
Solution 2.2-1
(a) SUM MOMENTS ABOUT A

(b) so d �  

2 b

5

2
 b

  W b

k b
�

4 W

5 k
k b d �  

2 b

5

2
 b

 W b �
4 W b

5
©MD � 0

d �  

2 b

5

2
 b

 W b +  

b

2

5

2
 b

 W (2 b)

k b
�

6 W

5 k

©MA � 0    
2 b

5

2
 b

 W b +  

b

2

5

2
 b

 W (2 b) k d b

Problem 2.2-1 The L-shaped arm ABCD shown in the figure lies
in a vertical plane and pivots about a horizontal pin at A. The arm
has constant cross-sectional area and total weight W.
A vertical spring of stiffness k supports the arm at point B.

(a) Obtain a formula for the elongation of the spring due to the
weight of the arm.

(b) Repeat part (a) if the pin support at A is moved to D.

2
Axially Loaded
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bb

A B C

D

k

b
2
—

(b)

bb

A B C

D

k

b
2
—

(a)
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118 CHAPTER 2 Axially Loaded Members

Problem 2.2-2 A steel cable with nominal diameter
25 mm (see Table 2-1) is used in a construction yard
to lift a bridge section weighing 38 kN, as shown in
the figure. The cable has an effective modulus of
elasticity E � 140 GPa.

(a) If the cable is 14 m long, how much will it
stretch when the load is picked up?

(b) If the cable is rated for a maximum load of
70 kN, what is the factor of safety with respect
to failure of the cable?

Solution 2.2-2 Bridge section lifted by a cable

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

A � 304 mm2 (from
Table 2-1)

W � 38 kN

E � 140 GPa

L � 14 m

(a) STRETCH OF CABLE

; � 12.5 mm

d �
WL

EA
�

(38 kN)(14 m)

(140 GPa)(304 mm2)
 

(b) FACTOR OF SAFETY

PULT � 406 kN (from Table 2-1)

Pmax � 70 kN

;n �
PULT

Pmax
�

406 kN

70 kN
� 5.8

Problem 2.2-3 A steel wire and an aluminum alloy wire have equal lengths 
and support equal loads P (see figure). The moduli of elasticity for the steel and 
aluminum alloy are Es � 30,000 ksi and Ea � 11,000 ksi, respectively.

(a) If the wires have the same diameters, what is the ratio of the 
elongation of the aluminum alloy wire to the elongation of the 
steel wire?

(b) If the wires stretch the same amount, what is the ratio of the 
diameter of the aluminum alloy wire to the diameter of the steel wire?

(c) If the wires have the same diameters and same load P, what is the ratio 
of the initial length of the aluminum alloy wire to that of the steel wire 
if the aluminum alloy wire stretches 1.5 times that of the steel wire?

(d) If the wires have the same diameters, same initial length, and same 
load P, what is the material of the upper wire if it elongates 1.7 times 
that of the steel wire?

P

Steel
wire

P

Aluminum alloy
wire
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SECTION 2.2 Changes in Lengths of Axially Loaded Members 119

Solution 2.2-3

(a)

(b) so so and

(c) SAME DIAMETER, SAME LOAD, FIND RATIO OF LENGTH OF ALUMINUM TO STEEL WIRE IF ELONGATION OF ALUMINUM IS 1.5 TIMES

THAT OF STEEL WIRE

(d) SAME DIAMETER, SAME LENGTH, SAME LOAD—BUT WIRE 1 ELONGATION 1.7 TIMES THE STEEL WIRE � WHAT IS WIRE

1 MATERIAL?

�cast iron or copper alloy (see App. I)E1 �  
Es

1.7
 � 17,647 ksi

P L

E1 A

a  
P L

Es A
 b

 � 1.7
d1

ds
 �  

P L

E1 A

a  
P L

Es A
 b

La

Ls
 � 1.5 

Ea

Es
 � 0.55

P La

Ea A

a  
P Ls

Es A
 b

 � 1.5
da

ds
 �  

P La

Ea A

a  
P Ls

Es A
 b

da

ds
� C

Es

Ea
� 1.651

Aa

As
�

Es

Ea

P L

Ea Aa
�

P L

Es As
da � ds

30

11
� 2.727

Es

Ea
� 2.727

Es � 30,000 ksi Ea � 11,000 ksi

da

ds
 �  

P L

Ea A

a  
P L

Es A
 b

 :  
Es

Ea

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Problem 2.2-4 By what distance h does the cage shown in the figure 
move downward when the weight W is placed inside it?

Consider only the effects of the stretching of the cable, which
has axial rigidity EA � 10,700 kN. The pulley at A has diameter
dA � 300 mm and the pulley at B has diameter dB � 150 mm. Also,
the distance L1 � 4.6 m, the distance L2 � 10.5 m, and the weight
W � 22 kN. (Note: When calculating the length of the cable, include
the parts of the cable that go around the pulleys at A and B.)
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120 CHAPTER 2 Axially Loaded Members

Problem 2.2-5 A safety valve on the top of a tank containing steam
under pressure p has a discharge hole of diameter d (see figure). 
The valve is designed to release the steam when the pressure reaches the
value pmax.

If the natural length of the spring is L and its stiffness is k, what
should be the dimension h of the valve? (Express your result as a
formula for h.)

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Solution 2.2-4 Cage supported by a cable

dA � 300 mm

dB � 150 mm

L1 � 4.6 m

L2 � 10.5 m

EA � 10,700 kN

W � 22 kN

LENGTH OF CABLE

ELONGATION OF CABLE

LOWERING OF THE CAGE

h � distance the cage moves downward

;h �
1

2
 d � 13.4 mm

d �
TL

EA
�

(11 kN)(26,072 mm)

(10,700 kN)
� 26.8 mm 

 � 26,072 mm 

 � 4,600 mm + 21,000 mm + 236 mm + 236 mm 

 L � L1 + 2L2 +

1

4
 1pdA2 +

1

2
 (pdB) 

TENSILE FORCE IN CABLE

T �
W

2
� 11 kN 
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Problem 2.2-6 The device shown in the figure consists of a prismatic rigid pointer ABC supported by a uniform transla-
tional spring of stiffness k � 950 N/m. The spring is positioned at distance b � 165 mm from the pinned end A of the
pointer. The device is adjusted so that when there is no load P, the pointer reads zero on the angular scale.

(a) If the load P � 11 N, at what distance x should the load be placed so that the pointer will read on the scale
(see figure part a)?

(b) Repeat part (a) if a rotational spring kr � kb2 is added at A (see figure part b).
(c) Let x � 7b/8. What is Pmax (N) if cannot exceed 2 ? Include spring kr in your analysis.
(d) Now, if the weight of the pointer ABC is known to be Wp � 3 N and the weight of the spring is Ws � 2.75 N, what ini-

tial angular position (i.e., in degrees) of the pointer will result in a zero reading on the angular scale once the pointer
is released from rest? Assume 

(e) If the pointer is rotated to a vertical position (see figure part c), find the required load P, applied at mid-height of the
pointer, that will result in a pointer reading of on the scale. Consider the weight of the pointer Wp in your
analysis.

u � 2.5°

P � kr � 0.
u

°u

u � 2.5°
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pmax � pressure when valve opens

L � natural length of spring (L � h)

k � stiffness of spring

FORCE IN COMPRESSED SPRING

F � k(L � h) (From Eq. 2-1a)

PRESSURE FORCE ON SPRING

EQUATE FORCES AND SOLVE FOR h:

;h � L �
ppmax d2

4 k

F � P k1L � h2 �
ppmaxd2

4
 

P � pmaxapd2

4
b  

Solution 2.2-5 Safety valve

h � height of valve (compressed length of the spring)

d � diameter of discharge hole

p � pressure in tank
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Solution 2.2-6

NUMERICAL DATA

(a) If the load P � 11 N, at what distance x should the load be
placed so that the pointer will read on the scale
(see Fig. a)?
Sum moments about A, then solve for x:

(b) Repeat (a) if a rotational spring kr � kb2 is added at A (see
Fig. b).

kr � k b2 � 25864 N mm

Sum moments about A, then solve for x:

x � 205 mmx �
k u b2

+ kr u

P
� 205 mm  

x

b
� 1.244

#

x � 102.6 mmx �
k u b2

P
� 102.6 mm

u � 2.5°

Wp � 3 N   Ws � 2.75 N

k � 950 N/m  b � 165 mm P � 11 N u � 2.5�  umax � 2� 

k

0
θ

A B

P

C
x

b b/2

(a)

kr k

0
A B

P

(b)

C
x

b b/2

(c) Now if x � 7b/8, what is Pmax (N) if u cannot exceed 2� ?

Sum moments about A, then solve for P:

(d) Now, if the weight of the pointer ABC is known to be Wp � 3 N and the weight of the spring is Ws � 2.75 N,
what initial angular position (i.e., in degrees) of the pointer will result in a zero reading on the angular scale
once the pointer is released from rest? Assume P � kr � 0.

Deflection at spring due to Wp: Deflection at B due to self weight of spring:

OR uinit � arctan a  
dB

b
 b � 1.325�  uinit � 1.325�

dB � dBp + dBk � 3.816 mm  uinit �
dB

b
� 1.325� 

dBp �

Wp a  
3

4
 bb

k b
� 2.368 mm     dBk �

Ws

2 k
� 1.447 mm

u

Pmax � 12.51 NPmax �  
k umax b2

+ kr umax

7

8
 b

 � 12.51 N

x �  
7

8
  b � 144.375 mm
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(e) If the pointer is rotated to a vertical position (figure part c), find the required load P,
applied at mid-height of the pointer that will result in a pointer reading of 
on the scale. Consider the weight of the pointer, Wp, in your analysis.

Sum moments about A to get P:

P � 20.4 NP �  
u

a  
3 b

4
 b

  ckr + k a  
5

4
 b2b � Wp a  

3 b

4
 b d � 20.388  N

kr � k b2 � 25.864 N #m u � 2.5 �

k � 950  N/m  b � 165 mm Wp � 3 N

u � 2.5°
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kr

Wp

(c)

k

0

A

B

P

C

b

b/2

3b/4

Problem 2.2-7 Two rigid bars are connected to each other by two linearly elastic springs. Before loads are applied, the
lengths of the springs are such that the bars are parallel and the springs are without stress.

(a) Derive a formula for the displacement at point 4 when the load P is applied at joint 3 and moment PL is applied at
joint 1, as shown in the figure part a. (Assume that the bars rotate through very small angles under the action of the
load P.)

(b) Repeat part (a) if a rotational spring, kr � kL2, is now added at joint 6. What is the ratio of the deflection in the fig-
ure part a to that in the figure part b?

d4

d4

P

L

2L/3

L/3

k

δ4

2k

PL
1 2Rigid bar

Rigid bar

3

5

(a)

4 6

P

L kr = kL2
2L/3

L/3

k

δ4

2k

PL
1 2Rigid bar

Rigid bar

3

5

(b)

4
6
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Solution 2.2-7

(a) Derive a formula for the displacement at point 4 when the load P is applied at joint 3 and moment PL is applied
at joint 1, as shown.

Cut horizontally through both springs to create upper and lower FBD’s. Sum moments about joint 1 for upper FBD and
also sum moments about joint 6 for lower FBD to get two equations of equilibrium; assume both springs are in tension.

Note that and Force in left spring:

Force in right spring:

Summing moments about joint 1 (upper FBD) and about joint 6 (lower FBD) then dividing through by k gives

^ deltas are positive downward

(b) Repeat part (a) if a rotational spring kr � kL2 is now added at joint 6. What is the ratio of the deflection d4 in part (a)
to that in (b)?

Upper FBD—sum moments about joint 1:

Lower FBD—sum moments about joint 6:

Divide matrix equilibrium equations through by k to get the following displacement equations:

^ deltas are positive downward

Ratio of the deflection d4 in part (a) to that in (b):

26

3

104

45

�
15

4
  Ratio �

15

4
� 3.75

d4 �
104 P

45 k

43

15
� 2.867

104

45
� 2.311

� ±
43 P

15 k

104 P

45 k

≤ P
�2 P

k

0 Q� ±
�22

9

13

6

�26

9

43

12

≤
�1

ad3

d4
b� P

�2 P

k

0
Q ad3

d4
b±

�22

9
 13

6

�26

9
 43

6

≤

ck ad4 �
2

3
  d3b   

4 L

3
+ 2 k a  

3

4
  d4 � d3b  L d +  (k L2) P  

d4

4

3
  L

 Q � 0 OR a  
26 L k

9
 b  d3 +  

43 L k

12
  d4 � 0

k ad4 �
2

3
  d3b   

4 L

3
+ 2 k a  

3

4
  d4 � d3b  L � kr u6 � 0

k ad4 �
2

3
  d3b   

2 L

3
+ 2 k a  

3

4
  d4 � d3b  L � �2 P L OR a  

22 L k

9
 b  d3 +  

13 L k

6
  d4 � �2 P L

d4 �
26 P

3 k

17

2
� 8.5

26

3
� 8.667

� ±
17 P

2 k

26 P

3 k

≤ P
�2 P

k

0 Q� ±
�22

9

13

6

�26

9

17

6

≤
�1

ad3

d4
b� P

�2 P

k

0
Qad3

d4
b±

�22

9
 13

6

�26

9
 17

6

≤  

2 k a   
3

4
  d4 � d3b

k ad4 �  
2

3
  d3bd5 �  

3

4
  d4d2 �  

2

3
  d3

d4
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Problem 2.2-8 The three-bar truss ABC shown in figure part a has a span L � 3 m and is constructed of steel pipes having
cross-sectional area A � 3900 mm2 and modulus of elasticity E � 200 GPa. Identical loads P act both vertically and hori-
zontally at joint C, as shown.

(a) If P � 475 kN, what is the horizontal displacement of joint B?
(b) What is the maximum permissible load value Pmax if the displacement of joint B is limited to 1.5 mm?
(c) Repeat parts (a) and (b) if the plane truss is replaced by a space truss (see figure part b).

L

A B
45° 45°

P

P

C

(a)

y

P

P

Cz

Az
Ay

Ax
Bz

By

C L

L/2

A

B
x

c

z

aL/2

L/2

(b)

Solution 2.2-8

NUMERICAL DATA

A � 3900 mm2 E � 200 GPa

P � 475 kN L � 3000 mm

dBmax � 1.5 mm

(a) FIND HORIZONTAL DISPLACEMENT OF JOINT B
STATICS TO FIND SUPPORT REACTIONS AND THEN MEMBER FORCES:

METHOD OF JOINTS: Force in AC � 0

Force in AB is P (tension) so elongation of AB is the horizontal displacement of joint B.

(b) FIND Pmax IF DISPLACEMENT OF JOINT Pmax �  
E A

L
 dBmax Pmax � 390 kNB � dBmax � 1.5 mm

dB �  
FAB L

E A
  dB �  

P L

E A
  dB � 1.82692 mm  dB � 1.827 mm

AB � AX

ACV � AY ACV � 0

gFV � 0  Ay � P � By  Ay � 0

gFH � 0  Ax � �P

By � P

gMA � 0  By �  
1

L
  a2 P  

L

2
 b

(c) REPEAT PARTS (a) AND (b) IF THE PLANE TRUSS IS REPLACED BY

A SPACE TRUSS (SEE FIGURE PART b).

FIND MISSING DIMENSIONS a AND c: P � 475 kN L � 3 m
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(1) SUM MOMENTS ABOUT A LINE THRU A WHICH IS PARALLEL TO THE y-AXIS

(2) SUM MOMENTS ABOUT THE z-AXIS

(3) SUM MOMENTS ABOUT THE x-AXIS

(4) SUM FORCES IN THE x- AND z-DIRECTIONS

(5) USE METHOD OF JOINTS TO FIND MEMBER FORCES

Sum forces in x-direction at joint A:

Sum forces in y-direction at joint A:

Sum forces in y-direction at joint B:

(6) FIND DISPLACEMENT ALONG x-AXIS AT JOINT B

Find change in length of member AB then find its projection along x axis:

(7) FIND Pmax FOR SPACE TRUSS IF �Bx MUST BE LIMITED TO 1.5 mm

Displacements are linearly related to the loads for this linear elastic small displacement problem, so reduce load
variable P from 475 kN to

Repeat space truss analysis using vector operations a = 2.121 m L = 3 m P = 475 kN

1.5

6.71254
  475 � 106.145 kN  Pmax � 106.1 kN

dAB �
FAB c

E A
� 3.875 mm b � arctanaL

a
b � 54.736�  dBx �

dAB

cos(b)
� 6.713 mm dBx � 6.71 mm

L

2

L
 FBC + By � 0  FBC � �2 By � �672 kN

L

2

12  
L

2

 FAC + Ay � 0  FAC � 12 1�Ay2 � �196.8 kN

a

c
 FAB + Ax � 0  FAB �  

�c

a
 Ax � 823 kN

Ax � �P � �475 kN  Az � �Cz � Bz � 868.503 kN

Cz �  

Ay L � P  
L

2

L

2

 � �196.751 kN

By �  

P a  
L

2
 b

a
 � 335.876 kN  SO  Ay � P � By � 139.124 kN

Bz � �P  
L

a
 � �671.751 kN

c � 2L2
+ a2 � 3.67423 m  c � CL2

+ a  
L

12
 b2

� 3.67423 m  c � L C
3

2
� 3.67423 m

a � CL2 � 2 a  
L

2
 b2

� 2.12132 m   
a

L
 � 0.707  a �

L

12
 � 2.12132 m
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POSITION AND UNIT VECTORS:

FIND MOMENT AT A:

FIND MOMENTS ABOUT LINES OR AXES:

Reactions obtained using vector operations agree with those based on scalar operations.

gFy � 0  Ay � P � By � 139.124 kN

MA P
0

1

0Q � 2.1213 m  RBy + �1425.0 kN #m So RBy � �RBz � 261.625 By � �335.876 kN

MA P
0

1

0Q � �2.1213 m  RBz + �1425.0 kN #m So RBz �
462.5

�1.7678
� �261.625 Bz � �671.75 kN

MA eAC � �1.5 m RBy + �1.5 m RBz  So  RBy � �RBz

RCz �  
�244.12

0.72169
 � �338.262  Cz � �196.751 kN

MA eAB � �1.732 m RBy + 1.7321 m RBy + 0.86603 m RCz + 752.15 kN #m

MA � rAB * P
0

RBy

RBz
Q + rAC * P

2.P

�P

RCz
Q � P

3.0 m RBy + 1.5 m RCz �712.5 kN #m

�2.1213 m RBZ �1425.0 kN #m

2.1213 m RBy �1425.0 kN #m Q
MA � rAB * RB + rAC * RC

eAB �
rAB

� rAB �
� P

0.577

0

�0.816Q  rAC � • 0

L

2

�L

2

μ  eAC �
rAC

� rAC �
� P

0

0.707

�0.707QrAB � P
a

0

�LQ

Problem 2.2-9 An aluminum wire having a diameter d � 1/10 in. 
and length L � 12 ft is subjected to a tensile load P (see figure).
The aluminum has modulus of elasticity E � 10,600 ksi

If the maximum permissible elongation of the wire is 1/8 in. and the
allowable stress in tension is 10 ksi, what is the allowable load Pmax?

dP

  L 
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L � 12(12) in. E � 10,600 � (103) psi

A � 7.854 � 10�3 in.2

EA � 8.325 � 104 lb

 A �
pd2

4 

s a � 10 * (103) psi d a �
1

8
 in. 

 d �
1

10
 in. 

Maximum load based on elongation:

Maximum load based on stress:

Pmax2 � saA Pmax2 � 78.5 lb

;  controls  Pmax1 � 72.3 lb  Pmax1 �
 EA

 L
 da 

Problem 2.2-10 A uniform bar AB of weight W � 25 N is supported by
two springs, as shown in the figure. The spring on the left has stiffness
k1 � 300 N/m and natural length L1 � 250 mm. The corresponding quan-
tities for the spring on the right are k2 � 400 N/m and L2 � 200 mm. The
distance between the springs is L � 350 mm, and the spring on the right
is suspended from a support that is distance h � 80 mm below the point
of support for the spring on the left. Neglect the weight of the springs.

(a) At what distance x from the left-hand spring (figure part a)
should a load P � 18 N be placed in order to bring the bar to a
horizontal position?

(b) If P is now removed, what new value of k1 is required so that the
bar (figure part a) will hang in a horizontal position under
weight W?

(c) If P is removed and k1 � 300 N/m, what distance b should spring
k1 be moved to the right so that the bar (figure part a) will hang in
a horizontal position under weight W?

(d) If the spring on the left is now replaced by two springs in series
(k1 � 300N/m, k3) with overall natural length L1 � 250 mm (see
figure part b), what value of k3 is required so that the bar will hang
in a horizontal position under weight W?

L1
2
—

W

h

L

A

k3

L1
2
—

k1 k2
L2

B

(b)

Solution 2.2-9

(a)

P

W

New position of
k1 for part (c) only

Load P for
part (a) only

x

h

L

A

k1
L1 k2

L2

B

b

78572_ch02_ptg01_hr_117-282.qxd  1/18/12  6:03 PM  Page 128



SECTION 2.2 Changes in Lengths of Axially Loaded Members 129

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

NUMERICAL DATA

W � 25 N L1 � 250 mm

L2 � 200 mm

L � 350 mm h � 80 mm P � 18 N

(a) LOCATION OF LOAD P TO BRING BAR TO HORIZONTAL

POSITION

Use statics to get forces in both springs:

F2 �
W

2
+  P 

x

L
 

a  MA � 0   F2 �
1

 L
aW 

L

2
+ Pxb

k2 � 0.400 N/mm

k1 � 0.300 N/mm

Solution 2.2-10

Use constraint equation to define horizontal
position, then solve for location x:

 L1 +

 F1

 k1
� L2 + h +

 F2

 k2 

F1 �
W

2
+  Pa1 �

 x

 L
b  

a  FV � 0   F1 � W +  P � F2

Substitute expressions for F1 and F2 above into constraint equilibrium and solve for x:

;x � 134.7 mm

x �
�2L1 L k1 k2 � k2WL � 2k2 P L + 2L2 L k1 k2 + 2 h L k1 k2 + k1W L

�2P1k1 + k22 
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(b) NEXT REMOVE P AND FIND NEW VALUE OF SPRING

CONSTANT k1 SO THAT BAR IS HORIZONTAL

UNDER WEIGHT W

Now, since P � 0

Same constraint equation as above but now P � 0:

Solve for k1:

(c) USE k1 � 0.300 N/mm BUT RELOCATE

SPRING k1 (x � b) SO THAT BAR ENDS UP

IN HORIZONTAL POSITION UNDER WEIGHT W

L – b

L /2 – b

W
L /2

F1 F2
b

FBD

L /2

;k1 � 0.204 N/mm

k1 �
�Wk2

[2k2[L1 � (L2 + h)]] � W

L1 +

W

2

k1
� 1L2 + h2 �

aW

2
b

k2
� 0

 F2 �
W

2
 F1 �

W

2

PART (C)—CONTINUED

STATICS

Constraint equation—substitute above expressions
for F1 and F2 and solve for b:

Use the following data:

L1 � 250 mm

L2 � 200 mm L � 350 mm

k2 � 0.4 N/mmk1 � 0.300 N/mm

L1 +

 F1

 k1
� ( L2 + h) �

 F2

 k2
� 0 

 F1 �
 WL

2( L � b) 

 F1 � W �

 Wa  L

2
� bb

 L � b 

aFV � 0

F1 � W � F2

a  Mk1
� 0  F2 �

waL

2
� bb

L � b

;k3 � 0.638 N/mmk3 �
Wk1k2

�2L1k1k2 � Wk2 + 2L2k1k2 + 2hk1k2 + Wk1

NOTE—equivalent spring constant for series springs:

ke �
k1k3

k1 + k3

checks—same as (b) above;k e � 0.204 N/mm

; b � 74.1 mm b �
2L1k1k2L + WLk2 � 2L2k1k2L � 2hk1k2L � Wk1L

(2L1k1k2) � 2L2k1k2 � 2hk1k2 � 2Wk1

(d) REPLACE SPRING k1 WITH SPRINGS IN SERIES:
k1 � 0.3 N/mm, L1/2, AND k3, L1/2. FIND k3

SO THAT BAR HANGS IN HORIZONTAL POSITION

STATICS F2 �
W

2
F1 �

W

2

New constraint equation; solve for k3:

L1 +

W/2

k1
+

W/2

k3
� ( L2 + h) �

W/2

k2
� 0

L1 +

F1

k1
+

F1

k3
� ( L2 + h) �

F2

k2
� 0
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Problem 2.2-11 A hollow, circular, cast-iron pipe (Ec � 12,000 ksi) 
supports a brass rod (Eb � 14,000 ksi) and weight W � 2 kips, as
shown. The outside diameter of the pipe is dc � 6 in.

(a) If the allowable compressive stress in the pipe is 5000 psi and
the allowable shortening of the pipe is 0.02 in., what is the
minimum required wall thickness tc,min? (Include the weights
of the rod and steel cap in your calculations.)

(b) What is the elongation of the brass rod dr due to both load
W and its own weight?

(c) What is the minimum required clearance h?

Steel cap
(ts = 1 in.)

Cast iron pipe
(dc = 6 in., tc)

W

Lc  = 4 ft

h

Lr = 3.5 ft

Nut & washer

( )dw =
3
4
— in.

Brass rod

( dr =
1
2
— ) in.

Solution 2.2-11

(a) MINIMUM REQUIRED WALL THICKNESS OF CAST IRON

PIPE, tcmin

First check allowable stress then allowable
shortening:

Wcap � 8.018 � 10�3 k

Wrod � 2.482 � 10�3 k

Wt � W 	 Wcap 	 Wrod Wt � 2.01 k

Amin � 0.402 in.2

 A pipe �
p

4
[d c

2 � (dc � 2 tc)
2]

 Amin �
W t

s a 

 Wrod � gb ap

4
dr

2Lrb  

 Wcap � g sap

4
dc

2tsb  

The figure shows a section cut through the pipe, cap,
and rod.

NUMERICAL DATA

Ec � 12000 ksi Eb � 14,000 ksi

W � 2 k dc � 6 in.

sa � 5 ksi da � 0.02 in.

Unit weights (see Table I-1):

Lc � 48 in. Lr � 42 in.

ts � 1 in.

g b � 3.009 * 10�4 k/in.3

gs � 2.836 * 10�4 k/in.3

 dr �
1

2
 in.
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Problem 2.2-12 The horizontal rigid beam ABCD is supported 
by vertical bars BE and CF and is loaded by vertical forces
P1 � 400 kN and P2 � 360 kN acting at points A and D,
respectively (see figure). Bars BE and CF are made of steel
(E � 200 GPa) and have cross-sectional areas ABE � 11,100 mm2

and ACF � 9,280 mm2. The distances between various points on
the bars are shown in the figure.

Determine the vertical displacements dA and dD of points A
and D, respectively.
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Apipe � p tc(dc � tc)

a � 0.128:

tc
2 � dctc 	 a � 0

tc � 0.021 in.

^ minimum based 
on sa

Now check allowable shortening requirement:

Amin � 0.447 in.2 � larger than value based on 

sa above

ptc(dc � tc) �
WtLc

Ecda 

Amin �
 WtLc

 Ecda 
dpipe �

WtLc

 EcAmin 

 t c �
 d c � 2 dc

2
 � 4a

2
 

 Let a �
W t

ps a 

 t c( d c � t c) �
W t

ps a 

tc
2 � dctc 	 b � 0

b � 0.142

controls

(b) ELONGATION OF ROD DUE TO SELF WEIGHT AND

ALSO WEIGHT W

(c) MINIMUM CLEARANCE h

hmin � da 	 dr ; hmin � 0.051 in. 

;dr � 0.031 in. dr �

aW +

 Wrod

2
bLr

 E bap

4
 dr 

2b

;  minimum based on da  and sa tc � 0.021 in. 

 tc �
 dc � 2 dc

2 � 4b

2 

b �
WtLc

pEcda 
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ABE � 11,100 mm2

ACF � 9,280 mm2

E � 200 GPa

LBE � 3.0 m

LCF � 2.4 m

P1 � 400 kN; P2 � 360 kN

Solution 2.2-12 Rigid beam supported by vertical bars

SHORTENING OF BAR BE

SHORTENING OF BAR CF

DISPLACEMENT DIAGRAM

� 0.600 mm 

dCF �
FCFLCF

EACF
�

(464 kN)(2.4 m)

(200 GPa)(9,280 mm2)
 

� 0.400 mm 

dBE �
FBELBE

EABE
�

(296 kN)(3.0 m)

(200 GPa)(11,100 mm2)
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dBE � dA � dCF � dBE or dA � 2dBE � dCF

dA � 2(0.400 mm) � 0.600 m

� 0.200 mm

(Downward)

(Downward) 

;� 0.880 mm

�
12

5
 (0.600 mm) �

7

5
 (0.400 mm) 

 or  d D �
12

5
dCF �

7

5
dBE 

dD � dCF �
2.1

1.5
(dCF � dBE) 

;


MB � 0 

(400 kN)(1.5 m) 	 FCF(1.5 m) � (360 kN)(3.6 m) � 0

FCF � 464 kN


MC � 0

(400 kN)(3.0 m) � FBE(1.5 m) � (360 kN)(2.1 m) � 0

FBE � 296 kN

��
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Problem 2.2-13 Two pipe columns (AB, FC) are pin-connected to a rigid beam (BCD) as shown in the figure. Each pipe
column has modulus E, but heights (L1 or L2) and outer diameters (d1 or d2) are different for each column. Assume the inner
diameter of each column is 3⁄4 of outer diameter. Uniformly distributed downward load q � 2P/L is applied over a distance
of 3L/4 along BC, and concentrated load P/4 is applied downward at D.

(a) Derive a formula for the displacement at
point D in terms of P and column flexibilities 
f1 and f2.

(b) If d1 � (9/8) d2, find the L1/L2 ratio so that beam
BCD displaces downward to a horizontal posi-
tion under the load system in (a).

(c) If L1 � 2 L2, find the d1/d2 ratio so that beam
BCD displaces downward to a horizontal posi-
tion under the load system in (a).

(d) If d1 � (9/8) d2 and L1/L2 � 1.5, at what horizon-
tal distance x from B should load P/4 be placed so
that beam BCD displaces downward to a horizon-
tal position under the load system in part (a)?

dD

3L/4

Rigid beam
Pin

2

Pin

L2,

d2d1

x

B DC

P/4q = 2P/L

EL1, E

A F

3L/4

1

L/4

Solution 2.2-13
(a) DISPLACEMENT

Use FBD of beam BCD
in column CF

�compression force in column BA

Downward displacements at B and C:

Geometry:

(b) DISPLACEMENT TO HORIZONTAL POSITION, SO and

L1

L2
 �  

4

3
  a  

9

8
 b2

�  
27

16
     L1

L2
 �  

27

16

L1

E A1

L2

E A2

�
4

3
  or  

L1

L2
�

4

3
 aA1

A2
b  

L1

L2
�

4

3
 ±  

p

4
  d1 

2

p

4
  d2 

2
≤ �

4 d1 

2

3 d2 

2
   

L1

L2
�

4

3
 ad1

d2
b2 with d1

d2
�

9

8

3 P f1
4

� P f2 or  
f1
f2

�
4

3
dC � dB

dD � dB + (dC � dB) P  
L +

3

4
 L

L
 Q �  

7 P f2
4

�
9 P f1

16
   dD �

7 P f2
4

�
9 P f1

16
�  

P

16
 128 f2 � 9 f12

dB � RB f1 �  
3 P f1

4
    dC � RC f2 �  P f2

gFV � 0 RB �  a2  
P

L
 b  a  

3

4
  Lb +

P

4
� RC �

3 P

4
 

gMB � 0 RC �
1

L
 c a2 

P

L
b  a3

4
 Lb  a3

8
 Lb +

P

4
 aL +

3

4
 Lb d � P  6compression force

dD
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(c) IF L1 � 2 L2, FIND THE d1/d2 RATIO SO THAT BEAM BCD DISPLACES DOWNWARD TO A HORIZONTAL POSITION

(d) IF d1 = (9/8) d2 AND L1/L2 = 1.5, AT WHAT HORIZONTAL DISTANCE X FROM B SHOULD LOAD P/4 AT D BE PLACED?

Recompute column forces RB and RC but now with load P/4 positioned at distance x from B.

Use FBD of beam BCD:

Horizontal displaced position under load q and load P/4 so .

Now substitute f1/f2 ratio from above: x � L ≥  
19  

32

27
 � 9

4 a  
32

27
 + 1b

 ¥ �  
365 L

236
     365

236
 � 1.547

x � � 

L 19 f2 � 19 f12
4 1f1 + f22   or  x �  L ≥  

19  
f1
f2

 � 9

4 a  
f1
f2

 + 1b
 ¥

P
9 L P

16
+

P x

4

L Q  f2 � P7 P

4
�

9 L P

16
+

P x

4

L Q  f1 solve, x � � 

9 L f2 � 19 L f1
4 f1 + 4f2

  � �
L 19 f2 � 19 f12

4 1f1 + f22

dC � dB or RC f2 � RB f1

gFV � 0  RB � a2 

P

L
b  a3

4
 Lb +

P

4
� RC �  

7 P

4
�

9 L P

16
+

P x

4

L

gMB � 0  RC �
1

L
 c a2 

P

L
b  a3

4
 Lb  a3

8
 Lb +

P

4
 (x) d �  

9 L P

16
+

P x

4

L

Given  
d1

d2
�

9

8
  and  

L1

L2
� 1.5 or  

f1
f2

�
L1

L2
 aA2

A1
b  

f1
f2

�
L1

L2
 ad2

d1
b2

�
3

2
 a8

9
b2

�
32

27

L1

L2
� 2 and dC � dB from part (b). ad1

d2
b2

�
3

4
 aL1

L2
b so  

d1

d2
� A

3

4
 (2) � 1.225
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Solution 2.2-14

Apply the laws of statics to the structure in its displaced position; also use FBD’s of the left and right bars alone
(referred to as LHFB and RHFB below).

OVERALL FBD:

LHFB:

RHFB: gMB � 0 �k 

d

2
  ah

2
b  � k1 d h + RC 

L2

2
� 0  RC �

2

L2
 ck 

d

2
  ah

2
b + k1 d h d

RA �
2

L2
 ck1 d h + k 

d

2
  ah

2
b + kr (a � u) d

gMB � 0  HA h + k 

d

2
  ah

2
b � RA aL2

2
b + kr (a � u) � 0

gMA � 0  kr (a � u) � P 

L2

2
 + RC L2 � 0  RC �  

1

L2
 cP  

L2

2
 � kr (a � u) d

gFV � 0  RA + RC � P

gFH � 0  HA � k1 d � 0  so  HA � k1 d

Problem 2.2-14 A framework ABC consists of two rigid bars AB and
BC, each having a length b (see the first part of the figure part a). The
bars have pin connections at A,B, and C and are joined by a spring of
stiffness k. The spring is attached at the midpoints of the bars. The
framework has a pin support at A and a roller support a C, and the bars
are at an angle to the horizontal.

When a vertical load P is applied at joint B (see the second part of
the figure part a) the roller support C moves to the right, the spring is
stretched, and the angle of the bars decreases from to the angle .

(a) Determine the angle and the increase in the distance between
points A and C. Also find reactions at A and C. (Use the following
data: mm, kN/m, , and N.)

