6}$	$\$ 85,201$

Management believes that the cost of the call center is a mixed cost that depends on the number of calls taken.

Required:
Estimate the variable cost per call and fixed cost per month using the least-squares regression method.

Using Microsoft Excel functions, the solution is:
Variable cost per call $=$ Slope $=\$ 5.74$
Fixed cost per month $=$ Intercept $=\$ 40,083$

AACSB: Analytic
AICPA BB: Critical Thinking
AICPA FN: Measurement
Bloom's: Application
Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Hard
22. The management of Ferriman Corporation would like to better understand the behavior of the company's warranty costs. Those costs are listed below for a number of recent months:

	Product Returns	Warranty Cost
April	24	$\$ 2,972$
May.....................	23	$\$ 2,928$
June	27	$\$ 3,141$
July	39	$\$ 3,752$
August...............	36	$\$ 3,569$
September	35	$\$ 3,551$
October..............	26	$\$ 3,071$
November	37	$\$ 3,636$

Management believes that warranty cost is a mixed cost that depends on the number of product returns.

Required:

Estimate the variable cost per product return and the fixed cost per month using the leastsquares regression method.

The solution using Microsoft Excel functions is:
Variable cost per product return $=$ Slope $=\$ 51.08$
Fixed cost per month $=$ Intercept $=\$ 1,750$
The solution using the formulas in the text is:
$\mathrm{n}=8$
sumX $=247$
sumY $=\$ 26,620$
sumXY $=\$ 836,954$
$\operatorname{sumX} 2=7,921$
$\mathrm{b}=[\mathrm{n}(\operatorname{sumXY})-(\operatorname{sumX})(\operatorname{sum} \mathrm{Y}))] /\left[\mathrm{n}\left(\operatorname{sumX} \mathrm{X}^{\wedge} 2\right)-(\operatorname{sumX})^{\wedge} 2\right]$
$=[8(\$ 836,954)-(247)(\$ 26,620))] /\left[8(7,921)-(247)^{\wedge} 2\right]$
$=\$ 51.08$
$\mathrm{a}=[($ sumY $)-\mathrm{b}($ sumX $)] / \mathrm{n}$
$=[(\$ 26,620)-\$ 51.08(247)] / 8=\$ 1,750$

[^0]: AACSB: Reflective Thinking
 AICPA BB: Critical Thinking
 AICPA FN: Measurement
 Bloom's: Knowledge
 Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
 Level: Hard

[^1]: AACSB: Analytic
 AICPA BB: Critical Thinking
 AICPA FN: Measurement
 Bloom's: Application
 Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Medium

[^2]: AACSB: Analytic
 AICPA BB: Critical Thinking
 AICPA FN: Measurement
 Bloom's: Application
 Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Hard

[^3]: AACSB: Analytic
 AICPA BB: Critical Thinking
 AICPA FN: Measurement
 Bloom's: Application
 Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method
 Level: Medium

