CHAPTER 3

Process Costing

ASSIGNMENT CLASSIFICATION TABLE

Learn	ing Objectives	Questions	Brief Exercises	Do It!	Exercises	A Problems	B Problems
	Understand who uses process cost systems.	1,2,20		1	1		
	Explain the similarities and differences between job order cost and process cost systems.	$2,3,4,5$		1	1		
	Explain the flow of costs in a process cost system.	6			3	1A	1B
	Make the journal entries to assign manufacturing costs in a process cost system.	6, 7	1,2,3	2	2, 4	1A	1B
5.	Compute equivalent units.	$\begin{aligned} & 10,11 \\ & 12,13 \end{aligned}$	4, 9	3	$\begin{aligned} & 3,5,6,7,8 \\ & 9,10,11,13 \\ & 14,15 \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}, \\ & 5 \mathrm{~A}, 6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 2B, 3B, 4B, } \\ & 5 \mathrm{~B}, 6 \mathrm{~B} \end{aligned}$
	Explain the four steps necessary to prepare a production cost report.	$\begin{aligned} & 8,9,14 \\ & 15,18 \end{aligned}$	5, 6, 7, 8	4	$\begin{aligned} & 3,5,6,7,8,9 \\ & 10,11,13,14 \\ & 15,16,17 \\ & 18,19 \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A}, 3 \mathrm{~A} \\ & 4 \mathrm{~A}, 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~B}, 3 \mathrm{~B} \\ & 4 \mathrm{~B}, 5 \mathrm{~B} \end{aligned}$
	Prepare a production cost report.	16, 17, 19	11	4	7, 12, 13	$\begin{aligned} & 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}, \\ & 5 \mathrm{~A}, 6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 2B, 3B, 4B, } \\ & 5 \mathrm{~B}, 6 \mathrm{~B} \end{aligned}$
	Compute equivalent units using the FIFO method.	21, 22	10, 11, 12		$\begin{aligned} & 16,17,18, \\ & 19,20 \end{aligned}$	7A	7B

*Note: All asterisked Questions, Exercises, and Problems relate to material contained in the appendix to the chapter.

ASSIGNMENT CHARACTERISTICS TABLE

Problem Number	Description	Difficulty Level	Time Allotted (min.)
1A	Journalize transactions.	Moderate	20-30
2A	Complete four steps necessary to prepare a production cost report.	Simple	30-40
3A	Complete four steps necessary to prepare a production cost report.	Simple	30-40
4A	Assign costs and prepare production cost report.	Moderate	20-30
5A	Determine equivalent units and unit costs and assign costs.	Moderate	20-30
6A	Compute equivalent units and complete production cost report.	Moderate	15-25
*7A	Determine equivalent units and unit costs and assign costs for processes; prepare production cost report.	Moderate	30-40
1B	Journalize transactions.	Moderate	20-30
2B	Complete four steps necessary to prepare a production cost report.	Simple	30-40
3B	Complete four steps necessary to prepare a production cost report.	Simple	30-40
4B	Assign costs and prepare production cost report.	Moderate	20-30
5B	Determine equivalent units and unit costs and assign costs.	Moderate	20-30
6B	Compute equivalent units and complete production cost report.	Moderate	15-25
*7B	Determine equivalent units and unit costs and assign costs for processes; prepare production cost report.	Moderate	30-40

Correlation Chart between Bloom's Taxonomy, Learning Objectives and End-of-Chapter Exercises and Problems

Learning Objective	Knowledge	Comprehension	Application			Analysis	Synthesis	Evaluation
1. Understand who uses process cost systems.	$\begin{array}{l\|} \hline \text { Q3-1 } \\ \text { Q3-2 } \end{array}$	$\begin{array}{ll} \hline \text { E3-1 } & \text { DI3-1 } \\ \text { Q3-20 } & \\ \hline \end{array}$						
2. Explain the similarities and differences between job order cost and process cost systems.	$\begin{array}{\|l\|} \hline \text { Q3-2 } \\ \text { Q3-3 } \end{array}$	Q3-4 DI3-1 Q3-5 E3-1						
3. Explain the flow of costs in a process cost system.	Q3-6		$\begin{array}{\|l\|} \hline E 3-3 \\ \text { P3-1A } \end{array}$		P3-1B	$\begin{array}{\|l\|l\|} \hline \text { P3-1A } \\ \text { P3-1B } \end{array}$		
4. Make the journal entries to assign manufacturing costs in a process cost system.	Q3-6		$\begin{aligned} & \text { Q3-7 } \\ & \text { BE3-1 } \\ & \text { BE3-2 } \end{aligned}$	$\begin{aligned} & \text { BE3-3 } \\ & \text { DI3-2 } \\ & \text { E3-2 } \end{aligned}$	$\begin{aligned} & \text { E3-4 } \\ & \text { P3-1A } \\ & \text { P3-1B } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { P3-1A } \\ \text { P3-1B } \end{array}$		
5. Compute equivalent units.	$\begin{aligned} & \text { Q3-10 } \\ & \text { Q3-11 } \end{aligned}$		Q3-12 Q3-13 BE3-4 BE3-9 D13-3 E3-3 E3-5 E3-6 E3-7 E3-8	E3-9 E3-10 E3-11 E3-13 E3-14 E3-15 P3-2A P3-3A P3-4A	$\begin{aligned} & \text { P3-5A } \\ & \text { P3-6A } \\ & \text { P3-2B } \\ & \text { P3-3B } \\ & \text { P3-4B } \\ & \text { P3-5B } \\ & \text { P3-6B } \end{aligned}$	$\begin{aligned} & \text { P3-2A } \\ & \text { P3-3A } \\ & \text { P3-2B } \\ & \text { P3-3B } \end{aligned}$		
6. Explain the four steps necessary to prepare a production cost report.	Q3-8	Q3-9	Q3-14 Q3-15 Q3-18 BE3-5 BE3-6 BE3-7 BE3-8 DI3-4 E3-3 E3-5 E3-6	E3-7 E3-8 E3-9 E3-10 E3-11 E3-13 E3-14 E3-15 E3-16 E3-17	E3-18 E3-19 P3-2A P3-3A P3-4A P3-5A P3-2B P3-3B P3-4B P3-5B	$\begin{aligned} & \text { P3-2A } \\ & \text { P3-3A } \\ & \text { P3-2B } \\ & \text { P3-3B } \end{aligned}$		
7. Prepare a production cost report.	Q3-16 Q3-17 Q3-19		$\begin{array}{\|l\|} \hline \text { BE3-11 } \\ \text { DI3-4 } \\ \text { E3-7 } \\ \text { E3-11 } \\ \text { E3-13 } \end{array}$	$\begin{aligned} & \text { P3-2A } \\ & \text { P3-3A } \\ & \text { P3-4A } \\ & \text { P3-5A } \\ & \text { P3-6A } \end{aligned}$	$\begin{aligned} & \text { P3-2B } \\ & \text { P3-3B } \\ & \text { P3-4B } \\ & \text { P3-5B } \\ & \text { P3-6B } \end{aligned}$			
*8. Compute equivalent units using the FIFO method.			$\begin{aligned} & \text { Q3-21 } \\ & \text { Q3-22 } \\ & \text { BE3-10 } \\ & \text { BE3-11 } \end{aligned}$	$\begin{aligned} & \text { BE3-12 } \\ & \text { E3-16 } \\ & \text { E3-17 } \\ & \text { E3-18 } \end{aligned}$	$\begin{aligned} & \text { E3-19 } \\ & \text { E3-20 } \\ & \text { P3-7A } \\ & \text { P3-7B } \end{aligned}$			
Broadening Your Perspective		BYP3-4	BYP3-1			$\begin{aligned} & \text { BYP3-2 } \\ & \text { BYP3-3 } \\ & \text { BYP3-7 } \end{aligned}$	BYP3-5	BYP3-6

ANSWERS TO QUESTIONS

1. (a) Process cost.
(b) Process cost.
(c) Job order.
(d) Job order.
2. The primary focus of job order cost accounting is on the individual job. In process cost accounting, the primary focus is on the processes involved in producing homogeneous products.
3. The similarities are: (1) all three manufacturing cost elements-direct materials, direct labor, and overhead-are the same; (2) the accumulation of the costs of materials, labor, and overhead is the same; and (3) the flow of costs is the same.
4. The features of process cost accounting are: (1) separate work in process accounts for each process, (2) production cost reports, (3) product costs computed for each accounting period, and (4) unit costs computed based on total manufacturing costs.
5. Sam is correct. The flow of costs is the same in process cost accounting as in job order cost accounting. The method of assigning costs, however, is significantly different.
6. (a) (1) Materials are charged to production on the basis of materials requisition slips.
(2) Labor is usually charged to production on the basis of the payroll register or departmental payroll summaries.
(b) The criterion used in assigning overhead to processes is to identify the activity that "drives" or causes the cost. In many companies this activity is machine time, not direct labor.
7. The entry to assign overhead to production is:

July 31	Work in Process-Machining	15,000	
	Work in Process-Assembly .	12,000	
	Manufacturing Overhead		27,000

8. To prepare a production cost report, four steps are followed: (a) compute the physical unit flow, (b) compute equivalent units of production, (c) compute unit production costs, and (d) prepare a cost reconciliation schedule.
9. Physical units to be accounted for consist of units in process at the beginning of the period plus units started (or transferred) into production during the period. Units accounted for consist of units completed and transferred out during the period plus units in process at the end of the period.
10. Equivalent units of production measure the work done during the period, expressed in fully completed units.
11. Equivalent units of production are the sum of: (1) units completed and transferred out and (2) equivalent units of ending work in process.
12. Units started into production were 9,600 , or $(9,000+600)$.
13.