(b) Repeat part (a) if a translational spring is added at C and 
a rotational spring is added at A (see figure part b).kr � kb2/2

k1 � k/2
P � 50a � 45�k � 3.2b � 200

du

ua

a

A
C

B

uu

P

k
kr

k1

(b) Displaced structure

(a) Initial position of structure

a a

k

A C

B

b
2
—

b
2
—

b
2
—

b
2
—

A C

B

uu

P

(a) - cont’d: displaced position of structure
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Equate the two expressions for RC then substitute expressions for L2, kr, k1, h and 

(a) SUBSTITUTE NUMERICAL VALUES, THEN SOLVE NUMERICALLY FOR ANGLE AND DISTANCE INCREASE

Solving above equation numerically gives

COMPUTE REACTIONS

(b) SUBSTITUTE NUMERICAL VALUES, THEN SOLVE NUMERICALLY FOR ANGLE AND DISTANCE INCREASE

Solving above equation numerically gives

COMPUTE REACTIONS

MA � 1.882 N #mRC � 18.5 NRA � 31.5 NRA + RC � 50 N 6 check 
RA �

2

L2
 ck1 d h + k 

d

2
 a  

h

2
b + kr 1a � u2 d � 31.5 N MA � kr 1a � u2 � 1.882 N #m

RC �  
2

L2
  ck  

d

2
 a  

h

2
b + k1 d h d � 18.5 N R2 �  

1

L2
  cP  

L2

2
� kr 1a � u2 d � 18.5 N

u � 43.3� d � 8.19 mm

1

L2
 cP 

L2

2
� kr 1a � u2 d � c 2

L2
 ck 

2 b 1cos1u2 � cos1a22
2

 

b sin1u2
2

+ k1 [2 b 1cos1u2 � cos1a22] 1b sin1u22 d d � 0

L2 � 2 b cos1u2  L1 � 2 b cos1a2  d � L2 � L 1  d � 2 b 1cos1u2 � cos1a22  h � b sin1u2
b � 200 mm  k � 3.2 kN/m   a � 45�   P � 50 N  k1 �  

k

2
  kr �  

k

2
  b2

du

RA � 25 N   RC � 25 NRA + RC � 50 N 6 check

RA �
2

L2
 ck1 d h + k 

d

2
 ah

2
b + kr 1a � u2 d � 25 N  MA � kr 1a � u2 � 0

RC �
2

L2
 ck 

d

2
 ah

2
b + k1 d h d � 25 N  RC �

1

LC
 cP 

L2

2
� kr 1a � u2 d � 25 N

u � 35.1� d � 44.6 mm

1

L2
 cP  

L2

2
� kr 1a � u2 d � c 1

L2
  ck 

2 b 1cos1u2 � cos1a22
2

 
b sin1u2

2
+ k1 [2 b 1cos1u2 � cos1a22] 1b sin1u22 d d � 0

L2 � 2 b cos1u2 L1 � 2 b cos1a2 d � L2 � L 1 d � 2 b 1cos1u2 � cos1a22 h � b sin1u2
b � 200 mm k � 3.2 kN/m  a � 45�  P � 50 N k1 � 0 kr � 0

du

1

L2
 cP 

L2

2
� kr (a � u) d � c 2

L2
  ck 

2 b 1cos1u2 � cos1a22
2

 
b sin1u2

2
+ k1 [2 b 1cos1u2 � cos1a22] 1b sin1u22 d d � 0

1

L2
 cP 

L2

2
� kr (a � u) d �

2

L2
 ck 

d

2
  ah

2
b + k1 d h d OR

d
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Problem 2.2-15 Solve the preceding problem for the following data:

b � 8.0 in., k � 16 1b/in., , and P � 10 1b.

Solution 2.2-15
Apply the laws of statics to the structure in its displaced position; also use FBD’s of the left and right bars alone
(referred to as LHFB and RHFB below)

OVERALL FBD

LHFB

RHFB

Equate the two expressions above for RC then substitute expressions for L2, kr, k1, h, and 

(a) SUBSTITUTE NUMERICAL VALUES, THEN SOLVE NUMERICALLY FOR ANGLE AND DISTANCE INCREASE

Solving above equation numerically gives

COMPUTE REACTIONS

RA + RC � 10 lb  6 check  RA � 5 lb RC � 5 lb

RA �
2

L2
 ck1 d h + k 

d

2
 ah

2
b + k1 1a � u2 d � 5 lb  MA � kr1a � u2 � 0

RC �
2

L2
 ck 

d

2
ah

2
b + k1 d h d � 5 lb  RC �

1

LC
 cP  

L2

2
� kr 1a � u2 d � 5 lb

u � 35.1� d � 1.782 in.

1

L2
 cP 

L2

2
� kr 1a � u2 d � c 2

L2
 ck 

2 b 1cos1u2 � cos1a22
2

b sin1u2
2

+ k1 [2 b 1cos1u2 � cos1a22] 1b sin1u22 d d � 0

L2 � 2 b cos1u2  L1 � 2 b cos1a2  d � L2 � L 1  d � 2 b 1cos1u2 � cos1a22  h � b sin1u2
b � 8 in.  k � 16 lb/in.  a � 45�  P � 101b  k1 � 0  kr � 0

du

1

L2
 cP 

L2

2
� kr (a � u) d � c 2

L2
  ck 

2 b 1cos1u2 � cos1a22
2

 
b sin1u2

2
+ k1 [2 b 1cos1u2 � cos1a22] 1b sin1u22 d d � 0

1

L2
  cP  

L2

2
� kr (a � u) d �   

2

L2
  ck  

d

2
 ah

2
b + k1 d h d  OR

d

gMB � 0  �k 

d

2
 ah

2
b � k1 d h + RC 

L2

2
� 0  RC �

2

L2
 ck 

d

2
 ah

2
b + k1 d h d  

 RA �
2

L2
 ck1 d h + k 

d

2
 ah

2
b + kr (a � u) d

gMB � 0  HA h + k 

d

2
 ah

2
b � RA 

L2

2
+ kr (a � u) � 0

gMA � 0  kr (a � u) � P 

L2

2
 + RC L2 � 0  RC �

1

L2
 cP 

L2

2
� kr (a � u) d

gFV � 0  RA + RC � P

gFH � 0  HA � k1 d � 0  so  HA � k1 d

a � 45�
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(b) SUBSTITUTE NUMERICAL VALUES, THEN SOLVE NUMERICALLY FOR ANGLE AND DISTANCE INCREASE

Solving above equation numerically gives

COMPUTE REACTIONS

RA + RC � 10.01 lb 6 check  RA � 6.3 lb  RC � 3.71 lb  MA � 1.252 lb #ft

RA �
2

L2
 ck1 d h + k 

d

2
  ah

2
b  + kr 1a � u2 d � 6.3 lb  MA � kr1a � u2 � 1.252 ft # lb

RC �
2

L2
 ck 

d

2
 a  

h

2
b + k1 d h d � 3.71 lb  RC �

1

L2
 cP 

L2

2
� kr 1a � u2 d � 3.71 lb

u � 43.3� d � 0.327 in.

1

L2
 cP 

L2

2
� kr 1a � u2 d � c 2

L2
 ck 

2 b 1cos1u2 � cos1a22
2

 
b sin1u2

2
+ k1 [2 b 1cos1u2 � cos1a22] 1b sin1u22 d d � 0

L2 � 2 b cos1u2 L1 � 2 b cos1a2 d � L2 � L 1 d � 2 b 1cos1u2 � cos1a22 h � b sin1u2
b � 8 in. k � 16 lb/in.  a � 45� P � 101b k1 �  

k

2
  kr �  

k

2
  b2

du

Changes in Lengths under Nonuniform Conditions

Problem 2.3-1

(a) Calculate the elongation of a copper bar of solid circu-
lar cross section with tapered ends when it is stretched
by axial loads of magnitude 3.0 k (see figure).

(The length of the end segments is 20 in. and the
length of the prismatic middle segment is 50 in. Also,
the diameters at cross sections A, B, C, and D are 0.5,
1.0, 1.0, and 0.5 in., respectively, and the modulus of
elasticity is 18,000 ksi. (Hint: Use the result of Example 2-4.)

(b) If the total elongation of the bar cannot exceed 0.025 in., what are the required diameters at B and C? Assume that
diameters at A and D remain at 0.5 in.

Solution 2.3-1
NUMERICAL DATA

(a) TOTAL ELONGATION

(b) FIND NEW DIAMETERS AT B AND C IF TOTAL ELONGATION CANNOT EXCEED 0.025 in.

2 a 4 P L1

p E dA dB
b +

P L2

E  

p

4
 dB

2
� 0.025 in.  Solving for dB:  dB � 1.074 in.

d � 2 d1 + d2 � 0.0276 in.  d � 0.0276 in.

d1 �
4 P L1

p E dA dB
� 0.00849 in.  d2 �

P L2

E  

p

4
 dB 

2
� 0.01061 in.

P � 3 k  L1 � 20 in.  L2 � 50 in.  dA � 0.5 in.  dB � 1 in.  E � 18000 ksi

A B
C

D

3.0 k20 in.

20 in.
3.0 k

50 in.
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Solution 2.3-2 Copper bar with a tensile load

Lc � 2.0 m

Ac � 4800 mm2

Ec � 120 GPa

Ls � 0.5 m

As � 4500 mm2

Es � 200 GPa

(a) DOWNWARD DISPLACEMENT d (P � 180 kN)

(b) MAXIMUM LOAD Pmax (dmax � 1.0 mm)

;Pmax � (180 kN)a 1.0 mm

0.675 mm
b � 267 kN 

  
Pmax

P
�

dmax

d
     Pmax � Padmax

d
b

 � 0.675 mm ;  

 d � dc + ds � 0.625 mm + 0.050 mm 

 � 0.050 mm 

ds �
(P/2)Ls

EsAs
�

(90 kN)(0.5 m)

(200 GPa)(4500 mm2)
 

 � 0.625 mm 

dc �
PLc

EcAc
�

(180 kN)(2.0 m)

(120 GPa)(4800 mm2)
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Problem 2.3-2 A long, rectangular copper bar under a tensile load P
hangs from a pin that is supported by two steel posts (see figure). The
copper bar has a length of 2.0 m, a cross-sectional area of 4800 mm2,
and a modulus of elasticity Ec � 120 GPa. Each steel post has a height
of 0.5 m, a cross-sectional area of 4500 mm2, and a modulus of elasticity
Es � 200 GPa.

(a) Determine the downward displacement d of the lower end of the
copper bar due to a load P � 180 kN.

(b) What is the maximum permissible load Pmax if the displacement
d is limited to 1.0 mm?

P

Steel
post

Copper
bar
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Problem 2.3-3 An aluminum bar AD (see figure) has a cross-
sectional area of 0.40 in.2 and is loaded by forces P1 � 1700 lb, 
P2 � 1200 lb, and P3 � 1300 lb. The lengths of the segments of the
bar are a � 60 in., b � 24 in., and c � 36 in.

(a) Assuming that the modulus of elasticity E � 10.4 � 106 psi,
calculate the change in length of the bar. Does the bar elon-
gate or shorten?

(b) By what amount P should the load P3 be increased so that the bar does not change in length when the three loads are
applied?

(c) If P3 remains at 1300 lb, what revised cross-sectional area for segment AB will result in no change of length when all
three loads are applied?

Solution 2.3-3
NUMERICAL DATA

(a) TOTAL ELONGATION

(b) INCREASE P3 SO THAT BAR DOES NOT CHANGE LENGTH

So new value of P3 is 1690 lb, 
an increase of 390 lb.

(c) NOW CHANGE CROSS-SECTIONAL AREA OF AB SO THAT BAR DOES NOT CHANGE LENGTH

AAB

A
� 1.951Solving for AAB:  AAB � 0.78 in.2

1

E
 c1P1 + P2 � P32 

a

AAB
+ 1P2 � P32 

b

A
+ 1�P32 

c

A
d � 0

P3 � 1300 lb

1

E A
 C 1P1 + P2 � P32 a + 1P2 � P32 b + 1�P32 c D � 0 solve, P3 � 1690 lb

d �
1

E A
  C 1P1 + P2 � P32 a + 1P2 � P32 b + 1�P32 c D � 0.01125 in. d � 0.01125 in. (elongation)

a � 60 in.  b � 24 in.  c � 36 in.

E � 10.4 11062 psi

P2 � 1200 lb  P3 � 1300 lb

A � 0.40 in.2  P1 � 1700 lb

a b c

B

P1 P2
P3

A C D
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Problem 2.3-4 A rectangular bar of length L has a slot in the
middle half of its length (see figure). The bar has width b,
thickness t, and modulus of elasticity E. The slot has width b/4.

(a) Obtain a formula for the elongation of the bar due
to the axial loads P.

(b) Calculate the elongation of the bar if the material is
high-strength steel, the axial stress in the middle
region is 160 MPa, the length is 750 mm, and the
modulus of elasticity is 210 GPa.

(c) If the total elongation of the bar is limited to
, what is the maximum length of the slotted region? Assume that the axial stress in the middle region

remains at 160 MPa.

Solution 2.3-4

(a)

(b) NUMERICAL DATA

(c)

Lslot �
4 E dmax � 3 L smid

smid
 � 244 mm Lslot � 244 mm  

Lslot

L
� 0.325

or dmax � a  
3

4
  smidb  a  

1

E
 b  aL +

Lslot

3
 b Solving for Lslot with dmax � 0.475 mm

dmax �
P

E
 

 P  
L � Lslot

b t
 +  

Lslot

3

4
 bt

 Q or dmax � a  
P

bt
 b  a  

1

E
 b  aL � Lslot +  

4

3
  Lslotb

d �
7 L P

6 Ebt
  or  d �

7 L

6 E
 a3

4
  smidb � 0.5 mm  d � 0.5 mm

so smid �  
P

3

4
  bt

  and  P

bt
 �

3

4
 smid

E � 210 GPa  L � 750 mm  smid � 160 MPa

d �
P

E
  ±  

2 

L

4

bt
+  

L

2

3

4
 bt

 ≤  �  
7 L P

6 Ebt
   d �

7 P L

6 Ebt

dmax � 0.475 mm

d

b
4
—

L
4
—

L
4
—

L
2
—

b t

P

P
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Problem 2.3-5 Solve the preceding problem if the axial stress
in the middle region is 24,000 psi, the length is 30 in., and the
modulus of elasticity is psi. In part (c), assume that

Solution 2.3-5

(a)

(b)

(c)

Problem 2.3-6 A two-story building has steel columns AB in the first floor
and BC in the second floor, as shown in the figure. The roof load P1 equals
400 kN and the second-floor load P2 equals 720 kN. Each column has length
L � 3.75 m. The cross-sectional areas of the first- and second-floor columns
are 11,000 mm2 and 3,900 mm2, respectively.

(a) Assuming that E � 206 GPa, determine the total shortening dAC

of the two columns due to the combined action of the loads P1 and P2.
(b) How much additional load P0 can be placed at the top of the column

(point C) if the total shortening dAC is not to exceed 4.0 mm?

Lslot �
4 E dmax � 3 L smid

smid
� 10 in.  Lslot � 10 in.   Lslot

L
� 0.333

or  dmax � a3

4
 smidb  a 1

E
b  aL +

Lslot

3
b  Solving for Lslot with dmax � 0.02 in.:

dmax �
P

E
 P

L � Lslot

bt
+

Lslot

3

4
 btQ  or  dmax � a P

bt
b  a 1

E
b  aL � Lslot +

4

3
 Lslotb

d �
7 LP

6 Ebt
   or  d �

7 L

6 E
  a3

4
 smidb � 0.021 in.  d � 0.021 in.

So   smid �
P

3

4
 bt

  and  P

bt
�

3

4
  smid

E � 30,000 ksi  L � 30 in.  smid � 24 ksi

 d �  
P

E
  ±  

2  
L

4

bt
+

L

2

3

4
  bt

 ≤ �
7 L P

6 Ebt

dmax � 0.02 in.
30 * 106

b
4
—

L
4
—

L
4
—

L
2
—

b t

P

P

P1 = 400 kN

P2 = 720 kN
B

A

C

L = 3.75 m

L = 3.75 m
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Problem 2.3-7 A steel bar 8.0 ft long has a circular cross section of diameter in. over one-half of its length and
diameter in. over the other half (see figure part a). The modulus of elasticity psi.

(a) How much will the bar elongate under a tensile load 
(b) If the same volume of material is made into a bar of constant diameter d and length 8.0 ft, what will be the elongation

under the same load P?
(c) If the uniform axial centroidal load is applied to the left over segment 1 (see figure part b), find the ratio

of the total elongation of the bar to that in parts (a) and (b).
q � 1250 lb/ft

P � 5000 lb?

E � 30 * 106d2 � 0.5
d1 � 0.75

Solution 2.3-6 Steel columns in a building

(a) SHORTENING dAC OF THE TWO COLUMNS

;dAC � 3.72 mm

� 1.8535 mm + 1.8671 mm � 3.7206 mm 

 +

(400 kN)(3.75 m)

(206 GPa)(3,900 mm2)
 

�
(1120 kN)(3.75 m)

(206 GPa)(11,000 mm2)
 

dAC � g
NiLi

EiAi
�

NABL

EAAB
+

NBCL

EABC
 

(b) ADDITIONAL LOAD P0 AT POINT C

Solve for P0:

SUBSTITUTE NUMERICAL VALUES:

E � 206 � 109 N/m2 d0 � 0.2794 � 10�3 m

L � 3.75 m AAB � 11,000 � 10�6 m2

ABC � 3,900 � 10�6 m2

P0 � 44,200 N � 44.2 kN ;

P0 �
Ed0

L
a AAB ABC

AAB + ABC
b  

 Also, d0 �
P0L

EAAB
+

P0L

EABC
�

P0L

E
a 1

AAB
+

1

ABC
b  

 � 0.2794 mm 

d0 � (dAC)max � dAC � 4.0 mm � 3.7206 mm 

due to the load P0 
d0 � additional shortening of the two columns

(dAC)max � 4.0 mm 

d1 = 0.75 in.

P

d2 = 0.50 in.

4.0 ft 4.0 ft

P = 5000 lb

(a)

d1 = 0.75 in.
q = 1250 lb/ft

d2 = 0.50 in.

4.0 ft 4.0 ft

P = 5000 lb

(b)
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Solution 2.3-7
NUMERICAL DATA

(a)

(b)

(c)

 dc �
q L2

2 E ap

4
 d1

2b
+

P L

E A
� 0.0341 in.   dc

da
� 0.58   dc

db
� 0.681

 q � 1250 lb/ft L � 4 ft

db �
P 12 L2

E A
� 0.0501 in.   db � 0.0501 in.

Va � ap

4
 d1 

2
+

p

4
 d2 

2b  L � 30.631 in.3  d �

R
Va

p

4
 12 L2

� 0.637 in. A �
p

4
 d2 � 0.31907 in.2

da �
P L

E
 P

1
p

4
 d1 

2
+

1
p

4
 d2 

2Q � 0.0589 in.   da � 0.0589 in.

E � 30 11062 psi  P � 5000 lb  L � 4 ft  d1 � 0.75 in.  d2 � 0.5 in.
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Problem 2.3-8 A bar ABC of length L consists of two
parts of equal lengths but different diameters. Segment AB
has diameter d1 � 100 mm, and segment BC has diameter
d2 � 60 mm. Both segments have length L/2 � 0.6 m. 
A longitudinal hole of diameter d is drilled through segment
AB for one-half of its length (distance L/4 � 0.3 m). The bar
is made of plastic having modulus of elasticity E � 4.0 GPa.
Compressive loads P � 110 kN act at the ends of the bar. 

(a) If the shortening of the bar is limited to 8.0 mm, what
is the maximum allowable diameter dmax of the hole?
(See figure part a.)

(b) Now, if dmax is instead set at d2/2, at what distance b
from end C should load P be applied to limit the bar
shortening to 8.0 mm? (See figure part b.)

(c) Finally, if loads P are applied at the ends and 
dmax � d2/2, what is the permissible length x of the
hole if shortening is to be limited to 8.0 mm? (See
figure part c.)

(a)

d2
dmax

d1

L
4

P P

A B
C

— L
4

— L
2

—

(b)

d2

d1

L
4

P

P

b

A B
C

— L
4

— L
2

—

(c)

d2

d1P P

A B
C

x L
2 � x— L

2
—

dmax =
d2
2
—

dmax =
d2
2
—
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NUMERICAL DATA

d1 � 100 mm d2 � 60 mm

L � 1200 mm E � 4.0 GPa P � 110 kN

da � 8.0 mm

(a) FIND dmax IF SHORTENING IS LIMITED TO da

Set d to da, and solve for dmax:

(b) NOW, IF dmax IS INSTEAD SET AT d2�2, AT WHAT DISTANCE

b FROM END C SHOULD LOAD P BE APPLIED TO LIMIT THE

BAR SHORTENING TO da � 8.0 mm?

No axial force in segment at end of length b; set d � da

and solve for b:

d �
 P

 E
J  L

4A0
+

 L

4A1
+

a  L

2
� bb

 A2
K  

A2 �
p

4
d2 

2A1 �
p

4
d1 

2

A0 �
p

4
c  d1

2 � ad2

2
b2 d

;dmax � 23.9 mm 

d19
Edapd1 

2d2 

2 � 2PLd2 

2 � 2PLd1 

2

Edapd1 

2d2 

2 � PLd2 

2 � 2PLd1 

2
dmax �

d �
P

E
≥

L

4
p

4
1d1 

2 �  dmax 

22
+

L

4

A1
+

L

2

A2
¥

A2 �
p

4
d2 

2A1 �
p

4
d1 

2

Solution 2.3-8

(c) FINALLY IF LOADS P ARE APPLIED AT THE ENDS AND

dmax � d2�2, WHAT IS THE PERMISSIBLE LENGTH x
OF THE HOLE IF SHORTENING IS TO BE LIMITED TO

da � 8.0 mm?

Set d � da and solve for x:

; x � 183.3 mm 

 x �

c  A0 A1a  E d a

 P
�

 L

2 A2
b d� 1

2
 A0 L

 A1 � A0 

d �
 P

 E
J  x

 A0
+

aL

2
� xb

 A1
+

aL

2
b

 A2
K  

; b � 4.16 mm 

 b � c  L
2

� A2 c  Eda

 P
� a  L

4A0
+

 L

4A1
b d d  
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Problem 2.3-9 A wood pile, driven into the earth, supports a
load P entirely by friction along its sides (see figure part a).
The friction force f per unit length of pile is assumed to be
uniformly distributed over the surface of the pile. The pile has
length L, cross-sectional area A, and modulus of elasticity E.

(a) Derive a formula for the shortening d of the pile in terms
of P, L, E, and A.

(b) Draw a diagram showing how the compressive stress sc

varies throughout the length of the pile.
(c) Repeat parts (a) and (b) if skin friction f varies linearly

with depth (see figure part b).

Solution 2.3-9
AFD LINEAR

(a)

(b)

So linear variation, zero at bottom, P/A at top (i.e., at ground surface)

N(L) � f     s (y) �
P

A
  a  

y

L
 b

s (0) � 0

s (y) �
N(y)

A
   s (y) �

f y

A
   s (L) �

f L

A
�

P

A

N(y) � f y    d �
L

L

0

(f y)

E A
 dy �

L2
 f

2 A E
   d �

P L

2 E A

L

P

f

f

SkinSkin
friction friction ff
uniformuniform

Skin
friction f
uniform

(a)

L

y

P

f

f( y) = f0 (1 – y/L)

Skin friction f
varies linearly
with depth

f0

(b)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

σ  ( y)

y

Compressive stress
in pile

P
A

0

Py
AL

σc =

0 0.5 1
0

0.2

0.4

0.6

0.8

1

y

σ  ( y)

f(y) is constant f(y) is linear and
and AFD is linear AFD quadratic
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Problem 2.3-10 Consider the copper tubes joined below using a “sweated” joint. Use the properties and dimensions
given.

(a) Find the total elongation of segment 2-3-4 (d2-4) for an applied tensile force of P � 5 kN. Use Ec � 120 GPa.
(b) If the yield strength in shear of the tin-lead solder is ty � 30 MPa and the tensile yield strength of the copper is

sy � 200 MPa, what is the maximum load Pmax that can be applied to the joint if the desired factor of safety in
shear is FSt � 2 and in tension is FSs � 1.7?

(c) Find the value of L2 at which tube and solder capacities are equal.

Solder joints

Tin-lead solder in space
between copper tubes;
assume thickness of
solder equal zero

Segment number

L2 L4L3

Sweated
joint

1 2 3 4 5
P P

d0 = 22.2 mm
t = 1.65 mm

d0 = 18.9 mm
t = 1.25 mm

L3 = 40 mm
L2 = L4 = 18 mm
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(c)

d �

a f0 L

2
b

3

2
 E A

  P �
1

2
 f0 L  d �

P L

E A
 a2

3
b  s (y) �

P

A
 c y

L
 a2 �

y

L
b d  s (0) � 0  s (L) �

f0
2

� P/A

N(y) �
L

y

0
f0 a1 �

�

L
b  d� �  

f0 y (y � 2)

2
    N(L) �  

f0
2
     N(0) � 0

N(y) � f(y) y
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NUMERICAL DATA

P � 5 kN Ec � 120 GPa

L2 � 18 mm L4 � L2

L3 � 40 mm

do3 � 22.2 mm t3 � 1.65 mm

do5 � 18.9 mm t5 � 1.25 mm

tY � 30 MPa sY � 200 MPa

FSt � 2 FSs � 1.7

ta � 15 MPa

sa � 117.6 MPa

(a) ELONGATION OF SEGMENT 2-3-4

A2 � 175.835 mm2 A3 � 106.524 mm2

;d24 � 0.024 mm

d24 �
 P

 Ec
aL2 +  L4

 A2
+

 L3

 A3
b  

 A3 �
p

4
[d o3

2 � 1d o3 � 2t322]

 A2 �
p

4
[d o3

2 � (d o5 � 2 t5)2]

s a �
s Y

 FSs 

t a �
t Y

 FSt 

(b) MAXIMUM LOAD Pmax THAT CAN BE APPLIED TO THE

JOINT

First check normal stress:

A1 � 69.311 mm2 � smallest cross-sectional area
controls normal stress

Pmaxs � saA1 smaller than
Pmax based on shear below so normal stress controls

Next check shear stress in solder joint:

Ash � pdo5L2 Ash � 1.069 � 103 mm2

Pmaxt � taAsh

(c) FIND THE VALUE OF L2 AT WHICH TUBE AND SOLDER

CAPACITIES ARE EQUAL

Set Pmax based on shear strength equal to Pmax based
on tensile strength and solve for L2:

; L2 � 9.16 mm  L2 �
saA1

ta1pd o52 

 Pmaxt � 16.03 kN 

; Pmaxs � 8.15 kN 

 A1 �
p

4
[ d o5

2 � 1 do5 � 2 t522]
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Solution 2.3-10

Problem 2.3-11 The nonprismatic cantilever circular bar shown
has an internal cylindrical hole of diameter d/2 from 0 to x, so
the net area of the cross section for Segment 1 is (3/4)A. Load
P is applied at x, and load P/2 is applied at x � L. Assume that
E is constant.

(a) Find reaction force R1.
(b) Find internal axial forces Ni in segments 1 and 2.
(c) Find x required to obtain axial displacement at joint 3 of

d3 � PL/EA.
(d) In (c), what is the displacement at joint 2, d2?
(e) If P acts at x � 2L/3 and P/2 at joint 3 is replaced by bP,

find b so that d3 � PL/EA.
(f) Draw the axial force (AFD: N(x), 0  x  L) and axial

displacement (ADD: d(x), 0  x  L) diagrams using
results from (b) through (d) above.

2 3

δ2

δ3

d
A

Segment 1 Segment 2

R1

d
2
—

P
2
—

3P
 2
— P

2
—

A
3
4
—

L – xx

00AFD

00ADD

P
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(a) STATICS FH � 0

(b) DRAW FBD’S CUTTING THROUGH SEGMENT 1 AND

AGAIN THROUGH SEGMENT 2

(c) FIND x REQUIRED TO OBTAIN AXIAL DISPLACEMENT AT

JOINT 3 OF d3 � PL/EA

Add axial deformations of segments 1 and 2, then
set to d3; solve for x:

(d) WHAT IS THE DISPLACEMENT AT JOINT 2, d2?

d2 �
2

3
 
PL

EA

d2 �

a3P

2
bL

3

 E 

3

4
A 

d2 �
 N1x

 E 

3

4
A 

; x �
L

3

3

2
x �

L

2

3P

2
x

 E  
3

4
A

+

P

2
 ( L � x)

 EA
�

 PL

 EA

 N1x

 E 
3

4
 A

+

 N2( L � x)

 EA
�

 PL

 EA 

6  tension  N2 �
P

2
6  tension  N1 �

3P

2 

; R1 �
�3

2
 P 

 R1 � � P �
P

2a
(e) IF x � 2L/3 AND P/2 AT JOINT 3 IS REPLACED BY bP,

FIND b SO THAT d3 � PL/EA

N1 � (1 	 b)P N2 � bP

substitute in axial deformation expression above
and solve for b

(8 	 11b) � 9

b � 0.091

(f) Draw AFD, ADD—see plots for x �
L

3

;b �
1

11 

1

9
PL

8 + 11b

 EA
�

 PL

 EA 

[(1 + b)P]
2L

3

 E  
3

4
A

  +

bPaL �
2L

3
b

 EA
�

 PL

 EA 

 x �
2L

3

Solution 2.3-11

Problem 2.3-12 A prismatic bar AB of length L, cross-sectional area A, modulus of elasticity E, and
weight W hangs vertically under its own weight (see figure).

(a) Derive a formula for the downward displacement �C of point C, located at distance h from the
lower end of the bar.

(b) What is the elongation �B of the entire bar?
(c) What is the ratio b of the elongation of the upper half of the bar to the elongation of the lower half

of the bar?
(d) If bar AB is a riser pipe hanging from a drill rig at sea, what is the total elongation of the pipe? Let

See Appendix I for weight densities of steel and sea
water. (See Problems 1.4-2 and 1.7-11 for additional figures).

A � 0.0157 m2, E � 210 GPa.L � 1500 m,

L

h

B

A

C
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Solution 2.3-12 Prismatic bar hanging vertically

(d) NUMERICAL DATA

In sea water:

In air:

W � (gs) A L � 1813.35 kN    d �
W L

2 E A
� 412 mm   d

L
� 2.75 * 10�4

W � (gs � gw) A L � 1577.85 kN    d �
W L

2 E A
� 359 mm   d

L
� 2.393 * 10�4

gs � 77 kN/m3   gw � 10 kN/m3   L � 1500 m   A � 0.0157 m2   E � 210 GPa

(a) DOWNWARD DISPLACEMENT

Consider an element at dis-
tance y from the lower end.

 dC �
W

2EAL
 (L2 � h2) ;

 dC � 1
L

h
dd � 1

L

h
 
Wydy

EAL
�

W

2EAL
 (L2 � h2)

 N(y) �
Wy

L
  dd �

N(y) dy

EA
�

Wydy

EAL

dC

W � Weight of bar (b) ELONGATION OF BAR

(c) RATIO OF ELONGATIONS

Elongation of upper half of bar :

Elongation of lower half of bar:

b �
dupper

dlower
�

3/8

1/8
� 3 ;

dlower � dB � dupper �
WL

2EA
�

3WL

8EA
�

WL

8EA

dupper �
3WL

8EA

ah �
L

2
b

dB �
WL

2EA
 ;

(h � 0)

L

h

y

dy

B

C

A
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Problem 2.3-13 A flat bar of rectangular cross section,
length L, and constant thickness t is subjected to tension by
forces P (see figure). The width of the bar varies linearly
from b1 at the smaller end to b2 at the larger end. Assume
that the angle of taper is small.

(a) Derive the following formula for the elongation of
the bar:

(b) Calculate the elongation, assuming L � 5 ft, t �
1.0 in., P � 25 k, b1 � 4.0 in., b2 � 6.0 in., and 
E � 30 � 106 psi.

d �
PL

Et(b2 � b1)
  ln 

b2

b1

t � thickness (constant)

(Eq. 1)

(a) ELONGATION OF THE BAR

(Eq. 2)�
PL0

Eb1 t
 ln x `

L0

L0	L

�
PL0

Eb1 t
 ln 

L0 + L

L0

d �
L

L0	L

L0

 dd �
PL0

Eb1 tL

L0	L

L0

dx

x

dd �
Pdx

EA(x)
�

PL0 dx

Eb1 tx

A(x) � bt � b1 ta x

L0
b

b � b1a x

L0
b b2 � b1aL0 + L

L0
b

From Eq. (1): (Eq. 3)

Solve Eq. (3) for L0: (Eq. 4)

Substitute Eqs. (3) and (4) into Eq. (2):

(Eq. 5)

(b) SUBSTITUTE NUMERICAL VALUES:

L � 5 ft � 60 in. t � 10 in.

P � 25 k b1 � 4.0 in.

b2 � 6.0 in. E � 30 � 106 psi

From Eq. (5): d � 0.010 in. ;

d �
PL

Et (b2 � b1)
 ln 

b2

b1

L0 � La b1

b2 � b1
b

L0 + L

L0
�

b2

b1

P

P

t

b1

b2

L

Solution 2.3-13 Tapered bar (rectangular cross section)
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Problem 2.3-14 A post AB supporting equipment in a laboratory
is tapered uniformly throughout its height H (see figure). The cross
sections of the post are square, with dimensions b � b at the top
and 1.5b � 1.5b at the base.

Derive a formula for the shortening d of the post due to the
compressive load P acting at the top. (Assume that the angle of
taper is small and disregard the weight of the post itself.)

Square cross sections:

b � width at A

1.5b � width at B

�
b

H
1H + 0.5y2 

� b + (1.5b � b) 
y

H
 

by � width at distance y 

SHORTENING OF ELEMENT dy

SHORTENING OF ENTIRE POST

;�
2PH

3Eb2
 

�
PH2

Eb2
c� 1

(0.5)(1.5H )
+

1

0.5H
d  

d �
PH2

Eb2
c� 1

(0.5)(H + 0.5y)
d
0

H 

 From Appendix D:
L

dx

(a + bx)2
� �

1

b(a + bx) 

d �
L

dd �
PH2

Eb2
L

H

0

dy

(H + 0.5y)2
 

dd �
Pdy

EAy
�

Pdy

Ea b2

H2
b1H + 0.5y22 

� 1by22 �
b2

H2
(H + 0.5y)2 

Ay � cross-sectional area at distance y 

H

P

A

B

A b

b

B 1.5b

1.5b

Solution 2.3-14 Tapered post
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Problem 2.3-15 A long, slender bar in the shape of a right circular cone
with length L and base diameter d hangs vertically under the action of its
own weight (see figure). The weight of the cone is W and the modulus of
elasticity of the material is E.

Derive a formula for the increase d in the length of the bar due to
its own weight. (Assume that the angle of taper of the cone is small.)

TERMINOLOGY

Ny � axial force acting on element dy

Ay � cross-sectional area at element dy

AB � cross-sectional area at base of cone

V � volume of cone

Vy � volume of cone below element dy

Wy � weight of cone below element dy

Ny � Wy�
Vy

V
(W ) �

Ay yW

AB L 

�
1

3
Ay y 

�
1

3
ABL 

�
pd2

4 

ELEMENT OF BAR

W � weight of cone

ELONGATION OF ELEMENT dy

ELONGATION OF CONICAL BAR

;d �
L

dd �
4W

pd2 ELL

L

0

 y dy �
2WL

pd2 E

dd �
Ny dy

E Ay
�

Wy dy

E ABL
�

4W

pd2 EL
 y dy 

d

L

Solution 2.3-15 Conical bar hanging vertically

Problem 2.3-16 A uniformly tapered plastic tube AB of circular
cross section and length L is shown in the figure. The average diame-
ters at the ends are dA and dB � 2dA. Assume E is constant. Find the
elongation d of the tube when it is subjected to loads P acting at the
ends. Use the following numerial data: dA � 35 mm, L � 300 mm,
E � 2.1 GPa, P � 25 kN. Consider two cases as follows:

(a) A hole of constant diameter dA is drilled from B toward A to
form a hollow section of length x � L /2 (see figure part a). (a)

P

B
x

L

P
A

dA

dA

dB
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(a) ELONGATION d FOR CASE OF CONSTANT DIAMETER HOLE

� solid portion of length L � x

� hollow portion of length x

if x � L/2

Substitute numerical data:

;d � 2.18 mm

	 2L

�lna1

2
Lb + lna5

2
Lb

pdA
2

≤d �
 P

 E
 ±4

3
 

L

pdA
2

� 2L
ln(3)

pdA
2

�ln(L�x) + ln(3L�x)

pdA 

2
b da4

L

pdA 

2
�2L

ln(3)

pdA 

2
+ 2Ld �

 P

 E
c4 

L2

(�2 	 x)pdA 

2 +

L
 

L

 
L�x

1

cp
4

 c cdAa1 +

�

L
b d2 � dA 

2 d d
 d� K K Kd �

 P

 E
 J4 

L2

(�2 	 x)pdA 

2 + J J 4 L

pdA
2

+

L

 
L

 

L�x

1

c p

4
c cdAa1 +

�

L
b d2 � dA 

2 d d
 d� Kd �

P

E
 J L

 
L�x

 

0

1

c p

4
cdAa1 +

�

L
b d2 d

 d� +

L

 L

 L�x  

4

p1d(�)2 � dA 

22 d� dd �
 P

 E
c
L

 L�x

0

4

pd(�)2
 d� + d �

 P

 E
a
L

1

 A(�)
 d�b

A(�) �
p

 4
(d(�)2 � dA 

2)

 A(�) �
p

4
d(�)2  d(�) � dAa1 +

� 

L 
b

(b) A hole of variable diameter d(x) is drilled from
B toward A to form a hollow section of length x � L /2
and constant thickness t (see figure part b). (Assume
that t � dA/20.)

P

(b)

B
x

L

P
A

dA

d(x)

dB

t constant

Solution 2.3-16

SECTION 2.3 Changes in Lengths under Nonuniform Conditions 155

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

78572_ch02_ptg01_hr_117-282.qxd  1/18/12  6:03 PM  Page 155



156 CHAPTER 2 Axially Loaded Members

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

(b) ELONGATION d FOR CASE OF VARIABLE DIAMETER HOLE BUT CONSTANT WALL THICKNESS t � dA/20 OVER SEGMENT x

� solid portion of length L � x

� hollow portion of length x

if x � L/2

Substitute numerical data:

;d � 6.74 mm 

� 20L
2ln( dA) + ln(29L)

pdA 

2
b  + 20L

ln(3) + ln(13) + 2ln( dA) + ln( L)

pdA 

2
 d �

 P

 E
a4

3
 

L

pdA 

2

� 20L
2ln( dA) + ln (39L � 20x)

pdA 

2
d

	 20L
ln(3) + ln(13) + 2ln( dA) + ln( L)

pdA 

2
d �

 P

 E
 c4  L2

(�2L + x)pdA 

2
+ 4

 L

pdA 

2
 

L

 L

 L�x

4

p c c  dAa1 +

�

L
b d2 � cdAa1 +

�

L
b � 2

 dA

20
d2 d

 d�¥d �
 P

 E
 ≥
L

 L�x

0

4

p cdAa1 +

�

L
b d

 d� +

L

 L

 L�x

4

p c  d(�)2 � ad(�) � 2 
 dA

20
b2 d

 d�¥d �
P

E
 ≥
L

 L�x

0

4

pd(�)2
 d� +d �

 P

E
 a
L

1

 A(�)
 d�b

 A(�) �
p

4
 cd(�)2 � a  d(�) � 2

 dA

20
b2 d

 A(�) �
p

4 d(�)2 d(�) � dAa1 +

� 

L 
b
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Problem 2.3-17 The main cables of a suspension bridge
[see part (a) of the figure] follow a curve that is nearly parabolic
because the primary load on the cables is the weight of the
bridge deck, which is uniform in intensity along the horizontal.
Therefore, let us represent the central region AOB of one of the
main cables [see part (b) of the figure] as a parabolic cable sup-
ported at points A and B and carrying a uniform load of intensity
q along the horizontal. The span of the cable is L, the sag is h,
the axial rigidity is EA, and the origin of coordinates is at
midspan.

(a) Derive the following formula for the elongation of cable
AOB shown in part (b) of the figure:

(b) Calculate the elongation d of the central span of one of
the main cables of the Golden Gate Bridge, for which the
dimensions and properties are L � 4200 ft, h � 470 ft,
q � 12,700 lb/ft, and E � 28,800,000 psi. The cable
consists of 27,572 parallel wires of diameter 0.196 in.

Hint: Determine the tensile force T at any point in the cable from a free-body diagram of part of the cable; then determine
the elongation of an element of the cable of length ds; finally, integrate along the curve of the cable to obtain an equation for
the elongation d.

d �
qL3

8hEA
(1 +

16h2

3L2
) 

Solution 2.3-17 Cable of a suspension bridge

Equation of parabolic curve:

 y �
4hx2

L2

FREE-BODY DIAGRAM OF HALF OF CABLE


MB � 0 


Fhorizontal � 0

(Eq. 1)


Fvertical � 0

(Eq. 2)VB �
qL

2 

HB � H �
qL2

8h 

 H �
qL2

8h 

 � Hh +

qL

2
aL

4
b � 0

��

 
dy

dx
�

8hx

L2 

BA

O

L
2

q

y

(b)

(a)

x

h 

— L
2
—
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FREE-BODY DIAGRAM OF SEGMENT DB OF CABLE

(Eq. 3)

(Eq. 4)

TENSILE FORCE T IN CABLE

(Eq. 5)

ELONGATION dd OF AN ELEMENT OF LENGTH ds

 �
qL2

8h A1 +

64h2x2

L4
 

 T � 2TH
2

+ Tv
2 � A a

qL2

8h
b2

+ (qx)2

� qx

Tv � VB � qaL

2
� xb �

qL

2
�

qL

2
+ qx

 ©F vert � 0 VB � Tv � qaL

2
� xb � 0

�
qL2

8h
 ©F horiz � 0  TH � HB

(Eq. 6)

(a) ELONGATION d OF CABLE AOB

Substitute for T from Eq. (5) and for ds from 
Eq. (6):

For both halves of cable:

(Eq. 7)

(b) GOLDEN GATE BRIDGE CABLE

L � 4200 ft h � 470 ft

q � 12,700 lb/ft E � 28,800,000 psi

27,572 wires of diameter d � 0.196 in.

Substitute into Eq. (7):

d � 133.7 in � 11.14 ft ;

A � (27,572)ap

4
b(0.196 in.)2 � 831.90 in.2 

; d �
qL3

8hEA
a1 +

16h2

3L4
b

 d �
2

EAL

L/2

0

qL2

8h
a1 +

64h2x2

L4
bdx

d �
1

EAL

qL2

8h
a1 +

64h2x 2

L4
bdx 

d �
L

 dd �
L

T ds

EA 

 � dxA1 +

64h2x2

L4
 

 � dxA1 + a8hx

L2
b2

  ds � 2(dx)2
+ (dy)2 � dxA1 + ady

dx
b2

 dd �
Tds

EA

78572_ch02_ptg01_hr_117-282.qxd  1/18/12  6:03 PM  Page 158



Solution 2.3-18 Rotating bar

v � angular speed

A � cross-sectional area

E � modulus of elasticity

g � acceleration of gravity

F(x) � axial force in bar at distance x from point C

Consider an element of length dx at distance x from
point C.

To find the force F(x) acting on this element, we must
find the inertia force of the part of the bar from distance
x to distance L, plus the inertia force of the weight W2.

Since the inertia force varies with distance from point C,
we now must consider an element of length dj at dis-
tance j, where j varies from x to L.

Mass of element 

Acceleration of element � jv2

Centrifugal force produced by element

� (mass)( acceleration) �
W1�2

gL
 d

d �
d

L
aW1

g
b  

Centrifugal force produced by weight W2

AXIAL FORCE F(x)

ELONGATION OF BAR BC

;�
L2�2

3gEA
 + (W1 + 3W2)

�
W1L2�2

3gEA
 +

W2L2�2

gEA

�
W1L�2

2gLEA
 c
L

L

0
L

2 
dx �

L

L

0

  
x

2
 dx d + W2L�2dx

gEA L

L

0
dx

 �  
L

L

0

W1�2

2gL
(L2 � x2)dx +

L

L

0

W2L�2dx

gEA

 d �
L

L

0

F(x) dx

EA

�
W1�2

2gL
(L2 � x2) +

W2L�2

g

 F(x) �
L

�L

�x
 
W1�2

gL
 d +

W2L�2  

g

� aW2

g
b(L�2) 

Problem 2.3-18 A bar ABC revolves in a horizontal plane about a
vertical axis at the midpoint C (see figure). The bar, which has length
2L and cross-sectional area A, revolves at constant angular speed v.
Each half of the bar (AC and BC) has weight W1 and supports a
weight W2 at its end.

Derive the following formula for the elongation of one-half of the
bar (that is, the elongation of either AC or BC):

in which E is the modulus of elasticity of the material of the bar
and g is the acceleration of gravity.

d �
L2�2

3gEA
(W1 + 3W2) 

A C B
v

L L

W2 W1 W1 W2
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Statically Indeterminate Structures

Problem 2.4-1 The assembly shown in the figure consists of a brass
core (diameter d1 � 0.25 in.) surrounded by a steel shell (inner diameter
d2 � 0.28 in., outer diameter d3 � 0.35 in.). A load P compresses the
core and shell, which have length L � 4.0 in. The moduli of elasticity of
the brass and steel are Eb � 15 � 106 psi and Es � 30 � 106 psi,
respectively.

(a) What load P will compress the assembly by 0.003 in.?
(b) If the allowable stress in the steel is 22 ksi and the allowable stress

in the brass is 16 ksi, what is the allowable compressive load
Pallow? (Suggestion: Use the equations derived in Example 2-6.)

Solution 2.4-1 Cylindrical assembly in compression

d1 � 0.25 in. Eb � 15 � 106 psi

d2 � 0.28 in. Es � 30 � 106 psi

d3 � 0.35 in.

L � 4.0 in.

(a) DECREASE IN LENGTH (d � 0.003 in.)

Use Eq. (2-18) of Example 2-6.

P � (Es As + Es Ab)a d

L
b

d �
PL

Es As + Eb Ab
    or 

Ab �
p

4
d1

2 � 0.04909 in.2

As �
p

4
(d3

2 � d2
2) � 0.03464 in.2

Substitute numerical values:

(b) ALLOWABLE LOAD

ss � 22 ksi sb � 16 ksi

Use Eqs. (2-17a and b) of Example 2-6.
For steel:

For brass:

Steel governs. Pallow � 1300 lb ;

Ps � (1.776 * 106 lb)a 16 ksi

15 * 106 psi
b � 1890 lb 

sb �
PEb

Es As + Eb Ab
    Ps � (Es As + Eb Ab)

sb

Eb

Ps � (1.776 * 106 lb)a 22 ksi

30 * 106 psi
b � 1300 lb 

ss �
PEs

Es As + Eb Ab
    Ps � (Es As + Eb Ab)

ss

Es
 

;� 1330 lb

P � (1.776 * 106 lb)a0.003 in.

4.0 in.
b  

� 1.776 * 106 lb 

 + (15 * 106 psi)(0.04909 in.2) 

Es As + Eb Ab � (30 * 106 psi)(0.03464 in.2) 
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Problem 2.4-2 A cylindrical assembly consisting of a brass core and 
an aluminum collar is compressed by a load P (see figure). The length 
of the aluminum collar and brass core is 350 mm, the diameter of the 
core is 25 mm, and the outside diameter of the collar is 40 mm. Also, the
moduli of elasticity of the aluminum and brass are 72 GPa and 100 GPa,
respectively.

(a) If the length of the assembly decreases by 0.1% when the load 
P is applied, what is the magnitude of the load?

(b) What is the maximum permissible load Pmax if the allowable
stresses in the aluminum and brass are 80 MPa and 120 MPa,
respectively? (Suggestion: Use the equations derived in 
Example 2-6.)

Solution 2.4-2 Cylindrical assembly in compression

A � aluminum

B � brass

L � 350 mm

da � 40 mm

db � 25 mm

Ea � 72 GPa Eb � 100 GPa

� 490.9 mm2

(a) DECREASE IN LENGTH

(d � 0.1% of L � 0.350 mm)

Use Eq. (2-18) of Example 2-6.

Ab �
p

4
db

2

� 765.8 mm2 

Aa �
p

4
 (da

2 � db
2)

Substitute numerical values:

Ea Aa + Eb Ab � (72 GPa)(765.8 mm2)

P � (Ea Aa + Eb Ab)a d

L
b

d �
PL

Ea Aa + Eb Ab
    or 
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(b) ALLOWABLE LOAD

sa � 80 MPa sb � 120 MPa

Use Eqs. (2-17a and b) of Example 2-6.

For aluminum:

For brass:

Aluminum governs. Pmax � 116 kN ;

Pb � (104.23 MN)a120 MPa

100 GPa
b � 125.1 kN 

sb �
PEb

Ea Aa + Eb Ab
      Pb � (Ea Aa + Eb Ab)asb

Eb
b  

Pa � (104.23 MN)a80 MPa

72 GPa
b � 115.8 kN 

sa �
PEa

Ea Aa + Eb Ab
    Pa � (Ea Aa + Eb Ab)asa

Ea
b

;� 104.2 kN

P � (104.23 MN)a0.350 mm

350 mm
b  

� 104.23 MN 
� 55.135 MN + 49.090 MN 

	(100 GPa)(490.9 mm2) 
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Problem 2.4-3 Three prismatic bars, two of material A and one of material B, 
transmit a tensile load P (see figure). The two outer bars (material A) are identical.
The cross-sectional area of the middle bar (material B) is 50% larger than the
cross-sectional area of one of the outer bars. Also, the modulus of elasticity of
material A is twice that of material B.

(a) What fraction of the load P is transmitted by the middle bar?
(b) What is the ratio of the stress in the middle bar to the stress in the outer bars?
(c) What is the ratio of the strain in the middle bar to the strain in the outer bars?

Solution 2.4-3 Prismatic bars in tension

FREE-BODY DIAGRAM OF END PLATE

EQUATION OF EQUILIBRIUM


Fhoriz � 0 PA 	 PB � P � 0 (1)

EQUATION OF COMPATIBILITY

dA � dB (2)

FORCE-DISPLACEMENT RELATIONS

AA � total area of both outer bars

(3)

Substitute into Eq. (2):

(4)

SOLUTION OF THE EQUATIONS

Solve simultaneously Eqs. (1) and (4):

(5)

Substitute into Eq. (3):

(6)d � dA � dB �
PL

EA AA + EB AB 

PA �
EA AAP

EA AA + EB AB
    PB �

EB AB P

EA AA + EB AB 

PA L

EA AA
�

PB L

EB AB 

dA �
PA L

EA Ak
    dB �

PB L

EB AB 

STRESSES:

(7)

(a) LOAD IN MIDDLE BAR

(b) RATIO OF STRESSES

(c) RATIO OF STRAINS

All bars have the same strain

Ratio � 1 ;

;sB

sA
�

EB

EA
�

1

2

;‹

PB

P
�

1

aEA

EB
b aAA

AB
b + 1

�
1

8

3
+ 1

�
3

11

 Given: 
EA

EB
� 2 AA

AB
�

1 + 1

1.5
�

4

3 

PB

P
�

EB AB

EA AA + EB AB
�

1
EA AA

EB AB
+ 1 

sB �
PB

AB
�

EB P

EA AA + EB AB
 

sA �
PA

AA
�

EA P

EA AA + EB AB
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Problem 2.4-4 A circular bar ACB of diameter d having a cylindrical hole of 
length x and diameter d/2 from A to C is held between rigid supports at A and
B. A load P acts at L/2 from ends A and B. Assume E is constant.

(a) Obtain formulas for the reactions RA and RB at supports A and B, respec-
tively, due to the load P (see figure part a).

(b) Obtain a formula for the displacement d at the point of load application
(see figure part a).

(c) For what value of x is RB � (6/5) RA? (See figure part a.)
(d) Repeat part (a) if the bar is now rotated to a vertical position, load P is

removed, and the bar is hanging under its own weight (assume mass 
density � r). (See figure part b.) Assume that x � L/2.

P, d

d
d
2
—

L
2
—

(a)

C B
A

L – xx

d

d
2
—

C

B

A

L – x

x

(b)
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Solution 2.4-4 
(a) REACTIONS AT A AND B DUE TO LOAD P AT L/2

Select RB as the redundant; use superposition and a compatibility equation at B:

if x  L/2

if x � L/2 dB1b �
8

3
 

PL

Epd2
d B1b �

P 
L

2

Ea 3

16
pd2b

dB1b �

P 
L

2

EA AC 

dB1a �
2

3
P 

2x + 3L

 Epd2 

dB1a �
 P

E
± x

3

16
 pd 2

+

 L

2
� x

p

4
 d 2
≤d B1a �

 Px

 EA AC
+

 Pa  L

2
� xb

 EACB 

ACB �
p

4
 d2

AAC �
3

16
pd2AAC �

p

4
c  d2 � ad

2
b2 d
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The following expression for dB2 is good for all x:

Solve for RB and RA assuming that x L/2:

Compatibility: dB1a 	 dB2 � 0

^ check—if x � 0, RB � �P/2

Statics: RAa � �P � RBa

^ check—if x � 0, RAa � �P/2

Solve for RB and RA assuming that x L/2:

Compatibility: dB1b 	 dB2 � 0

^ check—if x � L, RB � �P/2

Statics: RAb � �P � RBb

(b) FIND d AT POINT OF LOAD APPLICATION; AXIAL FORCE FOR SEGMENT 0 TO L/2 � �RA AND d � ELONGATION OF THIS SEGMENT

Assume that x L/2:

For x � L/2, ;da �
8

7
 L 

P

Epd2

da � PL 
2x + 3L

(x + 3L)Epd2

da �

�a�3

2
 P 

L

x + 3L
b

E
± x

3

16
 pd2

+

L

2
� x

p

4
 d2
≤

da �
�RAa

E
P x

AAC
+

L

2
� x

 ACB
Q

…

;RAb � �P 
x + L

x + 3L 
 RAb � � P � a �2PL

x + 3L
b  

;RBb �
�2PL

x + 3L 
RBb �

�8

3
 

PL

pd2

a16

3
 

x

pd2
+ 4 

L � x

pd2
b

Ú

;RAa �
�3

2
 P 

L

x + 3L 
RAa � �P �

�1

2
 P 

2x + 3L

x + 3L

;RBa �
�1

2
 P 

2x + 3L

x + 3L
RBa �

�a2

3
P 

2x + 3L

pd2
b

a16

3
 

x

pd2
+ 4 

L � x

pd2
b

…

dB2 �
RB

E
a16

3
 

x

pd2
+ 4 

L � x

pd2
b  

dB2 �
RB

E
 P x

3

16
 pd2

+

L � x
p

4
 d2 QdB2 �

RB

E
a x

AAC
+

L � x

ACB
b  
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ASSUME THAT x L/2:

for x � L/2 � same as da above (OK)

(c) FOR WHAT VALUE OF x is RB � (6/5) RA? 
Guess that x � L/2 here and use RBa expression above to find x:

Now try RBb � (6/5)RAb, assuming that x � L/2

So, there are two solutions for x.

(d) FIND REACTIONS IF THE BAR IS NOW ROTATED TO A VERTICAL POSITION, LOAD P IS REMOVED, AND THE BAR IS HANGING

UNDER ITS OWN WEIGHT (ASSUME MASS DENSITY � ρ). ASSUME THAT x � L/2.

Select RB as the redundant; use superposition and a compatibility equation at B

from (a) above. compatibility: dB1 	 dB2 � 0

For x � L/2,  

Where axial forces in bar due to self weight are 
(assume z is measured upward from A):

NCB � �[r gACB(L � z)]

 NCB � � c1
4

 rgp d2( L � �) d  NAC �
�1

8
rgp d2 L �

3

16
 rgp d2a1

2
 L � �b  

 ACB �
p
 4

 d2 AAC �
3

16
 pd2 NAC � � crgACB 

L

2
+ rgAACaL

2
� �b d

WCB � rgACB 
L

2
WAC � rgAAC 

L

2

dB1 �
L

L
2

0

 NAC

EAAC

 d� 	 
L

L

L
2

NCB

EACB
d�

dB2 �
RB

E
a14

3
 

L

pd2
bdB2 �

RB

E
a x

AAC
+

L � x

ACB
b  

ACB �
p

4
 d2AAC �

3

16
 pd2 

;x �
2

3
 L

2

5
 P 

�2L + 3x

x + 3L
� 0

�2PL

x + 3L
�

6

5
a�P 

x + L

x + 3L
b � 0 

; x �
3L

10 

�1

10
 P 

10x � 3L

 x + 3L
� 0 

�1

2
 P 

2x + 3L

 x + 3L
�

6

5
a�3

2
 P 

 L

 x + 3L
b � 0 

db �
8

7
 P 

L

Epd 2

;db �  
8

3
 Pa x + L

x + 3L
b L

Epd2
db �

aP 
x + L

x + 3L
bL

2

Ea 3

16
 pd2b

db �

1�RAb2L2
EAAC 

Ú
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Compatibility: dB1 	 dB2 � 0

Statics: RA � (WAC 	 WCB) � RB

; RA �
3

32
 rgp d2 L 

 RA � c crga 3

16
 pd2bL

2
+ rgap

4
 d2bL

2
d �

1

8
 rgpd2L d

; RB �
1

8
 rgpd2L  RB �

�a�7

12
 rg 

 L2

 E
b

a 14

3
 

L

Epd2
b  

7

12
� 0.583 dB1 �

�7

12
 r g 

 L2

 E 
dB1 � a�11

24
 rg 

 L2

 E
+

�1

8
 rg 

 L2

E
b  

L

L

L
2

 � c14 rgpd2 (L��) d
Eap

4d2b
d�dB1 �

L

L
2

0

�1

8
 rgpd2L �

3

16
 rgpd2a1

2
 L � �b

Ea 3

16
 pd2b

 d� +

Problem 2.4-5 Three steel cables jointly support a load of 12 k (see figure). The diameter of 
the middle cable is 3⁄4 in. and the diameter of each outer cable is 1⁄2 in. The tensions in the 
cables are adjusted so that each cable carries one-third of the load (i.e., 4 k). Later, the load is
increased by 9 k to a total load of 21 k.

(a) What percent of the total load is now carried by the middle cable?
(b) What are the stresses sM and sO in the middle and outer cables, respectively? 

(NOTE: See Table 2-1 in Section 2.2 for properties of cables.)
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Solution 2.4-5 Three cables in tension

AREAS OF CABLES (from Table 2-1)

Middle cable: AM � 0.268 in.2

Outer cables: AO � 0.119 in.2

(for each cable)

FIRST LOADING

SECOND LOADING

P1 � 12 kaEach cable carries 
P1

3
 or 4 k.b  

SUBSTITUTE INTO COMPATIBILITY EQUATION:

(5)

SOLVE SIMULTANEOUSLY EQS. (1) AND (5):

FORCES IN CABLES

Middle cable: Force � 4 k 	 4.767 k � 8.767 k

Outer cables: Force � 4 k 	 2.117 k � 6.117 k

(for each cable)

(a) PERCENT OF TOTAL LOAD CARRIED BY MIDDLE CABLE

(b) STRESSES IN CABLES (s � P/A)

Middle cable: 

Outer cables: ;sO �
6.117 k

0.119 in.2
� 51.4 ksi 

;sM �
8.767 k

0.268 in.2
� 32.7 ksi

Percent �
8.767 k

21 k
(100%) � 41.7%   ;

� 2.117 k 

Po � P2a Ao

AM + 2AO
b � (9 k)a0.119 in.2

0.506 in.2
b  

� 4.767 k 

PM � P2a AM

AM + 2AO
b � (9 k)a0.268 in.2

0.506 in.2
b  

PML

EAM
�

POL

EAO
 PM

AM
�

PO

AO 

EQUATION OF EQUILIBRIUM


Fvert � 0 2PO 	 PM � P2 � 0 (1)

EQUATION OF COMPATIBILITY

dM � dO (2)

FORCE-DISPLACEMENT RELATIONS

(3, 4)dM �
PML

EAM
 dO �

Po L

EAo 
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Problem 2.4-6 A plastic rod AB of length L � 0.5 m has a 
diameter d1 � 30 mm (see figure). A plastic sleeve CD of length 
c � 0.3 m and outer diameter d2 � 45 mm is securely bonded to the
rod so that no slippage can occur between the rod and the sleeve. 
The rod is made of an acrylic with modulus of elasticity E1 � 3.1
GPa and the sleeve is made of a polyamide with E2 � 2.5 GPa.

(a) Calculate the elongation d of the rod when it is pulled by
axial forces P � 12 kN.

(b) If the sleeve is extended for the full length of the rod, what is
the elongation?

(c) If the sleeve is removed, what is the elongation?

Solution 2.4-6 Plastic rod with sleeve

P � 12 kN d1 � 30 mm b � 100 mm

L � 500 mm d2 � 45 mm c � 300 mm

Rod: E1 � 3.1 GPa

Sleeve: E2 � 2.5 GPa

Rod: 

Sleeve: 

E1A1 	 E2A2 � 4.400 MN

(a) ELONGATION OF ROD

Part AC: dAC �
Pb

E1A1
� 0.5476 mm 

A2 �
p

4
(d 2

2 � d1
2) � 883.57 mm2

A1 �
pd1

2

4
� 706.86 mm2 

(From Eq. 2-18 of Example 2-6)

d � 2dAC 	 dCD � 1.91 mm

(b) SLEEVE AT FULL LENGTH

(c) SLEEVE REMOVED

;d �
PL

E1A1
� 2.74 mm

;� 1.36 mm 

d � dCDaL

c
b � (0.81815 mm)a500 mm

300 mm
b  

;

� 0.81815 mm 

Part CD: dCD �
Pc

E1A1 + E2A2
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Problem 2.4-7 A tube structure is acted on by
loads at B and D, as shown in the figure. The
tubes are joined using two flange plates at C,
which are bolted together using six 0.5 in. diam-
eter bolts.

(a) Derive formulas for the reactions RA and
RE at the ends of the bar.

(b) Determine the axial displacement �B, �c,
and �D at points B, C, and D, respectively.

(c) Draw an axial-displacement diagram
(ADD) in which the abscissa is the distance x from support A to any point on the bar and the ordinate is the horizontal
displacement d at that point.

(d) Find the maximum value of the load variable P if allowable normal stress in the bolts is 14 ksi.

Solution 2.4-7
NUMERICAL DATA

(a) FORMULAS FOR REACTIONS F

Segment ABC flexibility: 

Segment CDE flexibility: 

Loads at points B and D:

(1) Select RE as the redundant; find axial displacement displacement at E due to loads PB and PD:

(2) Next apply redundant RE and find axial displacement displacement at E due to redundant RE:

(3) Use compatibility equation to find redundant RE then use statics to find RA:

RA � �RE � PB � PD �
2 P

3
  RA �

2 P

3
  RA �

2 P

3
  RE �

5 P

3

d1 + d2 � 0 solve,  RE � �
5 P

3
   RE �

�5

3
 P

d2 � RE 1f1 + f22 �
3 L R E

2 EA

d2 �

d1 �

1PB + PD2 

L

4

EA
 +

PD 

L

4

EA
 +

PD 

L

4

1

2
 EA

�
5 L P

2 EA

d1 �

PB � �2 P  PD � 3 P

f2 �

2aL

4
b

1

2
 EA

�
L

 EA

f1 �

2a  
L

4
 b

EA
�

L

2 EA

n � 6  db � 0.5 in.  sa � 14 ksi  Ab �
p

4
 db 

2 � 0.196 in.2

EA

x

A B C D E

Flange
plate

Flange plates at C joined
by six bolts

Bolt

EA/2

L/4 L/4

2P at x = L/4
3P at x = 3L/4

L/4 L/4
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(b) DETERMINE THE AXIAL DISPLACEMENTS , , AND AT POINTS B, C, AND D, RESPECTIVELY.

to the right

(c) DRAW AN AXIAL-DISPLACEMENT DIAGRAM (ADD) IN WHICH THE ABSCISSA IS THE DISTANCE X FROM SUPPORT A TO ANY

POINT ON THE BAR AND THE ORDINATE IS THE HORIZONTAL DISPLACEMENT AT THAT POINT.

AFD for use below in Part (d)

AFD is composed of 4 constant segments, so
ADD is linear with zero displacements at
supports A and E.

Plot displacements , , and from part (b)
above, then connect points using straight lines
showing linear variation of axial displacement
Between points

Boundary conditions at supports:

dA � dE � 0

dmax � dD  dmax �  
5 L P

6 EA
  to the right

dDdCdB

d

dB 

a�2 P

3
b aL

4
b

EA
 �  

L P

6 EA
  dc � dB +

a2 P �
2 P

3
b aL

4
b

EA
 �

L P

6 EA
  dD �

a5 P

3
b aL

4
b

EA

2

 �  
5 L P

6 EA

dDdCdB

0 0.25 0.5 0.75 1
−2

−1

0

1

2
Axial Force Diagram (AFD)

Distance x (times L)

A
xi

al
 f

or
ce

 (
tim

es
 P

 )
N(x)

x

0 0.25 0.5 0.75 1
−0.5

0

0.5

1
Axial Displacement Diagram (ADD)

Distance (times L)

A
xi

al
 d

is
pl

 (
tim

es
 L

 /E
A

) 5
6

1
6

δ  (x)

x

RE

RA

−

(d) MAXIMUM PERMISSIBLE VALUE OF LOAD VARIABLE P BASED ON ALLOWABLE NORMAL STRESS IN FLANGE BOLTS

FROM AFD, FORCE AT L/2:

Pmax �
3

4
 Fmax � 12.37 k  Pmax � 12.37 k

Fmax �
4

3
 P  and  Fmax � n sa Ab � 16.493 k

leftward to the right
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Problem 2.4-8 The fixed-end bar ABCD consists of three prismatic
segments, as shown in the figure. The end segments have cross-sectional
area A1 � 840 mm2 and length L1 � 200 mm. The middle segment has
cross-sectional area A2 � 1260 mm2 and length L2 � 250 mm. Loads PB

and PC are equal to 25.5 kN and 17.0 kN, respectively.

(a) Determine the reactions RA and RD at the fixed supports.
(b) Determine the compressive axial force FBC in the middle

segment of the bar.

Solution 2.4-8 Bar with three segments

FREE-BODY DIAGRAM

EQUATION OF EQUILIBRIUM


Fhoriz � 0 

PB 	 RD � PC � RA � 0 or

RA � RD � PB � PC � 8.5 kN (Eq. 1)

EQUATION OF COMPATIBILITY

dAD � elongation of entire bar

dAD � dAB 	 dBC 	 dCD � 0 (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eq. 3)

(Eq. 4)

(Eq. 5)dCD �
RDL1

EA1
�

RD

E
a238.095 

1

 m
b  

�
RA

E
a198.413

1

 m
b �

PB

E
a198.413

1

 m
b  

dBC �
(RA � PB)L2

EA2
 

dAB �
RAL1

EA1
�

RA

E
a238.05 

1

 m
b  

:	 ;�

PB � 25.5 kN PC � 17.0 kN

L1 � 200 mm L2 � 250 mm

A1 � 840 mm2 A2 � 1260 mm2

m � meter

SOLUTION OF EQUATIONS

Substitute Eqs. (3), (4), and (5) into Eq. (2):

Simplify and substitute PB � 25.5 kN:

(Eq. 6)

(a) REACTIONS RA AND RD

Solve simultaneously Eqs. (1) and (6).

From (1): RD � RA � 8.5 kN

Substitute into (6) and solve for RA:

RA � 10.5 kN

RD � RA � 8.5 kN � 2.0 kN

(b) COMPRESSIVE AXIAL FORCE FBC

FBC � PB � RA � PC � RD � 15.0 kN ;

;
;

RAa674.603
1

 m
b � 7083.34 kN/m

� 5,059.53 kN/m 

RAa436.508
1

 m
b + RDa238.095

1

 m
b  

�
PB

E
a198.413

1

 m
b +

RD

E
a238.095

1

 m
b � 0 

RA

E
a238.095

1

 m
b +

RA

E
a198.413

1

 m
b  
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Problem 2.4-9 The aluminum and steel pipes shown in the figure are fastened to rigid
supports at ends A and B and to a rigid plate C at their junction. The aluminum pipe is
twice as long as the steel pipe. Two equal and symmetrically placed loads P act on the
plate at C.

(a) Obtain formulas for the axial stresses sa and ss in the aluminum and steel pipes,
respectively.

(b) Calculate the stresses for the following data: P � 12 k, cross-sectional area of
aluminum pipe Aa � 8.92 in.2, cross-sectional area of steel pipe As � 1.03 in.2,
modulus of elasticity of aluminum Ea � 10 � 106 psi, and modulus of elasticity
of steel Es � 29 � 106 psi.

Solution 2.4-9 Pipes with intermediate loads

Pipe 1 is steel.
Pipe 2 is aluminum.

EQUATION OF EQUILIBRIUM


Fvert � 0 RA 	 RB � 2P (Eq. 1)

EQUATION OF COMPATIBILITY

dAB � dAC 	 dCB � 0 (Eq. 2)

(A positive value of d means elongation.)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4))dAC �
RAL

EsAs
 dBC � �

RB(2L)

EaAa 

SOLUTION OF EQUATIONS

Substitute Eqs. (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

(Eqs. 6, 7)
(a) AXIAL STRESSES

(compression) (Eq. 8)

(Eq. 9)

(tension)

(b) NUMERICAL RESULTS

P � 12 k Aa � 8.92 in.2 As � 1.03 in.2

Ea � 10 � 106 psi Es � 29 � 106 psi

Substitute into Eqs. (8) and (9):

sa � 1,610 psi (compression)

ss � 9,350 psi (tension) ;
;

; Steel: ss �
RA

As
�

4EsP

EaAa + 2Es As
 

; Aluminum: sa �
RB

Aa
�

2EaP

EaAa + 2EsAs
 

RA �
4Es As P

EaAa + 2EsAs
 RB �

2EaAaP

EaAa + 2EsAs 

RAL

Es As
�

RB(2L)

EaAa
� 0 
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Problem 2.4-10 A hollow circular pipe (see figure) supports a load P which is uni-
formly distributed around a cap plate at the top of the lower pipe. The inner and outer
diameters of the upper and lower parts of the pipe are d1 � 50 mm, d2 � 60 mm, 
d3 � 57 mm, and d4 � 64 mm, respectively. Pipe lengths are L1 � 2m and L2 � 3 m.
Neglect the self-weight of the pipes. Assume that cap plate thickness is small com-
pared to L1 and L2. Let E � 110 MPa.

(a) If the tensile stress in the upper part is s1 � 10.5 MPa, what is load P? Also,
what are reactions R1 at the upper support and R2 at the lower support. What is
the stress s2 MPa in the lower part?

(b) Find displacement �(mm) at the cap plate. Plot the Axial Force Diagram,
AFD [N(x)] and Axial Displacement Diagram, ADD [�(x)].

(c) Add the uniformly distributed load q along the centroidal axis of pipe segment 2.
Find q(kN/m) so that R2 � 0. Assume that load P from part (a) is also applied.

Solution 2.4-10
(a) STRESSES AND REACTIONS: SELECT R1 AS REDUNDANT AND DO SUPERPOSITION ANALYSIS (HERE q � 0; DEFLECTION

POSITION UPWARD)

SEGMENT FLEXIBILITIES

TENSILE stress (s1) is known in upper segment so 

Solve for P:

Finally, use statics to find : � compressive since R2 is 
positive (upward)

(b) DISPLACEMENT AT CAP PLATE

� downward (neg. x-direction)

AFD and ADD:

NOTE: x is measured up from lower support.

L2 � 3

R1 � 9.071  R2 � 4.657  L1 � 2  A1 � 863.938  A2 � 665.232  E � 110

dcap � dc � 0.191 m  dcap � 190.9 mm

dc � R1 f1 � 190.909 mm 6 downward OR dc � 1R22 f2 � 190.909 mm

P � 13.73 kN   R1 � 9.07 kN  R2 � 4.66 kN  s2 � 7 MPa

R2 � P � R1 � 4.66 kN  s2 �
R2

A2
� 7 MPaR2

P � R1 a  
f1 + f2

f2
 b � 13.73 kN

d1a � �P f2  d1b � R1 1f1 + f22  Compatibility: d1a + d1b � 0

R1 � s1 * A1   s1 � 10.5 MPa  R1 � s1 A1 � 9.07 kN

f1 �
L1

E A1
� 0.02105  mm/N  f2 �

L2

E A2
� 0.041 mm/N  f1

f2
� 0.513

L1 � 2 m  L2 � 3 m

A2 �
p

4
 1d4 

2 � d3 

22 � 665.232 mm2
E � 110 MPa

d1 � 50 mm  d2 � 60 mm  d3 � 57 mm  d4 � 64 mm  A1 �
p

4
 1d2 

2 � d1 

22 � 863.938 mm2
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q

P

x

Cap plate

(Part (c) only)

L2

L1

d3

d4

d1

d2
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(c) UNIFORM LOAD Q ON SEGMENT 2 SUCH THAT R2 � 0

Equilibrium:

q � 1.552 kN/m

R1 + R2 � P � q L2 6 set  R2 � 0, solve for req’d q  q �
P � R1

L2
 � 1.552 kN/m

P � 13.728 kN  R1 � s1 A1 � 9.071 kN  L2 � 3 m

0 1 2 3 4 5
−5

0

5

10
Axial Force Diagram (AFD)

N (x)

x
0 1 2 3 4 5

–5 ×10–5

–1 ×10–4

–1.5 ×10–4

–2 ×10–4

0
Axial Displacement Diagram (ADD)

δ (x)

x

Problem 2.4-11 A bimetallic bar (or composite bar) of square cross 
section with dimensions 2b � 2b is constructed of two different metals
having moduli of elasticity E1 and E2 (see figure). The two parts of the
bar have the same cross-sectional dimensions. The bar is compressed by
forces P acting through rigid end plates. The line of action of the loads
has an eccentricity e of such magnitude that each part of the bar is
stressed uniformly in compression.