Equivalent Units

	$\frac{\text { Materials }}{12,000}$	$\frac{\text { Conversion Costs }}{12,000}$
Units transferred out		
Work in process		500
$500 \times 100 \%$	$\underline{12,500}$	$\underline{12,100}$
$500 \times 20 \%$	$\underline{1200}$	

14. Units transferred out were 3,200*

Units to be accounted for
Work in process (beginning) 500
Started into production $\frac{3,000}{\underline{3,500}}$
Total units $\underline{\underline{3,500}}$
Units accounted for
Completed and transferred out 3,200*
Work in process (ending) $\quad 300$
Total units $\underline{\underline{3,500}}$
*3,500-300
15. (a) The cost of the units transferred out is $\$ 112,000$, or $(14,000 \times \$ 8)$.
(b) The cost of the units in ending inventory is $\$ 8,500$, or $[(2,000 \times \$ 3)+(500 \times \$ 5)]$.
16. (a) Ann is incorrect. The report is an internal report for management.
(b) There are four sections in a production cost report: (1) number of physical units, (2) equivalent units determination, (3) unit costs, and (4) cost reconciliation schedule.
17. The production cost report provides the basis for evaluating: (1) the productivity of a department, (2) whether unit and total costs are reasonable, and (3) whether current performance is meeting planned objectives.
18. The per unit conversion cost is $\$ 11.25$. [Conversion costs $=\$ 6,000-\$ 2,400=\$ 3,600$. Equivalent units for conversion costs are 320 ($800 \times 40 \%$); $\$ 3,600 \div 320=\$ 11.25$.]
19. Operations costing is similar to process costing in that standardized methods are used to manufacture the product. At the same time, the product may have some customized individual features that require the use of a job order cost system.
20. In deciding which system to use, a cost-benefit tradeoff occurs. In a job order system, detailed information related to the cost of the product is involved. The cost of implementing this system is often expensive. In a process cost system, an average cost of the product will suffice and therefore the cost to implement is less. In summary, the cost of implementing the system must be balanced against the benefits provided from the additional information.
*21. Units transferred out were 2,800 (2,000 + 800).
*22. (a) The cost of the units transferred out is $\$ 120,000(12,000 \times \$ 10)$.
(b) The cost of the units in ending inventory is $\$ 9,500[(2,000 \times \$ 3)+(500 \times \$ 7)]$.

SOLUTIONS TO BRIEF EXERCISES

BRIEF EXERCISE 3-1

Mar. 31 Raw Materials Inventory 45,000Accounts Payable
\qquad45,000
31 Factory Labor 60,000
Wages Payable

\qquad 60,000
BRIEF EXERCISE 3-2
Mar. 31 Work in Process-Assembly Department 24,000
Work in Process-Finishing Department 21,000Raw Materials Inventory
\qquad45,000
31 Work in Process-Assembly Department 35,000
Work in Process-Finishing Department 25,000
Factory Labor
\qquad60,000
BRIEF EXERCISE 3-3Mar. 31 Work in Process—Assembly Department(\$35,000 X 200\%) .. 70,000Work in Process-Finishing Department(\$25,000 X 200\%)50,000
Manufacturing Overhead 120,000

BRIEF EXERCISE 3-4

	Materials		Conversion Costs
January			$35,000\left(35,000+10,000\left(35,000+4,000^{a}\right)\right.$
March			$46,000\left(40,000+6,000^{b}\right)$
July	$61,000(40,000+8,000)$		$45,000+16,000)$
		$49,000\left(45,000+4,000^{c}\right)$	

a. $10,000 \times 40 \%$
b. $8,000 \times 75 \%$
c. $16,000 \times 25 \%$

BRIEF EXERCISE 3-5

Total materials costs \$36,000	\div	Equivalent units of materials 10,000	=	Unit materials cost \$3.60
Total conversion costs \$54,000	\div	Equivalent units of conversion costs $12,000$	=	Unit conversion cost $\$ 4.50$
Unit materials cost \$3.60	+	Unit conversion cost $\$ 4.50$	=	Total manufacturing cost per unit \$8.10

BRIEF EXERCISE 3-6

Assignment of Costs	Equivalent Units	Unit Cost		
Transferred out				
Transferred out	40,000	\$11		\$440,000
Work in process, 4/30				
Materials	5,000	\$ 4	\$20,000	
Conversion costs	2,000	\$ 7	14,000	34,000
Total costs				\$474,000

BRIEF EXERCISE 3-7

Total materials costs \$16,000	\div	Equivalent units of materials 20,000	=	Unit materials cost $\$.80$
$\begin{gathered} \text { Total conversion } \\ \text { costs* } \\ \$ 47,500 \end{gathered}$	\div	Equivalent units of conversion costs 19,000	=	Unit conversion cost $\$ 2.50$

*\$29,500 + \$18,000

Work in process
Materials
Conversion costs
Total costs
(2,000 X \$.80) $\quad \$ 1,600$
(1,000* X \$2.50) $\underline{\underline{2,500}}$

4,100
\$63,500
*2,000 X 50\%

BRIEF EXERCISE 3-9

	(a) Materials	(b) Conversion Costs
Units transferred out	8,000	8,000
Work in process, November 30		
Materials (7,000 X 100\%)	7,000	
Conversion costs (7,000 $\times 40 \%$)		2,800
Total equivalent units	$\underline{\underline{15,000}}$	10,800

*BRIEF EXERCISE 3-10

Costs to Be Assigned		Equivalent Assignment of Costs	Units	Unit Cost	

\$594,000
Work in process, 3/31

Materials	5,000	$\$ 6$	$\$ 30,000$	
Conversion costs	2,000	$\$ 12$	$\underline{24,000}$	$\underline{54,000}$
				$\underline{\underline{\$ 594,000}}$

Equivalent Units

Materials | Conversion |
| :---: |
| Costs |

Units accounted for
Completed and transferred out
Work in process, March 1
Started and completed
Work in process, March 31
Total units

$-0-$	$-0-$
30,000	30,000
5,000	$\underline{2,000}$
$\underline{\underline{35,000}}$	$\underline{\underline{32,000}}$

SANDERSON COMPANY
(Partial) Production Cost Report
For the Month Ended March 31

COSTS

Unit costs

Total costs (a)
Equivalent units (b)
Unit costs (a) $\div(b)$
Costs to be accounted for
In process, March 1

Materials	Conversion Costs	Total
\$210,000*	\$384,000**	\$594,000
35,000	32,000	
\$ 6	\$ 12	\$ 18

Costs in March
Total costs
594,000
\$594,000
Costs accounted for
Transferred out
In process, March 1
Started and completed (30,000 units X \$18)
In process, March 31
Materials (5,000 X \$6)
Conversion costs
(2,000 X \$12)
Total costs
\$
0
540,000
\$ 30,000
24,000

54,000
\$594,000
*35,000 equivalent units $\mathbf{X} \$ 6$ per unit **32,000 equivalent units $X \$ 12$ per unit

Total materials			
costs	\div	Equivalent units	
$\$ 75,000^{1}$	of materials	20,000	Unit materials
cost			
$\$$		$\$ 3.75$	

¹ \$8,000 + \$67,000 = \$75,000

Total conversion				
costs	\div	Equivalent units		
$\$ 38,000^{2}$			$\quad 19,000 \quad$	Unit conversion
:---:				
cost				

${ }^{2}$ \$20,000 + \$18,000
SOLUTIONS FOR DO IT! REVIEW EXERCISES
DO IT! 3-1

1. False
2. False
3. True
4. False
DO IT! 3-2
Work in Process-Mixing 10,000
Work in Process-Packaging 28,000
Raw Materials Inventory 38,000(To record materials used)
Work in Process-Mixing 8,000
Work in Process-Packaging 36,000Factory Labor44,000
(To assign factory labor to production)
Work in Process-Mixing 12,000
Work in Process-Packaging 54,000
Manufacturing Overhead 66,000
(To assign overhead to production)
Work in Process-Packaging 21,000Work in Process-Mixing21,000(To record transfer of units to the PackagingDepartment)
Finished Goods Inventory 106,000Work in Process-Packaging106,000(To record transfer of units to finished goods)
DO IT! 3-3
(a) Since materials are entered at the beginning of the process, the equivalent units of ending work in process are 12,000 .

20,000 units $\boldsymbol{+ 1 2 , 0 0 0}$ units $=\mathbf{3 2 , 0 0 0}$ equivalent units of production for materials.
(b) Since ending work in process is only 70% complete as to conversion costs, the equivalent units of ending work in process for conversion costs are 8,400 (70% X 12,000 units).

20,000 units $+8,400$ units $=28,400$ equivalent units of production for conversion costs.

DO IT! 3-4

(a) $\mathbf{0}$ (Work in process, March 1) $\mathbf{+ 2 6 , 0 0 0 * ~ (S t a r t e d ~ i n t o ~ p r o d u c t i o n) ~} \mathbf{= 2 6 , 0 0 0}$ *22,000 + 4,000
(b) Equivalent units of production:

	Materials	Conversion
Units transferred out.	22,000	22,000
Work in process, March 31	4,000	1,600 (4,000 X 40\%)
Total.............................	$\underline{\underline{26,000}}$	$\underline{\underline{23,600}}$

DO IT! 3-4 (Continued)

(c) Cost reconciliation schedule Costs accounted for

Transferred out (22,000 X \$18) \$396,000
Work in process, March 31
Materials (4,000 X \$10) \$40,000
Conversion costs (1,600 X \$8) 12,800
52,800
Total costs
\$448,800

SOLUTIONS TO EXERCISES

EXERCISE 3-1

1. True.
2. True.
3. False. Companies that produce soft drinks and computer chips would use process cost accounting.
4. False. In a job order cost system, costs are tracked by individual jobs.
5. False. Job order costing and process costing track the same three manufacturing cost elements.
6. True.
7. True.
8. False. In a process cost system, multiple work in process accounts are used.
9. False. In a process cost system, costs are summarized in a production cost report for each department.
10. True.