(a) Determine the axial forces P1 and P2 in the two parts of the bar.
(b) Determine the eccentricity e of the loads.
(c) Determine the ratio s1/s2 of the stresses in the two parts of the bar.

2b

e

b
b

b
b

P

e
E1

E2
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Solution 2.4-11 Bimetallic bar in compression

FREE-BODY DIAGRAM

(Plate at right-hand end)

EQUATIONS OF EQUILIBRIUM


F � 0 P1 	 P2 � P (Eq. 1)


M � 0 (Eq. 2)

EQUATION OF COMPATIBILITY

d2 � d1

(Eq. 3)
P2L

E2A
�

P1L

E1A
  or P2

E2
�

P1

E1 

Pe + P1ab

2
b � P2ab

2
b � 0 ��

(a) AXIAL FORCES

Solve simultaneously Eqs. (1) and (3):

(b ECCENTRICITY OF LOAD P
Substitute P1 and P2 into Eq. (2) and solve for e:

(c) RATIO OF STRESSES

;s1 �
P1

A
 s2 �

P2

A
 s1

s2
�

P1

P2
�

E1

E2
 

;e �  
b(E2�E1)

2(E2 	 E1)

;P1 �
PE1

E1 + E2
 P2 �

PE2

E1 + E2
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Problem 2.4-12 A rigid bar of weight W � 800 N hangs from three equally
spaced vertical wires (length L � 150 mm, spacing a � 50 mm): two of steel
and one of aluminum. The wires also support a load P acting on the bar. The
diameter of the steel wires is ds � 2 mm, and the diameter of the aluminum wire
is da � 4 mm. Assume Es � 210 GPa and Ea � 70 GPa.

(a) What load Pallow can be supported at the midpoint of the bar (x � a) if the
allowable stress in the steel wires is 220 MPa and in the aluminum wire is
80 MPa? (See figure part a.)

(b) What is Pallow if the load is positioned at x � a/2? (See figure part a.)
(c) Repeat (b) above if the second and third wires are switched as shown in figure

part b. (a)

x

aa

P

Rigid bar
of weight W

S A SL

(b)

x

aa

P

Rigid bar
of weight W

S S AL

Solution 2.4-12

Numerical data:

W � 800 N L � 150 mm

a � 50 mm dS � 2 mm

dA � 4 mm ES � 210 GPa

EA � 70 GPa

sSa � 220 MPa sAa � 80 MPa

AA � 13 mm2 AS � 3 mm2

(a) Pallow AT CENTER OF BAR

One-degree statically indeterminate - use reaction (RA) at top of aluminum bar as the redundant

compatibility: d1 � d2 � 0 Statics: 2RS 	 RA � P 	 W

� downward displacement due to elongation of each steel wire under P 	 W if
aluminum wire is cut at top

d1 �
 P + W

2
 a  L

 ESAS
b  

AS �
p

4
 dS

2 AA �
p

4
 dA

2
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� upward displ. due to shortening of steel wires and elongation of aluminum
wire under redundant RA

Enforce compatibility and then solve for RA:

d1 � d2 so and

Now use statics to find RS:

and

Compute stresses and apply allowable stress values:

Solve for allowable load P:

(lower value of P controls)

PAa � 1713 N PSa � 1504 N Pallow is controlled by steel wires

(b) Pallow IF LOAD P AT x � a/2

Again, cut aluminum wire at top, then compute elongations of left and right steel wires:

where d1 � displacement at x � a

Use d2 from part (a):

So equating d1 and d2, solve for RA:

^ same as in part (a)

� stress in left steel wire exceeds that in right steel wire

 RSL �
3P

4
+

W

2
�

(P + W) 
 EAAA

 EAAA + 2ESAS

2 

 RSL �
3P

4
+

W

2
�

RA

2 

 RA � ( P + W) 
 EAAA

 EAAA + 2ESAS 

d2 � RAa  L

2ESAS
+

 L

 EAAA
b  

d1 �
 P + W

2
 a  L

 ESAS
b  d1 �

d 1L + d 1R

2 

d 1R � aP

4
+

W

2
b a  L

 ESAS
b  d 1L � a3P

4
+

 W

2
b a  L

 ESAS
b  

;

 PSa � sSaa  EAAA + 2ESAS

 ES
b � W  PAa � s Aaa  EAAA + 2ESAS

 EA
b � W 

s Sa � ( P + W) 
 ES

 EAAA + 2ESAS 
s Aa � ( P + W) 

 EA

 EAAA + 2ESAS 

s Sa �
 RS

 AS 

 RS � (P + W) 
 ESAS

 EAAA + 2ESAS 
 RS �

 P + W �(P + W) 
 EAAA

 EAAA + 2ESAS

2 
 RS �

 P + W � RA

2 

s Aa �
 RA

 AA 
 RA � ( P + W) 

 EAAA

 EAAA + 2ESAS 
 RA �

 P + W

2
a  L

 ESAS
b

 L

2ESAS
+

 L

 EAAA 

d2 � RAa  L

2ESAS
+

 L

 EAAA
b  
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Solve for Pallow based on allowable stresses in steel and aluminum:

PAa � 1713 N � same as in part(a)

PSa � 820 N steel controls 

(c) Pallow IF WIRES ARE SWITCHED AS SHOWN AND x � a/2

Select RA as the redundant; statics on the two released structures:

(1) Cut aluminum wire—apply P and W, compute forces in left and right steel wires, then compute displacements
at each steel wire:

By geometry, d at aluminum wire location at far right is

(2) Next apply redundant RA at right wire, compute wire force and displacement at aluminum wire:

RSL � �RA RSR � 2RA

(3) Compatibility equate d1, d2 and solve for RA, then Pallow for aluminum wire:

PAa � 1713 N

(4) Statics or superposition—find forces in steel wires, then Pallow for steel wires:

� larger than RSR, so use in allowable stress
calculations

 RSL �
6EAAAP + PESAS + 4EAAAW

10EAAA + 2ESAS 

 RSL �
P

2
+

 EAAAP + 4EAAAW

10EAAA + 2ESAS 
 RSL �

P

2
+ RA 

 PAa �
sAa(10EAAA + 2ESAS) � 4EAW

 EA 

sAa �
EAP + 4EAW

10EAAA + 2ESAS 

s Aa �
RA

AA 
 RA �

 EAAAP + 4EAAAW

10EAAA + 2ESAS 
 RA �

aP

2
+ 2Wb a L

ES AS
b

5L

 ESAS
+

L

 EAAA 

d2 � RAa 5L

 ESAS
+

 L

 EAAA
b  

d1 � aP

2
+ 2Wb a L

ESAS
b  

d1R � aP

2
+ Wb a L

ESAS
b  d1L �

P

2
a  L

 ESAS
b  

 RSR �
P

2
+ W  RSL �

P

2 

;

 PSa �
sSa(4ASEAAA + 8ESAS

2) � (4WESAS)

 EAAA + 6ES AS 

s Sa �
 PEAAA + 6PESAS + 4WESAS

4EAAA + 8ESAS
 a 1

AS
b RSL �

 PEAAA + 6PESAS + 4WESAS

4EAAA + 8ESAS 
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PSa � 703 N
^ steel controls 

; PSa �
10sSaASEAAA + 2sSaAS

2  ES � 4EAAAW

6EAAA + ESAS 

 PSa � sSaASa10EAAA + 2ESAS

6EAAA + ESAS
b �

4EAAAW

6EAAA + ESAS 
sSa �

RSL

AS 

 RSR �
3EAAAP + PESAS + 2EAAAW + 2WESAS

10EAAA + 2ESAS 

 RSR �
P

2
+ W �

 EAAAP + 4EAAAW

5EAAA + ES AS 
RSR �

P

2
+ W � 2RA 

Problem 2.4-13 A horizontal rigid bar of weight W � 7200 lb is supported by 
three slender circular rods that are equally spaced (see figure). The two outer
rods are made of aluminum (E1 � 10 � 106 psi) with diameter d1 � 0.4 in. and
length L1 � 40 in. The inner rod is magnesium (E2 � 6.5 � 106 psi) with diam-
eter d2 and length L2. The allowable stresses in the aluminum and magnesium
are 24,000 psi and 13,000 psi, respectively.

If it is desired to have all three rods loaded to their maximum allowable
values, what should be the diameter d2 and length L2 of the middle rod?

Solution 2.4-13 Bar supported by three rods

BAR 1 ALUMINUM

E1 � 10 � 106 psi

d1 � 0.4 in.

L1 � 40 in.

s1 � 24,000 psi

BAR 2 MAGNESIUM

E2 � 6.5 � 106 psi

d2 � ? L2 � ?

s2 � 13,000 psi

FREE-BODY DIAGRAM OF RIGID BAR

EQUATION OF EQUILIBRIUM


Fvert � 0

2F1 	 F2 � W � 0 (Eq. 1)

FULLY STRESSED RODS

F1 � s1A1 F2 � s2A2

Substitute into Eq. (1):

2s1apd2
1

4
b + s2apd2

2

4
b � W 

A2 �
pd2

2

4 
A1 �

pd1
2

4 
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Diameter d1 is known; solve for d2:

(Eq. 2)

SUBSTITUTE NUMERICAL VALUES:

EQUATION OF COMPATIBILITY

d1 � d2 (Eq. 3)

FORCE-DISPLACEMENT RELATIONS

(Eq. 4)d1 �
F1L1

E1A1
� s1a L1

E1
b  

;d2 � 0.338 in.

� 0.70518 in.2 � 0.59077 in.2 � 0.11441 in.2 

d2
2 �

4(7200 lb)

p(13,000 psi)
�

2(24,000 psi)(0.4 in.)2

13,000 psi
 

;d2
2 �

4W

ps2
�

2s1d1
2

s2
 

(Eq. 5)

Substitute (4) and (5) into Eq. (3):

Length L1 is known; solve for L2:

(Eq. 6)

SUBSTITUTE NUMERICAL VALUES:

� 48.0 in.

L2 � (40 in.) a24,000 psi

13,000 psi
b a6.5 * 106 psi

10 * 106 psi
b  

;L2 � L1as1E2

s2E1
b  

s1a L1

E1
b � s2a L2

E2
b  

d2 �
F2L2

E2A2
� s2a L2

E2
b  

Problem 2.4-14 Three-bar truss ABC (see figure) is constructed of steel
pipes having a cross-sectional area A � 3500 mm2 and a modulus of
elasticity E � 210 GPa. Member BC is of length L � 2.5 m, and the
angle between members AC and AB is known to be 60�. Member AC
length is b � 0.71L. Loads P � 185 kN and 2P � 370 kN act vertically
and horizontally at joint C, as shown. Joints A and B are pinned supports.
(Use the law of sines and law of cosines to find missing dimensions and
angles in the figure.)

(a) Find the support reactions at joints A and B. Use horizontal reac-
tion Bx as the redundant.

(b) What is the maximum permissible value of load variable P if the
allowable normal stress in each truss member is 150 MPa?

Solution 2.4-14
NUMERICAL DATA

FIND MISSING DIMENSIONS AND ANGLES IN PLANE TRUSS FIGURE

so

or c � 3b2
+ L2 � 2 b L cos (uC) � 2.85906 mc �  

L

sin(uA)
  sin(uC) � 2.85906 m

uC � 180� � (uA + uB) � 82.05694�

uB � a sin ab sin(uA)

L
b � 37.94306�

b

sin(uB)
 �  

L

sin(uA)

xc � b cos 1uA2 � 0.8875 m  yc � b sin1uA2 � 1.5372 m

sa � 150 MPa

L � 2.5 m  b � 0.71  L � 1.775 m  E � 210 GPa  A � 3500 mm2  P � 185 kN  uA � 60� 

y

x

P

C

L
uC

uB
uA = 60°

A
B

c

b

2P
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(a) SELECT Bx AS THE REDUNDANT; PERFORM SUPERPOSITION ANALYSIS TO FIND Bx THEN USE STATICS TO FIND REMAINING

REACTIONS. FINALLY USE METHOD OF JOINTS TO FIND MEMBER FORCES (SEE EXAMPLE 1-1)

dBx1 � displacement in x-direction in released structure acted upon by loads P and 2P at joint C:

dBx1 � 1.2789911 mm � this displacement equals force in AB divided by flexibility of AB

dBx2 � displacement in x-direction in released structure acted upon by redundant Bx:

COMPATIBILITY EQUATION: so

STATICS:

REACTIONS:

(b) FIND MAXIMUM PERMISSIBLE VALUE OF LOAD VARIABLE P IF ALLOWABLE NORMAL STRESS IS 150 MPA

(1) Use reactions and Method of Joints to find member forces in each member for above loading.

Results: FAB � 0 FBC � �416.929 kN FAC = 82.40 kN

(2) Compute member stresses:

(3) Maximum stress occurs in member BC. For linear analysis, the stress is proportional to the load so

So when downward load P � 233 kN is applied at C and 
horizontal load 2P � 466 kN is applied to the right at C, 
the stress in BC is 150 MPa

Pmax �    
sa

sBC
   P � 233 kN

sAC �
82.4 kN

A
� 23.543 MPasBC �  

�416.93 kN

A
 � �119.123 MPasAB � 0

By � 256 kNBx � �329 kNAy � �71.4 kNAx � �41.2 kN

Ay � P � By � �71.361 kN©Fy � 0

By �
1

c
 [2 P (b sin(uA)) + P (b cos(uA))] � 256.361 kN©MA � 0

AX � �BX � 2 P � �41.2 kN©FX � 0

BX �
�E A

c
  dBX1 � �328.8 kNdBX1 + dBX2 � 0

dBX2 � Bx  
c

E A

Problem 2.4-15 A rigid bar AB of length L � 66 in. is hinged to a 
support at A and supported by two vertical wires attached at points C
and D (see figure). Both wires have the same cross-sectional area 
(A � 0.0272 in.2) and are made of the same material (modulus E � 30
� 106 psi). The wire at C has length h � 18 in. and the wire at D has
length twice that amount. The horizontal distances are c � 20 in. and 
d � 50 in.

(a) Determine the tensile stresses sC and sD in the wires due to the
load P � 340 lb acting at end B of the bar.

(b) Find the downward displacement dB at end B of the bar. P

A BDC

L

c

d

h

2h
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Solution 2.4-15 Bar supported by two wires

h � 18 in.

2h � 36 in.

c � 20 in.

d � 50 in.

L � 66 in.

E � 30 � 106 psi

A � 0.0272 in.2

P � 340 lb

FREE-BODY DIAGRAM

DISPLACEMENT DIAGRAM

EQUATION OF EQUILIBRIUM


MA � 0 TC (c) 	 TD(d) � PL (Eq. 1)� �

EQUATION OF COMPATIBILITY

(Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

TENSILE FORCES IN THE WIRES

Solve simultaneously Eqs. (1) and (5):

(Eqs. 6, 7)

TENSILE STRESSES IN THE WIRES

(Eq. 8)

(Eq. 9)

DISPLACEMENT AT END OF BAR

(Eq. 10)

SUBSTITUTE NUMERICAL VALUES

2c2 	 d2 � 2(20 in.)2 	 (50 in.)2 � 3300 in.2

(a)

(b)

;� 0.0198 in. 

�
2(18 in.)(340 lb)(66 in.)2

(30 * 106 psi)(0.0272 in.2)(3300 in.2)
 

dB �
2hPL2

EA(2c2
+ d2)

 

;� 12,500 psi

sD �
dPL

A(2c2
+ d2)

�
(50 in.)(340 lb)(66 in.)

(0.0272 in.2)(3300 in.2)
 

;� 10,000 psi

sC �
2cPL

A(2c2
+ d2)

�
2(20 in.)(340 lb)(66 in.)

(0.0272 in.2)(3300 in.2)
 

dB � dDaLdb �
2hTD

EA
aL
d
b �

2hPL2

EA(2c2
+ d 2) 

sD �
TD

A
�

dPL

A(2c2
+ d2) 

sC �
TC

A
�

2cPL

A(2c2
+ d2) 

TC �
2cPL

2c2
+ d2

 TD �
dPL

2c2
+ d2 

TCh

cEA
�

TD(2h)

dEA
  or TC

c
�

2TD

d 

dC �
TCh

EA
 dD �

TD(2h)

EA 

dc

c
�

dD

d 
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Problem 2.4-16 A rigid bar ABCD is pinned at point B and sup-
ported by springs at A and D (see figure). The springs at A and D
have stiffnesses k1 � 10 kN/m and k2 � 25 kN/m, respectively, and
the dimensions a, b, and c are 250 mm, 500 mm, and 200 mm,
respectively. A load P acts at point C.

If the angle of rotation of the bar due to the action of the load P
is limited to 3°, what is the maximum permissible load Pmax?

A B C

P

D

c = 200 mm

k1 = 10 kN/m
k2 = 25 kN/m

a = 250 mm b = 500 mm

Solution 2.4-16 Rigid bar supported by springs

NUMERICAL DATA

a � 250 mm

b � 500 mm

c � 200 mm

k1 � 10 kN/m

k2 � 25 kN/m

FREE-BODY DIAGRAM AND DISPLACEMENT DIAGRAM

umax � 3� �
p

60
 rad

EQUATION OF EQUILIBRIUM


MB � 0 	 � FA(a) � P(c) 	 FD(b) � 0 (Eq. 1)

EQUATION OF COMPATIBILITY

(Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

SOLVE SIMULTANEOUSLY EQS. (1) AND (5):

ANGLE OF ROTATION

MAXIMUM LOAD

SUBSTITUTE NUMERICAL VALUES:

;� 1800 N

+ (500 mm)2(25 kN/m)] 

Pmax �
p/60 rad

200 mm
[(250 mm)2(10 kN/m) 

;Pmax �
umax

c
 (a2k1 + b2k2)

P �
u

c
 (a2k1 + b2k2)

u �
dD

b
�

cP

a2k1 + b2k2 
dD �

FD

k2
�

bcP

a2k1 + b2k2 

FD �
bck2P

a2k1 + b2k2 
FA �

ack1P

a2k1 + b2k2 

FA

ak1
�

FD

bk2 

dA �
FA

k1
 dD �

FD

k2 

dA

a
�

dD

b 

A B C

P

D

c

k1
k2

a b

PRBFA FD
c

a b

A B C

θ

δC

δD

δA

D
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Problem 2.4-17 A trimetallic bar is uniformly compressed by an
axial force P � 9 kips applied through a rigid end plate (see figure).
The bar consists of a circular steel core surrounded by brass and
copper tubes. The steel core has diameter 1.25 in., the brass tube has
outer diameter 1.75 in., and the copper tube has outer diameter 2.25 in.
The corresponding moduli of elasticity are Es � 30,000 ksi, Eb �
16,000 ksi, and Ec � 18,000 ksi.

Calculate the compressive stresses ss, sb, and sc in the steel, brass,
and copper, respectively, due to the force P.

P = 9 k
Copper tube Brass tube

Steel core

1.25
in.

1.75
in.

2.25
in.

Solution 2.4-17
Numerical properties (kips, inches):

dc � 2.25 in. db � 1.75 in. ds � 1.25 in.

Ec � 18,000 ksi Eb � 16,000 ksi

Es � 30000  ksi

P � 9 k

EQUATION OF EQUILIBRIUM


Fvert � 0 Ps 	 Pb 	 Pc � P (Eq. 1)

EQUATIONS OF COMPATIBILITY

ds � db dc � ds (Eqs. 2)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4, 5)

SOLUTION OF EQUATIONS

Substitute (3), (4), and (5) into Eqs. (2):

(Eqs. 6, 7)Pb � Ps
EbAb

EsAs
   Pc � Ps

EcAc

EsAs 

ds �
PsL

EsAs
  db �

PbL

EbAb
  dc �

PcL

EcAc 

 Ac �
p

4
 1dc

2 � db
22

 Ab �
p

4
1db

2� ds
22

 As �
p

4
d s

2 
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SOLVE SIMULTANEOUSLY EQS. (1), (6), AND (7):

Ps 	 Pb 	 Pc � 9 statics check

COMPRESSIVE STRESSES

Let 
EA � EsAs 	 EbAb 	 EcAc

ss � 3.22 ksi

sb � 1.716 ksi

sc � 1.93 ksi ;sc �
Pc

Ac
�

PEc

©EA 

;sb �
Pb

Ab
�

PEb

©EA 

;ss �
Ps

As
�

PEs

©EA

Pc � P
Ec Ac

Es As + Eb Ab + Ec Ac 
   � 3.03 k

Pb � P
EbAb

Es As + Eb Ab + Ec Ac 
� 2.02 k

Ps � P
Es As

Es As + Eb Ab + Ec Ac 
� 3.95 k
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Thermal Effects

Problem 2.5-1 The rails of a railroad track are welded together at their ends (to form continuous rails and thus eliminate
the clacking sound of the wheels) when the temperature is 60°F.

What compressive stress s is produced in the rails when they are heated by the sun to 120°F if the coefficient of thermal
expansion a � 6.5 � 10�6/°F and the modulus of elasticity E � 30 � 106 psi?

Solution 2.5-1 Expansion of railroad rails
The rails are prevented from expanding because of
their great length and lack of expansion joints.

Therefore, each rail is in the same condition as a bar
with fixed ends (see Example 2-7).

The compressive stress in the rails may be calculated
as follows.

�T � 120°F � 60°F � 60°F

s � Ea(�T)

� (30 � 106 psi)(6.5 � 10�6/°F)(60°F)
s � 11,700 psi ;

Problem 2.5-2 An aluminum pipe has a length of 60 m at a temperature of 10°C. An adjacent steel pipe at the same tem-
perature is 5 mm longer than the aluminum pipe.

At what temperature (degrees Celsius) will the aluminum pipe be 15 mm longer than the steel pipe? (Assume that the coef-
ficients of thermal expansion of aluminum and steel are aa � 23 � 10�6/°C and as � 12 � 10�6/°C, respectively.)

Solution 2.5-2 Aluminum and steel pipes
INITIAL CONDITIONS

La � 60 m T0 � 10°C

Ls � 60.005 m T0 � 10°C

aa � 23 � 10�6/°C as � 12 � 10�6/°C

FINAL CONDITIONS

Aluminum pipe is longer than the steel pipe by the
amount �L � 15 mm.

�T � increase in temperature

da � aa(�T )La ds � as(�T )Ls

From the figure above:

da 	 La � �L 	 ds 	 Ls

or, aa(�T)La 	 La � �L 	 as(�T)Ls 	 Ls

Solve for �T:

Substitute numerical values:

aaLa � asLs � 659.9 � 10�6 m/°C

� 40.3�C      ;
 T � T0 + ¢T � 10�C + 30.31�C

¢T �
15 mm + 5 mm

659.9 * 10�6 m/�C � 30.31�C 

¢T �
¢L + (Ls � La)

aaLa � asLs
 ;
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Problem 2.5-3 A rigid bar of weight W � 750 lb hangs from three equally spaced wires, two of steel and one of aluminum
(see figure). The diameter of the wires is . Before they were loaded, all three wires had the same length.

What temperature increase �T in all three wires will result in the entire load being carried by the steel wires? (Assume
Es � 30 � 106 psi, as � 6.5 � 10�6/°F, and aa � 12 � 10�6/°F.)

1/8 in 

Solution 2.5-3 Bar supported by three wires

S � steel A � aluminum

W � 750 lb

Es � 30 � 106 psi

EsAs � 368,155 lb

as � 6.5 � 10�6/°F

aa � 12 � 10�6/°F

L � Initial length of wires

As �
pd2

4
� 0.012272 in.2 

d �
1

8
 in. 

d1 � increase in length of a steel wire due to temper-
ature increase �T

� as (�T)L

d2 � increase in length of a steel wire due to load
W/2

d3 � increase in length of aluminum wire due to tem-
perature increase �T

� aa(�T)L

For no load in the aluminum wire:

d1 	 d2 � d3

or

Substitute numerical values:

NOTE: If the temperature increase is larger than �T,
the aluminum wire would be in compression, which is
not possible. Therefore, the steel wires continue to
carry all of the load. If the temperature increase is less
than �T, the aluminum wire will be in tension and
carry part of the load.

� 185�F  ;

¢T �
750 lb

(2)(368,155 lb)(5.5 * 10�6/�F )

¢T �
W

2EsAs(aa � as)
  ;  

as(¢T)L +

WL

2EsAs
� aa(¢T)L 

�
WL

2EsAs 
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Problem 2.5-4 A steel rod of 15-mm diameter is held
snugly (but without any initial stresses) between rigid walls
by the arrangement shown in figure part a. (For the steel
rod, use and )

(a) Calculate the temperature drop (degrees
Celsius) at which the average shear stress in the 
12-mm diameter bolt becomes 45 MPa. Also, what
is the normal stress in the rod?

(b) What are the average bearing stresses in the bolt and
clevis at A and between the washer ( )
and wall ( ) at B?

(c) If the connection to the wall at B is changed to an
end plate with two bolts (see figure part b), what is
the required diameter of each bolt if the tempera-
ture drop is and the allowable bolt stress
is 90 MPa?

Solution 2.5-4
NUMERICAL PROPERTIES

(a) TEMPERATURE DROP RESULTING IN BOLT SHEAR STRESS

Rod force and bolt in double shear with shear stress

srod �
P 1000
p

4
 dr

2
  srod � 57.6 MPa

¢T �
2 tb

E (1000) a
 adb

dr
b2  ¢T � 24�C  P � (E a ¢T) 

p

4
 dr 

2  P � 10 kN

tb � 45 MPa

tb �
2

p db 

2
 c(E a ¢T) 

p

4
 dr 

2 d  tb �
E a ¢T

2
 a dr

db
b2

t �
P

2 

p

4
 db 

2
t �  

P

2

As
� P � (E a ¢T) 

p

4
 dr 

2

� � a¢T  s � E a ¢T

 tb � 45 MPa   a � 12 110�62   E � 200 GPa

 dr � 15 mm   db � 12 mm   dw � 20 mm  tc � 10 mm  twall � 18 mm

¢T � 38�C
db 

t � 18 mm
dw � 20 mm

¢T

E � 200 GPa.a � 12 * 10�6/�C

15 mm

(a)

18 mm

12-mm diameter bolt

Clevis,
t = 10 mm

Washer,
dw = 20 mm

A

ΔT B

15 mm

(b)

Mounting
plate (t)

12-mm diameter bolt

Clevis,
t = 10 mm

Bolt and washer
(db, dw)

A

ΔT
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Problem 2.5-5 A bar AB of length L is held between rigid supports 
and heated nonuniformly in such a manner that the temperature increase
�T at distance x from end A is given by the expression �T � �TBx3/L3,
where �TB is the increase in temperature at end B of the bar 
(see figure part a).

(a) Derive a formula for the compressive stress sc in the bar. (Assume that
the material has modulus of elasticity E and coefficient of thermal
expansion a).

(b) Now modify the formula in (a) if the rigid support at A is replaced by
an elastic support at A having a spring constant k (see figure part b).
Assume that only bar AB is subject to the temperature increase. (a)

L

A

ΔT
ΔTB

B

x

0
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(b) BEARING STRESSES

BOLT AND CLEVIS

WASHER AT WALL

(c) If the connection to the wall at B is changed to an end plate with two bolts (see Fig. b), what is the required diam-
eter db of each bolt if temperature drop and the allowable bolt stress is 90 MPa?

Find force in rod due to temperature drop.

Each bolt carries one half of the force P:

db �

a

16 12 kN

2
p

4
 (90 MPa)

� 10.68 mm)    db � 10.68 mm

P � 200 GPa 
p

4
 (15 mm)2

 C12 A10�6 B D  (38) � 16116 N  P � 16.12 kN

P � (E a ¢T) 
p

4
 dr 

2
¢T � 38�C

¢T � 38�C

sbw �
P 

p

4
 1dw 

2 � dr 
22
    sbw � 74.1 MPa

sbc �

P 

2

db tc
   sbc � 42.4 MPa

(b)

L

Ak

ΔT
ΔTB

B

x

0
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Solution 2.5-5

(a) ONE DEGREE STATICALLY INDETERMINATE—USE

SUPERPOSITION SELECT REACTION RB AS THE

REDUNDANT; FOLLOW PROCEDURE

Bar with nonuniform temperature change.

At distance x:

REMOVE THE SUPPORT AT THE END B OF THE BAR:

Consider an element dx at a distance x from end A.

dd � Elongation of element dx

dd � elongation of bar

d �
L

L

0
dd �

L

L

0
a(¢TB) a x3

L3
bdx �

1

4
a(¢TB)L

dd � a(¢T)dx � a(¢TB)a x3

L3
bdx

¢T � ¢TB a x3

L3
b

COMPRESSIVE FORCE P REQUIRED TO SHORTEN THE BAR BY

THE AMOUNT d

COMPRESSIVE STRESS IN THE BAR

(b) ONE DEGREE STATICALLY INDETERMINATE—USE

SUPERPOSITION.
Select reaction RB as the redundant then compute
bar elongations due to �T and due to RB

due to temperature from above

Compatibility: solve for RB: dB1 	 dB2 � 0

So compressive stress in bar is

NOTE: in part (b) is the same as in part (a) if spring
constant k goes to infinity.

sc

;s c �
 Ea1¢TB2

4a  EA

 kL
+ 1b  

s c �
 RB

 A 

 RB � �a¢TBJ
 E A

4a  EA

 kL
+ 1b K

 RB �

�aa¢TB
 L

4
b

a 1

 k
+

 L

 EA
b  

dB2 � RB a 1

 k
+

 L

 E A
b  

dB1 � a¢TB 
 L

4 

;sc �
P

A
�

Ea(¢TB)

4

P �
EAd

L
�

1

4
EAa(¢TB)
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Problem 2.5-6 A plastic bar ACB having two different solid circular 
cross sections is held between rigid supports as shown in the figure. 
The diameters in the left- and right-hand parts are 50 mm and
75 mm, respectively. The corresponding lengths are 225 mm and
300 mm. Also, the modulus of elasticity E is 6.0 GPa, and the coeffi-
cient of thermal expansion a is 100 � 10�6/°C. The bar is subjected
to a uniform temperature increase of 30°C.

(a) Calculate the following quantities: (1) the compressive force 
N in the bar; (2) the maximum compressive stress sc; and
(3) the displacement dC of point C.

(b) Repeat (a) if the rigid support at A is replaced by an elastic
support having spring constant k � 50 MN/m (see figure
part b; assume that only the bar ACB is subject to the
temperature increase).

(a)

300 mm

75 mm

225 mm

A BC50 mm

(b)

300 mm

75 mm

225 mm

A BC50 mmk

Solution

NUMERICAL DATA

d1 � 50 mm d2 � 75 mm

L1 � 225 mm L2 � 300 mm

E � 6.0 GPa a � 100 � 10�6/°C

�T � 30°C k � 50 MN/m

(a) COMPRESSIVE FORCE N, MAXIMUM COMPRESSIVE STRESS

AND DISPLACEMENT OF PT. C

One-degree statically indeterminate—use RB as
redundant

dB1 � a�T(L1 	 L2)

Compatibility: dB1 � dB2, solve for RB

N � RB

N � 51.8 kN  
Maximum compressive stress in AC since
it has the smaller area (A1 � A2):

scmax � 26.4 MPa

Displacement dC of point C � superposition of
displacements in two released structures at C:

scmax �
N

A1

;

 RB �
a¢T( L1 +  L2)

 L1

 E A1
+

 L2

 E A2 

dB2 � RB a  L1

 E A1
+

 L2

 E A2
b  

 A2 �
p

4
 d2

2 A1 �
p

4
 d1

2

dC � �0.314 mm (�) sign means joint C moves
left

(b) COMPRESSIVE FORCE N, MAXIMUM COMPRESSIVE

STRESS AND DISPLACEMENT OF PART C FOR ELASTIC

SUPPORT CASE

Use RB as redundant as in part (a):

dB1 � a�T(L1 	 L2) 

Now add effect of elastic support; equate dB1 and dB2

then solve for RB:

N � RB

N � 31.2 kN 

scmax � 15.91 MPa 

Superposition:

dC � �0.546 mm (�) sign means joint C
moves left

;

dC � a¢T( L1) � RBa  L1

 E A1
+

1

 k
b  

;scmax �
N

A1

;

 RB �
a¢T1L1 +  L22

 L1

 E A1
+

 L2

 EA2
+

1

 k 

dB2
� RB a  L1

 E A1
+

 L2

 E A2
+

1

 k
b  

;

dC � a ¢T( L1) � RB 
L1

 E A1 
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Solution 2.5-7 Steel rod with bronze sleeve

L1 � 36 in. L2 � 12 in.

ELONGATION OF THE TWO OUTER PARTS OF THE BAR

d1 � as(�T)(L1 � L2)

� (6.5 � 10�6/°F)(500°F)(36 in. � 12 in.)

� 0.07800 in.

ELONGATION OF THE MIDDLE PART OF THE BAR

The steel rod and bronze sleeve lengthen the same
amount, so they are in the same condition as the bolt
and sleeve of Example 2-8. Thus, we can calculate the
elongation from Eq. (2-23):

d2 �
(as Es As + ab Eb Ab)(¢T)L2

Es As + Eb Ab 

SUBSTITUTE NUMERICAL VALUES

as � 6.5 � 10�6/°F ab � 11 � 10�6/°F

Es � 30 � 106 psi Eb � 15 � 106 psi

d1 � 1.0 in.

d2 � 1.25 in.

�T � 500°F L2 � 12.0 in.

d2 � 0.04493 in.

TOTAL ELONGATION

d � d1 	 d2 � 0.123 in. ;

Ab �
p

4  (d2
2 � d1

2) � 0.44179 in.2

As �
p

4  d1
2 � 0.78540 in.2

Problem 2.5-8 A brass sleeve S is fitted over a steel bolt B (see 
figure), and the nut is tightened until it is just snug. The bolt has a 
diameter dB � 25 mm, and the sleeve has inside and outside diameters 
d1 � 26 mm and d2 � 36 mm, respectively.

Calculate the temperature rise �T that is required to produce a com-
pressive stress of 25 MPa in the sleeve. (Use material properties as
follows: for the sleeve, aS � 21 � 10�6/°C and ES � 100 GPa; for
the bolt, aB � 10 � 10�6/°C and EB � 200 GPa.)
(Suggestion: Use the results of Example 2-8.)

Problem 2.5-7 A circular steel rod AB (diameter d1 � 1.0 in., length L1 �
3.0 ft) has a bronze sleeve (outer diameter d2 � 1.25 in., length L2 � 1.0 ft) 
shrunk onto it so that the two parts are securely bonded (see figure).

Calculate the total elongation d of the steel bar due to a temperature rise
�T � 500°F. (Material properties are as follows: for steel, Es � 30 � 106 psi and
as � 6.5 � 10�6/°F; for bronze, Eb � 15 � 106 psi, and ab � 11 � 10�6/°F.)
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Solution 2.5-8 Brass sleeve fitted over a Steel bolt

Subscript S means “sleeve”.

Subscript B means “bolt”.

Use the results of Example 2-8.

sS � compressive force in sleeve

EQUATION (2-22a):

SOLVE FOR �T:

or

¢T �
sS(ES AS + EB AB)

(aS � aB)ES EB AB 

sS �
(aS � aB)(¢T)ES EB AB

ES AS + EB AB
 (Compression)

SUBSTITUTE NUMERICAL VALUES:

sS � 25 MPa

d2 � 36 mm d1 � 26 mm dB � 25 mm

ES � 100 GPa EB � 200 GPa

aS � 21 � 10�6/°C aB � 10 � 10�6/°C

�T � 34°C

(Increase in temperature)

;

¢T �
25 MPa (1.496)

(100 GPa)(11 * 10�6/�C) 

 1 +

ES AS

EB AB
� 1.496AB �

p

4
 (dB)2 �

p

4
 (625 mm2)

AS �
p

4
 (d2

2 � d1
2) �

p

4
 (620 mm2)

¢T �
sS

ES(aS � aB)
a1 +

ES AS

EB AB
b ;  

Problem 2.5-9 Rectangular bars of copper and aluminum are held by 
pins at their ends, as shown in the figure. Thin spacers provide a separation 
between the bars. The copper bars have cross-sectional dimensions
0.5 in. � 2.0 in., and the aluminum bar has dimensions 1.0 in. � 2.0 in.

Determine the shear stress in the 7/16 in. diameter pins if the tempera-
ture is raised by 100°F. (For copper, Ec � 18,000 ksi and ac � 9.5 �
10�6/°F; for aluminum, Ea � 10,000 ksi, and aa � 13 � 10�6/°F.)
Suggestion: Use the results of Example 2-8.

Area of two copper bars: Ac � 2.0 in.2

Area of aluminum bar: Aa � 2.0 in.2

�T � 100°F

Diameter of pin: 

Area of pin: AP �
p

4
 dP

2 � 0.15033 in.2

dP �
7

16
 in. � 0.4375 in. 

Solution 2.5-9 Rectangular bars held by pins
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Problem 2.5-10 A rigid bar ABCD is pinned at end A and supported by
two cables at points B and C (see figure). The cable at B has nominal
diameter dB � 12 mm and the cable at C has nominal diameter
dC � 20 mm. A load P acts at end D of the bar.

What is the allowable load P if the temperature rises by 60°C and each
cable is required to have a factor of safety of at least 5 against its ultimate
load?

(Note: The cables have effective modulus of elasticity E � 140 GPa and
coefficient of thermal expansion a � 12 � 10�6/°C. Other properties of
the cables can be found in Table 2-1, Section 2.2.)

Solution 2.5-10 Rigid bar supported by two cables

FREE-BODY DIAGRAM OF BAR ABCD

TB � force in cable B TC � force in cable C

dB � 12 mm dC � 20 mm

From Table 2-1:

AB � 76.7 mm2 E � 140 GPa

�T � 60°C AC � 173 mm2

a � 12 � 10�6/°C

EQUATION OF EQUILIBRIUM


MA � 0 TB(2b) 	 TC(4b) � P(5b) � 0

or  2TB 	 4TC � 5P (Eq. 1)

� �

Copper: Ec � 18,000 ksi ac � 9.5 � 10�6/°F

Aluminum: Ea � 10,000 ksi

aa � 13 � 10�6/°F

Use the results of Example 2-8.

Find the forces Pa and Pc in the aluminum bar and
copper bar, respectively, from Eq. (2-21).

Replace the subscript “S” in that equation by “a” (for
aluminum) and replace the subscript “B” by “c” (for
copper), because a for aluminum is larger than a for
copper.

Note that Pa is the compressive force in the aluminum
bar and Pc is the combined tensile force in the two
copper bars.

Pa � Pc �
(aa � ac)(¢T)Ec Ac

1 +

Ec Ac

Ea Aa
 

Pa � Pc �
(aa � ac)(¢T)Ea Aa Ec Ac

Ea Aa + Ec Ac 

SUBSTITUTE NUMERICAL VALUES:

FREE-BODY DIAGRAM OF PIN AT THE LEFT END

V � shear force in pin

� Pc/2

� 2,250 lb

t � average shear stress on cross section of pin

t � 15.0 ksi ;

t �
V

AP
�

2,250 lb

0.15033 in.2 

� 4,500 lb

Pa � Pc �
(3.5 * 10�6/�F)(100�F)(18,000 ksi)(2 in.2)

1 + a18

10
b a2.0

2.0
b
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DISPLACEMENT DIAGRAM

COMPATIBILITY:

dC � 2dB (Eq. 2)

FORCE-DISPLACEMENT AND TEMPERATURE-DISPLACEMENT

RELATIONS

(Eq. 3)

(Eq. 4)

SUBSTITUTE EQS. (3) AND (4) INTO EQ. (2):

or

2TBAC � TCAB � �Ea(�T)AB AC (Eq. 5)

TCL

EAC
+ a(¢T)L �

2TBL

EAB
+ 2a(¢T)L 

dC �
TCL

EAC
+ a(¢T)L 

dB �
TBL

EAB
+ a(¢T)L 

SUBSTITUTE NUMERICAL VALUES INTO EQ. (5):

TB(346) � TC(76.7) � �1,338,000 (Eq. 6)

in which TB and TC have units of newtons.

SOLVE SIMULTANEOUSLY EQS. (1) AND (6):

TB � 0.2494 P � 3,480 (Eq. 7)

TC � 1.1253 P 	 1,740 (Eq. 8)

in which P has units of newtons.

SOLVE EQS. (7) AND (8) FOR THE LOAD P:

PB � 4.0096 TB 	 13,953 (Eq. 9)

PC � 0.8887 TC � 1,546 (Eq. 10)

ALLOWABLE LOADS

From Table 2-1:

(TB)ULT � 102,000 N (TC)ULT � 231,000 N

Factor of safety � 5

(TB)allow � 20,400 N (TC)allow � 46,200 N

From Eq. (9): PB � (4.0096)(20,400 N) 	 13,953 N 
� 95,700 N

From Eq. (10): PC � (0.8887)(46,200 N) � 1546 N
� 39,500 N

Cable C governs.

Pallow � 39.5 kN ;

Problem 2.5-11 A rigid triangular frame is pivoted at C and held by two identical 
horizontal wires at points A and B (see figure). Each wire has axial rigidity EA � 120 k
and coefficient of thermal expansion a � 12.5 � 10�6/°F.

(a) If a vertical load P � 500 lb acts at point D, what are the tensile forces TA and
TB in the wires at A and B, respectively?

(b) If, while the load P is acting, both wires have their temperatures raised by
180°F, what are the forces TA and TB?

(c) What further increase in temperature will cause the wire at B to become slack?
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© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

78572_ch02_ptg01_hr_117-282.qxd  1/18/12  6:03 PM  Page 195



196 CHAPTER 2 Axially Loaded Members

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Solution 2.5-11 Triangular frame held by two wires
FREE-BODY DIAGRAM OF FRAME

EQUATION OF EQUILIBRIUM


MC � 0 

P(2b) � TA(2b) � TB(b) � 0 or 2TA 	 TB � 2P (Eq. 1)

DISPLACEMENT DIAGRAM

EQUATION OF COMPATIBILITY

dA � 2dB (Eq. 2)

(a) LOAD P ONLY

Force-displacement relations:

(Eq. 3, 4)

(L � length of wires at A and B.)
Substitute (3) and (4) into Eq. (2):

or TA � 2TB (Eq. 5)

Solve simultaneously Eqs. (1) and (5):

(Eqs. 6, 7)

Numerical values:

P � 500 lb

�TA � 400 lb TB � 200 lb ;

TA �
4P

5
 TB �

2P

5 

TAL

EA
�

2TBL

EA 

dA �
TAL

EA
 dB �

TBL

EA 

��

(b) LOAD P AND TEMPERATURE INCREASE �T

Force-displacement and temperature-displacement
relations:

(Eq. 8)

(Eq. 9)

Substitute (8) and (9) into Eq. (2):

or TA � 2TB � EAa(�T) (Eq. 10)

Solve simultaneously Eqs. (1) and (10):

(Eq. 11)

(Eq. 12)

Substitute numerical values:

P � 500 lb EA � 120,000 lb

�T � 180°F

a � 12.5 � 10�6/°F

(c) WIRE B BECOMES SLACK

Set TB � 0 in Eq. (12):

P � EAa(�T)

or

� 333.3°F

Further increase in temperature:

�T � 333.3°F � 180°F

� 153°F ;

¢T �
P

EAa
�

500 lb

(120,000 lb)(12.5 * 10�6/�F)

;TB �
2

5
(500 lb � 270 lb) � 92 lb

;TA �
1

5
(2000 lb + 270 lb) � 454 lb

TB �
2

5
[P � EAa(¢T)] 

TA �
1

5
[4P + EAa(¢T)] 

TAL

EA
+ a(¢T)L �

2TBL

EA
+ 2a(¢T)L 

dB �
TBL

EA
+ a(¢T)L 

dA �
TAL

EA
+ a(¢T)L 
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Misfits and Prestrains

Problem 2.5-12 A steel wire AB is stretched between rigid supports (see 
figure). The initial prestress in the wire is 42 MPa when the temperature is 20°C.

(a) What is the stress s in the wire when the temperature drops to 0°C?
(b) At what temperature T will the stress in the wire become zero?

(Assume a � 14 � 10�6/°C and E � 200 GPa.)

Solution 2.5-12 Steel wire with initial prestress

Initial prestress: s1 � 42 MPa

Initial temperature: T1 � 20°C

E � 200 GPa

a � 14 � 10�6/°C

(a) STRESS s WHEN TEMPERATURE DROPS TO 0°C

T2 � 0°C �T � 20°C

NOTE: Positive �T means a decrease in temperature
and an increase in the stress in the wire.

Negative �T means an increase in temperature and a
decrease in the stress.

Stress s equals the initial stress s1 plus the additional
stress s2 due to the temperature drop.

s2 � Ea(�T)

s � s1 	 s2 � s1 	 Ea(�T)

� 42 MPa 	 (200 GPa)(14 � 10�6/°C)(20°C)

� 42 MPa 	 56 MPa � 98 MPa

(b) TEMPERATURE WHEN STRESS EQUALS ZERO

s � s1 	 s2 � 0 s1 	 Ea(�T) � 0

(Negative means increase in temp.)

T � 20°C 	 15°C � 35°C ;

¢T � �
42 MPa

(200 GPa)(14 * 10�6/�C
� �15�C

¢T � �
s1

Ea 

;

Problem 2.5-13 A copper bar AB of length 25 in. and diameter 2 in. is placed in position at 
room temperature with a gap of 0.008 in. between end A and a rigid restraint (see figure). The
bar is supported at end B by an elastic spring with spring constant k � 1.2 � 106 lb/in.

(a) Calculate the axial compressive stress sc in the bar if the temperature 
rises 50°F. (For copper, use a � 9.6 � 10�6/°F and E � 16 � 106 psi.)

(b) What is the force in the spring? (Neglect gravity effects.)
(c) Repeat (a) if k �.:

25 in.

0.008 in.

A

d = 2 in.

B

C

k
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Problem 2.5-14 A bar AB having length L and axial rigidity EA is fixed 
at end A (see figure). At the other end a small gap of dimension s exists 
between the end of the bar and a rigid surface. A load P acts on the bar at
point C, which is two-thirds of the length from the fixed end.

If the support reactions produced by the load P are to be equal in
magnitude, what should be the size s of the gap?

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

BA C

P

2L
3

— L
3
L
3

—
s

Solution 2.5-14 Bar with a gap (load P )

L � length of bar

s � size of gap

EA � axial rigidity

Reactions must be equal; find s.

FORCE-DISPLACEMENT RELATIONS

d1 �
P A2L

3 B
EA

 

d2 �
RBL

EA
 

Solution 2.5-13

Numerical data:

L � 25 in. d � 2 in. d � 0.008 in.

k � 1.2 � (106) lb/in. E � 16 � (106) psi

a � 9.6 � (10�6)/°F �T � 50°F

A � 3.14159 in.2

(a) ONE-DEGREE STATICALLY INDETERMINATE IF GAP CLOSES

� � a�TL � � 0.012 in. �exceeds gap

Select RA as redundant and do superposition
analysis:

dA1 � �

Compatibility: dA1 	 dA2 � d dA2 � d � dA1

RA � �3006 lb RA �
d � ¢

 L

 E A
+

1

 k 

dA2 � RAa  L

 E A
+

1

 k
b  

 A �
p

4
d2 

Compressive stress in bar:

s � �957 psi

(b) FORCE IN SPRING Fk � RC

STATICS

RA 	 RC � 0
RC � �RA

RC � 3006 lb

(c) FIND COMPRESSIVE STRESS IN BAR IF k GOES TO INFINITY

FROM EXPRESSION FOR RA ABOVE, 1/k GOES TO ZERO

RA � �8042 lb

s � �2560 psi ;

s �
 RA

 A 
 RA �

d � ¢

 L

 E A 

;

s �
 RA

 A 
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Problem 2.5-15 Pipe 2 has been inserted snugly into Pipe 1, 
but the holes for a connecting pin do not line up: there is a gap s.
The user decides to apply either force P1 to Pipe 1 or force P2 to
Pipe 2, whichever is smaller. Determine the following using the
numerical properties in the box.

(a) If only P1 is applied, find P1 (kips) required to close gap s;
if a pin is then inserted and P1 removed, what are reaction
forces RA and RB for this load case?

(b) If only P2 is applied, find P2 (kips) required to close gap s;
if a pin is inserted and P2 removed, what are reaction
forces RA and RB for this load case?

(c) What is the maximum shear stress in the pipes, for the
loads in parts (a) and (b)?

(d) If a temperature increase �T is to be applied to the entire
structure to close gap s (instead of applying forces P1 and
P2), find the �T required to close the gap. If a pin is inserted
after the gap has closed, what are reaction forces RA and RB

for this case?
(e) Finally, if the structure (with pin inserted) then cools to the

original ambient temperature, what are reaction forces RA and RB?

Solution 2.5-15
(a) FIND REACTIONS AT A AND B FOR APPLIED FORCE P1

First compute P1, required to close gap:

P1 � 231.4 k

Statically indeterminate analysis with RB as the
redundant:

dB1 � �s

Compatibility: dB1 	 dB2 � 0 

d B2 � RB a  L1

 E1A1
+

 L2

 E2 A2
b  

; P1 �
 E1 A1

 L1
 s 

RB � 55.2 k

RA � �RB

(b) FIND REACTIONS AT A AND B FOR APPLIED FORCE P2

P2 � 145.1 k

Analysis after removing P2 is same as in part (a), so
reaction forces are the same

; P2 �
 E2 A2

 L2

2
 

 s

;

; RB �
 s

a  L1

 E1A1
+

 L2

 E2 A2
b  

Numerical properties
E1 = 30,000 ksi, E2 = 14,000 ksi
a1 = 6.5 � 10–6/°F, a2 = 11 � 10–6/°F
Gap s = 0.05 in.
L1 = 56 in., d1 = 6 in., t1 = 0.5 in., A1 = 8.64 in.2

L2 = 36 in., d2 = 5 in., t2 = 0.25 in., A2 = 3.73 in.2

Pipe 1 (steel) Pipe 2 (brass)
Gap s

P1

P2 at
L2
2
—

P2 P1 at L1

L2L1
RA RB

COMPATIBILITY EQUATION

d1 � d2 � s or

(Eq. 1)

EQUILIBRIUM EQUATION

RA � reaction at end A (to the left)

RB � reaction at end B (to the left)

P � RA 	 RB

2PL

3EA
�

RBL

EA
� s 

Reactions must be equal.

� RA � RB P � 2RB

Substitute for RB in Eq. (1):

NOTE: The gap closes when the load reaches the
value P/4. When the load reaches the value P, equal
to 6EAs/L, the reactions are equal (RA � RB � P/2).
When the load is between P/4 and P, RA is greater than
RB. If the load exceeds P, RB is greater than RA.

2PL

3EA
�

PL

2EA
� s  or s �

PL

6EA
 ;  

RB �
P

2 
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Solution 2.5-16

With gap s closed due to �T, structure is one-degree
statically-indeterminate; select internal force (Q) at
juncture of bar and spring as the redundant. Use super-
position of two released structures in the solution.

drel1 � relative displacement between end of bar at C
and end of spring due to �T

drel1 � a�T(L1 	 L2)
drel1 is greater than gap length s

drel2 � relative displacement between ends of bar and
spring due to pair of forces Q, one on end of
bar at C and the other on end of spring

drel2 � Q a  L1

 EA1
+

 L2

 E A2
+

1

 k3
b

drel2 � Q a  L1

 E A1
+

 L2

 E A2
b +

 Q

 k3

Compatibility: drel1 	 drel2 � s drel2 � s � drel1

drel2 � s � a�T(L1 	 L2)

(a) REACTIONS AT A AND D

Statics: RA � �Q RD � Q

RD � �RA ;

; RA �
� s + a¢T1 L1 +  L22

 L1

 E A1
+

 L2

 E A2
+

1

 k3 

[ s � a ¢T1 L1 +  L22]
 Q �

 E A1A2 k3

 L1A2 k3 +  L2A1k3 + EA1A2

 Q �
 s � a¢T1 L1 +  L22

 L1

 E A1
+

 L2

 E A2
+

1

 k3
 

(c) MAXIMUM SHEAR STRESS IN PIPE 1 OR 2 WHEN EITHER

P1 OR P2

IS APPLIED tmaxa � 13.39 ksi

tmaxb � 19.44 ksi

(d) REQUIRED AND REACTIONS AT A AND B

�Treqd � 65.8°F ;¢T reqd �
 s

a1L1 + a2L2 

¢T

;t maxb �

 P2

 A2

2

;t maxa �

 P1

 A1

2

If pin is inserted but temperature remains at �T
above ambient temperature, reactions are zero.

(e) IF TEMPERATURE RETURNS TO ORIGINAL AMBIENT TEM-
PERATURE, FIND REACTIONS AT A AND B
statically indeterminate analysis with RB as the
redundant Compatibility: dB1 	 dB2 � 0 
Analysis is the same as in parts (a) and (b) above
since gap s is the same, so reactions are the same.

Problem 2.5-16 A nonprismatic bar ABC made up of 
segments AB (length L1, cross-sectional area A1) and BC
(length L2, cross-sectional area A2) is fixed at end A and free at
end C (see figure). The modulus of elasticity of the bar is E.
A small gap of dimension s exists between the end of the bar and
an elastic spring of length L3 and spring constant k3. If bar ABC only
(not the spring) is subjected to temperature increase �T determine the following.

(a) Write an expression for reaction forces RA and RD if the elongation of ABC exceeds gap length s.
(b) Find expressions for the displacements of points B and C if the elongation of ABC exceeds gap length s.

s

L2, EA2 L3, k3L1, EA1

a, �TRA RDD

CBA
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Problem 2.5–17 Wires B and C are attached to a support at the left-hand
end and to a pin-supported rigid bar at the right-hand end (see figure).
Each wire has cross-sectional area A � 0.03 in.2 and modulus of elasticity
E � 30 � 106 psi. When the bar is in a vertical position, the length of each
wire is L � 80 in. However, before being attached to the bar, the length of
wire B was 79.98 in. and of wire C was 79.95 in.

Find the tensile forces TB and TC in the wires under the action of a force
P � 700 lb acting at the upper end of the bar.

Solution 2.5–17 Wires B and C attached to a bar

P � 700 lb

A � 0.03 in.2

E � 30 � 106 psi

LB � 79.98 in.

LC � 79.95 in.

EQUILIBRIUM EQUATION


Mpin � 0 

TC(b) 	 TB(2b) � P(3b)

2TB 	 TC � 3P (Eq. 1)

;

B

C

80 in.

700 lb

b

b

b

(b) DISPLACEMENTS AT B AND C
Use superposition of displacements in the two
released structures:

[� s + a ¢T1 L1 +  L22]
 L1

 E A1
+

 L2

 EA2
+

1

 k3
 

 a  L1

 EA1
b

dB � a ¢T 1 L12 �

;dB � a¢T1 L12 � RA a  L1

 E A1
b  

[� s + a ¢T1 L1 +  L22]
 L1

 EA1
+

 L2

 EA2
+

1

 k3

 a  L1

 EA1
+

 L2

 EA2
b

dC � a ¢T1 L1 +  L22 �

;RAa  L1

 E A1
+

 L2

 E A2
b  

dC � a¢T1 L1 +  L22 �
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Problem 2.5-18 A rigid steel plate is supported by three posts of
high-strength concrete each having an effective cross-sectional area
A � 40,000 mm2 and length L � 2 m (see figure). Before the load
P is applied, the middle post is shorter than the others by an amount
s � 1.0 mm.

Determine the maximum allowable load Pallow if the allowable
compressive stress in the concrete is sallow � 20 MPa.
(Use E � 30 GPa for concrete.)

S

P

CC C L

s

DISPLACEMENT DIAGRAM

SB � 80 in. � LB � 0.02 in.

SC � 80 in. � LC � 0.05 in.

Elongation of wires:

dB � SB 	 2d (Eq. 2)

dC � SC 	 d (Eq. 3)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 4, 5)

SOLUTION OF EQUATIONS

Combine Eqs. (2) and (4):

(Eq. 6)
TBL

EA
� SB + 2d

dB �
TB L

EA
 dC �

TC L

EA

Combine Eqs. (3) and (5):

(Eq. 7)

Eliminate � between Eqs. (6) and (7):

(Eq. 8)

Solve simultaneously Eqs. (1) and (8):

SUBSTITUTE NUMERICAL VALUES:

TB � 840 lb 	 45 lb � 225 lb � 660 lb

TC � 420 lb � 90 lb 	 450 lb � 780 lb

(Both forces are positive, which means tension, as
required for wires.)

;
;

EA

5L
� 2250 lb/in.

;TC �
3P

5
�

2EASB

5L
+

4EASC

5L

;TB �
6P

5
+

EASB

5L
�

2EASC

5L

TB � 2TC �
EASB

L
�

2EASC

L

TCL

EA
� SC + d
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Solution 2.5-18 Plate supported by three posts

s � size of gap � 1.0 mm

L � length of posts � 2.0 m

A � 40,000 mm2

�allow � 20 MPa

E � 30 GPa

C � concrete post

DOES THE GAP CLOSE?

Stress in the two outer posts when the gap is just
closed:

� 15 MPa

Since this stress is less than the allowable stress, the
allowable force P will close the gap.

s � E� � Ea s

L
b � (30 GPa) a1.0 mm

2.0 m
b

P

CC C L

Steel plate

s

EQUILIBRIUM EQUATION

2P1 	 P2 � P (Eq. 1)

COMPATIBILITY EQUATION

�1 � shortening of outer posts

�2 � shortening of inner post

�1 � �2 	 s (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

By inspection, we know that P1 is larger than P2.
Therefore, P1 will control and will be equal to �allow A.

� 2400 kN � 600 kN � 1800 kN

� 1.8 MN ;

Pallow � 3sallow A �
EAs

L

P � 3P1 �
EAs

L

P1L

EA
�

P2L

EA
+ s or P1 � P2 �

EAs

L

d1 �
P1 L

EA
 d2 �

P2 L

EA

P

P1P2P1
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Solution 2.5-19

The figure shows a section through the pipe, cap and rod

NUMERICAL PROPERTIES

Lci � 48 in. Es � 30000 ksi Eb � 14,000 ksi

Ec � 12,000 ksi tc � 1 in. p � 52 � (10�3) in. 

in. in. do � 6 in. di � 5.625 in.

(a) FORCES AND STRESSES IN PIPE AND ROD

One degree statically indeterminate—cut rod at cap
and use force in rod (Q) as the redundant:

drel1 � relative displacement between cut ends of
rod due to 1/4 turn of nut

drel1 � �np Ends of rod move apart, not
together, so this is (�).

drel2 � relative displacement between cut ends of
rod due pair of forces Q

Apipe �
p

4
(do 

2 � di 
2)Arod �

p

4
dr 

2

d rel2 � Qa  L + 2tc

 EbArod
+

 Lci

 EcApipe
b  

 dr �
1

2 
 dw �

3

4 

 n �
1

4 

Arod � 0.196 in.2 Apipe � 3.424 in.2

Compatibility equation: drel1 	 drel2 � 0

Q � 0.672 k Frod � Q

Statics: Fpipe � �Q

Stresses: sc � �0.196 ksi

sb � 3.42 ksi

(b) BEARING AND SHEAR STRESSES IN STEEL CAP

sb � 2.74 ksi

tc � 0.285 ksi ;tc �
Frod

pdwtc

;sb �
Frod

p

4
(dw 

2 � dr 
2)

;sb �
Frod

Arod

;sc �
Fpipe

Apipe 

 Q �
 np

 Lci + 2tc

EbArod
+

 Lci

 EcApipe 

Problem 2.5-19 A capped cast-iron pipe is compressed by a brass rod, 
as shown. The nut is turned until it is just snug, then add an additional 
quarter turn to pre-compress the CI pipe. The pitch of the threads of the
bolt is p � 52 mils (a mil is one-thousandth of an inch). Use the numerical
properties provided.

(a) What stresses sp and sr will be produced in the cast-iron pipe and
brass rod, respectively, by the additional quarter turn of the nut?

(b) Find the bearing stress sb beneath the washer and the shear stress
tc in the steel cap.

Lci  = 4 ft

Steel cap
(tc = 1 in.)

Cast iron pipe
(do = 6 in.,
di = 5.625 in.)

Modulus of elasticity, E:
Steel (30,000 ksi)
Brass (14,000 ksi)
Cast iron (12,000 ksi)

Nut & washer

( )dw =
3
4
— in.

( dr =
1
2
—

Brass rod

) in.
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Problem 2.5-20 A plastic cylinder is held snugly between a rigid plate 
and a foundation by two steel bolts (see figure).

Determine the compressive stress sp in the plastic when the nuts on the
steel bolts are tightened by one complete turn.

Data for the assembly are as follows: length L � 200 mm, pitch of the bolt
threads p � 1.0 mm, modulus of elasticity for steel Es � 200 GPa, modulus of
elasticity for the plastic Ep � 7.5 GPa, cross-sectional area of one bolt As �
36.0 mm2, and cross-sectional area of the plastic cylinder Ap � 960 mm2.

L
Steel
bolt

Solution 2.5-20 Plastic cylinder and two steel bolts

L � 200 mm

P � 1.0 mm

Es � 200 GPa

As � 36.0 mm2 (for one bolt)

Ep � 7.5 GPa

Ap � 960 mm2

n � 1 (See Eq. 2-24)

EQUILIBRIUM EQUATION

COMPATIBILITY EQUATION

ds � elongation of steel bolt

dp � shortening of plastic cylinder

ds 	 dp � np (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eq. 3, Eq. 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

Pp �
2npEsAsEpAp

L(EpAp + 2EsAs)
 

PsL

EsAs
+

PpL

EpAp
� np 

ds �
PsL

EsAs
 dp �

PpL

EpAp 

Ps � tensile force in one steel bolt

Pp � compressive force in plastic cylinder

Pp � 2Ps (Eq. 1)
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Problem 2.5-21 Solve the preceding problem if the data for the assembly are 
as follows: length L � 10 in., pitch of the bolt threads p � 0.058 in., modulus
of elasticity for steel Es � 30 � 106 psi, modulus of elasticity for the plastic
Ep � 500 ksi, cross-sectional area of one bolt As � 0.06 in.2, and cross-
sectional area of the plastic cylinder Ap � 1.5 in.2

Solution 2.5-21 Plastic cylinder and two steel bolts

L � 10 in.

p � 0.058 in.

Es � 30 � 106 psi

As � 0.06 in.2 (for one bolt)

Ep � 500 ksi

Ap � 1.5 in.2

n � 1 (see Eq. 2-24)

EQUILIBRIUM EQUATION

Ps � tensile force in one steel bolt

Pp � compressive force in plastic cylinder

Pp � 2Ps (Eq. 1)

COMPATIBILITY EQUATION

ds � elongation of steel bolt

dp � shortening of plastic cylinder

ds 	 dp � np (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eq. 3, Eq. 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)
Ps L

Es As
+

Pp L

Ep Ap
� np

ds �
Ps L

Es As
 dp �

Pp L

Ep Ap

L
Steel
bolt

STRESS IN THE PLASTIC CYLINDER

SUBSTITUTE NUMERICAL VALUES:

N � Es As Ep � 54.0 � 1015 N2/m2

sp �
Pp

Ap
�

2np Es As Ep

L(EpAp + 2EsAs)
 

D � EpAp 	 2EsAs � 21.6 � 106 N

;� 25.0 MPa

sp �
2np

L
aN

D
b �

2(1)(1.0 mm)

200 mm
aN

D
b  
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Problem 2.5-22 Consider the sleeve made from two copper tubes joined by tin-lead 
solder over distance s. The sleeve has brass caps at both ends, which are held in
place by a steel bolt and washer with the nut turned just snug at the outset. Then, two
“loadings” are applied: n � 1/2 turn applied to the nut; at the same time the internal
temperature is raised by �T � 30°C.

(a) Find the forces in the sleeve and bolt, Ps and PB, due to both the prestress 
in the bolt and the temperature increase. For copper, use Ec � 120 GPa and
ac � 17 � 10�6/°C; for steel, use Es � 200 GPa and as � 12 � 10�6/°C.
The pitch of the bolt threads is p � 1.0 mm. Assume s � 26 mm and bolt
diameter db � 5 mm.

(b) Find the required length of the solder joint, s, if shear stress in the sweated
joint cannot exceed the allowable shear stress taj � 18.5 MPa.

(c) What is the final elongation of the entire assemblage due to both tempera-
ture change �T and the initial prestress in the bolt?

Brass
cap

d = np

Steel
bolt

L
1 

=
 4

0 
m

m
, 

d 1
 =

 2
5 

m
m

,
t 1

 =
 4

 m
m

L
2 

=
 5

0 
m

m
,

d 2
 =

 1
7 

m
m

,
t 2

 =
 3

 m
m

� T

� T

Copper
sleeve

S

Solve simultaneously Eqs. (1) and (5):

STRESS IN THE PLASTIC CYLINDER

;sp �
Pp

Ap
�

2 np Es As Ep

L(Ep Ap + 2Es As)

Pp �
2 np Es As Ep Ap

L(Ep Ap + 2Es As)

SUBSTITUTE NUMERICAL VALUES:

N � EsAsEp � 900 � 109 lb2/in.2

D � Ep Ap 	 2Es As � 4350 � 103 lb

� 2400 psi ;

sp �
2np

L
aN

D
b �

2(1)(0.058in.)

10 in.
aN

D
b

Solution 2.5-22

The figure shows a section through the sleeve, cap, and
bolt.

NUMERICAL PROPERTIES

p � 1.0 mm �T � 30°C

Ec � 120 GPa ac � 17 � (10�6)/°C

Es � 200 GPa as � 12 � (10�6)/°C

taj � 18.5 MPa s � 26 mm db � 5 mm

L1 � 40 mm t1 � 4 mm L2 � 50 mm t2 � 3 mm

d1 � 25 mm d1 � 2t1 � 17 mm d2 � 17 mm

n �
1

2

Ab � 19.635 mm2 A1 � 263.894 mm2

A2 � 131.947 mm2

(a) FORCES IN SLEEVE AND BOLT

One-degree statically indeterminate—cut bolt and
use force in bolt (PB) as redundant (see sketches):

dB1 � �np 	 as�T(L1 	 L2 � s)

 A2 �
p

4
[ d2

2 � 1 d2 � 2t222] 

 A1 �
p

4
 [d1

2 � 1 d1 � 2 t122] Ab �
p

4
 db

2 
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Compatibility: dB1 	 dB2 � 0

PB � 25.4 kN Ps � �PB

Sketches illustrating superposition procedure for statically-indeterminate analysis

;; PB �
�[� n  p + a s ¢T( L1 +  L2 � s)]

c  L1 +  L2 � s

 Es Ab
+

 L1 � s

 Ec A1
+

 L2 � s

 Ec A2
+

 s

 Ec ( A1 +  A2)
d  

dB2 � PB c  L1 +  L2 � s

 Es Ab
+

 L1 � s

 Ec A1
+

 L2 � s

 Ec A2
+

 s

 Ec ( A1 +  A2)
d  

Cap

δ = np

L1

L2

Δ T

Δ T

Sleeve

Bolt

S

S

Ps

PB

PB

Cut
bolt

δ = np

Δ T

δB1

δB1

Δ T

S

δB2

δB2

relative
displacement
across cut bolt, δB1

due to both δ and
ΔT (positive if pieces
move together)

Actual
indeterminate
structure
under load(s)

+

=

Relative
displacement
across cut bolt, δB2
due to Pb (positive
if pieces move
together)

Apply redundant
internal force Ps &
find relative
displacement
across cut bolt,

δB2

Two released structures (see below) under:
(1)load(s); (2) redundant applied as a load

1° SI superposition analysis using
internal force in bolt as the
redundant
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Problem 2.5-23 A polyethylene tube (length L) has a cap which when installed 
compresses a spring (with undeformed length L1 � L) by amount d � (L1 � L).
Ignore deformations of the cap and base. Use the force at the base of the spring as
the redundant. Use numerical properties in the boxes given.

(a) What is the resulting force in the spring, Fk?
(b) What is the resulting force in the tube, Ft?
(c) What is the final length of the tube, Lf?
(d) What temperature change �T inside the tube will result in zero force in

the spring?

Cap (assume rigid)

Tube
(d0, t, L, at, Et)

d = L1 – L

Spring (k, L1 > L)

Modulus of elasticity
Polyethylene tube (Et = 100 ksi)

Coefficients of thermal expansion

at = 80 � 10–6/°F, ak = 6.5 � 10–6/°F

d0 = 6 in.
1
8
—t = in.

k = 1.5 k /in.L1 = 12.125 in. > L = 12 in.

Properties and dimensions

(b) REQUIRED LENGTH OF SOLDER JOINT≈

As � pd2s

sreqd � 25.7 mm

(c) FINAL ELONGATION

df � net of elongation of bolt (db) and shortening of
sleeve (ds)

db � 0.413 mmdb � PBa  L1 +  L2 � s

 EsAb
b  

 sreqd �
 PB

p d2 taj 

t �
 P

 As ds � �0.064 mm

df � db 	 ds df � 0.35 mm ;

ds � Ps cL1 � s

Ec A1
+

L2 � s

EcA2
+

s

Ec(A1 + A2)
d
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Solution 2.5-23

The figure shows a section through the tube, cap, and
spring.

Properties and dimensions:

do � 6 in. in. Et � 100 ksi

At � 2.307 in.2

L1 � 12.125 in. � L � 12 in.

Spring is 1/8 in. longer than tube

d � L1 � L d � 0.125 in. 

ak � 6.5(10�6)/�F � at � 80 � (10�6)/�F

�T � 0 � note that Q result below is for 
zero temperature (until part(d))

(a) FORCE IN SPRING FK � REDUNDANT Q

Flexibilities:

d2 � relative displacement across cut spring due to
redundant � Q(f 	 ft)

d1 � relative displacement across cut spring due to
precompression and �T � d 	 ak�TL1 � at�TL

Compatibility: d1 	 d2 � 0

 ft �
 L

 Et At 
 f �

1

 k 

k � 1.5 k/in.

At �
p

4
 [ do

2 � ( do � 2 t)2]

t �
1

8

Solve for redundant Q:

Fk � �0.174 k compressive force in
spring (Fk) and also 
tensile force in tube

(b) Ft � force in tube � �Q

NOTE: If tube is rigid, Fk � �k� � �0.1875 k

(c) FINAL LENGTH OF TUBE

Lf � L 	 dc1 	 dc2 � i.e., add displacements 
for the two released structures
to initial tube length L

Lf � L � Qft 	 at(�T)L Lf � 12.01 in.

(d) SET Q � 0 TO FIND �T REQUIRED TO REDUCE SPRING

FORCE TO ZERO

�Treqd � 141.9 �F

Since at � ak, a temp. increase is req’d to expand
tube so that spring force goes to zero.

¢T reqd �
d

(�ak L1 + atL)

;

;

;
Q �

�d + ¢T (�a kL1 + a tL)

f + f t 
� Fk

Problem 2.5-24 Prestressed concrete beams are sometimes 
manufactured in the following manner. High-strength steel wires 
are stretched by a jacking mechanism that applies a force Q, as 
represented schematically in part (a) of the figure. Concrete is then
poured around the wires to form a beam, as shown in part (b).