EXERCISE 3-2

30 Work in Process-Cooking 8,500
Work in Process—Canning 7,000
Factory Labor
15,500
30 Work in Process-Cooking 31,500
Work in Process-Canning 25,800
Manufacturing Overhead
57,300
30 Work in Process—Canning 53,000
Work in Process-Cooking
53,000
(a) Work in process, May 1 400 Started into production Total units to be accounted for Less: Transferred out Work in process, May 31

1,400 1,800
1,500
$\underline{ }$
(b) and (c)

Units transferred out
Work in process, May 31
$300 \times 100 \%$
$300 \times 40 \%$

Work in process, May 1
Costs added
Total costs
Equivalent units
Unit costs
*\$2,740 + \$1,380
(d) Transferred out (1,500 X \$7.50)
(e) Work in process

Materials ($300 \times \$ 4.00$) $\$ 1,200$
Conversion costs (120 X \$3.50)
\$11,250

420
\$1,620

EXERCISE 3-4

1. Raw Materials Inventory 62,500
Accounts Payable 62,500
2. Factory Labor 60,000Wages Payable..60,000
3. Manufacturing Overhead 70,000Cash40,000
Accounts Payable 30,000
4. Work in Process-Cutting 15,700
Work in Process—Assembly 8,900Raw Materials Inventory
33,000
5. Work in Process-Cutting
27,000
Work in Process—AssemblyFactory Labor
\qquad60,000
6. Work in Process-Cutting ($1,680 \times \$ 18$) 30,240
Work in Process—Assembly (1,720 X \$18) 30,960
Manufacturing Overhead
67,600
7. Work in Process-Assembly
.............................. 67,600
Work in Process-Cutting134,9008. Finished Goods Inventory.Work in Process-Assembly.134,900
8. Cost of Goods Sold 150,000Finished Goods Inventory150,000
Accounts Receivable 200,000
Sales Revenue 200,000
(a)

Units to be accounted for
Beginning work in process Started into production Total units

January
May

Units accounted for

Transferred out	$\mathbf{9 , 0 0 0}$	$\mathbf{1 6 , 0 0 0}$
Ending work in process	$\underline{2,000}$	$\underline{\mathbf{7 , 0 0 0}}$
Total units	$\underline{\underline{11,000}}$	$\underline{\underline{23,000}}$

EXERCISE 3-6

(a)
(b)

January March
May
July
January
March
May
July

0
11,000
$\underline{11,000}$

0
23,000
$\underline{\underline{23,000}}$

16,000
$\mathbf{7 , 0 0 0}$
$\underline{\underline{23,000}}$
(1)

Materials
$11,000(9,000+2,000)$
$15,000(12,000+3,000)$
$23,000(16,000+7,000)$
$11,500(10,000+1,500)$

(1)
$11,000(9,000+2,000)$
$23,000(16,000+7,000)$
$11,500(10,000+1,500)$

(2) | Conversion Costs |
| :--- |
| $10,200(9,000+1,200)$ |
| $12,900(12,000+900)$ |
| $21,600(16,000+5,600)$ |
| $10,600(10,000+600)$ |

(2) | Conversion Costs |
| :--- |
| $10,200(9,000+1,200)$ |
| $12,900(12,000+900)$ |
| $21,600(16,000+5,600)$ |
| $10,600(10,000+600)$ |

(2) | Conversion Costs |
| :--- |
| $10,200(9,000+1,200)$ |
| $12,900(12,000+900)$ |
| $21,600(16,000+5,600)$ |
| $10,600(10,000+600)$ |

(2) | Conversion Costs |
| :--- |
| $10,200(9,000+1,200)$ |
| $12,900(12,000+900)$ |
| $21,600(16,000+5,600)$ |
| $10,600(10,000+600)$ |

(2) | Conversion Costs |
| :--- |
| $10,200(9,000+1,200)$ |
| $12,900(12,000+900)$ |
| $21,600(16,000+5,600)$ |
| $10,600(10,000+600)$ |

RICHARDS FURNITURE COMPANY
 Sanding Department
 Production Cost Report
 For the Month Ended March 31, 2014

Quantities	Physical Units	Equivalent Units		
		Materials	Conversion Costs	
Units to be accounted for				
Work in process, March 1	0			
Started into production	12,000			
Total units	$\underline{\underline{12,000}}$			
Units accounted for				
Transferred out	9,000	9,000	9,000	
Work in process, March 31	3,000	3,000	600	(3,000 X 20\%)
Total units	$\underline{\underline{12,000}}$	$\underline{\underline{12,000}}$	$\underline{\underline{9,600}}$	
Costs		Materials	Conversion Costs	Total
Unit costs				
Total cost		\$33,000	\$60,000*	\$93,000
Equivalent units		12,000	9,600	
Unit costs (a) \div (b)		\$2.75	\$6.25	\$9.00
Costs to be accounted for				
Work in process, March 1				\$ 0
Started into production				93,000
Total costs				\$93,000
Cost Reconciliation Schedule				
Costs accounted for				
Transferred out (9,000 X \$9.00)				\$81,000
Work in process, March 31				
Materials (3,000 X \$2.75)			\$8,250	
Conversion costs (600 X \$6.25)			3,750	12,000
Total costs				\$93,000
*\$24,000 + \$36,000				

(a)

	Materials	
Conversion Costs		
Units transferred out Work in process, April 30 $1,000 \times 10,000$ $1,000 \times 40 \%$		17,000
	$\underline{1,000}$	
18,000	$\underline{17,400}$	

(b)

Total cost
Equivalent units
Unit costs
${ }^{(1)}$ \$100,000 + \$800,000
${ }^{(2)}$ \$ 70,000 + \$365,000
(c) Transferred out ($17,000 \times \$ 75$)

Work in process
Materials (1,000 X \$50)
Conversion costs (400 X \$25)
Total costs
(1)
(2)

Conversion Costs 17,000 $\underline{\underline{17,400}}$

Conversion

Materials
$\$ 900,000^{(1)}$ 18,000 $\$ \quad 50$

Costs
$\underline{\$ 435,000^{(2)}}$
$\underline{17,400}$
$\underline{25}$

Total
$\$ 1,335,000$
$\$ \quad 75$

\$1,275,000
\$50,000
10,000

60,000
\$1,335,000

EXERCISE 3-9
(a) Materials: $34,000 *+6,000=\underline{\underline{40,000}}$

Conversion costs: $34,000^{*}+(6,000 \times 40 \%)=\underline{\underline{36,400}}$
*40,000-6,000
(b) Materials: $\$ 72,000 / 40,000=\$ 1.80$

Conversion costs: $(\$ 81,000+\$ 101,000) / 36,400=\$ 5.00$
(c) Transferred out: $34,000 \times \$ 6.80=\underline{\underline{\$ 231,200}}$

Ending work in process:
Materials $(6,000 \times \$ 1.80)=\$ \$ 10,800$
Conversion costs $(2,400 \times \$ 5.00)=\quad 12,000$
Total
$\underline{\underline{\$ 22,800}}$
(a)

Physical
Beginning work in process
Units started into production

Units transferred out Ending work in process
(b)

Costs incurred
Equivalent units
Unit costs

Materials
$\underline{\$ 101,200}$
$\underline{\underline{184,000}}$
$\underline{\underline{\$ 0.55}}$

Conversion

Units
20,000
164,000
$\underline{184,000}$

164,000
$\underline{\underline{184,000}}$

Conversion	
Materials	$\underline{\text { Costs }}$
160,000	160,000
$\underline{24,000}$	$\underline{14,400}(60 \% \times 24,000)$
$\underline{\underline{184,000}}$	$\underline{\underline{174,400}}$

Equivalent Units

160,000
24,000
$\underline{\underline{184,000}}$
version Materials Costs 160,000 160,000 $24,000 \quad 14,400(60 \% \times 24,000)$ $\underline{\underline{184,000}} \underline{\underline{174,400}}$

$\frac{\text { Costs }}{\text { C348,800 }}$	$\underline{\underline{\text { Total }}}$
$\underline{\underline{\text { 174,400 }}}$	$\underline{\underline{\$ 2.00}}$

\$2.55
(c) Assignment of costs:

Transferred out (160,000 X \$2.55) \$408,000
Ending work in process
Materials (24,000 X \$.55)
Conversion costs (14,400 X \$2.00)

$$
28,800
$$

$$
42,000
$$

Total costs

$$
\$ 13,200
$$

\$450,000

EXERCISE 3-11
(a)

Physical Units
1,600
$\underline{38,400}$
$\underline{\underline{40,000}}$
35,000
$\underline{5,000}$
$\underline{40,000}$

EXERCISE 3-11 (Continued)

Units transferred out
Work in process
5,000 X 100\%
5,000 X 10\%
(b)

Work in process, September 1
Direct materials
Materials
\$ 20,000
Costs added to production during September
Total materials cost

Equivalent Units

$\frac{\text { Materials }}{35,000}$	Conversion Costs
5	35,000
$\underline{\underline{40,000}}$	$\underline{\underline{35,500}}$

$\$ 197,200 \div 40,000=\$ 4.93$ (Materials cost per unit)
Conversion Costs
Work in process, September 1
Conversion costs \$43,180
Costs added to production during September

Conversion costs
(\$125,680 + \$257,140) 382,820
Total conversion costs
\$426,000
$\$ 426,000 \div 35,500=\$ 12.00$ (Conversion cost per unit)
(c) Costs accounted for

Transferred out (35,000 X \$16.93)
\$592,550
Work in process, September 30
Materials (5,000 X \$4.93) \$24,650
Conversion costs (500 X \$12.00)
Total costs

To: David Skaros

From: Student

Re: Ending inventory
The reason for any confusion related to your department's ending inventory quantity stems from the fact that the quantity can be measured in two different ways, depending on what the information is used for.

The ending inventory quantity can be measured in physical units or equivalent units. Physical units are actual units present without regard to the stage of completion. Your department's ending inventory in physical units is at least double the amount reported as equivalent units.

Equivalent units measure the work done on the physical units, expressed in terms of fully completed units. Therefore, if your ending inventory contains 4,000 units which are 50% complete, that is equivalent to having 2,000 completed units at month end. Therefore, the ending inventory could be expressed as containing 4,000 physical units or 2,000 equivalent units.

I hope this clears up any misunderstandings. Please contact me if you have any further questions.

THORPE COMPANY
 Welding Department
 Production Cost Report
 For the Month Ended February 28, 2014

Quantities	Physical Units	Equivalent Units		
		Materials	Conversion Costs	
	(Step 1)	(Step 2)		
Units to be accounted for				
Work in process, February 1	15,000			
Started into production	45,000			
Total units	$\underline{\underline{60,000}}$			
Units accounted for				
Transferred out	49,000	49,000	49,000	
Work in process, February 28	11,000	11,000	2,200	(11,000 X 20\%)
Total units	$\underline{\underline{60,000}}$	$\underline{\underline{60,000}}$	$\underline{\underline{51,200}}$	
Costs		Materials	Conversion Costs	Total
Unit costs (Step 3)				
Total cost	(a)	\$198,000 ${ }^{(1)}$	\$128,000 ${ }^{(2)}$	\$326,000
Equivalent units	(b)	$\underline{\underline{60,000}}$	51,200	
Unit costs (a) \div (b)		\$3.30	\$2.50	\$5.80
Costs to be accounted for				
Work in process, February 1				\$ 32,175
Started into production				293,825
Total costs				\$326,000
Cost Reconciliation Schedule (Step 4)				
Costs accounted for				
Transferred out (49,000 X \$5.80)				\$284,200
Work in process, February 28				
Materials (11,000 X \$3.30)			\$36,300	
Conversion costs (2,200 X \$2.50)			5,500	41,800
Total costs				\$326,000

${ }^{(1)} \$ 18,000+\$ 180,000$
${ }^{(2)} \$ 14,175+\$ 52,380+\$ 61,445$

EXERCISE 3-14

(a) Containers in transit, April 1 0
Containers loaded 1,200
Total containers 1,200
Containers off-loaded 850
Containers in transit, April 30Total containers3501,200
(b)
Containers off-loaded
Containers in transit, April 30
Total equivalent units
*350 x 40\% = 140** $350 \times 20 \%=70$
EXERCISE 3-15

(a)	Materials	Conversion Costs
Applications transferred out	800	800
Work in process, September 30	200*	120**
Equivalent units	$\underline{1,000}$	$\underline{\underline{920}}$

*100 + 900-800 = 200
**200 X 60\% = 120
(b)

Materials: $\$ 5,500 \div 1,000=\$ 5.50$
Conversion costs: $\$ 25,300 * \div 920=\$ 27.50$
Costs accounted for:
Transferred out (800 X \$33.00) \$26,400
Work in process, September 30
Materials (200 X \$5.50)
Conversion costs (120 X \$27.50)
Total costs
$\$ 1,100$

3,300 \quad| $\mathbf{4 , 4 0 0}$ |
| ---: |

*(\$3,960 + \$12,000 + \$9,340)

(a)	Physical Units	Equivalent Units	
		Materials	Conversion Costs
Applications completed:			
Work in process, September 1	100	0	60
Started and completed	700	700	700
Work in process, September 30	200	200	120
Total units	$\underline{\underline{1,000}}$	$\underline{\underline{900}}$	$\underline{\underline{880}}$
(b)			

Materials: $\$ 4,500 \div 900=\$ 5.00$
Conversion costs: $\$ 21,340^{*} \div 880=\$ 24.25$
*(\$12,000 + \$9,340)
Costs accounted for:
Applications completed:
Work in process, September $1 \quad \$ 4,960$
Conversion costs ($60 \times \$ 24.25$) 1,455
Started and completed (700x \$29.25) 20,475 \$26,890
Work in process, September 30:
Materials (200 x \$5.00) 1,000
Conversion costs (120 x \$24.25)
Total costs
2,910 3,910
\$30,800 ${ }^{*}$

[^0]
*EXERCISE 3-17

(a) (1) Materials:
$\left.\begin{array}{llllll}\text { Production Data } & & \begin{array}{c}\text { Physical } \\ \text { Units }\end{array} & & \begin{array}{c}\text { Materials Added } \\ \text { This Period }\end{array} & \end{array} \begin{array}{c}\text { Equivalent } \\ \text { Units }\end{array}\right]$
(2) Conversion Costs:
$\left.\begin{array}{lccccc}\text { Production Data } & & \begin{array}{c}\text { Physical } \\ \text { Units }\end{array} & & \begin{array}{c}\text { Work Added } \\ \text { This Period }\end{array} & \end{array} \begin{array}{c}\text { Equivalent } \\ \text { Units }\end{array}\right]$
(b) Unit costs are:

Materials

$$
\begin{aligned}
& \$ 45,000 \div 10,000=\$ 4.50 \\
& \$ 30,800^{*} \div 8,800=\underline{3.50} \\
& \underline{\underline{\$ 8.00}}
\end{aligned}
$$

Conversion costs Total
*\$14,700 + \$16,100

Costs to Be Assigned	Assignment of Costs	Equivalent Units	Unit Cost		Total Costs Assigned
Total mfg. costs	Transferred out				
	Work in process, August 1	0	\$0	\$ 0	
\$75,800 (1)	Started and completed	8,000	\$8	64,000	\$64,000
	Work in process, August 31				
	Materials	2,000	\$4.50	\$ 9,000	
	Conversion costs	800	\$3.50	2,800	11,800
					\$75,800

(a) (1)

Materials	Physical Units	Materials Added This Period	Equivalent Units
Work in process, September 1	2,000	0\%	0
Started and completed	9,000	100\%	9,000
Work in process,			
September 30	1,000	100\%	1,000
Total	$\underline{12,000}$		$\underline{10,000}$

(2)

Physical Units	Work Added This Period		Equivalent Units
2,000		80%	
9,000	100%		9,600
1,000			
$\underline{\underline{12,000}}$			$\underline{\underline{11,000}}$

(b) Materials

$$
\begin{aligned}
& \$ 60,000 \div 10,000=\$ 6 \\
& \$ 132,000 \div 11,000=\underline{\underline{12}} \underline{\underline{\$ 18}}
\end{aligned}
$$

Conversion costs
(c)

*Work in process, September 1, \$15,200 + materials costs $\mathbf{\$ 6 0 , 0 0 0 ~ + ~ l a b o r ~ a n d ~ o v e r h e a d ~}$ costs $\$ 132,000$.
(a) Work in process, March 1 800
Started into production 1,200
Total units to be accounted for $\quad \underline{2,000}$
Less: Transferred out 1,500
Work in process, March 31 $\underline{\underline{500}}$
(b) Materials:

Production Data	Physical Units	Materials Added This Period	Equivalent Units
Work in process, March 1	800	0	0
Started and completed	700	100\%	700
Work in process, March 31	500	100\%	500
Total	2,000		1,200

Unit cost $=\$ 6,600 \div 1,200=\$ 5.50$.
(c) Conversion costs:

Production Data	Physical Units	Work Added This Period	Equivalent Units
Work in process, March 1	800	70\%	560
Started and completed	700	100\%	700
Work in process, March 31	500	40\%	200
Total	$\underline{\underline{2,000}}$		1,460

Unit cost $=\$ 2,500+\$ 1,150=\$ 3,650 \div 1,460=\$ 2.50$.
(d) In process, March 1... \$3,680

Conversion costs (560 X \$2.50) 1,400
Total cost.
\$5,080
(e) $700 \times(\$ 5.50+\$ 2.50)=\$ 5,600$.
(f) Materials ($500 \times \$ 5.50$) .. $\$ 2,750$

Conversion costs (200 X \$2.50) 500
Total cost of work in process, March 31 $\underline{\underline{\$ 3,250}}$

MAJESTIC COMPANY
Welding Department
Production Cost Report
For the Month Ended February 28, 2014

Quantities	Physical Units	Equivalent Units				
		Materials		Conversion Costs		
	(Step 1)	(Step 2)				
Units to be accounted for						
Work in process, February 1	15,000					
Started into production	64,000					
Total units	$\underline{\underline{79,000}}$					
Units accounted for						
Completed and transferred out						
Work in process, February 1	15,000	0		13,500	(15,0	00 X 90\%)
Started and completed	39,000*	39,000		39,000		
Total	54,000	39,000		52,500		
Work in process, February 28	25,000	25,000		5,000	(25,0	00 X 20\%)
Total units	$\underline{\underline{79,000}}$	$\underline{\underline{64,000}}$		57,500		
*(64,000-25,000)						
Costs		Materials		Conversion Costs		Total
Unit costs (Step 3)						
Costs in February	(a)	\$192,000	(1)	\$103,500	(2)	\$295,500
Equivalent units	(b)	64,000		57,500		
Unit costs (a) $\div(\mathrm{b})$		\$3.00		\$1.80		\$4.80
Costs to be accounted for						
Work in process, February 1						\$ 32,175
Started into production						295,500
Total costs						\$327,675

*EXERCISE 3-20 (Continued)

Cost Reconciliation Schedule
Costs accounted for (Step 4)
Transferred out
Work in process, February 1 \$32,175
Costs to complete beginning
work in process
Conversion costs
(13,500 X \$1.80) 24,300
Total costs \$ 56,475
Units started and completed (39,000 X \$4.80) 187,200
Total costs transferred out\$243,675
Work in process, February 28
Materials (25,000 X \$3.00) 75,000Conversion costs (5,000 X \$1.80) $\quad 9,000 \quad 84,000$Total costs9,000
(1) Cost of materials added $\$ 57,000$ plus costs transferred in $\$ 135,000$.
(2) Labor $\$ 35,100$ plus overhead $\$ 68,400$.