After the concrete sets properly, the jacks are released and the
force Q is removed [see part (c) of the figure]. Thus, the beam is left
in a prestressed condition, with the wires in tension and the concrete
in compression.

Let us assume that the prestressing force Q produces in the steel
wires an initial stress s0 � 620 MPa. If the moduli of elasticity of the
steel and concrete are in the ratio 12:1 and the cross-sectional areas
are in the ratio 1:50, what are the final stresses ss and sc in the two
materials?

Q

Q

Q

Q

(a)

(b)

(c)

Steel wires

Concrete
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Solution 2.5-24 Prestressed concrete beam

EQUILIBRIUM EQUATION

Ps � Pc (Eq. 1)
COMPATIBILITY EQUATION AND

FORCE-DISPLACEMENT RELATIONS

d1 � initial elongation of steel wires

d2 � final elongation of steel wires

d3 � shortening of concrete

d1 � d2 � d3 or

(Eq. 2, Eq. 3)

Solve simultaneously Eqs. (1) and (3):

Ps � Pc �
s0As

1 +

EsAs

EcAc
 

s0L

Es
�

PsL

EsAs
�

PcL

EcAc 

�
PcL

EcAc

�
PsL

EsAs 

�
QL

EsAs
�

s0L

Es

L � length

s0 � initial stress in wires

As � total area of steel wires

Ac � area of concrete

� 50 As

Es � 12 Ec

Ps � final tensile force in steel wires

Pc � final compressive force in concrete

STRESSES

SUBSTITUTE NUMERICAL VALUES:

s0 � 620 MPa

sc �
620 MPa

50 + 12
� 10 MPa (Compression)  ;  

ss �
620 MPa

1 +

12

50

� 500 MPa (Tension)  ;  

Es

Ec
� 12 As

Ac
�

1

50 

sc �
Pc

Ac
�

s0

Ac

As
+

Es

Ec

  ;

ss �
Ps

As
�

s0

1 +

EsAs

EcAc

   ;  

�
Q

As
� 620 MPa
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Problem 2.5-25 A polyethylene tube (length L) has a cap which is held in place 
by a spring (with undeformed length L1 � L). After installing the cap, the spring
is post-tensioned by turning an adjustment screw by amount d. Ignore deforma-
tions of the cap and base. Use the force at the base of the spring as the redundant.
Use numerical properties in the boxes below.

(a) What is the resulting force in the spring, Fk?
(b) What is the resulting force in the tube, Ft?
(c) What is the final length of the tube, Lf?
(d) What temperature change �T inside the tube will result in zero force in the

spring?

Cap (assume rigid)

Tube
(d0, t, L, at, Et)

Spring (k, L1 < L)

Adjustment
screw

d = L – L1

Modulus of elasticity
Polyethylene tube (Et = 100 ksi)

Coefficients of thermal expansion
at = 80 � 10–6/°F, ak = 6.5 � 10–6/°F

d0 = 6 in. in.
1
8
—t =

k = 1.5 k/in.L = 12 in.

Properties and dimensions

L1 = 11.875 in.

Solution 2.5-25
The figure shows a section through the tube, cap, and
spring.

Properties and dimensions:

do � 6 in. in. Et � 100 ksi

L � 12 in. � L1 � 11.875 in.

ak � 6.5(10�6) � at � 80 � (10�6)

At � 2.307 in.2

At �
p

4
[ do

2 � 1 do � 2t22]

 k � 1.5 k/in.

 t �
1

8

Pretension and temperature:
Spring is 1/8 in. shorter than tube.

d � L � L1 d � 0.125 in. �T � 0
Note that Q result below is for zero temperature (until
part (d)).

Flexibilities:

(a) FORCE IN SPRING (Fk) � REDUNDANT (Q)

Follow solution procedure outlined in Prob. 2.5-23
solution:

 Q �
d + ¢T 1�a k L1 + a t L2

 f +  ft 
� Fk

 ft �
 L

 Et At 
 f �

1

 k 
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Fk � 0.174 k also the compressive force in the
tube

(b) FORCE IN TUBE Ft � �Q � �0.174 k
(c) FINAL LENGTH OF TUBE AND SPRING Lf � L 	 dc1

	 dc2

Lf � L � Qft 	 at(�T)L Lf � 11.99 in. ;

;

; (d) SET Q � 0 TO FIND �T REQUIRED TO REDUCE SPRING

FORCE TO ZERO

�Treqd � �141.6�F

Since at � ak, a temperature drop is required to
shrink tube so that spring force goes to zero.

¢ Treqd �
�d

1�akL1 + atL2 
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Stresses on Inclined Sections
Problem 2.6-1 A steel bar of rectangular cross section 
(1.5 in. � 2.0 in.) carries a tensile load P (see figure). The allow-
able stresses in tension and shear are 14,500 psi and 7,100 psi,
respectively. Determine the maximum permissible load Pmax.

NUMERICAL DATA

A � 3 in.2 sa � 14500 psi

ta � 7100 psi

MAXIMUM LOAD—TENSION

Pmax1 � saA Pmax1 � 43500 lbs

MAXIMUM LOAD—SHEAR

Pmax2 � 2taA Pmax2 � 42,600 lbs

Because tallow is less than one-half of sallow, the shear
stress governs.

P P

1.5 in.

2.0 in.

P P

1.5 in.

2.0 in.

Solution 2.6-1

Problem 2.6-2 A circular steel rod of diameter d is subjected to a tensile 
force P � 3.5 kN (see figure). The allowable stresses in tension and shear
are 118 MPa and 48 MPa, respectively. What is the minimum permissible
diameter dmin of the rod?

P = 3.5 kNP
d

P = 3.5 kNP
d

NUMERICAL DATA P � 3.5 kN sa � 118 MPa
ta � 48 MPa

Find Pmax then rod diameter.
since ta is less than 1/2 of sa, shear governs.

dmin � 6.81 mm  ;

 dmin � A
2

pt a
 P

 Pmax � 2t aap

4 
 dmin

2b
Solution 2.6-2
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Problem 2.6-4 A brass wire of diameter d � 2.42 mm is stretched tightly 
between rigid supports so that the tensile force is T � 98 N (see figure). The
coefficient of thermal expansion for the wire is and the
modulus of elasticity is E � 110 GPa.

(a) What is the maximum permissible temperature drop �T if the allowable
shear stress in the wire is 60 MPa? 

(b) At what temperature changes does the wire go slack?

19.5 * 	10�6/ �C

Problem 2.6-3 A standard brick (dimensions 8 in. � 4 in. � 2.5 in.) is compressed 
lengthwise by a force P, as shown in the figure. If the ultimate shear stress for brick is 
1200 psi and the ultimate compressive stress is 3600 psi, what force Pmax is required to break 
the brick?

P

2.5 in.8 in. 4 in.

P

2.5 in.8 in. 4 in.

A � 2.5 in. � 4.0 in. � 10.0 in.2

Maximum normal stress:

sx �
P

A 

Maximum shear stress:

sult � 3600 psi tult � 1200 psi

Because tult is less than one-half of sult, the shear stress
governs.

� 24,000 lb ;   P max � 2(10.0 in.2)(1200 psi) 

t max �
P

2A
  or P max � 2Atult 

t max �
sx

2
�

P

2A 

Solution 2.6-3 Standard brick in compression

T d T
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Problem 2.6-5 A brass wire of diameter d � 1/16 in. is stretched between 
rigid supports with an initial tension T of 37 lb (see figure). Assume that the 
coefficient of thermal expansion is 10.6 � 10�6/°F and the modulus of 
elasticity is 15 � 106 psi.)

(a) If the temperature is lowered by 60°F, what is the maximum 
shear stress tmax in the wire?

(b) If the allowable shear stress is 10,000 psi, what is the 
maximum permissible temperature drop?

(c) At what temperature change �T does the wire go slack?

T d T

NUMERICAL DATA

d � 2.42 mm T � 98 N
a � 19.5 (10�6)/°C E � 110 GPa

(DROP IN TEMPERATURE)

tmax �

ta �
T

2A
�

E a ¢T

2

s

2
s �

T

A
� (E a ¢T)

(a) ¢Tmax

ta � 60 MPa

AT WHICH WIRE GOES SLACK

:

¢T � 9.93�C (increase)

¢T �
T

E aA

Increase ¢T until s � 0

(b) ¢T

¢Tmax � �46�C (drop)

¢Tmax �

T

A
� 2 ta

E a

A �
p

4
 d2

T d T

T d T

NUMERICAL DATA

T � 37 lb a � 10.6 � (10�6)/

E � 15 � (106) psi �T � �60

(a) tmax (DUE TO DROP IN TEMPERATURE)

tmax � 10,800 psi ;
tmax �

T

A
� (E a¢T)

2
tmax �

s x

2 

 A �
p

4  d
2

�F

�Fd �
1

16
 in. 

(b) FOR ALLOWABLE SHEAR STRESS

ta � 10000 psi

�Tmax � �49.9

(c) �T AT WHICH WIRE GOES SLACK

Increase �T until s � 0:

�T � 75.9 (increase) ;�F

¢T �
 T

 E a A 

;�F

¢Tmax �

T

A
� 2ta

E a

¢Tmax

Solution 2.6-5

Solution 2.6-4 Brass wire in tension
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Problem 2.6-6 A steel bar with diameter is subjected to
a tensile load (see figure).

(a) What is the maximum normal stress in the bar?
(b) What is the maximum shear stress 
(c) Draw a stress element oriented at to the axis of the bar and

show all stresses acting on the faces of this element.
(d) Repeat part (c) for a stress element oriented at to the axis of the bar.

Solution 2.6-6

(a)

(b) On plane stress element rotated 45

(C) ROTATED STRESS ELEMENT (45 ) HAS NORMAL TENSILE STRESS ON ALL FACES, ON x-FACE, AND

ON 	 y-FACE

On rotated x-face:

On rotated y-face:

(d) � CCW ROTATION OF ELEMENT

� on rotated x face � on rotated y face

Eq. 2-31b � CW on rotated x-face

On rotated x-face:

On rotated y-face: sy1 � 12.3 MPa 

sx1 � 71.7 MPa  tx1y1 � �29.7 MPa

tu �
�sx

2
  sin(2 u) � �29.7 MPa

sy � sx cosau +

p

2
 b2

� 12.3 MPasu � sx cos(u)2 � 71.7 MPa

u � 22.5�

sy1 � 42 MPa 

sx1 � 42 MPa  tx1y1 � 42 MPa

txy1y1 � tmax  sx1 �
sx

2
  sy1 � sx1

	Tmax (CCW) 
	�Tmax (CW)sx/2�

�tmax �
sx

2
� 42 MPa

sx �
P

A
� 84 MPa

d � 12 mm  P � 9.5 kN  A �
p

4
 d 

2 � 1.131 * 10�4
 
 m2

22.5�

45�
tmax?

smax

P � 9.5 kN
d � 12 mm

Problem 2.6-7 During a tension test of a mild-steel specimen 
(see figure), the extensometer shows an elongation of 0.00120 in. 
with a gage length of 2 in. Assume that the steel is stressed 
below the proportional limit and that the modulus of elasticity 
E � 30 � 106 psi.

(a) What is the maximum normal stress smax in 
the specimen?

(b) What is the maximum shear stress tmax?
(c) Draw a stress element oriented at an angle of 45° to the 

axis of the bar and show all stresses acting on the 
faces of this element.

T T
2 in.
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P = 9.5 kNP
d = 12 mm
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Problem 2.6-8 A copper bar with a rectangular cross section is held
without stress between rigid supports (see figure). Subsequently, the
temperature of the bar is raised 50�C.

(a) Determine the stresses on all faces of the elements A and B,
and show these stresses on sketches of the elements. (Assume

(b) If the shear stress at B is known to be 48 MPa at some inclination , find angle and show the stresses on a sketch of a
properly oriented element.

Solution 2.6-8
(a)

� at 

(compression) ;

(b)

Eq. 2-31b

so � CCW rotation of element

� on rotated x face

� on rotated y face  sy � sx cosau +

p

2
b2

� �31.2 MPa

 su � ux cos(u)2 � �73.8 MPa

u � 33.1� u �
1

2
 asina 2 tu

�sx
b � 33.1�

 tu �
�sx

2
 sin(2 u)

tu � 48 MPa
Element B: tmax � 52.5 MPa

Element A: sx � 105 MPa (compression)

u � 45�sx � �E a ¢T � �105 MPa  tmax �
sx

2
� �52.5 MPa

a � 17.5 A10�6 B  ¢T � 50  E � 120 GPa

uu

a � 17.5 * 10�6/�C and E � 120 GPa.)

Solution 2.6-7 Tension test

Elongation: d � 0.00120 in.

(2 in. gage length)

Hooke’s law: sx � E� � (30 � 106 psi)(0.00060)

� 18,000 psi

(a) MAXIMUM NORMAL STRESS

sx is the maximum normal stress.

smax � 18,000 psi ;

 Strain: � �
d

L
�

0.00120 in.

2 in.
� 0.00060

(b) MAXIMUM SHEAR STRESS

The maximum shear stress is on a 45° plane and
equals sx/2.

(c) STRESS ELEMENT AT u � 45°

;tmax �
sx

2
� 9,000 psi

NOTE: All stresses have units of psi.

A B

45°
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Problem 2.6-9 The plane truss below is assembled from steel
shapes (see Table 3(a) in Appendix F). Assume that

t and 

(a) If load variable , what is the maximum shear stress
in each truss member?

(b) What is the maximum permissible value of load variable P if
the allowable normal stress is 14 ksi and the allowable shear
stress is 7.5 ksi?

Solution 2.6-9
NUMERICAL DATA

(a) FOR LINEAR ANALYSIS, MEMBER FORCES ARE PROPORTIONAL TO LOADING

FROM EXAMPLE 1-1: 

(solution for )

Normal stresses in each member:

From Eq. 2-33:

(b) so normal stress will control; lowest value governs here

MEMBER AC:

MEMBER AB:

MEMBER BC: Pmaxs � `
 

P

FBC
 `  1sa A2 � 36.5 k    Pmaxt � ` P

FBC
`  12 ta A2 � 39.059 k

Pmaxs �
P

FAB
 (sa A) � 46.243 k    Pmaxt �

P

FAB
 (2 ta A) � 49.546 k

Pmaxs �
P

FAC
 (sa A) � 184.496 k    Pmaxt �

P

FAC
 (2 ta A) � 197.675 k

sa 6 2 * Ta

tmaxBC �
sBC

2
� �9.41 ksi

tmaxAC �
sAC

2
� 1.859 ksi   tmaxAB �

sAB

2
� 7.42 ksi

sBC �
FBC

A
� �18.818 ksi

sAC �
FAC

A
� 3.718 ksi  sAB �

FAB

A
� 14.835 ksi

FBC �
P

35
 (�78.9)  FBC � �110.46 k

P � 35 k

FAC �
P

35
 15.59 � 21.826 k  FAB �

P

35
 62.2 � 87.08 k

L � 10 ft  b � 0.71 L  P � 49 k  sa � 14 ksi  ta � 7.5 ksi  A � 5.87 in.2

tmax

P � 49 k

b � 0.71 L.L � 10 f
C10 * 20

y

x

P

C

L
uC

uB
uA = 60°

A
B

c

b

2P
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Solution

Problem 2.6-10 A plastic bar of diameter d � 32 mm is 
compressed in a testing device by a force P � 190 N applied as shown in the figure.

(a) Determine the normal and shear stresses acting on all
faces of stress elements oriented at (1) an angle u � 0°,
(2) an angle u � 22.5°, and (3) an angle u � 45°. In each
case, show the stresses on a sketch of a properly oriented
element. What are smax and tmax?

(b) Find smax and tmax in the plastic bar if a re-centering
spring of stiffness k is inserted into the testing device, as
shown in the figure. The spring stiffness is 1/6 of the axial
stiffness of the plastic bar.

Plastic bar Re-centering
spring

(Part (b) only)

100 mm
P = 190 N

d = 32 mm k

300 mm

u

200 mm

NUMERICAL DATA

d � 32 mm

P � 190 N A � 804.25 mm2

a � 100 mm

b � 300 mm

(a) STATICS—FIND COMPRESSIVE FORCE F AND STRESSES

IN PLASTIC BAR

F � 760 N

sx � 0.945 MPa or sx � 945 kPa

From (1), (2), and (3) below:

smax � sx smax � �945 kPa 

tmax � 472 kPa

(1) u � 0 sx � �945 kPa 

(2) u � 22.50

On 	x-face:

�

;�

s x

2
� �472 kPa

s x �
 F

 A 

 F �
 P( a +  b)

 a 

 A �
p

4
 d2 

su � sxcos(u)2

su � �807 kPa

tu � �sxsin(u) cos(u)
tu � 334 kPa

On 	y-face:

su � sxcos(u)2

su � �138.39 kPa

tu � �sxsin(u) cos(u)
tu � �334.1 kPa

(3) u � 45

On 	x-face:

su � sxcos(u)2

su � �472 kPa

tu � �sxsin(u) cos(u)
tu � 472 kPa

On 	y-face:

su � sxcos(u)2 su � �472.49 kPa

tu � �sxsin(u) cos(u) tu � �472.49 kPa

u � u +

p 

2

;

;

�

u � u +

p

2

;

;
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Problem 2.6-11 A plastic bar of rectangular cross section (b � 1.5 in. 
and h � 3 in.) fits snugly between rigid supports at room temperature (68°F)
but with no initial stress (see figure). When the temperature of the bar is
raised to 160°F, the compressive stress on an inclined plane pq at midspan
becomes 1700 psi.

(a) What is the shear stress on plane pq? (Assume a � 60 � 10�6/°F
and E � 450 � 103 psi.)

(b) Draw a stress element oriented to plane pq and show the stresses
acting on all faces of this element.

(c) If the allowable normal stress is 3400 psi and the allowable shear
stress is 1650 psi, what is the maximum load P (in 	x direction)
which can be added at the quarter point (in addition to
thermal effects above) without exceeding allowable stress values in the bar?

Solution 2.6-11

q

p

Load P for part (c) only

P u

L—
4

L—
2

L—
2

h

b

(b) ADD SPRING—FIND MAXIMUM NORMAL AND SHEAR

STRESSES IN PLASTIC BAR

Mpin � 0

P(400) � [2kd (100) 	 kd (300)]

d �
4

5
 
P

k

a

δ

2kδ kδ

δ/3

P

6k

100 mm 200 mm 100 mm

k

Force in plastic bar:

F � 304 N

Normal and shear stresses in plastic bar:

sx � 0.38

smax � �378 kPa

tmax � �189 kPa ;tmax �
s x

2 

;
sx �

 F

 A 

 F �
8

5
 P 

 F � (2k)a4

5
 
P

k
b  

NUMERICAL DATA

b � 1.5 in. h � 3 in. A � bh �T � (160 � 68)

�T � 92

A � 4.5 in.2 spq � �1700 psi

a � 60 � (10�6)/

E � 450 � (103) psi

(a) SHEAR STRESS ON PLANE PQ

Statically indeterminate analysis gives, 
for reaction at right support:

R � �EAa�T R � �11178 lb

sx � �2484 psis x �
 R

 A 

�F

�F

�F
Using su � sxcos(u)2:

u � 34.2°

Now with u, can find shear stress on plane pq:

tpq � �sxsin(u)cos(u) tpq � 1154 psi

spq � sxcos(u)2 spq � �1700 psi

Stresses at u 	 p/2 (y-face):

sy � �784 psis y � sxcosau +

p

2 b
2

  ;

u � acosaA
s pq

s x
b

cos1u22 �
s pq

s x 
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Problem 2.6-12 A copper bar of rectangular cross section (b � 18 mm 
and h � 40 mm) is held snugly (but without any initial stress) between
rigid supports (see figure). The allowable stresses on the inclined plane pq
at midspan, for which � � 55°, are specified as 60 MPa in compression
and 30 MPa in shear.

(a) What is the maximum permissible temperature rise �T if the
allowable stresses on plane pq are not to be exceeded? (Assume
a � 17 � 10�6/°C and E � 120 GPa.)

(b) If the temperature increases by the maximum permissible amount,
what are the stresses on plane pq?

(c) If the temperature rise �T � 28°C, how far to the right of end A
(distance bL, expressed as a fraction of length L) can load P � 15 kN 
be applied without exceeding allowable stress values in the bar? Assume 
that sa � 75 MPa and ta � 35 MPa.

q

A B

p

P u

h

b

bL

L—
2

L—
2

Load for part (c) only

222 CHAPTER 2 Axially Loaded Members
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(b) STRESS ELEMENT FOR PLANE PQ

(c) MAXIMUM LOAD AT QUARTER POINT sa � 3400 psi

ta � 1650 psi 2ta � 3300 � less than sa,
so shear controls

Statically indeterminate analysis for P at L/4 gives
for reactions:

(tension for 0 to L/4 and compression for rest of bar)

From part (a) (for temperature increase �T):

RR1 � �EAa�T RL1 � �EAa�T

Stresses in bar (0 to L/4):

tmax �
s x

2 
s x � � Ea¢ T +

3P

4A 

 RL2 �
�3

4
 P RR2 �

�P

4 

784 psi

1154 psi

1700 psi

Part (
b)

θ = 34.2°

Set tmax � ta and solve for Pmax1:

Pmax1 � 34,704 lb

tmax � 1650 psi � check

sx � 3300 psi � less than sa

Stresses in bar (L/4 to L):

Set tmax � ta and solve for Pmax2:

Pmax2 � �4A(�2ta 	 Ea�T)

Pmax2 � 14,688 lb shear in segment (L/4
to L) controls

tmax � �1650 psi

sx � �3300 psis x � �Ea¢ T �
 Pmax2

4A 

tmax �
�E a¢ T

2
�

 Pmax2

8A 

  ;

tmax �
s x

2 
s x � �E a¢ T �

 P

4 A 

s x � �Ea¢ T +

3Pmax1

4A 

tmax �
�Ea¢ T

2
+

3 Pmax1

8 A 

 Pmax1 �
4 A

3
12ta + Ea¢ T2 

t a �
�E a¢ T

2
+

3P

8A 

78572_ch02_ptg01_hr_117-282.qxd  1/18/12  6:04 PM  Page 222



Solution 2.6-12

NUMERICAL DATA

rad

b � 18 mm h � 40 mm

A � bh A � 720 mm2

spqa � 60 MPa tpqa � 30 Mpa

a � 17 � (10�6)/ E � 120 GPa

�T � 20 P � 15 kN

(a) FIND �Tmax BASED ON ALLOWABLE NORMAL AND

SHEAR STRESS VALUES ON PLANE pq

sx � �Ea�Tmax

spq � sxcos(u)2 tpq � �sxsin(u)cos(u)

Set each equal to corresponding allowable and 
solve for sx:

sx1 � 182.38 MPa

sx2 � �63.85 MPa

Lesser value controls, so allowable shear stress governs.

�Tmax � 31.3

(b) STRESSES ON PLANE PQ FOR MAxIMUM TEMPERATURE

sx � �Ea�Tmax sx � �63.85 MPa

spq � sxcos(u)2 spq � �21.0 MPa

tpq � �sxsin(u)cos(u) tpq � 30 MPa  ;
  ;

�C  ;¢ Tmax �
�sx2

 E a 

sx2 �
tpqa

�sin1u2 cos1u2 

sx1 �
spqa

cos1u22 

¢ Tmax �
�s x

 Ea 

�C

�C

u � 55a p

180
b

(c) ADD LOAD P IN 	x-DIRECTION TO TEMPERATURE

CHANGE AND FIND LOCATION OF LOAD

�T � 28 C

P � 15 kN from one-degree statically indeterminate
analysis, reactions RA and RB due to load P:

RA � �(1 � b)P RB � bP
Now add normal stresses due to P to thermal
stresses due to �T (tension in segment 0 to bL,
compression in segment bL to L).

Stresses in bar (0 to bL):

Shear controls so set tmax � ta and solve for b:

b � �5.1
Impossible so evaluate segment (bL to L):

Stresses in bar (bL to L):

set tmax � ta and solve for Pmax2

b � 0.62  ;

b �
�A

P
 [�2 t a +  E a¢ T] 

2t a � �Ea¢ T �
b P

 A 

tmax �
s x

2 
s x � �E a¢ T �

 RB

 A 

b � 1 �
 A

 P
 [2t a + Ea¢ T] 

2ta � �E a¢ T +

(1 � b)P

 A 

tmax �
sx

2 
sx � �Ea¢ T +

 RA

 A 

�
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Problem 2.6-13 A circular brass bar of diameter d is member AC
in truss ABC which has load P � 5000 lb applied at joint C. Bar AC
is composed of two segments brazed together on a plane pq making
an angle a � 36° with the axis of the bar (see figure). The allowable
stresses in the brass are 13,500 psi in tension and 6500 psi in shear.
On the brazed joint, the allowable stresses are 6000 psi in tension
and 3000 psi in shear. What is the tensile force NAC in bar AC?
What is the minimum required diameter dmin of bar AC?

θ = 60°

q

A

B

C

P

p

d

a

NAC

NAC

Solution 2.6-13

NUMERICAL DATA

P � 5 k a � 36° sa � 13.5 ksi

ta � 6.5 ksi

sja � 6.0 ksi

tja � 3.0 ksi

Tensile force NAC using Method of Joints at C:

(tension)

NAC � 5.77 k

Minimum required diameter of bar AC:

(1) Check tension and shear in bars; ta � sa/2 so shear

controls :

sx � 2ta = 13  ksi

Areqd � 0.44 in.2

dmin � 0.75 in. dmin � A
4
p 

  Areqd

Areqd �
NAC

2ta

2ta �
NAC

A

tmax �
sx

2 

  ;

NAC �
P

sin(60�)

u �
p

2
� a    u � 54�

(2) Check tension and shear on brazed joint:

Tension on brazed joint:

su � sxcos(u)2

Set equal to sja and solve for sx, then dreqd:

sx � 17.37 ksi

dreqd � 0.65 in.

Shear on brazed joint:

tu � �sxsin(u)cos(u)

sx � �6.31 ksi

dreqd � 1.08 in.  ; dreqd � A
4
p

 
NAC

sX

s x � ` tja

�(sin(u) cos(u)) 
`

dreqd � A
4
p

 
NAC

sx

s x �
sja

cos(u)2 

 dreqd � A
4
p

 
NAC

sX
sx �

NAC

p

4
d2

s x �
 NAC

 A 
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Problem 2.6-14 Two boards are joined by gluing along a scarf 
joint, as shown in the figure. For purposes of cutting and gluing, 
the angle a between the plane of the joint and the faces of the
boards must be between 10° and 40°. Under a tensile load P,
the normal stress in the boards is 4.9 MPa. 

(a) What are the normal and shear stresses acting on the glued joint if a � 20°? 
(b) If the allowable shear stress on the joint is 2.25 MPa, what is the 

largest permissible value of the angle a? 
(c) For what angle a will the shear stress on the glued joint be 

numerically equal to twice the normal stress on the joint?

Solution 2.6-14 Two boards joined by a scarf joint

10°  a  40°

Due to load P: sx � 4.9 MPa

(a) STRESSES ON JOINT WHEN a � 20°

PP

a

u � 90° � a � 70°

su � sx cos2u � (4.9 MPa)(cos 70°)2

� 0.57 MPa

tu � �sx sin u cos u

� (�4.9 MPa)(sin 70°)(cos 70°)

� �1.58 MPa

(b) LARGEST ANGLE a IF tallow � 2.25 MPa

tallow � �sx sin u cos u

The shear stress on the joint has a negative sign. Its
numerical value cannot exceed tallow � 2.25 MPa.
Therefore,

�2.25 MPa � �(4.9 MPa)(sin u)(cos u) or sin u cos
u � 0.4592

From trigonometry: sin u cos u �
1

2
 sin 2u 

;

;
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Therefore: sin 2u � 2(0.4592) � 0.9184

Solving: 2u � 66.69° or 113.31°

u � 33.34° or 56.66°

a � 90° � u �a � 56.66° or 33.34°

Since a must be between 10° and 40°, we select

a � 33.3°

NOTE: If a is between 10° and 33.3°,

| tu | � 2.25 MPa.

If a is between 33.3° and 40°,

| tu | � 2.25 MPa.

(c) WHAT IS a if tu � 2su?

Numerical values only:

| tu | � sx sin u cos u | su | � sx cos2u

sx sin u cos u � 2sxcos2u

sin u � 2 cos u or tan u � 2

u � 63.43° a � 90° � u

a � 26.6°

NOTE: For a � 26.6° and u � 63.4°, we find
su � 0.98 MPa and tu � �1.96 MPa.

 Thus, ` t 0

s 0
` � 2 as required. 

;

` t 0

s 0
` � 2 

;
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Solution 2.6-15 Bar in uniaxial stress

(a) ANGLE u AND SHEAR STRESS tu

su � sx cos2u

su � 10,000 psi

(1)

PLANE AT ANGLE u 	 90°

su 	 90° � sx[cos(u 	 90°)]2 � sx[�sin u]2

� sx sin2u

su 	 90° � 5,000 psi

(2)

Equate (1) and (2):

10,000 psi

cos2u
�

5,000 psi

sin2u 

sx �
s 0	90�

sin2u
�

5,000 psi

sin2u 

sx �
s 0

cos2u
�

10,000 psi

cos2u 

From Eq. (1) or (2):

sx � 15,000 psi

tu � �sx sin u cos u

� (�15,000 psi)(sin 35.26°)(cos 35.26°)

��7,070 psi

Minus sign means that tu acts clockwise on the plane
for which u � 35.26°.

;

;tan2u �
1

2
 tanu �

1

12
 u � 35.26� 

NOTE: All stresses have units of psi.

(b) MAXIMUM NORMAL AND SHEAR STRESSES

smax � sx � 15,000 psi

;tmax �
sx

2
� 7,500 psi  

;
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Problem 2.6-15 Acting on the sides of a stress element cut from a bar in 
uniaxial stress are tensile stresses of 10,000 psi and 5,000 psi, as shown 
in the figure.

(a) Determine the angle u and the shear stress tu and show all stresses on a
sketch of the element.

(b) Determine the maximum normal stress smax and the maximum shear
stress tmax in the material.

   = 10,000 psi

5000 psi10,000 psi

5000 psi

u

tu tu

tu tu

su
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Problem 2.6-16 A prismatic bar is subjected to an axial force that produces a 
tensile stress su � 65 MPa and a shear stress tu � 23 MPa on a certain inclined plane
(see figure). Determine the stresses acting on all faces of a stress element oriented at 
� � 30° and show the stresses on a sketch of the element.

23 MPa

65 MPa
u
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Solution 2.6-16

Find u and sx for stress state shown in figure.

su � sxcos(u)2

so

tu � �sxsin(u) cos(u)

a65

sx
b2

� a65

sx
b + a23

sx
b2

� 0 

a23

sx
b2

�
65

sx
� a65

sx
b2 

a tu

sx
b2

�
su

sx
� asu

sx
b

tu

s x
� � A1 �

su

sx
 A

su 

sx

sin (u) � A1 �
su

sx

cos (u) � A
su 

sx

sx � 73.1 MPa su � 65 MPa

u � acosPAsu

sx
 Q      u � 19.5�

s x �
4754

65 

�(�4754 + 65s x)

s x
2

� 0 

18.3 MPa

31.7 MPa

54.9 MPa θ = 30°

Now find su and tu for u � 30°:

su1 � sxcos(u)2 su1 � 54.9 MPa

tu � �sxsin(u) cos(u) tu � �31.7 MPa

su2 � 18.3 MPa ;su2 � s x cosau +

p

2
b2 

;
;
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Problem 2.6-18 A tension member is to be constructed of two 
pieces of plastic glued along plane pq (see figure). For purposes of
cutting and gluing, the angle u must be between 25° and 45°. 
The allowable stresses on the glued joint in tension and shear are 
5.0 MPa and 3.0 MPa, respectively.

(a) Determine the angle u so that the bar will carry the largest 
load P. (Assume that the strength of the glued joint 
controls the design.)

(b) Determine the maximum allowable load Pmax if the 
cross-sectional area of the bar is 225 mm2.

Solution 2.6-17 Bar in tension

Eq. (2-31a):

su � sxcos2u

b � 30°

PLANE pq: s1 � sxcos2u1 s1 � 7500 psi

PLANE rs: s2 � sxcos2(u1 	 b) s2 � 2500 psi

Equate sx from s1 and s2:

(Eq. 1)

or

(Eq. 2)
cos2u1

cos2(u1 + b)
�

s1

s2
 

cosu1

cos(u1 + b)
� A

s1

s2 

sx �
s1

cos2u1
�

s2

cos2(u1 + b) 

SUBSTITUTE NUMERICAL VALUES INTO EQ. (2):

Solve by iteration or a computer program:

u1 � 30°

MAXIMUM NORMAL STRESS (FROM EQ. 1)

MAXIMUM SHEAR STRESS

;tmax �
sx

2
� 5,000 psi 

;� 10,000 psi 

smax � sx �
s1

cos2u1
�

7500 psi

cos2 30� 

cosu1

cos(u1 + 30�)
� A

7500 psi

2500 psi
  � 23 � 1.7321

q

pP Pu
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Problem 2.6-17 The normal stress on plane pq of a prismatic bar in 
tension (see figure) is found to be 7500 psi. On plane rs, which makes
an angle b � 30° with plane pq, the stress is found to be 2500 psi.

Determine the maximum normal stress smax and maximum shear
stress tmax in the bar.

q

p

r

P P

s

b
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Solution 2.6-18 Bar in tension with glued joint

25° � u � 45°

A � 225 mm2

On glued joint: sallow � 5.0 MPa

tallow � 3.0 MPa

ALLOWABLE STRESS sx IN TENSION

su � sxcos2u (1)

tu � �sxsin u cos u

Since the direction of tu is immaterial, we can write: 
tu | � sxsin u cos u

or

(2)

GRAPH OF EQS. (1) AND (2)

sx �
|tu|

sin u cosu
�

3.0 MPa

sin u cosu 

sx �
su

cos2u
�

5.0 MPa

cos2u 

(a) DETERMINE ANGLE Q FOR LARGEST LOAD

Point A gives the largest value of sx and hence the
largest load. To determine the angle u correspon-
ding to point A, we equate Eqs. (1) and (2).

(b) DETERMINE THE MAXIMUM LOAD

From Eq. (1) or Eq. (2):

Pmax � sxA � (6.80 MPa)(225 mm2)

� 1.53 kN ;

sx �
5.0 MPa

cos2u
�

3.0 MPa

sin u cos u
� 6.80 MPa 

;tan u �
3.0

5.0
 u � 30.96� 

5.0 MPa

cos2u
�

3.0 MPa

sin u cos u 
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Problem 2.6-19 Plastic bar AB of rectangular cross section
( and ) and length is fixed at
A and has a spring support ( ) at C (see figure).
Initially, the bar and spring have no stress. When the tempera-
ture of the bar is raised by 100�F, the compressive stress on an
inclined plane pq at becomes 950 psi. Assume the
spring is massless and is unaffected by the temperature
change. Let and 

(a) What is the shear stress on plane pq? What is angle ?
(b) Draw a stress element oriented to plane pq, and show the stresses acting on all faces of this element.
(c) If the allowable normal stress is and the allowable shear stress is what is the maximum permissi-

ble value of spring constant k if allowable stress values in the bar are not to be exceeded?
(d) What is the maximum permissible length L of the bar if allowable stress values in the bar are not to be exceeded?

(Assume )
(e) What is the maximum permissible temperature increase ( ) in the bar if allowable stress values in the bar are not to

be exceeded? (Assume and 

Solution 2.6-19
NUMERICAL DATA

(a) FIND u AND Tu

(b) FIND sx1 AND sy1

sx1 � �950 psi   sy1 � �127.6 psi

sx1 � sx cos(u)2   sy1 � sx cosau +

p

2
b2

tu � 348 psi  u � 20.1�

tu � �sx sin(u) cos(u) � 348.1 psi  or  tu �
�sx

2
  sin(2 u) � 348.1 psi

u � 0.351  u � 20.124�  sx � �1077.551 psi  2 u � 0.702

sx cos(u)2 � �950 psi  or  sx

2
 (1 + cos(2 u)) � �950 psi  sy � sx cosau +

p

2
b2

� �127.551 psi

u � acosaA
su

sx
b � 0.351  cos(2 u) � 0.763  u � 20.124�

R2 �
�a ¢T L

a L

E A
b + f

� �1.212 * 103
 
 lb  sx �

R2

A
� �1077.551 psi  A

su

sx
� 0.939R2 � redundant

su � �950 psi  sa � �1000 psi  ta � �560 psi  Lu � 1.5 ft  A � b h  f �
1

k
� 5.556 * 10�5

 in./lb

a � 55 110�62  E � 400 ksi  L � 2 ft  ¢T � 100  k � 18 k/in.  b � 0.75 in.  h � 1.5 in.

k � 18 k/in.)L � 2 ft
¢T

k � 18 k/in.