SOLUTIONS TO PROBLEMS

PROBLEM 3-1A

1. Raw Materials Inventory 300,000 Accounts Payable

\qquad 300,000
2. Work in Process-Mixing 210,000
Work in Process-Packaging 45,000
Raw Materials Inventory

\qquad
3. Factory Labor 258,900Wages Payable258,900
4. Work in Process-Mixing 182,500
Work in Process-Packaging 76,400Factory Labor
\qquad258,900
5. Manufacturing Overhead 810,000
Accounts Payable

\qquad 810,000
6. Work in Process-Mixing (28,000 X \$24) 672,000
Work in Process-Packaging (6,000 X \$24) 144,000
Manufacturing Overhead

\qquad 816,000
7. Work in Process-Packaging 979,000
Work in Process-Mixing 979,000
8. Finished Goods Inventory 1,315,000
Work in Process-Packaging 1,315,000Sales Revenue
\qquad

$$
2,500,000
$$

Cost of Goods Sold 1,604,000Finished Goods Inventory, 604,000
2,500,000
9. Accounts Receivable

\qquad

$$
\rightarrow-\infty
$$1,604,000

PROBLEM 3-2A

(a) Physical units

Units to be accounted for
Work in process, June 1
Started into production Total units

22,000
$\underline{\underline{22,000}}$
Units accounted for
Transferred out
20,000
Work in process, June 30
Total units

$$
2,000
$$

$\underline{\underline{22,000}}$
(b) Equivalent units

Units transferred out
$\frac{\text { Materials }}{20,000}$
$\frac{\text { Conversion Costs }}{20,000}$
Work in process, June 30
2,000 X 100\%
2,000 X 40\%
Total equivalent units
(c)

Materials
Conversion costs
Total unit cost

Unit Costs

$\$ 9.00$ ($\$ 198,000 \div 22,000$)
$\$ 8.00$ ($\$ 166,400^{*} \div \mathbf{2 0 , 8 0 0)}$
\$17.00 (\$9.00 + \$8.00)
*\$53,600 + \$112,800
(d) Costs accounted for

Transferred out (20,000 X \$17.00) \$340,000
Work in process, June 30
Materials (2,000 X \$9.00) $\$ 18,000$
Conversion costs (800 X \$8.00) $\quad \mathbf{6 , 4 0 0}$ Total costs
\$364,400

ROSENTHAL COMPANY

Molding Department
Production Cost Report
For the Month Ended June 30, 2014

PROBLEM 3-3A

(a) (1) Physical units

	T12 Tables	C10 Chairs
Units to be accounted for		
Work in process, July 1	0	0
Started into production	19,000	16,000
Total units	19,000	$\underline{\underline{16,000}}$
Units accounted for		
Transferred out	16,000	15,500
Work in process, July 31	3,000	500
Total units	$\underline{\underline{19,000}}$	16,000

(2) Equivalent units

	T12 Tables	
	Materials	Conversion Costs
Units transferred out	16,000	16,000
Work in process, July 31 (3,000 X 100\%)	3,000	
(3,000 X 60\%)		1,800
Total equivalent units	$\underline{\underline{19,000}}$	$\underline{\underline{17,800}}$

C10 Chairs

Materials	Conversion Costs
15,500	15,500
$\underline{500}$	$\underline{\underline{16,000}}$

PROBLEM 3-3A (Continued)

(3) Unit costs

	T12 Tables	C10 Chairs
	\$20	\$18
Conversion costs ($\$ 338,200^{(a)} \div 17,800$)	19	
$\left(\$ 206,700^{(b)} \div 15,900\right)$		13
Total	\$39	$\underline{\underline{\$ 31}}$
(a) \$234,200 + \$104,000		
(b) $\mathbf{1 1 0 , 0 0 0 ~ + ~ \$ 9 6 , 7 0 0 ~}$		

(4)

T12 Tables

Costs accounted for
Transferred out (16,000 X \$39)
Work in process
Materials (3,000 X \$20) \$60,000
Conversion costs (1,800 X \$19)
Total costs
\$624,000

C10 Chairs
Costs accounted for
Transferred out (15,500 X \$31)
Work in process Materials (500 X \$18) Conversion costs (400 X \$13)

Total costs
\$9,000
\$480,500

5,200 14,200
\$494,700

SEAGREN INDUSTRIES INC. Cutting Department-Plant 1

Production Cost Report

For the Month Ended July 31, 2014

	Equivalent Units	
Physical Units	Materials	Conversion Costs

Units to be accounted for Work in process, November 1

35,000
Started into production Total units

660,000
$\underline{\underline{695,000}}$
Units accounted for
Transferred out
Work in process, November 30 Total units

670,000	670,000	670,000
$\underline{25,000}$	$\underline{25,000}$	$\underline{10,000^{*}}$
$\underline{\underline{695,000}}$	$\underline{\underline{695,000}}$	$\underline{\underline{680,000}}$

*25,000 X 40\%

Materials cost Conversion costs
Beginning work in
process
Added during month
Total
Equivalent units
Cost per unit
\$ 79,000
1,589,000
\$1,668,000
$\underline{\underline{695,000}}$
$\$ 2.40$
$\underline{ }$
(b) Costs accounted for

Transferred out (670,000 X \$3.30)
Work in process, November 30
Materials (25,000 X \$2.40)
Conversion costs ($10,000 \times \$.90$)
Total costs
\$ 48,150
563,850
(\$225,920 + \$337,930)
\$612,000
$\underline{\underline{680,000}}$
$\$ \mathbf{\$ 9 0}$

RIVERA COMPANY
Assembly Department
Production Cost Report
For the Month Ended November 30, 2014

Quantities	Physical Units	Equivalent Units			
			Materials	Conversion Costs	
	(Step 1)		(Step 2)		
Units to be accounted for					
Work in process, November 1	35,000				
Started into production	660,000				
Total units	$\underline{\underline{695,000}}$				
Units accounted for					
Transferred out	670,000		670,000	670,000	
Work in process, November 30	25,000		25,000	10,000	(25,000 X 40\%)
Total units	$\underline{\underline{695,000}}$		$\underline{\underline{695,000}}$	$\underline{\underline{680,000}}$	
Costs			Materials	Conversion Costs	Total
Unit costs (Step 3)					
Total cost		(a)	\$1,668,000	\$612,000	\$2,280,000
Equivalent units		(b)	$\underline{\underline{695,000}}$	680,000	
Unit costs (a) $\div(b)$			\$2.40	\$.90	\$3.30
Costs to be accounted for					
Work in process, November 1					\$ 127,150
Started into production					2,152,850
Total costs					\$2,280,000
Cost Reconciliation Schedule (Step 4)					
Costs accounted for					
Transferred out (670,000 X \$3.30)					\$2,211,000
Work in process, November 30					
Materials (25,000 X \$2.40)				\$60,000	
Conversion costs (10,000 X \$.90)				9,000	69,000
Total costs					\$2,280,000

(a) (1)

	Physical Units	Equivalent Units	
		Materials	Conversion Costs
Units to be accounted for			
Work in process, July 1	500		
Started into production	1,250		
Total units	$\underline{\underline{1,750}}$		
Units accounted for			
Transferred out	1,150	1,150	1,150
Work in process, July 31	600	600	240*
Total units	1,750	1,750	$\underline{1,390}$

*600 X 40\%
(2)

Materials cost Conversion costs
Beginning work

in process	\$ 750	\$ 600	
Added during month	2,400	2,875	(\$1,580 + \$1,295)
Total	\$3,150	\$3,475	
Equivalent units	$\underline{1,750}$	$\underline{1,390}$	
Cost per unit	\$1.80	\$2.50	

(3) Costs accounted for

Transferred out (1,150 X \$4.30)
Work in process, July 31
Materials ($600 \times \$ 1.80$)
Conversion costs ($240 \times \$ 2.50$)
Total costs
\$4,945
\$1,080
600
$\frac{1,680}{\$ 6,625}$
\$6,625

MORSE COMPANY

Basketball Department
Production Cost Report
For the Month Ended July 31, 2014

Quantities	Physical Units	Equivalent Units		
		Materials	Conversion Costs	
	(Step 1)	(Step 2)		
Units to be accounted for				
Work in process, July 1	500			
Started into production	1,250			
Total units	$\underline{1,750}$			
Units accounted for				
Transferred out	1,150	1,150	1,150	
Work in process, July 31	600	600	240	
Total units	$\underline{\underline{1,750}}$	$\underline{\underline{1,750}}$	1,390	
Costs		Materials	Conversion Costs	Total
Unit costs (Step 3)				
Costs in July	(a)	\$3,150	\$3,475	\$6,625
Equivalent units	(b)	1,750	1,390	
Unit costs (a) \div (b)		$\underline{\text { \$1.80 }}$	$\underline{\text { \$2.50 }}$	\$4.30
Costs to be accounted for				
Work in process, July 1				\$1,350
Started into production				5,275
Total costs				\$6,625
Cost Reconciliation Schedule (Step 4)				
Costs accounted for				
Transferred out (1,150 X \$4.30)				\$4,945
Work in process, July 31				
Materials (600 X \$1.80)			\$1,080	
Conversion costs (240 X \$2.50)			600	1,680
Total costs				\$6,625

PROBLEM 3-6A

(a) Computation of equivalent units:

	Physical Units	Equivalent Units	
		Materials	Conversion Costs
Units accounted for			
Transferred out	120,000	120,000	120,000
Work in process, October 31 (60\% materials,			
40\% conversion costs)	50,000	30,000	20,000
Total units	$\underline{\underline{170,000}}$	150,000	140,000

Computation of October unit costs
Materials: $\$ 240,000 \div 150,000$ equivalent units $=\quad \$ 1.60$
Conversion cost: $\$ 105,000 \div 140,000$ equivalent units $=$
Total unit cost, October
\$2.35
(b) Cost Reconciliation Schedule

Costs accounted for
Transferred out (120,000 X \$2.35) \$282,000
Work in process, October 31
Materials (30,000 X \$1.60) \$48,000
Conversion costs (20,000 X \$0.75) $\quad 15,000$
Total costs

63,000
\$345,000

(a) Bicycles

(1) Equivalent units-Materials

-	Physical Units		Materials Added This Period	Equivalent Units
Work in process, March 1	200		0\%*	0
Started and completed	950	(1,250-300)	100\%	950
Work in process, March 31	300		100\%	300
Total	$\underline{\underline{1,450}}$			$\underline{\underline{1,250}}$

*All materials are added at the beginning of the production process

Equivalent units-Conversion

Equivalent units	Physical Units		Conversion Added This Period	Equivalent Units
Work in process, March 1	200		20\% (1-.8)	40
Started and completed	950	$(1,250-300)$	100\%	950
Work in process, March 31	300		40\%	120
Total	1,450			1,110

(2) Unit costs

Costs in March (a)
Equivalent units (b)
Unit costs (a) $\div(b)$

Materials		Conversion
	$\$ 50,000$	
		$\$ 55,500^{* *}$
$\$ \quad 40$		

**Direct Labor \$25,500 + Manufacturing Overhead \$30,000

*PROBLEM 3-7A (Continued)

(3) Assignment of costs to units transferred out and in process

Costs to Be Assigned	Assignment of Costs	Equivalent Units	Unit Cost		Total Costs Assigned
Total mfg. costs	Transferred out				
	Work in process, March 1			\$19,280	
\$124,780***	Conversion	40	\$50	2,000	
	Started and completed	950	\$90	85,500	
	Total costs transferred out				\$106,780
	Work in process, March 31				
	Materials	300	\$40	12,000	
	Conversion costs	120	\$50	6,000	18,000
	Total costs				\$124,780

***Work in process, March 1, \$19,280 + Materials \$50,000 + Labor \$25,500 + Overhead \$30,000

Tricycles

(1) Equivalent units-Materials
$\left.\begin{array}{lccc} & \begin{array}{c}\text { Physical } \\ \text { Units }\end{array} & \begin{array}{c}\text { Materials } \\ \text { Added } \\ \text { This Period }\end{array} & \end{array} \begin{array}{c}\text { Equivalent } \\ \text { Units }\end{array}\right]$
*All materials are added at the beginning of the production process

Equivalent units-Conversion

Equivalent unis	Physical Units	Conversion Added This Period	Equivalent Units
Work in process, March 1	100	25\% (1-.75)	25
Started and completed	740 (800-60)	100\%	740
Work in process, March 31	60	25\%	15
Total	$\underline{\underline{900}}$		$\underline{\underline{780}}$

(2) Unit costs

Costs in March (a)
Equivalent units (b)
Unit costs (a) $\div(b)$
Materials

$\$ 30,400$
$\quad 800$
$\$ \quad 38$

**Direct Labor \$15,100 + Manufacturing Overhead \$20,000
(3) Assignment of costs to units transferred out and in process

Costs to Be Assigned	Assignment of Costs	Equivalent Units	Unit Cost		Total Costs Assigned
Total mfg. costs	Transferred out				
	Work in process, March 1			\$ 6,125	
\$71,625***	Conversion	25	\$45	1,125	
	Started and completed	740	\$83	61,420	
	Total costs transferred out				\$68,670
	Work in process, March 31				
	Materials	60	\$38	2,280	
	Conversion costs	15	\$45	675	2,955
	Total costs				\$71,625

***Work in process, March 1, \$6,125 + Materials \$30,400 + Labor \$15,100 + Overhead \$20,000

RONDELI COMPANY
 Production Cost Report-Bicycles For the Month Ended March 31

PROBLEM 3-1B

1. Raw Materials Inventory 25,000
Accounts Payable 25,000
2. Work in Process-Blending 18,930
Work in Process-Packaging 9,140Raw Materials Inventory28,070
3. Factory Labor 25,770Wages Payable25,770
4. Work in Process-Blending 15,320
Work in Process-Packaging 10,450Factory Labor25,770
5. Manufacturing Overhead 36,500
Accounts Payable 36,500
6. Work in Process-Blending ($900 \times \$ 28$) 25,200
Work in Process-Packaging (300 X \$28) 8,400Manufacturing Overhead33,600
7. Work in Process—Packaging 44,940
Work in Process-Blending 44,940
8. Finished Goods Inventory 67,490Work in Process-Packaging67,490
9. Accounts Receivable 90,000Sales Revenue90,000
Cost of Goods Sold 62,000Finished Goods Inventory62,000

PROBLEM 3-2B

(a) Physical units

Units to be accounted for

Work in process, January 1
Started into production Total units

Units accounted for
Transferred out 47,500
Work in process, January 31
Total units

2,500
$\underline{\underline{50,000}}$
0
50,000
$\underline{\underline{50,000}}$
(b) Equivalent units

Units transferred out
Work in process, January 31
2,500 X 100\%
2,500 X 40\%
Total equivalent units
(c)

Materials
Conversion costs
Total manufacturing

	Materials	Conversion Costs
Units transferred out	47,500	47,500
Work in process, January 31		
2,500 X 100\%	2,500	
2,500 X 40\%		1,000
Total equivalent units	$\underline{\underline{50,000}}$	48,500

2,500
$\overline{\underline{50,000}}$
(d) Costs accounted for

Transferred out (47,500 X \$15.20) \$722,000
Materials (2,500 X \$10.20) $\$ 25,500$
Conversion costs ($1,000 \times \$ 5.00$) $\quad 5,000$
Total costs
Unit Costs
\$10.20 (\$510,000 $\div 50,000$)
$\$ 5.00$ ($\$ 242,500 \div 48,500)$
\$15.20 (\$10.20 + \$5.00)

$$
\text { Work in process, January } 31
$$

\qquad

PROBLEM 3-2B (Continued)

(e)

STEINER CORPORATION
 Molding Department
 Production Cost Report

For the Month Ended January 31, 2014

Quantities	Physical Units	Equivalent Units		
		Materials	Conversion Costs	
	(Step 1)	(Step 2)		
Units to be accounted for				
Work in process, January 1	0			
Started into production	50,000			
Total units	50,000			
Units accounted for				
Transferred out	47,500	47,500	47,500	
Work in process, January 31	2,500	2,500	1,000	(2,500 X 40\%)
Total units	$\underline{\underline{50,000}}$	$\underline{\underline{50,000}}$	$\underline{\underline{48,500}}$	
Costs		Materials	\qquad	Total
Unit costs (Step 3)				
Total cost	(a)	\$510,000	\$242,500	\$752,500
Equivalent units	(b)	50,000	48,500	
Unit costs (a) $\div(\mathrm{b})$		\$10.20	\$5.00	\$15.20
Costs to be accounted for				
Work in process, January 1				\$ 0
Started into production				752,500
Total costs				\$752,500
Cost Reconciliation Schedule (Step 4)				
Costs accounted for				
Transferred out (47,500 X \$15.20)				\$722,000
Work in process, January 31				
Materials (2,500 X \$10.20)			\$25,500	
Conversion costs (1,000 X \$5.00)			5,000	30,500
Total costs				\$752,500

PROBLEM 3-3B

(a) (1) Physical units

	R12 Refrigerators		F24 Freezers
Units to be accounted for Work in process, June 1	0		0
Started into production	$\underline{20,000}$		$\underline{\underline{20,000}}$
Total units	$\underline{\underline{20,000}}$		$\underline{\underline{20,000}}$
Units accounted for			
Transferred out	$\underline{16,000}$		17,500
Work in process, June 30	$\underline{4,000}$		$\underline{2,500}$
Total units		$\underline{\underline{20,000}}$	

(2) Equivalent units

	R12 Refrigerators	
		Conversion Costs
Materials Wits transferred out Whers process, June $(4,000 \times 100 \%)$ $(4,000 \times 75 \%)$	16,000	16,000
Total equivalent units	$\underline{\underline{20,000}}$	$\underline{\underline{19,000}}$

Units transferred out

F24 Freezers	
$\frac{\text { Materials }}{}$	Conversion Costs
17,500	17,500
2,500	$\underline{\underline{19,000}}$

PROBLEM 3-3B (Continued)

(3) Unit costs

	R12 Refrigerators	F24 Freezers
Materials (\$840,000 $\div \mathbf{2 0 , 0 0 0)}$	\$42	
(\$720,000 $\div 20,000$)		\$36
Conversion costs ($\$ 665,000^{(a)} \div 19,000$)	35	
$\left(\$ 551,000{ }^{\text {(b) }} \div 19,000\right)$		29
Total	$\underline{\underline{\$ 77}}$	$\underline{\underline{\$ 65}}$
(a) $\mathbf{2 4 5 , 0 0 0 ~ + ~ \$ 4 2 0 , 0 0 0 ~}$		
(b)\$259,000 + \$292,000		

(4)

R12 Refrigerators

Costs accounted for
Transferred out (16,000 X \$77) \$1,232,000
Work in process Materials (4,000 X \$42) \$168,000
Conversion costs
$(3,000 \times \$ 35)$
Total costs ..