;560 psi,;1000 psi

utu

E � 400 ksi.a � 55 * 10�6/�F

Lu � 1.5 ft

k � 18 k/in.
L � 2 ft.h � 1.5 in.b � 0.75 in. A p

q

BL = 2 ft

Lu = 1.5 ft

k
C

b

h
u
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(c) GIVEN , FIND

or � based on allowable shear stress

(d) GIVEN ALLOWABLE NORMAL AND SHEAR STRESSES, FIND Lmax

or

(e) FIND �Tmax GIVEN L, k, AND ALLOWABLE STRESSES

¢Tmax � 92.8�F

¢Tmax2 �

a L

E A
+ fb  2 ta A

�a L
� 103.939�F 6 based on Tallow

¢Tmax1 �

a L

E A
+ fb  sa A

�a L
� 92.803�F   6  based on sallow    ¢T � 100

ta � �560 psi

k � 18000 lb/in.   L � 2 ft   sa � �1000 psi

Lmax � 1.736 ft

Lmax2 �
2 ta A (f)

�aa ¢T +

2 ta

E
b

� 2.16 ft 6 based on Tallow

sx �
R2

A
  sa A �

�a ¢T L

a L

E A
b + f

  Lmax1 �
sa A (f)

�aa ¢T +

sa

E
b

� 1.736 ft 6 controls (based on sallow)

k � 18000 lb/in.

kmax � 15625 lb/in.

kmax2 �
2 ta A

�a ¢T L � 2 ta A a L

E A
b

� 19444.444 lb/in.

kmax1 �
sa A

�a ¢T L � sa A a L

E A
b

� 15625 lb/in. 6 controls (based on sallow)

kmaxL � 2 ft
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Solution 2.7-1 Bar with three loads

Strain Energy
When solving the problems for Section 2.7, assume that the 
material behaves linearly elastically.

Problem 2.7-1 A prismatic bar AD of length L, cross-sectional 
area A, and modulus of elasticity E is subjected to loads 5P, 3P, 
and P acting at points B, C, and D, respectively (see figure). 
Segments AB, BC, and CD have lengths L/6, L/2, and L/3, 
respectively.

(a) Obtain a formula for the strain energy U of the bar.
(b) Calculate the strain energy if P � 6 k, L � 52 in., 

A � 2.76 in.2, and the material is aluminum with 
E � 10.4 � 106 psi.

A B C D

5P 3P P

L
6
— L

2
— L

3
—

P � 6 k

L � 52 in.

E � 10.4 � 106 psi

A � 2.76 in.2

INTERNAL AXIAL FORCES

NAB � 3P NBC � �2P NCD � P

LENGTHS

LCD �
L

3 
LBC �

L

2 
LAB �

L

6 

(a) STRAIN ENERGY OF THE BAR (EQ. 2-40)

(b) SUBSTITUTE NUMERICAL VALUES:

� 125 in.-lb ;  

U �
23(6 k)2(52 in.)

12(10.4 * 106 psi)(2.76 in.2)
 

�
P2L

2EA
a23

6
b �

23P2L

12EA
 ;  

�
1

2EA
c(3P)2aL

6
b + (�2P)2aL

2
b + (P)2aL

3
b d  

U � g
N i

2Li

2EiAi
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Problem 2.7-3 A three-story steel column in a building supports roof 
and floor loads as shown in the figure. The story height H is 10.5 ft, the cross-sectional area
A of the column is 15.5 in.2, and the modulus of elasticity E of the steel is 30 � 106 psi.

Calculate the strain energy U of the column assuming P1 � 40 k and P2 � P3 � 60 k.

Problem 2.7-2 A bar of circular cross section having two different
diameters d and 2d is shown in the figure. The length of each segment 
of the bar is L/2 and the modulus of elasticity of the material is E.

(a) Obtain a formula for the strain energy U of the bar due to the load P.
(b) Calculate the strain energy if the load P � 27 kN, the length L �

600 mm, the diameter d � 40 mm, and the material is brass with E �
105 GPa.

P P

2d
d

L
2

— L
2

—

Solution 2.7-2 Bar with two segments

(a) STRAIN ENERGY OF THE BAR

Add the strain energies of the two segments of the
bar (see Eq. 2-42).

�
P2L

pE
a 1

4d2
+

1

d2
b �

5P2L

4pEd2
 ;  

U � g
2

i�1

N i
2Li

2 EiAi
�

P2(L/2)

2E
c 1

p
4(2d)2

 	 
1

p
4(d2)

d

(b) SUBSTITUTE NUMERICAL VALUES:

P � 27 kN L � 600 mm

d � 40 mm E � 105 GPa

� 1.036 N #  m � 1.036 J ;  

U �
5(27 kN2)(600 mm)

4p(105 GPa)(40 mm)2
 

P P

2d
d

L
2

— L
2

—

P1

P2

P3

H

H

H
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Solution 2.7-3 Three-story column

H � 10.5 ft E � 30 � 106 psi

A � 15.5 in.2 P1 � 40 k

P2 � P3 � 60 k
To find the strain energy of the column, add the strain
energies of the three segments (see Eq. 2-42).

Upper segment: N1 � �P1

Middle segment: N2 � �(P1 	 P2)

Lower segment: N3 � �(P1 	 P2 	 P3)

STRAIN ENERGY

 � 5040 in.-lb ;  

 U �
(10.5 ft)(12 in./ft)

930 * 106 lb
 [37,200 k2] 

 2EA � 2(30 * 106 psi)(15.5 in.2) � 930 * 106 lb 

 [Q] � (40 k)2
+ (100 k)2

+ (160 k)2 � 37,200 k2 

�
H

2EA
[Q] 

�
H

2EA
[P1

2
+ (P1 + P2)2

+ (P1 + P2 + P3)2] 

U � g
N i

2Li

2EiAi
 

P1

P2

P3

H

H

H

Problem 2.7-4 The bar ABC shown in the figure is loaded by a 
force P acting at end C and by a force Q acting at the midpoint B. The
bar has constant axial rigidity EA.

(a) Determine the strain energy U1 of the bar when the force P acts
alone (Q � 0).

(b) Determine the strain energy U2 when the force Q acts alone 
(P � 0).

(c) Determine the strain energy U3 when the forces P and Q act 
simultaneously upon the bar.

A B C

PQ

L
2
—L

2
—
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Problem 2.7-5 Determine the strain energy per unit volume (units of psi) and the strain energy per unit weight (units of in.)
that can be stored in each of the materials listed in the accompanying table, assuming that the material is stressed to the pro-
portional limit.

DATA FOR PROBLEM 2.7-5

Weight Modulus of Proportional
density elasticity limit 

Material (lb/in.3) (ksi) (psi)

Mild steel 0.284 30,000 36,000
Tool steel 0.284 30,000 75,000
Aluminum 0.0984 10,500 60,000
Rubber (soft) 0.0405 0.300 300

Solution 2.7-4 Bar with two loads

(a) FORCE P ACTS ALONE (Q � 0)

(b) FORCE Q ACTS ALONE (P � 0)

U2 �
Q2(L/2)

2EA
�

Q2L

4EA
 ;  

U1 �
P2L

2EA
 ;  

(c) FORCES P AND Q ACT SIMULTANEOUSLY

(Note that U3 is not equal to U1 	 U2. In this case, 
U3 � U1 	 U2. However, if Q is reversed in direction, 
U3 � U1 	 U2. Thus, U3 may be larger or smaller than
U1 	 U2.)

U3 � UBC + UAB �
P2L

2EA
+

PQL

2EA
+

Q2L

4EA
 ;  

�
P2L

4EA
+

PQL

2EA
+

Q2L

4EA
 

Segment AB: UAB �
(P + Q)2(L/2)

2EA
 

Segment BC: UBC �
P2(L/2)

2EA
�

P2L

4EA
 A B C

PQ

L
2
—L

2
—

Solution 2.7-5 Strain-energy density

DATA:

Weight Modulus of Proportional 
density elasticity limit 

Material (lb/in.3) (ksi) (psi)

Mild steel 0.284 30,000 36,000
Tool steel 0.284 30,000 75,000
Aluminum 0.0984 10,500 60,000
Rubber (soft) 0.0405 0.300 300

STRAIN ENERGY PER UNIT VOLUME

Volume V � AL

u �
U

V
�

s2
PL

2E 

 Stress s �
P

A 

U �
P2L

2EA 
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At the proportional limit:

u � uR � modulus of resistance

(Eq. 1)

STRAIN ENERGY PER UNIT WEIGHT

g � weight density

uW �
U

W
�

s2

2gE 

U �
P2L

2EA
   Weight W � gAL 

uR �
s2

PL

2E 

At the proportional limit:

(Eq. 2)

RESULTS

uR (psi) uw (in.)

Mild steel 22 76
Tool steel 94 330
Aluminum 171 1740
Rubber (soft) 150 3700

uW �
sPL

2

2gE 

Problem 2.7-6 The truss ABC shown in the figure is subjected to a horizontal 
load P at joint B. The two bars are identical with cross-sectional area A and modulus
of elasticity E.

(a) Determine the strain energy U of the truss if the angle b � 60°.
(b) Determine the horizontal displacement dB of joint B by equating the strain

energy of the truss to the work done by the load.

b b

PB

CA

L

b b

PB

CA

L

Solution 2.7-6 Truss subjected to a load P

b � 60°

LAB � LBC � L

cos b � 1/2

FREE-BODY DIAGRAM OF JOINT B

sin b � 13/2 


Fvert � 0 	 ↓�

�FAB sin b 	 FBC sin b � 0

FAB � FBC (Eq. 1)


Fhoriz � 0 : ←

�FAB cos b � FBC cos b 	 P � 0

(Eq. 2)FAB � FBC �
P

2 cos b
�

P

2(1/2)
� P 

↓
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Problem 2.7-7 The truss ABC shown in the figure supports a 
horizontal load P1 � 300 lb and a vertical load P2 � 900 lb. Both
bars have cross-sectional area A � 2.4 in.2 and are made of steel with
E � 30 � 106 psi.

(a) Determine the strain energy U1 of the truss when the load P1

acts alone (P2 � 0).
(b) Determine the strain energy U2 when the load P2 acts alone

(P1 � 0).
(c) Determine the strain energy U3 when both loads act 

simultaneously.

Axial forces: NAB � P (tension)

NBC � �P (compression)

(a) STRAIN ENERGY OF TRUSS (EQ. 2-42)

�
P2L

EA
 ;  U � g

N i
2Li

2EiAi
�

(NAB)2L

2EA
+

(NBC)2L

2EA
 

(b) HORIZONTAL DISPLACEMENT OF JOINT B (EQ. 2-44)

dB �
2U

P
�

2

P
aP2L

EA
b �

2PL

EA
 ;  

Solution 2.7-7 Truss with two loads

P1 � 300 lb

P2 � 900 lb

A � 2.4 in.2

E � 30 � 106 psi

LBC � 60 in.

b � 30°

cos b � cos 30� �
13

2

sin b � sin 30� �
1

2

2EA � 2(30 � 106 psi)(2.4 in.2) � 144 � 106 lb

FORCES FAB AND FBC IN THE BARS

From equilibrium of joint B:

FAB � 2P2 � 1800 lb

Force P1 alone P2 alone P1 and P2

FAB 0 1800 lb 1800 lb
FBC 300 lb �1558.8 lb �1258.8 lb

(a) LOAD P1 ACTS ALONE

� 0.0375 in.-lb ;  

U1 �
(FBC)2LBC

2EA
�

(300 lb)2(60 in.)

144 * 106 lb
 

FBC � P1 � P213 � 300 lb � 1558.8 lb 

LAB �
LBC

cos 30�
�

120

13
 in. � 69.282 in.

P1 = 300 lb

P2 = 900 lb

BC

A

60 in.

30°
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(b) LOAD P2 ACTS ALONE

(c) LOADS P1 AND P2 ACT SIMULTANEOUSLY

U3 �
1

2EA
c(FAB)2LAB + (FBC)2LBC d  

�
370.265 * 106 lb2-in.

144 * 106 lb
� 2.57 in.-lb ;  

  + (�1558.8 lb)2(60 in.) d  

�
1

2EA
c(1800 lb)2(69.282 in.) 

U2 �
1

2EA
c(FAB)2LAB + (FBC)2LBC d  

NOTE: The strain energy U3 is not equal to U1 	 U2.

� 2.22 in.- lb ;

�
319.548 * 106 lb2-in.

144 * 106 lb
 

  + (�1258.8 lb)2(60 in.) d  

�
1

2EA
c(1800 lb)2(69.282 in.) 

Problem 2.7-8 The statically indeterminate structure shown 
in the figure consists of a horizontal rigid bar AB supported by 
five equally spaced springs. Springs 1, 2, and 3 have stiffnesses 
3k, 1.5k, and k, respectively. When unstressed, the lower ends of 
all five springs lie along a horizontal line. Bar AB, which has 
weight W, causes the springs to elongate by an amount d.

(a) Obtain a formula for the total strain energy U of the 
springs in terms of the downward displacement 
d of the bar.

(b) Obtain a formula for the displacement d by equating the 
strain energy of the springs to the work done by the 
weight W.

(c) Determine the forces F1, F2, and F3 in the springs.
(d) Evaluate the strain energy U, the displacement d, and the 

forces in the springs if W � 600 N and k � 7.5 N/mm.

1.5k 1.5k

A B

W

k

3k3k1 2 12 3
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Problem 2.7-9 A slightly tapered bar AB of rectangular cross 
section and length L is acted upon by a force P (see figure). The
width of the bar varies uniformly from b2 at end A to b1 at end B.
The thickness t is constant.

(a) Determine the strain energy U of the bar.
(b) Determine the elongation d of the bar by equating the

strain energy to the work done by the force P.

(c) FORCES IN THE SPRINGS

(d) NUMERICAL VALUES

NOTE: W � 2F1 	 2F2 	 F3 � 600 N (Check)

F3 �
W

10
� 60 N ;  

F2 �
3W

20
� 90 N ;  

F1 �
3W

10
� 180 N ;  

d �
W

10k
� 8.0 mm ;  

� 2.4 N #m � 2.4 J ;  

U � 5kd2 � 5ka W

10k
b2

�
W2

20k
 

W � 600 N k � 7.5 N/mm � 7500 N/mm 

F3 � kd �
 W

10
 ;  

F1 � 3kd �
3 W

10
 F2 � 1.5kd �

3W

20
 ;  

b2

b1

L

A B
P

Solution 2.7-8 Rigid bar supported by springs

k1 � 3k

k2 � 1.5k

k3 � k

d � downward displacement of rigid bar

For a spring: Eq. (2-40b)

(a) STRAIN ENERGY U OF ALL SPRINGS

(b) DISPLACEMENT d

Work done by the weight W equals 

Strain energy of the springs equals 5kd2

...
 Wd

2
� 5kd2  and d �

 W

10k
 ;  

Wd

2 

� 5kd2 ;U � 2a3kd2

2
b + 2a1.5kd2

2
b +

kd2

2
 

U �
kd2

2 
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Solution 2.7-9 Tapered bar of rectangular cross section

(a) STRAIN ENERGY OF THE BAR

(1)

From Appendix C:
L

dx

a + bx
�

1

b
 ln (a + bx) 

�
L

L

0

P2dx

2Etb(x)
�

P2

2EtL

L

0

dx

b2 � (b2 � b1)x
L

 

U �
L

[N(x)]2dx

2EA(x)
 (Eq. 2-43) 

� t cb2 �
(b2 � b1)x

L
d  

 A(x) � tb(x) 

b(x) � b2 �
(b2 � b1)x

L
 

Apply this integration formula to Eq. (1):

(b) ELONGATION OF THE BAR (EQ. 2-44)

NOTE: This result agrees with the formula derived in
Prob. 2.3-13.

d �
2U

P
�

PL

Et(b2 � b1)
 ln 

b2

b1
 ;  

U �
P2L

2Et(b2 � b1)
 ln 

b2

b1
 ;  

�
P2

2Et
c �L

(b2 � b1)
 ln b1 �

�L

(b2 � b1)
 ln b2 d  

U �
P2

2Et
c 1

�(b2 � b1)11
L
2 ln cb2 �

(b2 � b1)x

L
d d

0

L

 

Problem 2.7-10 A compressive load P is transmitted through a rigid plate to three 
magnesium-alloy bars that are identical except that initially the middle bar is slightly
shorter than the other bars (see figure). The dimensions and properties of the assembly
are as follows: length L � 1.0 m, cross-sectional area of each bar A � 3000 mm2,
modulus of elasticity E � 45 GPa, and the gap s � 1.0 mm.

(a) Calculate the load P1 required to close the gap.
(b) Calculate the downward displacement d of the rigid plate when P � 400 kN.
(c) Calculate the total strain energy U of the three bars when P � 400 kN.
(d) Explain why the strain energy U is not equal to Pd/2.

(Hint: Draw a load-displacement diagram.)

L

P

s
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(c) STRAIN ENERGY U FOR P � 400 kN

Outer bars: d � 1.321 mm

Middle bar: d � 1.321 mm � s

� 0.321 mm

(d) LOAD-DISPLACEMENT DIAGRAM

U � 243 J � 243 N m

The strain energy U is not equal to because the

load-displacement relation is not linear.

Pd

2
�

Pd

2
�

1

2
(400 kN)(1.321 mm) � 264 N #m 

#

� 243 N #m � 243 J ;  

�
1

2
(135 * 106 N/m)(3.593 mm2) 

U �
EA

2L
[2(1.321 mm)2

+ (0.321 mm)2] 

U � g
EAd2

2L 

U � area under line OAB.

area under a straight line from O to B, which is 

larger than U.

Pd

2
�

Solution 2.7-10 Three bars in compression

s � 1.0 mm

L � 1.0 m

For each bar:

A � 3000 mm2

E � 45 GPa

(a) LOAD P1 REQUIRED TO CLOSE THE GAP

In general, and 

For two bars, we obtain:

P1 � 270 kN

(b) DISPLACEMENT d FOR P � 400 kN

Since P � P1, all three bars are compressed.
The force P equals P1 plus the additional force
required to compress all three bars by the amount
d � s.

or 400 kN � 270 kN 	 3(135 � 106 N/m)
(d � 0.001 m)

Solving, we get d � 1.321 mm ;

P � P1 + 3aEA

L
b(d � s) 

;

P1 � 2aEAs

L
b � 2(135 * 106 N/m)(1.0 mm) 

P �
EAd

L 
d �

PL

EA 

EA

L
� 135 * 106 N/m 
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Problem 2.7-11 A block B is pushed against three springs by a force P
(see figure). The middle spring has stiffness k1 and the outer springs each
have stiffness k2. Initially, the springs are unstressed and the middle spring
is longer than the outer springs (the difference in length is denoted s).

(a) Draw a force-displacement diagram with the force P as ordinate
and the displacement x of the block as abscissa.

(b) From the diagram, determine the strain energy U1 of the springs
when x � 2s.

(c) Explain why the strain energy U1 is not equal to Pd/2, where d � 2s.

242 CHAPTER 2 Axially Loaded Members
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P
B

x

k2

k1

k2

s

Solution 2.7-11 Block pushed against three springs

Force P0 required to close the gap:

P0 � k1s (1)

FORCE-DISPLACEMENT RELATION BEFORE GAP IS CLOSED

P � k1x (0  x  s)(0  P  P0) (2)

FORCE-DISPLACEMENT RELATION AFTER GAP IS CLOSED

All three springs are compressed. Total stiffness equals
k1 	 2k2. Additional displacement equals x � s. Force 
P equals P0 plus the force required to compress all three
springs by the amount x � s.

P � P0 	 (k1 	 2k2)(x � s)

� k1s 	 (k1 	 2k2)x � k1s � 2k2s

P � (k1 	 2k2)x � 2k2s (x � s); (P � P0) (3)

P1 � force P when x � 2s

Substitute x � 2s into Eq. (3):

P1 � 2(k1 	 k2)s (4)

(a) FORCE-DISPLACEMENT DIAGRAM

P
B

x

k2

k1

k2

s

(b) STRAIN ENERGY U1 WHEN x � 2s

� 	 	

U1 � (2k1 	 k2)s2 (5);
� k1s2

+ (k1 + k2)s2 

�
1

2
P0s + P0s +

1

2
(P1 � P0)s � P0s +

1

2
P1s 

U1 � Area below force-displacement curve 
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Problem 2.7-12 A bungee cord that behaves linearly 
elastically has an unstressed length L0 � 760 mm and a
stiffness k � 140 N/m.The cord is attached to two pegs, dis-
tance b � 380 mm apart, and pulled at its midpoint by a
force P � 80 N (see figure).

(a) How much strain energy U is stored in the cord?
(b) What is the displacement dC of the point where the

load is applied?
(c) Compare the strain energy U with the quantity

PdC/2.
(Note: The elongation of the cord is not small compared 
to its original length.)

Solution 2.7-12 Bungee cord subjected to a load P.
DIMENSIONS BEFORE THE LOAD P IS APPLIED

L0 � 760 mm

b � 380 mm

k � 140 N/m

L0

2
� 380 mm 

From triangle ACD:

(1)

DIMENSIONS AFTER THE LOAD P IS APPLIED

Let x � distance CD

Let L1 � stretched length of bungee cord

d �
1

2
2L0

2 � b2 � 329.09 mm

C
P

B

A
b

area under a straight line from O to B, which

is larger than U1.

Thus, is not equal to the strain energy because

the force-displacement relation is not linear.

Pd

2 

Pd

2
�(c) STRAIN ENERGY U1 IS NOT EQUAL TO

(This quantity is greater than U1.)

U1 � area under line OAB.

 For d � 2s: 
Pd

2
�

1

2
 P1(2 s) � P1s � 2(k1 + k2)s2 

Pd

2 
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From triangle ACD:

(2)

(3)

EQUILIBRIUM AT POINT C

Let F � tensile force in bungee cord

(4)

ELONGATION OF BUNGEE CORD

Let d � elongation of the entire bungee cord

(5)

Final length of bungee cord � original length 	 d

(6)

SOLUTION OF EQUATIONS

Combine Eqs. (6) and (3):

L1 � L0 +

P

2kA1 +

b2

4x2
� 1b2

+ 4x2 

L1 � L0 + d � L0 +

P

2kA1 +

b2

4x2
 

d �
F

k
�

P

2kA1 +

b2

4x2
 

�
P

2A1 + a b

2x
b2

 

F

P/2
�

L1/2

x
 F � aP

2
b aL1

2
b a1

x
b  

L1 � 2b2
+ 4x2

L1

2
� A a

b

2
b2

+ x2 

(7)

This equation can be solved for x.

SUBSTITUTE NUMERICAL VALUES INTO EQ. (7):

(8)

(9)

Units: x is in millimeters
Solve for x (Use trial-and-error or a computer program):

x � 497.88 mm

(a) STRAIN ENERGY U OF THE BUNGEE CORD

k � 140 N/m P � 80 N

From Eq. (5):

(b) DISPLACEMENT dC OF POINT C

dC � x � d � 497.88 mm � 329.09 mm

� 168.8 mm ;

U � 6.55 J ;  

U �
1

2
(140 N/m)(305.81 mm)2 � 6.55 N #m 

d �
P

2kA1 +

b2

4x2
� 305.81 mm 

U �
kd2

2 

760 � a1 �
142.857

x
b1144,400 + 4x2

     *
1(380 mm)2

+ 4x2 

760 mm � c1 �
(80 N)(1000 mm/m)

4(140 N/m)x
d  

L0 � a1 �
P

4kx
b1b2

+ 4x2 

 or  L1 � L0 +

P

4kx
1b2

+ 4x2 � 1b2
+ 4x2 
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(c) COMPARISON OF STRAIN ENERGY U WITH THE

QUANTITY PdC/2

U � 6.55 J

The two quantities are not the same. The work done by
the load P is not equal to PdC/2 because the load-
displacement relation (see below) is non-linear when
the displacements are large. (The work done by the
load P is equal to the strain energy because the bungee
cord behaves elastically and there are no energy
losses.)

U � area OAB under the curve OA.

PdC

2
� area of triangle OAB, which is greater than U. 

PdC

2
�

1

2
(80 N)(168.8 mm) � 6.75 J 
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Impact Loading
The problems for Section 2.8 are to be solved on the basis of the assumptions 
and idealizations described in the text. In particular, assume that the material 
behaves linearly elastically and no energy is lost during the impact.

Problem 2.8-1 A sliding collar of weight W � 150 lb falls from a height 
h � 2.0 in. onto a flange at the bottom of a slender vertical rod (see figure). 
The rod has length L � 4.0 ft, cross-sectional area A � 0.75 in.2, and modulus 
of elasticity E � 30 � 106 psi.

Calculate the following quantities: (a) the maximum downward 
displacement of the flange, (b) the maximum tensile stress in the rod, 
and (c) the impact factor.

W � 150 lb

h � 2.0 in. L � 4.0 ft � 48 in.

E � 30 � 106 psi A � 0.75 in.2

(a) DOWNWARD DISPLACEMENT OF FLANGE

Eq. (2-55):

(b) MAXIMUM TENSILE STRESS (EQ. 2-57)

(c) IMPACT FACTOR (EQ. 2-63)

; � 113

 Impact factor �
dmax

dst
�

0.0361 in.

0.00032 in.
 

;smax �
Edmax

L
� 22,600 psi

; � 0.0361 in.

dmax � dst c1 + a1 +

2h

dst
b1/2 d  

dst �
WL

EA
� 0.00032 in. 

Collar

Rod

Flange

L

h

Solution 2.8-1 Collar falling onto a flange

Probs. 2.8-1, 2.8-2, 2.8-3
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Problem 2.8-3 Solve Problem 2.8-1 if the collar has weight W � 50 lb,
the height h � 2.0 in., the length L � 3.0 ft, the cross-sectional area 

A � 0.25 in.2, and the modulus of elasticity E � 30,000 ksi.

Problem 2.8-2 Solve the preceding problem if the collar has mass 
M � 80 kg, the height h � 0.5 m, the length L � 3.0 m, the cross-sectional 
area A � 350 mm2, and the modulus of elasticity E � 170 GPa.

W � 50 lb h � 2.0 in.

L � 3.0 ft � 36 in.

E � 30,000 psi A � 0.25 in.2

(a) DOWNWARD DISPLACEMENT OF FLANGE

; � 0.0312 in.

 Eq. (2-55): dmax � dst c1 + a1 +

2h

dst
b1/2 d  

dst �
WL

EA
� 0.00024 in. 

M � 80 kg

W � Mg � (80 kg)(9.81 m/s2)

� 784.8 N

h � 0.5 m L � 3.0 m

E � 170 GPa A � 350 mm2

(a) DOWNWARD DISPLACEMENT OF FLANGE

(b) MAXIMUM TENSILE STRESS (EQ. 2-57)

(c) IMPACT FACTOR (EQ. 2-63)

;� 160

 Impact factor �
dmax

dst
�

6.33 mm

0.03957 mm
 

;smax �
Edmax

L
� 359 MPa

  ;� 6.33 mm 

 Eq. (2-53): dmax � dst c1 + a1 +

2h

dst
b1/2 d  

dst �
WL

EA
� 0.03957 mm 

Solution 2.8-2 Collar falling onto a flange

Solution 2.8-3 Collar falling onto a flange
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(b) MAXIMUM TENSILE STRESS (EQ. 2-57)

;smax �
Edmax

L
� 26,000 psi 

(c) IMPACT FACTOR (EQ. 2-63)

;� 130

 Impact factor �
dmax

dst
�

0.0312 in.

0.00024 in.
 

Problem 2.8-4 A block weighing W � 5.0 N drops inside a cylinder
from a height h � 200 mm onto a spring having stiffness k � 90 N/m 

(see figure).

(a) Determine the maximum shortening of the spring due to the 
impact and (b) determine the impact factor. hCylinder

Block

k

Prob. 2.8-4 and 2.8-5

W � 5.0 N h � 200 mm k � 90 N/m

(a) MAXIMUM SHORTENING OF THE SPRING

;� 215 mm

 Eq. (2-55): dmax � dst c1 + a1 +

2h

dst
b1/2 d  

dst �
W

k
�

5.0 N

90 N/m
� 55.56 mm 

(b) IMPACT FACTOR (EQ. 2-63)

;� 3.9

 Impact factor �
dmax

dst
�

215 mm

55.56 mm
 

Solution 2.8-4 Block dropping onto a spring
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Problem 2.8-5 Solve the preceding problem if the block weighs 
W � 1.0 lb, h � 12 in., and k � 0.5 lb/in.

W � 1.0 lb h � 12 in. k � 0.5 lb/in.

(a) MAXIMUM SHORTENING OF THE SPRING

(b) IMPACT FACTOR (EQ. 2-63)

;� 4.6

 Impact factor �
dmax

dst
�

9.21 in.

2.0 in.
 

; � 9.21 in.

 Eq. (2-55): dmax � dst c1 + a1 +

2h

dst
b1/2 d  

dst �
W

k
�

1.0 lb

0.5 lb/in.
� 2.0 in. 

Solution 2.8-5 Block dropping onto a spring

Problem 2.8-6 A small rubber ball (weight W � 450 mN) is attached by a rubber cord to 
a wood paddle (see figure). The natural length of the cord is L0 � 200 mm, its cross-
sectional area is A � 1.6 mm2, and its modulus of elasticity is E � 2.0 MPa. After being
struck by the paddle, the ball stretches the cord to a total length L1 � 900 mm.

What was the velocity v of the ball when it left the paddle? (Assume linearly elastic
behavior of the rubber cord, and disregard the potential energy due to any change in
elevation of the ball.)

Solution 2.8-6 Rubber ball attached to a paddle

g � 9.81 m/s2 E � 2.0 MPa

A � 1.6 mm2 L0 � 200 mm

L1 � 900 mm W � 450 mN

WHEN THE BALL LEAVES THE PADDLE

KE �
Wv2

2g 

WHEN THE RUBBER CORD IS FULLY STRETCHED:

CONSERVATION OF ENERGY

SUBSTITUTE NUMERICAL VALUES:

;� 13.1 m/s

v � (700 mm)A
(9.81 m/s2) (2.0 MPa) (1.6 mm2)

(450 mN) (200 mm)
 

;v � (L1 � L0)A
gEA

WL0
 

v2 �
gEA

WL0
(L1 � L0)2 

KE � U Wv2

2g
�

EA

2L0
(L1 � L0)2 

U �
EAd2

2L0
�

EA

2L0
(L1 � L0)2 
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Problem 2.8-7 A weight W � 4500 lb falls from a height h onto 
a vertical wood pole having length L � 15 ft, diameter d � 12 in., 
and modulus of elasticity E � 1.6 � 106 psi (see figure).

If the allowable stress in the wood under an impact load is 2500 psi,
what is the maximum permissible height h?

d = 12 in.

W = 4,500 lb

h

L = 15 ft

Solution 2.8-7 Weight falling on a wood pole

W � 4500 lb d � 12 in.

L � 15 ft � 180 in.

A �
pd2

4
� 113.10 in.2 

E � 1.6 � 106 psi

sallow � 2500 psi (� smax)

Find hmax

STATIC STRESS

MAXIMUM HEIGHT hmax

or

Square both sides and solve for h:

SUBSTITUTE NUMERICAL VALUES:

; � 8.55 in.

hmax �
(180 in.) (2500 psi)

2(1.6 * 106 psi)
a 2500 psi

39.79 psi
� 2b  

;h � hmax �
Lsmax

2E
asmax

sst
� 2b

smax

sst
� 1 � a1 +

2hE

Lsst
b1/2 

 Eq. (2-61): smax � sst c1 + a1 +

2hE

Lsst
b1/2 d  

sst �
W

A
�

4500 lb

113.10 in.2
� 39.79 psi 
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Problem 2.8-8 A cable with a restrainer at the bottom hangs 
vertically from its upper end (see figure). The cable has an 
effective cross-sectional area A � 40 mm2 and an effective 
modulus of elasticity E � 130 GPa. A slider of mass M � 35 kg
drops from a height h � 1.0 m onto the restrainer.

If the allowable stress in the cable under an impact load is
500 MPa, what is the minimum permissible length L of the cable?

Restrainer

Cable

Slider

h

L

W � Mg � (35 kg)(9.81 m/s2) � 343.4 N

A � 40 mm2 E � 130 GPa

h � 1.0 m sallow � smax � 500 MPa

Find minimum length Lmin.

STATIC STRESS

MINIMUM LENGTH Lmin

or

Square both sides and solve for L:

SUBSTITUTE NUMERICAL VALUES:

; � 9.25 mm

Lmin �
2(130 GPa) (1.0 m) (8.585 MPa)

(500 MPa) [500 MPa � 2(8.585 MPa)]
 

;L � Lmin �
2Ehsst

smax(smax � 2sst)

smax

sst
� 1 � a1 +

2hE

Lsst
b1/2 

 Eq. (2-61): smax � sst c1 + a1 +

2hE

Lsst
b1/2 d  

sst �
W

A
�

343.4 N

40 mm2
� 8.585 MPa 

Solution 2.8-8 Slider on a cable

Probs. 2.8-8, 2.8-2, 2.8-9

SECTION 2.8 Impact Loading 251

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

78572_ch02_ptg01_hr_117-282.qxd  1/18/12  6:04 PM  Page 251



252 CHAPTER 2 Axially Loaded Members

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Problem 2.8-9 Solve the preceding problem if the slider has 
weight W � 100 lb, h � 45 in., A � 0.080 in.2, E � 21 � 106 psi, 
and the allowable stress is 70 ksi.

Restrainer

Cable

Slider

h

L

Solution 2.8-9 Slider on a cable

W � 100 lb

A � 0.080 in.2 E � 21 � 106 psi

h � 45 in sallow � smax � 70 ksi

Find minimum length Lmin.

STATIC STRESS

MINIMUM LENGTH Lmin

or

Square both sides and solve for L:

SUBSTITUTE NUMERICAL VALUES:

; � 500 in.

Lmin �
2(21 * 106 psi) (45 in.) (1250 psi)

(70,000 psi) [70,000 psi � 2(1250 psi)]
 

;L � Lmin �
2Ehsst

smax(smax � 2sst)

smax

sst
� 1 � a1 +

2hE

Lsst
b1/2 

 Eq. (2-61): smax � sst c1 + a1 +

2hE

Lsst
b1/2 d  

sst �
W

A
�

100 lb

0.080 in.2
� 1250 psi 
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Problem 2.8-10 A bumping post at the end of a track in a 
railway yard has a spring constant k � 8.0 MN/m (see figure). 
The maximum possible displacement d of the end of the
striking plate is 450 mm.

What is the maximum velocity nmax that a railway car of
weight W � 545 kN can have without damaging the bumping
post when it strikes it? d

k

v

Solution 2.8-10 Bumping post for a railway car

k � 8.0 MN/m W � 545 kN

d � maximum displacement of spring

d � dmax � 450 mm

Find nmax.

KINETIC ENERGY BEFORE IMPACT

KE �
Mv2

2
�

Wv2

2g 

STRAIN ENERGY WHEN SPRING IS COMPRESSED TO THE

MAXIMUM ALLOWABLE AMOUNT

CONSERVATION OF ENERGY

SUBSTITUTE NUMERICAL VALUES:

; � 5400 mm/s � 5.4 m/s

vmax � (450 mm)A
8.0 MN/m

(545 kN)/(9.81 m/s2)
 

; v � vmax � dA
k

W/g

KE � U Wv2

2g
�

kd2

2
 v2 �

kd2

W/g
 

U �
kdmax

2

2
�

kd2

2 

d

k

v

Problem 2.8-11 A bumper for a mine car is constructed with 
a spring of stiffness k � 1120 lb/in. (see figure). If a car weighing 
3450 lb is traveling at velocity n � 7 mph when it strikes the
spring, what is the maximum shortening of the spring?

v

k
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Solution 2.8-11 Bumper for a mine car

k � 1120 lb/in. W � 3450 lb

n � 7 mph � 123.2 in./sec

g � 32.2 ft/sec2 � 386.4 in./sec2

Find the shortening dmax of the spring.