F24 Freezers

Costs accounted for
Transferred out (17,500 X \$65)
\$1,137,500
Work in process
Materials (2,500 X \$36) \$90,000
Conversion costs
(1,500 X \$29) 43,500 Total costs \qquad

Quantities	Physical Units	Equivalent Units		
		Materials	Conversion Costs	
	(Step 1)	(Step 2)		
Units to be accounted for				
Work in process, June 1	0			
Started into production	20,000			
Total units	$\underline{\underline{20,000}}$			
Units accounted for				
Transferred out	16,000	16,000	16,000	
Work in process, June 30	4,000	4,000	3,000	(4,000 X 75\%)
Total units	$\underline{\underline{20,000}}$	$\underline{\underline{20,000}}$	$\underline{\underline{19,000}}$	
Costs		Materials	\qquad	Total
Unit costs (Step 3)				
Total cost	(a)	\$840,000	\$665,000	\$1,505,000
Equivalent units	(b)	20,000	19,000	
Unit costs (a) \div (b)		\$ 42	\$ 35	\$ 77
Costs to be accounted for				
Work in process, June 1				\$ 0
Started into production				1,505,000
Total costs				\$1,505,000
Cost Reconciliation Schedule (Step 4)				
Costs accounted for				
Transferred out (16,000 X \$77)				\$1,232,000
Work in process, June 30				
Materials (4,000 X \$42)			\$168,000	
Conversion costs (3,000 X \$35)			105,000	273,000
Total costs				\$1,505,000

PROBLEM 3-4B

(a)

		Physical Units	Equivalent Units		
		Materials	Conversion Costs		
Units to be accounted for					
Work in process,	October 1		25,000		
Started into prod	ction	435,000			
Total units		460,000			
Units accounted for					
Transferred out		425,000	425,000	425,000	
Work in process,	October 31	35,000	35,000	14,000*	
Total units		$\underline{\underline{460,000}}$	$\underline{\underline{460,000}}$	439,000	
*35,000 X 40\%					
	Materials cost	Conversion costs			
Beginning work in					
Added during month	1,006,000	246,900	$(\$ 138,900+\$ 108,000)$		
Total	\$1,035,000	\$263,400			
Equivalent units	460,000	439,000			
Cost per unit	\$2.25	\$.60			

(b) Costs accounted for

Transferred out (425,000 X \$2.85)
\$1,211,250
Work in process, October 31
Materials (35,000 X \$2.25)
Conversion costs (14,000 X \$.60)
\$78,750
Total costs

87,150
$\underline{\underline{\$ 1,298,400}}$

LUXMAN COMPANY

Assembly Department
Production Cost Report
For the Month Ended October 31, 2014

Quantities	Physical Units	Equivalent Units		
		Materials	\qquad	
	(Step 1)	(Step 2)		
Units to be accounted for (St)				
Work in process, October 1	25,000			
Started into production	435,000			
Total units	460,000			
Units accounted for				
Transferred out	425,000	425,000	425,000	
Work in process, October 31	35,000	35,000	14,000	(35,000 X 40\%)
Total units	460,000	460,000	439,000	
Costs		Materials	Conversion Costs	Total
Unit costs (Step 3)				
Total cost		(a) \$1,035,000	\$263,400	\$1,298,400
Equivalent units		(b) $\underline{460,000}$	439,000	
Unit costs (a) \div (b)		\$2.25	\$.60	\$2.85
Costs to be accounted for				
Work in process, October 1				\$ 45,500
Started into production				1,252,900
Total costs				\$1,298,400
Cost Reconciliation Schedule (Step 4)				
Costs accounted for				
Transferred out (425,000 X \$2.85)				\$1,211,250
Work in process, October 31				
Materials (35,000 X \$2.25)			\$78,750	
Conversion costs (14,000 X \$.60)			8,400	87,150
Total costs				\$1,298,400

PROBLEM 3-5B

(a) (1)

	Physical Units	Equivalent Units	
		Materials	Conversion Costs
Units to be accounted for			
Work in process, May 1	500		
Started into production	$\underline{2,000}$		
Total units	$\underline{2,500}$		
Units accounted for			
Transferred out	1,700	1,700	1,700
Work in process, May 31	800	800	320*
Total units	$\underline{\underline{2,500}}$	$\underline{\underline{2,500}}$	$\underline{\underline{2,020}}$

*800 X 40\%

(2)

Materials cost Conversion costs

Beginning work in process	\$15,000	\$18,000
Added during month	50,000	52,700
Total	\$65,000	\$70,700
Equivalent units	$\underline{\underline{2}, 500}$	$\underline{\underline{2,020}}$
Cost per unit	\$26	\$35

(3) Costs accounted for

Transferred out (1,700 X \$61) \$103,700
Work in process, May 31
Materials (800 X \$26) \$20,800
Conversion costs (320 X \$35)
Total costs

SWINN COMPANY
Bicycle Department
Production Cost Report
For the Month Ended May 31, 2014

Quantities	Physical Units	Equivalent Units		
		Materials	\qquad	
	(Step 1)	(Step 2)		
Units to be accounted for				
Work in process, May 1	500			
Started into production	2,000			
Total units	$\underline{\underline{2,500}}$			
Units accounted for				
Transferred out	1,700	1,700	1,700	
Work in process, May 31	800	800	320	(800 X .40)
Total units	$\underline{\underline{2,500}}$	$\underline{\underline{2,500}}$	$\underline{\underline{2,020}}$	
Costs		Materials	Conversion Costs	Total
Unit costs (Step 3)				
Total cost	(a)	\$65,000	\$70,700	\$135,700
Equivalent units	(b)	$\underline{\underline{2,500}}$	$\underline{\underline{2,020}}$	
Unit costs (a) \div (b)		\$26	\$35	\$61
Costs to be accounted for				
Work in process, May 1				\$ 33,000
Started into production				102,700
Total costs				\$135,700
Cost Reconciliation Schedule (Step 4)				
Costs accounted for				
Transferred out (1,700 \times \$61)				\$103,700
Work in process, May 31				
Materials (800 X \$26)			\$20,800	
Conversion costs (320 X \$35)			11,200	32,000
Total costs				\$135,700

PROBLEM 3-6B

(a) Computation of equivalent units:

Equivalent Units

	Physical Units	Materials	Conversion Costs
Units accounted for			
Transferred out	66,000	66,000	66,000
Work in process, March 31 (60\% materials,			
20\% conversion costs)	20,000	12,000	4,000
Total units	$\underline{\underline{86,000}}$	$\underline{\underline{78,000}}$	$\underline{\underline{70,000}}$

Computation of March unit costs
Materials: $\$ 156,000 \div 78,000$ equivalent units $=\quad \$ 2.00$
Conversion cost: $\$ 98,000 \div 70,000$ equivalent units $=1.40$
Total unit cost, March $\underline{\underline{\$ 3.40}}$
(b) Cost Reconciliation Schedule

Costs accounted for
Transferred out (66,000 X \$3.40).................... \$224,400
Work in process, March 31 Materials (12,000 X \$2.00) \$24,000
Conversion costs ($4,000 \times \$ 1.40$) 5,600 29,600
Total costs \qquad

(a) Basketballs

(1) Equivalent units-Materials

	Physical Units		Materials Added This Period	Equivalent Units
Work in process, August 1	500		0\%*	0
Started and completed	1,400	(2,000-600)	100\%	1,400
Work in process, August 31	600		100\%	600
Total	$\underline{\underline{2,500}}$			$\underline{\underline{2,000}}$

*All materials are added at the beginning of the production process

Equivalent units-Conversion

	Physical Units		Conversion Added This Period	Equivalent Units
Work in process, August 1	500		40\% (1-.6)	200
Started and completed	1,400	(2,000-600)	100\%	1,400
Work in process, August 31	600		50\%	300
Total	$\underline{\underline{2,500}}$			1,900

(2) Unit costs

Costs in August (a)
Equivalent units (b)
Unit costs [(a) $\div(b)$]

Materials
$\$ 1,600$
2,000
$\underline{\$.80}$

\$2,280**
1,900
\$1.20
**Direct Labor \$1,280 + Manufacturing Overhead \$1,000
(3) Assignment of costs to units transferred out and in process

Costs to Be Assigned	Assignment of Costs	Equivalent Units	Unit Cost		Total Costs Assigned
Total mfg. costs	Transferred out				
	Work in process, August 1			\$1,125	
\$5,005***	Conversion	200	1.20	240	
	Started and completed	1,400	2.00	2,800	
	Total costs transferred out				\$4,165
	Work in process, August 31				
	Materials	600	. 80	480	
	Conversion costs	300	1.20	360	840
	Total costs				\$5,005

***Work in process, August 1, \$1,125 + Materials \$1,600 + Labor \$1,280 + Overhead \$1,000

Soccer balls

(1) Equivalent units-Materials

	Physical Units		Materials Added This Period	Equivalent Units
Work in process, August 1	200		0\%*	0
Started and completed	1,850	(2,000-150)	100\%	1,850
Work in process, August 31	150		100\%	150
Total	$\underline{\underline{2,200}}$			$\underline{\underline{2,000}}$

*All materials are added at the beginning of the production process

Equivalent units-Conversion

	Physical Units		Conversion Added This Period	Equivalent Units
Work in process, August 1	200		20\% (1-.8)	8) 40
Started and completed	1,850	(2,000-150)	100\%	1,850
Work in process, August 31	150		70\%	105
Total	$\underline{\underline{\mathbf{2 , 2 0 0}}}$			1,995

(2) Unit costs

Costs in August (a)
Equivalent units (b) Unit costs (a) $\div(b)$
Materials

Conversion
\$2,800
\$2,394**
2,000
1,995
\$1.40
\$1.20
**Direct Labor \$1,000 + Manufacturing Overhead \$1,394
(3) Assignment of costs to units transferred out and in process

Costs to Be Assigned	Assignment of Costs	Equivalent Units	$\begin{aligned} & \text { Unit } \\ & \text { Cost } \\ & \hline \end{aligned}$		Total Costs Assigned
Total mfg. costs	Transferred out				
	Work in process, August 1			\$ 450	
\$5,644***	Conversion	40	\$1.20	48	
	Started and completed	1,850	\$2.60	4,810	
	Total costs transferred out				\$5,308
	Work in process, August 31				
	Materials	150	\$1.40	210	
	Conversion costs	105	\$1.20	126	336
	Total costs				$\underline{\underline{\$ 5,644}}$

***Work in process, August 1, \$450 + Materials \$2,800 + Labor \$1,000 + Overhead \$1,394
*PROBLEM 3-7B (Continued)
(b)

HOLIDAY COMPANY
Production Cost Report—Basketballs
For the Month Ended August 31

Quantities	Physical Units	Equivalent Units	
		Materials	Conversion Costs
	(Step 1)		
Units to be accounted for			
Work in process, August 1	500		
Started into production	2,000		
Total units	$\underline{\underline{2,500}}$		
Units accounted for			
Completed and transferred out			
Work in process, August 1	500	0	200
Started and completed	1,400	1,400	1,400
Work in process, August 31	600	600	300
Total units	$\underline{\underline{2,500}}$	$\underline{\underline{2,000}}$	$\underline{\underline{1,900}}$
Costs	Materials	Conversion Costs	Total
Unit costs (Step 3)			
Costs in August (a)	\$1,600	\$2,280	\$3,880
Equivalent units (b)	2,000	1,900	
Unit costs [(a) \div (b)]	\$.80	\$1.20	$\underline{\$ 2.00}$
Costs to be accounted for			
Work in process, August 1		\$1,125	
Started into production		3,880*	
Total costs		\$5,005	
Cost Reconciliation Schedule			
Costs accounted for			
Transferred out			
Work in process, August 1	\$1,125		
Conversion costs to complete beginning inventory ($200 \times \$ 1.20$)	240		
Started and completed (1,400 X \$2.00)	2,800	\$4,165	
Work in process, August 31			
Conversion costs (300 X \$1.20)	360	840	
Total costs		\$5,005	
*(\$1,600 + \$1,280 + \$1,000)			

CURRENT DESIGNS
 Fabrication Department Production Cost Report
 For the Month Ended April 30, 2014

BYP 3-2 DECISION-MAKING ACROSS THE ORGANIZATION

(a) The unit cost suggests that Joe took the highest total costs and divided these costs by the units started into production. The highest total costs would be the total costs charged to the Mixing Department (\$88,000 + $\$ 573,000+\$ 765,000$) divided by the units started during July $(100,000$ gallons), which results in a per unit cost of $\$ 14.26(\$ 1,426,000 \div 100,000)$.
(b) The principal errors made by Joe were: (1) he did not compute equivalent units of production; (2) he did not use the weighted-average costing method; and (3) he did not assign costs to ending work-in-process.

FLORIDA BEACH COMPANY
Mixing Department
Production Cost Report
For the Month Ended July 31, 2014

Quantities	Physical Units	Equivalent Units			
			Materials	Conversion Costs	
	(Step 1)		(Step 2)		
Units to be accounted for					
Work in process, July 1	8,000				
Started into production	100,000				
Total units	108,000				
Units accounted for					
Transferred out	103,000		103,000	103,000	
Work in process, July 31	5,000		5,000	1,000	(5,000 X 20\%)
Total units	108,000		108,000	104,000	
Costs			Materials	$\begin{gathered} \text { Conversion } \\ \text { Costs } \\ \hline \end{gathered}$	Total
Unit costs (Step 3)					
Total cost		(a)	\$594,000	\$832,000	\$1,426,000
Equivalent units		(b)	108,000	104,000	
Unit costs (a) \div (b)			\$5.50	\$8.00	\$13.50
Costs to be accounted for					
Work in process, July 1					\$ 88,000
Started into production					1,338,000
Total costs					\$1,426,000
Cost Reconciliation Schedule (Step 4)					
Costs accounted for					
Transferred out (103,000 X \$13.50)					\$1,390,500
Work in process, July 31					
Materials (5,000 X \$5.50)				\$27,500	
Conversion costs (1,000 X \$8.00)				8,000	35,500
Total costs					\$1,426,000

(a) The unit cost of materials is $\$ 150(\$ 450,000 \div 3,000)$.
(b) The materials cost of the goods transferred out is $\$ 375,000(2,500 \mathrm{X}$ $\$ 150)$. Conversion costs, therefore, are $\$ 225,000(\$ 600,000-\$ 375,000)$, and per unit conversion cost is $\$ 90(\$ 225,000 \div \mathbf{2 , 5 0 0})$.
(c) There are 500 units in ending work-in-process inventory (3,000 started 2,500 transferred out). The materials cost is $\$ 75,000$ ($500 \times \$ 150$). Thus, the conversion costs in the inventory are $\$ 36,000$ ($\$ 261,000-\$ 225,000$). $\$ 36,000$ divided by $\$ 90$ per unit conversion cost equals 400 equivalent units or $\mathbf{8 0 \%}$ ($400 \div 500$) complete.
(a) The outer shell of the paintballs is made from a mixture that includes water, sweeteners, food ingredients, and most importantly, gelatin. All of the ingredients used to make paintballs are food grade, biodegradable products. The "paint" filling inside a paintball is comprised of the same inert ingredient used in cough syrup, as well as crayon wax.

After mixing the gelatin and other materials, the mixture is heated, and then spread on rolling drums which create thin gelatin ribbons. Each of the ribbons then passes over a rotating die. The dies are designed so that they can form round capsules. The dies press against each other as they rotate. As the dies meet, both shells are filled with paint, which is injected into the area between the sheets. The two halves then seal as they press against each other to form a filled capsule.

Once the capsules are sealed they drop out of the machine to become paintballs. They pass along a conveyor belt to a tumble drier, then onto a drying rack. Once they are dry, they go into a counting machine, then into a packing machine which packs exactly the correct number of balls into each container.
(b) Materials: water, sweeteners, food ingredients, gelatin, "cough syrup material", crayon wax, and food coloring.

Labor: People would be needed run the various machines.
Overhead: Depreciation and maintenance of the various machines.
It would appear that overhead would be by far the highest cost because the process is very automated. Machines are needed for mixing the gelatin, heating it, rolling it into ribbons, making the capsules, filling the capsules, sorting and drying the capsules, counting the capsules and packing them.
(c) This would appear to be a perfect situation for the use of process costing. Paintballs are a high volume product, and the paintballs are very homogenous. While there may be some differences in various types of paintballs that would merit keeping track of specific costs to make the various types, the primary method of cost determination would be process costing.

To: Diane Barone, Regional Sales Manager

From: Student, Accounting Manager

Re: Production Cost Reports

Diane, congratulations again on your promotion! lt's going to be great working with you. It kind of reminds me of our days at Dairy-Freeze after school (although this work is more fun, and it certainly pays better!).

I'll try to clear up some of the questions you raised in your email. Here in the Snack Foods Division we use process costing rather than the job order system that Special Projects uses. The reason for this is that we produce all our products in a more or less continuous process, even when we run occasional special orders. You see, all our workers are assigned a particular part of the process to control. One might be in charge of making sure the mixing machines work properly, while another verifies the weight of the finished products. Whichever job a worker is assigned, he or she stays with it to completion, or at least the completion of that particular process. That's different from what you had in Special Projects, where workers moved from job to job. That's why we don't usually track the orders separately. Our special orders are for various quantities of the foods we produce, so only the Packing Department needs to be concerned with the particular set of products shipped to the particular customer-which is its ordinary concern anyway.

Your next question was about what an equivalent unit is. Well, you know already that Special Projects bids on various jobs, and then costs are recorded when the jobs are complete. The costs accumulated on jobs that aren't complete are reflected in Work in Process inventory. We in Snack Foods can't use that method for a simple reason-we produce our products in huge batches that we keep going fairly continuously. Or, in other words, we don't have a "job" that we can record as "complete." A batch may contain enough of our product to fill thirty or more orders, so we may have thirty or more "jobs" in each batch. One job may happen to be filled from two batches. Since the cost of each batch is about the same, it isn't worth keeping track of separately.

At the end of the month, we need to record what we finished and what still remains undone. Equivalent units are the way we measure the amount of work we have done on our work in process. It's kind of like comparing the contents of 4-ounce cups with the contents of 12-ounce cups. It doesn't make sense to compare by counting the number of cups you have. You need to find out how many ounces you have in one set; then you can get a meaningful comparison with the ounces you have in the other set. We compare by the number of "units" of materials or labor that are required to finish a product completely. If it requires 12 ounces of flour and 15 minutes of labor for a finished bag of pretzels, for example, then the 12 ounces and 15 minutes are "finished equivalents." If we have enough pretzels to fill 30 bags, but we've only spent 5 minutes (or $1 / 3$ of the total required) of labor on them at the end of the month, we could have used the same amount of time and completely finished 10 bags. Thus, we have the "equivalent" of 10 bags worth of labor.

Your last question is the easiest to answer. You get four reports because we use four processes here in Snack Foods Division. Each process has to report its status at the end of every month. It's kind of like we have four miniature factories, each reporting "completion" of a certain number of products. The products from one department are used as raw materials for other departments, so we have a chain of reports. Notice that the units and costs transferred out of Process 1 are the same as the units and costs transferred in to Process 2, and so on.

I hope this helps. Call, write, or email me any time!
(a) The stakeholders in this situation are:

- Jan Wooten, molding department head.
- Tony Ferneti quality control inspector.
- Customers of R. B. Dillman Company.
- The department manager of the assembly department.
(b) Tony is placed in an ethical dilemma. He can offend his department head by disregarding Jan's instructions and lose the support of his supervisor, and maybe lose his job. He can follow Jan's instructions and be in violation of company policy. He can also report Jan's instructions to supervisors (plant superintendent or vice-president of production). The company should make the position of quality control inspector responsible to someone other than the department head. Tony should not report to Jan.

BYP 3-7 CONSIDERING CORPORATE SOCIAL RESPONSIBILITY

(a) Some of the costs that the company now faces include:

- Monetary damages: The company paid $\$ 21.4$ million in fines as a result of an OSHA investigation; $\$ 1.6$ billion to compensate those affected by the accident; and $\$ 1$ billion to repair and update its refinery (plus an additional $\mathbf{\$ 2 5 0}$ million to install safety valves)
- Bad publicity
- Lost sales
- Cost of cleaning up the affected area including transporting workers to the site; housing workers near the site; per diem for cleanup workers; safety equipment for the workers
- Transportation and storage/disposal fees for any contaminants removed from the area
- Legal fees associated with lawsuits/settlements
- Reimburse the Coast Guard for any oil containment equipment provided
- Possible air/water testing for an extensive time following the accident
(b) Some steps that the company could have taken to reduce the environmental failure costs include:
- Install up to date safety equipment
- Increase the frequency and efficacy of inspections
- Increase maintenance on older facilities
- Be responsive to and investigate thoroughly complaints by neighbors and regulators
- Invest in research to discover safer means of boosting octane
- Locate plants further away from population centers to the extent possible

[^0]: *Total costs to be accounted for: \$1,000 + \$3,960 + \$4,500 + \$12,000 + \$9,340 = \$30,800