KINETIC ENERGY JUST BEFORE IMPACT

STRAIN ENERGY WHEN SPRING IS FULLY COMPRESSED

U �
kdmax

2

2 

KE �
Mv2

2
�

Wv2

2g 

Conservation of energy

Solve for dmax:

SUBSTITUTE NUMERICAL VALUES:

; � 11.0 in.

dmax � A
(3450 lb) (123.2 in./sec)2

(386.4 in./sec2) (1120 lb/in.)
 

;dmax � A
Wv2

gk
 

KE � U Wv2

2g
�

kdmax
2

2 

v

k

Problem 2.8-12 A bungee jumper having a mass of 55 kg leaps 
from a bridge, braking her fall with a long elastic shock cord having 
axial rigidity EA � 2.3 kN (see figure).

If the jumpoff point is 60 m above the water, and if it is desired to
maintain a clearance of 10 m between the jumper and the water, what
length L of cord should be used?
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Solution 2.8-12 Bungee jumper

W � Mg � (55 kg)(9.81 m/s2)

� 539.55 N

EA � 2.3 kN

Height: h � 60 m

Clearance: C � 10 m

Find length L of the bungee cord.

P.E. � Potential energy of the jumper at the top of
bridge (with respect to lowest position)

� W(L 	 dmax)

CONSERVATION OF ENERGY

P.E. � U

or dmax
2 �

2WL

EA
 dmax �

2WL2

EA
� 0 

W(L + dmax) �
EAdmax

2

2L 

�
EAd2

max

2L
 

U � strain energy of cord at lowest position 

SOLVE QUADRATIC EQUATION FOR dmax:

VERTICAL HEIGHT

SOLVE FOR L:

SUBSTITUTE NUMERICAL VALUES:

Numerator � h � C � 60 m � 10 m � 50 m

; L �
50 m

1.9586
� 25.5 m

 � 1.9586 

* c1 + a1 +

2

0.234587
b1/2 d  

Denominator � 1 + (0.234587) 

W

EA
�

539.55 N

2.3 kN
� 0.234587 

;L �
h � C

1 +

W

EA
c1 + a1 +

2EA

W
b1/2 d

h � C � L +

WL

EA
c1 + a1 +

2EA

W
b1/2 d  

 h � C + L + dmax 

 �
WL

EA
c1 + a1 +

2EA

W
b1/2 d  

dmax �
WL

EA
+ c aWL

EA
b2

+ 2LaWL

EA
b d1/2
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Problem 2.8-13 A weight W rests on top of a wall and is attached to one 
end of a very flexible cord having cross-sectional area A and modulus of 
elasticity E (see figure). The other end of the cord is attached securely 
to the wall. The weight is then pushed off the wall and falls freely the full
length of the cord.

(a) Derive a formula for the impact factor.
(b) Evaluate the impact factor if the weight, when hanging statically, 

elongates the band by 2.5% of its original length.

W W

Solution 2.8-13 Weight falling off a wall

W � Weight

Properties of elastic cord:

E � modulus of elasticity

A � cross-sectional area

L � original length

dmax � elongation of elastic cord

P.E. � potential energy of weight before fall (with
respect to lowest position)

P.E. � W(L 	 dmax)

Let U � strain energy of cord at lowest position.

U �
EAdmax

2

2L 

CONSERVATION OF ENERGY

P.E. � U

or

SOLVE QUADRATIC EQUATION FOR dmax:

STATIC ELONGATION

IMPACT FACTOR

NUMERICAL VALUES

dst � (2.5%)(L) � 0.025L

; Impact factor � 1 + [1 + 2(40)]1/2 � 10

EA

W
� 40 

W

EA
� 0.025 dst �

WL

EA 

;dmax

dst
� 1 + c1 +

2EA

W
d1/2

dst �
WL

EA 

dmax �
WL

EA
+ c aWL

EA
b2

+ 2LaWL

EA
b d1/2 

dmax
2 �

2WL

EA
 dmax �

2WL2

EA
� 0 

W(L + dmax) �
EAdmax

2

2 L 
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Problem 2.8-14 A rigid bar AB having mass M � 1.0 kg and 
length L � 0.5 m is hinged at end A and supported at end B by a nylon 
cord BC (see figure). The cord has cross-sectional area A � 30 mm2, 
length b � 0.25 m, and modulus of elasticity E � 2.1 GPa.

If the bar is raised to its maximum height and then released, what is
the maximum stress in the cord?

A B

C

W

b

L

Solution 2.8-14 Falling bar AB

RIGID BAR:

W � Mg � (1.0 kg)(9.81 m/s2)

� 9.81 N

L � 0.5 m

NYLON CORD:

A � 30 mm2

b � 0.25 m

E � 2.1 GPa

Find maximum stress smax in cord BC.

GEOMETRY OF BAR AB AND CORD BC

h � height of center of gravity of raised bar AD

dmax � elongation of cord

From line AD: 

From Appendix D: sin 2 u � 2 sin u cos u

(Eq. 1) and h �
bL2

b2
+ L2 

‹

2h

L
� 2a b

2b2
+ L2

b a L

2b2
+ L2

b �
2bL

b2
+ L2 

sin 2 u �
2h

AD
�

2h

L 

 cos u �
L

2b2
+ L2

 

 From triangle ABC:sin u �
b

2b2
+ L2

 

AD � AB � L 

CD � CB � b 
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CONSERVATION OF ENERGY

P.E. � potential energy of raised bar AD

(Eq. 2)

For the cord: 

Substitute into Eq. (2) and rearrange:

(Eq. 3)smax
2 �

W

A
 smax �

2WhE

bA
� 0 

dmax �
smaxb

E 

 P.E. � U W ah +

dmax

2
b �

EAdmax
2

2b
 

 U � strain energy of stretched cord �
EAd2

max

2b
 

 � W ah +

dmax

2
b  
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Stress Concentrations

The problems for Section 2.10 are to be solved by considering 
the stress-concentration factors and assuming linearly elastic behavior.

Problem 2.10-1 The flat bars shown in parts (a) and (b) of the figure are
subjected to tensile forces P � 3.0 k. Each bar has thickness t � 0.25 in.

(a) For the bar with a circular hole, determine the maximum stresses for
hole diameters d � 1 in. and d � 2 in. if the width b � 6.0 in.

(b) For the stepped bar with shoulder fillets, determine the maximum
stresses for fillet radii R � 0.25 in. and R � 0.5 in. if the bar
widths are b � 4.0 in. and c � 2.5 in.

Substitute from Eq. (1) into Eq. (3):

(Eq. 4)

SOLVE FOR smax:

SUBSTITUTE NUMERICAL VALUES:

smax � 33.3 MPa ;

;smax �
W

2A
c1 + A1 +

8L2EA

W(b2
+ L2)

d

smax
2 �

W

A
smax �

2WL2E

A(b2
+ L2)

� 0 

P

P

P

P

b

db

(a)

(b)

c

R

Probs. 2.10-1 and 2.10-2
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Solution 2.10-1 Flat bars in tension

Problem 2.10-2 The flat bars shown in parts (a) and (b) of the figure 
are subjected to tensile forces P � 2.5 kN. Each bar has thickness 
t � 5.0 mm.

(a) For the bar with a circular hole, determine the maximum stresses for
hole diameters d � 12 mm and d � 20 mm if the width b � 60 mm.

(b) For the stepped bar with shoulder fillets, determine the maximum
stresses for fillet radii R � 6 mm and R � 10 mm if the bar widths are
b � 60 mm and c � 40 mm.

P � 3.0 k t � 0.25 in.

(a) BAR WITH CIRCULAR HOLE (b � 6 in.)

Obtain K from Fig. 2-63

FOR d � 1 in.: c � b � d � 5 in.

smax � ksnom � 6.2 ksi

FOR d � 2 in.: c � b � d � 4 in.

smax � Ksnom � 6.9 ksi ;

d/b �
1

3
 K L 2.31 

s nom �
P

ct
�

3.0 k

(4 in.) (0.25 in.)
� 3.00 ksi 

;

d/b �
1

6
 K L 2.60 

s nom �
P

ct
�

3.0 k

(5 in.) (0.25 in.)
� 2.40 ksi 

(b) STEPPED BAR WITH SHOULDER FILLETS

b � 4.0 in. c � 2.5 in.; Obtain k from Fig. 2-65

FOR R � 0.25 in.: R/c � 0.1 b/c � 1.60

k � 2.30 smax � Ksnom � 11.0 ksi

FOR R � 0.5 in.: R/c � 0.2 b/c � 1.60

K � 1.87 smax � Ksnom � 9.0 ksi ;

;

s nom �
P

ct
�

3.0 k

(2.5 in.) (0.25 in.)
� 4.80 ksi 

P

P

P

P

b

db

(a)

(b)

c

R
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PP
b d

Solution 2.10-2 Flat bars in tension

P � 2.5 kN t � 5.0 mm

(a) BAR WITH CIRCULAR HOLE (b � 60 mm)

Obtain K from Fig. 2-63

FOR d � 12 mm: c � b � d � 48 mm

smax � Ksnom � 26 MPa

FOR d � 20 mm: c � b � d � 40 mm

smax � Ksnom � 29 MPa ;

d/b �
1

3
 K L 2.31 

s nom �
P

ct
�

2.5 kN

(40 mm) (5 mm)
� 12.50 MPa 

;

d/b �
1

5
 K L 2.51 

s nom �
P

ct
�

2.5 kN

(48 mm) (5 mm)
� 10.42 MPa 

(b) STEPPED BAR WITH SHOULDER FILLETS

b � 60 mm c � 40 mm;

Obtain K from Fig. 2-65

FOR R � 6 mm: R/c � 0.15 b/c � 1.5

K � 2.00 smax � Ksnom � 25 MPa

FOR R � 10 mm: R/c � 0.25 b/c � 1.5

K � 1.75 smax � Ksnom � 22 MPa ;

;

s nom �
P

ct
�

2.5 kN

(40 mm) (5 mm)
� 12.50 MPa 

Problem 2.10-3 A flat bar of width b and thickness t has a hole 
of diameter d drilled through it (see figure). The hole may have 
any diameter that will fit within the bar.

What is the maximum permissible tensile load Pmax if the allowable 
tensile stress in the material is st?
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PP
b d

Solution 2.10-3 Flat bar in tension

t � thickness

st � allowable tensile stress

Find Pmax

Find K from Fig. 2-63

Because st, b, and t are constants, we write:

P*�
Pmax

stbt
�  1

K
 a1 �

d

b
b

 �
st

K
 bt a1 �

d

b
b  

Pmax � s nom ct �
smax

K
 ct �

st

K
 (b � d)t 

K P*

0 3.00 0.333
0.1 2.73 0.330
0.2 2.50 0.320
0.3 2.35 0.298
0.4 2.24 0.268

We observe that Pmax decreases as d/b increases.
Therefore, the maximum load occurs when the hole
becomes very small.

;Pmax �
stbt

3

ad

b
: 0  and K : 3b

d

b 

Problem 2.10-4 A round brass bar of diameter d1 � 20 mm has 
upset ends of diameter d2 � 26 mm (see figure). The lengths of 
the segments of the bar are L1 � 0.3 m and L2 � 0.1 m. 
Quarter-circular fillets are used at the shoulders of the bar, and 
the modulus of elasticity of the brass is E � 100 GPa.

If the bar lengthens by 0.12 mm under a tensile load P, what is
the maximum stress smax in the bar?

Probs. 2.10-4 and 2.10-5

L1

d2 = 26 mm d1 = 20 mm

L2 L2

P
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Problem 2.10-5 Solve the preceding problem for a bar of monel 
metal having the following properties: d1 � 1.0 in., d2 � 1.4 in., 
L1 � 20.0 in., L2 � 5.0 in., and E � 25 � 106 psi. Also, the bar
lengthens by 0.0040 in. when the tensile load is applied.

L1

d2 = 26 mm d1 = 20 mm

L2 L2

PP

L1

d1d2 d2

L2 L2

P

Solution 2.10-4 Round brass bar with upset ends

E � 100 GPa

d � 0.12 mm

L2 � 0.1 m

L1 � 0.3 m

Solve for P: P �
dEA1A2

2L2A1 + L1A2 

d � 2aPL2

EA2
b +

PL1

EA1 

R � radius of fillets �
26 mm � 20 mm

2
� 3 mm 

Use Fig. 2-66 for the stress-concentration factor:

SUBSTITUTE NUMERICAL VALUES:

Use the dashed curve in Fig. 2-66. K � 1.6

smax � Ksnom � (1.6) (28.68 MPa)

� 46 MPa ;

R

D1
�

3 mm

20 mm
� 0.15 

s nom �
(0.12 mm) (100 GPa)

2(0.1 m) a20

26
b2

+ 0.3 m

� 28.68 MPa 

 �
dE

2L2ad1

d2
b2

+ L1

 

s nom �
P

A1
�

dEA2

2L2A1 + L1A2
�

dE

2L2aA1

A2
b + L1

 

Solution 2.10-5 Round bar with upset ends

E � 25 � 106 psi

d � 0.0040 in.

L1 � 20 in.

L2 � 5 in.

 � 0.2 in. 

R � radius of fillets R �
1.4 in. � 1.0 in.

2
 

Use Fig. 2-66 for the stress-concentration factor.

�
dE

2L2ad1

d2
b2

+ L1

 

s nom �
P

A1
�

dEA2

2L2A1 + L1A2
�

dE

2L2aA1

A2
b + L1

 

 Solve for P: P �
dEA1A2

2L2A1 + L1A2 

d � 2aPL2

EA2
b +

PL1

EA1
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SUBSTITUTE NUMERICAL VALUES:

 
R

D1
�

0.2 in.

1.0 in.
� 0.2 

s nom �
(0.0040 in.)(25 * 106 psi)

2(5 in.)a1.0

1.4
b2

+ 20 in.

� 3,984 psi 

Use the dashed curve in Fig. 2-66. K � 1.53

smax � Ksnom � (1.53)(3984 psi)

� 6100 psi ;

Problem 2.10-6 A prismatic bar of diameter d0 � 20 mm is being compared 
with a stepped bar of the same diameter (d1 � 20 mm) that is enlarged 
in the middle region to a diameter d2 � 25 mm (see figure). 
The radius of the fillets in the stepped bar is 2.0 mm.

(a) Does enlarging the bar in the middle region make it stronger than the
prismatic bar? Demonstrate your answer by determining the maximum
permissible load P1 for the prismatic bar and the maximum permissible
load P2 for the enlarged bar, assuming that the allowable stress for the
material is 80 MPa.

(b) What should be the diameter d0 of the prismatic bar if it is to have the same
maximum permissible load as does the stepped bar?

P1

P2

d1

d0d1

d2

P2

P1

Solution 2.10-6 Prismatic bar and stepped bar

d0 � 20 mm

d1 � 20 mm

d2 � 25 mm

Fillet radius: R � 2 mm

Allowable stress: st � 80 MPa

(a) COMPARISON OF BARS

Stepped bar: See Fig. 2-66 for the stress-concentration
factor.

R � 2.0 mm D1 � 20 mm D2 � 25 mm

R/D1 � 0.10 D2/D1 � 1.25 K � 1.75

s nom �
P2

p

4
d1

2
�

P2

A1
 s nom �

smax

K

;� (80 MPa)ap

4
b (20mm)2 � 25.1 kN

 Prismatic bar: P1 � stA0 � stapd0
2

4
b  
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Enlarging the bar makes it weaker, not stronger. The
ratio of loads is P1/P2 � K � 1.75

;L 14.4 kN

 � a80 MPa

1.75
b ap

4
b (20 mm)2

P2 � s nom  A1 �
s max

K
A1 �

st

K
A1 

(b) DIAMETER OF PRISMATIC BAR FOR THE SAME

ALLOWABLE LOAD

;d0 �
d1

1K
L

20 mm

11.75
L 15.1 mm

P1 � P2 stapd0
2

4
b �

st

K
apd1

2

4
b d0

2 �
d1

2

K 

Problem 2.10-7 A stepped bar with a hole (see figure) has widths 
b � 2.4 in. and c � 1.6 in. The fillets have radii equal to 0.2 in.

What is the diameter dmax of the largest hole that can be drilled 
through the bar without reducing the load-carrying capacity?

Solution 2.10-7 Stepped bar with a hole

b � 2.4 in.

c � 1.6 in.

Fillet radius: R � 0.2 in.

Find dmax

BASED UPON FILLETS (Use Fig. 2-65)

b � 2.4 in. c � 1.6 in. R � 0.2 in.

R/c � 0.125 b/c � 1.5 K � 2.10

L 0.317 bt smax 

Pmax � s nomct �
smax

K
 ct �

smax

K
 a c

b
b (bt) 

BASED UPON HOLE (Use Fig. 2-63)

b � 2.4 in. d � diameter of the hole (in.)

c1 � b � d

d(in.) d/b K Pmax/btsmax

0.3 0.125 2.66 0.329
0.4 0.167 2.57 0.324
0.5 0.208 2.49 0.318
0.6 0.250 2.41 0.311
0.7 0.292 2.37 0.299

 �
1

K
a1 �

d

b
bbtsmax 

Pmax � s nom c1t �
smax

K
(b � d)t 
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Let A � cross-sectional area

Let N � axial force at distance x

N � gAx

s �
N

A
� gx 

Nonlinear Behavior (Changes in Lengths of Bars)

Problem 2.11-1 A bar AB of length L and weight density g hangs vertically 
under its own weight (see figure). The stress-strain relation for the material is 
given by the Ramberg-Osgood equation (Eq. 2-73):

Derive the following formula

for the elongation of the bar.

d �
gL2

2E
+

s0aL

(m + 1)E
agL

s0
bm 

P �
s

E
+

s0a

E
a s

s0
bm

A

B

L

Solution 2.11-1 Bar hanging under its own weight
STRAIN AT DISTANCE x

ELONGATION OF BAR

;�
gL2

2E
+

s0aL

(m + 1)E
agL

s0
bm   Q.E.D.

d �
L

L

0

�dx �
L

L

0

gx

E
dx +

s0a

E L

L

0

agx

s0
bm

dx 

� �
s

E
+

s0a

E
a s

s0
bm

�
gx

E
+

s0

aE
agx

s0
bm 

Problem 2.11-2 A prismatic bar of length L � 1.8 m and cross-sectional 
area A � 480 mm2 is loaded by forces P1 � 30 kN and P2 � 60 kN 
(see figure). The bar is constructed of magnesium alloy having a stress-strain
curve described by the following Ramberg-Osgood equation:

in which s has units of megapascals.

(a) Calculate the displacement dC of the end of the bar when the load 
P1 acts alone.

(b) Calculate the displacement when the load P2 acts alone.

(c) Calculate the displacement when both loads act simultaneously.

P �
s

45,000
+

1

618
a s

170
b10 (s � MPa)

P2
P1A B C

L
3

——2L
3
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Problem 2.11-3 A circular bar of length L � 32 in. and diameter 
d � 0.75 in. is subjected to tension by forces P (see figure). 
The wire is made of a copper alloy having the following hyperbolic 
stress-strain relationship:

(a) Draw a stress-strain diagram for the material.
(b) If the elongation of the wire is limited to 0.25 in. and 

the maximum stress is limited to 40 ksi, what is the allowable load P?

s �
18,000P

1 + 300P

 0 … P … 0.03 (s � ksi) 

266 CHAPTER 2 Axially Loaded Members
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Solution 2.11-2 Axially loaded bar

L � 1.8 m A � 480 mm2

P1 � 30 kN P2 � 60 kN

Ramberg–Osgood equation:

Find displacement at end of bar.

(a) P1 ACTS ALONE

(b) P2 ACTS ALONE

; dc � �L � 5.13 mm

 � � 0.002853 

ABC:s �
P2

A
�

60 kN

480 mm2
� 125 MPa 

; dc � �a2L

3
b � 1.67 mm

 � � 0.001389 

AB: s �
P1

A
�

30 kN

480 mm2
� 62.5 MPa 

� �
s

45,000
+

1

618
a s

170
b10

 (s � MPa)

(c) BOTH P1 AND P2 ARE ACTING

(Note that the displacement when both loads act
simultaneously is not equal to the sum of the dis-
placements when the loads act separately.)

; dC � dAB + dBC � 11.88 mm

 dBC � �aL

3
b � 1.71 mm 

 � � 0.002853 

BC:s �
P2

A
�

60 kN

480 mm2
� 125 MPa 

 dAB � �a2L

3
b � 10.17 mm 

 � � 0.008477 

AB:s �
P1 + P2

A
�

90 kN

480 mm2
� 187.5 MPa 

P P

L

d
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Problem 2.11-4 A prismatic bar in tension has length L � 2.0 m 
and cross-sectional area A � 249 mm2. The material of the bar has the stress-
strain curve shown in the figure.

Determine the elongation d of the bar for each of the following axial 
loads: P � 10 kN, 20 kN, 30 kN, 40 kN, and 45 kN. From these results, 
plot a diagram of load P versus elongation d (load-displacement diagram).

Solution 2.11-3 Copper bar in tension

L � 32 in. d � 0.75 in.

(a) STRESS-STRAIN DIAGRAM

s �
18,000�

1 + 300�
 0 … � … 0.03 (s � ksi) 

A �
pd2

4
� 0.4418 in.2 

(b) ALLOWABLE LOAD P

Maximum elongation dmax � 0.25 in.

Maximum stress smax � 40 ksi

Based upon elongation:

BASED UPON STRESS:

smax � 40 ksi

Stress governs. P � smax  A � (40 ksi)(0.4418 in.2)

� 17.7 k ;

smax �
18,000�max

1 + 300�max
� 42.06 ksi 

�max �
dmax

L
�

0.25 in.

32 in.
� 0.007813 

P P

L

d

   (MPa)

0
0

200

100

0.005 0.010

s

e
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Problem 2.11-5 An aluminum bar subjected to tensile forces P has length 
L � 150 in. and cross-sectional area A � 2.0 in.2 The stress-strain behavior of the
aluminum may be represented approximately by the bilinear stress-strain diagram
shown in the figure.

Calculate the elongation d of the bar for each of the following axial loads: 
P � 8 k, 16 k, 24 k, 32 k, and 40 k. From these results, plot a diagram of load 
P versus elongation d (load-displacement diagram).

268 CHAPTER 2 Axially Loaded Members
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E2 = 2.4 × 106 psi

E1 = 10 × 106 psi

0

12,000
psi

s

e

Solution 2.11-4 Bar in tension

L � 2.0 m

A � 249 mm2

STRESS-STRAIN DIAGRAM

(See the problem statement for the diagram)

LOAD-DISPLACEMENT DIAGRAM

P s � P/A � d � �L
(kN) (MPa) (from diagram) (mm)

10 40 0.0009 1.8
20 80 0.0018 3.6
30 120 0.0031 6.2
40 161 0.0060 12.0
45 181 0.0081 16.2

NOTE: The load-displacement curve has the same
shape as the stress-strain curve.
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Solution 2.11-5 Aluminum bar in tension

L � 150 in.

A � 2.0 in.2

STRESS-STRAIN DIAGRAM

LOAD-DISPLACEMENT DIAGRAM

s � P/A � (from Eq. d � �L
P (k) (psi) 1 or Eq. 2) (in.)

8 4,000 0.00040 0.060
16 8,000 0.00080 0.120
24 12,000 0.00120 0.180
32 16,000 0.00287 0.430
40 20,000 0.00453 0.680

E1 � 10 � 106 psi

E2 � 2.4 � 106 psi

s1 � 12,000 psi

For 0  s  s1:

Eq. (1)

For s � s1:

Eq. (2) �
s

2.4 * 106
� 0.0038 (s � psi)

� � �1 +

s � s1

E2
� 0.0012 +

s � 12,000

2.4 * 106
 

� �
s

E1
�

s

10 * 106psi
 (s � psi)

 � 0.0012 

�1 �
s1

E1
�

12,000 psi

10 * 106 psi
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Problem 2.11-6 A rigid bar AB, pinned at end A, is supported by a
wire CD and loaded by a force P at end B (see figure). The wire is
made of high-strength steel having modulus of elasticity E � 210 GPa
and yield stress sY � 820 MPa. The length of the wire is L � 1.0 m
and its diameter is d � 3 mm. The stress-strain diagram for the steel is
defined by the modified power law, as follows:

(a) Assuming n � 0.2, calculate the displacement dB at the end of
the bar due to the load P. Take values of P from 2.4 kN to 
5.6 kN in increments of 0.8 kN.

(b) Plot a load-displacement diagram showing P versus dB.

s � sYaEP

sY
bn s Ú sY 

s � EP 0 … s … sY 

P

A D

C

B

L

b2b

P

A D

C

B

L

b2b

Solution 2.11-6 Rigid bar supported by a wire

Wire: E � 210 GPa

sY � 820 MPa

L � 1.0 m

d � 3 mm

STRESS-STRAIN DIAGRAM

s � E� (0  s  sY) (1)

(s � sY) (n � 0.2) (2)

(a) DISPLACEMENT dB AT END OF BAR

d � elongation of wire (3)

Obtain � from stress-strain equations:

From Eq. (1): (4)� �
sE

 (0 … s … sY) 

dB �
3

2
d �

3

2
�L 

s � sY aE�

sY
bn 

A �
pd2

4
� 7.0686 mm2 

From Eq. (2): (5)

Axial force in wire: 

Stress in wire: (6)

PROCEDURE: Assume a value of P
Calculate s from Eq. (6)
Calculate � from Eq. (4) or (5)
Calculate dB from Eq. (3)

P s (MPa) � Eq. (4) dB (mm)
(kN) Eq. (6) or (5) Eq. (3)

2.4 509.3 0.002425 3.64
3.2 679.1 0.003234 4.85
4.0 848.8 0.004640 6.96
4.8 1018.6 0.01155 17.3
5.6 1188.4 0.02497 37.5

For s � sY � 820 MPa:

� � 0.0039048 P � 3.864 kN dB � 5.86 mm

(b) LOAD-DISPLACEMENT DIAGRAM

s �
F

A
�

3P

2A 

F �
3P

2 

� �
sY

E
a s

sY
b1/n 
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Elastoplastic Analysis
The problems for Section 2.12 are to be solved assuming that the material is
elastoplastic with yield stress sY, yield strain �Y, and modulus of elasticity 
E in the linearly elastic region (see Fig. 2-72).

Problem 2.12-1 Two identical bars AB and BC support a vertical load 
P (see figure). The bars are made of steel having a stress-strain curve that
may be idealized as elastoplastic with yield stress sY. Each bar has 
cross-sectional area A.

Determine the yield load PY and the plastic load PP.

Problem 2.12-2 A stepped bar ACB with circular cross sections 
is held between rigid supports and loaded by an axial force P at
midlength (see figure). The diameters for the two parts of the bar are
d1 � 20 mm and d2 � 25 mm, and the material is elastoplastic with
yield stress sY � 250 MPa.

Determine the plastic load PP.

d2d1

L
2
— L

2
—

A BC P

P

B

A Cu u

Solution 2.12-1 Two bars supporting a load P

Structure is statically determinate. The yield load PY

and the plastic lead PP occur at the same time, namely,
when both bars reach the yield stress.

JOINT B


Fvert � 0

(2sYA) sin u � P

PY � PP � 2sYA sin u ;
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Solution 2.12-2 Bar between rigid supports

d1 � 20 mm d2 � 25 mm sY � 250 MPa

DETERMINE THE PLASTIC LOAD PP:

At the plastic load, all parts of the bar are stressed to the
yield stress.

Point C:

FAC � sYA1 FCB � sYA2

P � FAC 	 FCB

PP � sYA1 	 sYA2 � sY(A1 	 A2)

SUBSTITUTE NUMERICAL VALUES:

; � 201 kN

 � (250 MPa)ap

4
b [(20 mm)2

+ (25 mm)2] 

PP � (250 MPa)ap

4
b (d1

2
+ d2

2)

;

Problem 2.12-3 A horizontal rigid bar AB supporting a load P is hung 
from five symmetrically placed wires, each of cross-sectional area A
(see figure). The wires are fastened to a curved surface of radius R.

(a) Determine the plastic load PP if the material of the wires is
elastoplastic with yield stress sY.

(b) How is PP changed if bar AB is flexible instead of rigid?
(c) How is PP changed if the radius R is increased?

A B

P

R

Solution 2.12-3 Rigid bar supported by five wires

(a) PLASTIC LOAD PP

At the plastic load, each wire is stressed to the yield
stress. � PP � 5sYA

F � sYA

;

(b) BAR AB IS FLEXIBLE

At the plastic load, each wire is stressed to the yield
stress, so the plastic load is not changed.

(c) RADIUS R IS INCREASED

Again, the forces in the wires are not changed, so the
plastic load is not changed. ;

;
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Problem 2.12-4 A load P acts on a horizontal beam that is supported by four
rods arranged in the symmetrical pattern shown in the figure. Each rod has
cross-sectional area A and the material is elastoplastic with yield stress sY.

Determine the plastic load PP.

P

aa

P

aa

Solution 2.12-4 Beam supported by four rods

At the plastic load, all four rods are stressed to the yield
stress.

F � sYA
Sum forces in the vertical direction and solve for the
load:

PP � 2F 	 2F sin a

PP � 2sYA (1 	 sin a) ;

Problem 2.12-5 The symmetric truss ABCDE shown in the figure 
is constructed of four bars and supports a load P at joint E. Each of
the two outer bars has a cross-sectional area of 0.307 in.2, and each of
the two inner bars has an area of 0.601 in.2 The material is elasto-
plastic with yield stress sY � 36 ksi.

Determine the plastic load PP.

21 in. 21 in.54 in.

A B C D

P

36 in.

E
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Problem 2.12-6 Five bars, each having a diameter of 10 mm, support a 
load P as shown in the figure. Determine the plastic load PP if the material is
elastoplastic with yield stress sY � 250 MPa.

Solution 2.12-5 Truss with four bars

LAE � 60 in. LBE � 45 in.

JOINT E
Equilibrium:

or

P �
6

5
 FAE +

8

5
 FBE 

2FAEa3

5
b + 2FBEa4

5
b � P 

PLASTIC LOAD PP

At the plastic load, all bars are stressed to the yield
stress.

FAE � sYAAE FBE � sYABE

SUBSTITUTE NUMERICAL VALUES:

; � 13.26 k + 34.62 k � 47.9 k

PP �
6

5
(36 ksi) (0.307 in.2) +

8

5
 (36 ksi) (0.601 in.2) 

 sY � 36 ksi 

AAE � 0.307 in.2   ABE � 0.601 in.2 

;PP �
6

5
 sY AAE +

8

5
 sY ABE

P

b b b b

2b
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Problem 2.12-7 A circular steel rod AB of diameter d � 0.60 in. 
is stretched tightly between two supports so that initially the
tensile stress in the rod is 10 ksi (see figure). An axial force P is
then applied to the rod at an intermediate location C.

(a) Determine the plastic load PP if the material is elastoplastic
with yield stress sY � 36 ksi.

(b) How is PP changed if the initial tensile stress is doubled
to 20 ksi?

BA

d

BP    A

C

Solution 2.12-6 Truss consisting of five bars

d � 10 mm

sY � 250 MPa

A �
pd2

4
� 78.54 mm2 

At the plastic load, all five bars
are stressed to the yield stress

F � sYA

Sum forces in the vertical direc-
tion and solve for the load:

Substitute numerical values:

;� 82.5 kN 

PP � (4.2031)(250 MPa)(78.54 mm2) 

;� 4.2031sYA

�
sYA

5
(512 + 415 + 5) 

PP � 2Fa 1

12
b + 2Fa 2

15
b + F 

Solution 2.12-7 Bar held between rigid supports

d � 0.6 in.

sY � 36 ksi

Initial tensile stress � 10 ksi

(a) PLASTIC LOAD PP

The presence of the initial tensile stress does not
affect the plastic load. Both parts of the bar must
yield in order to reach the plastic load.

POINT C:

(B) INITIAL TENSILE STRESS IS DOUBLED

PP is not changed. ;

; � 20.4 k

PP � 2sYA � (2) (36 ksi)ap

4
b (0.60 in.)2

—

sYA
C ¡

P
—

sYA
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Problem 2.12-8 A rigid bar ACB is supported on a fulcrum 
at C and loaded by a force P at end B (see figure). Three 
identical wires made of an elastoplastic material 
(yield stress sY and modulus of elasticity E) resist the load P.
Each wire has cross-sectional area A and length L.

(a) Determine the yield load PY and the corresponding
yield displacement dY at point B.

(b) Determine the plastic load PP and the corresponding 
displacement dP at point B when the load just reaches 
the value PP.

(c) Draw a load-displacement diagram with the load 
P as ordinate and the displacement dB of point B
as abscissa.

Solution 2.12-8 Rigid bar supported by wires

(a) YIELD LOAD PY

Yielding occurs when the most highly stressed wire
reaches the yield stress sY

At the plastic load, all wires reach the yield stress.


MC � 0

At point A:

At point B:

(c) LOAD-DISPLACEMENT DIAGRAM

dP � 2dY 

PP �
4

3
PY 

;dB � 3dA � dP �
3sYL

E 

dA � (sYA)a L

EA
b �

sYL

E 

;PP �
4sYA

3


MC � 0

PY � sYA

At point A:

At point B:

;dB � 3dA � dY �
3sYL

2E

dA � asYA

2
b a L

EA
b �

sYL

2E 

;

(b) PLASTIC LOAD PP

P

A C B

L

L

a a a a
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Problem 2.12-9 The structure shown in the figure consists of a
horizontal rigid bar ABCD supported by two steel wires, one of length L
and the other of length 3L/4. Both wires have cross-sectional area A and
are made of elastoplastic material with yield stress sY and modulus of
elasticity E. A vertical load P acts at end D of the bar.

(a) Determine the yield load PY and the corresponding yield
displacement dY at point D.

(b) Determine the plastic load PP and the corresponding displacement
dP at point D when the load just reaches the value PP.

(c) Draw a load-displacement diagram with the load P as ordinate
and the displacement dD of point D as abscissa.

2b

L

A

P

DCB

3L
4

b b

Solution 2.12-9 Rigid bar supported by two wires

A � cross-sectional area

sY � yield stress

E � modulus of elasticity

DISPLACEMENT DIAGRAM

COMPATIBILITY:

(1)

dD � 2dB (2)

dC �
3

2
dB 

EQUILIBRIUM:


MA � 0 FB(2b) 	 FC(3b) � P(4b)
2FB 	 3FC � 4P (3)

FORCE-DISPLACEMENT RELATIONS

(4, 5)

Substitute into Eq. (1):

FC � 2FB (6)

3FCL

4EA
�

3FBL

2EA 

dB �
FBL

EA
 dC �

FCa3

4
Lb

EA 

��

FREE-BODY DIAGRAM
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STRESSES

(7)

Wire C has the larger stress. Therefore, it will yield first.

(a) YIELD LOAD

sC � sY (From Eq. 7)

FC � sYA

From Eq. (3):

P � PY � sYA

From Eq. (4):

From Eq. (2):

(b) PLASTIC LOAD

At the plastic load, both wires yield.

sB � sY � sC FB � FC � sYA

;dD � dY � 2dB �
sYL

E

dB �
FBL

EA
�

sYL

2E 

;

2a1

2
sYAb + 3(sYA) � 4P 

FB �
1

2
 sYA 

sB �
sC

2
�

sY

2 

sB �
FB

A
 sC �

FC

A
 sC � 2sB 

From Eq. (3):

2(sYA) 	 3(sYA) � 4P

From Eq. (4):

From Eq. (2):

(c) LOAD-DISPLACEMENT DIAGRAM

dP � 2dY

PP �
5

4
PY 

;dD � dP � 2dB �
2sYL

E

dB �
FBL

EA
�

sYL

E 

;P � PP �
5

4
sYA

Problem 2.12-10 Two cables, each having a length L of approximately 40 m, support a l
oaded container of weight W (see figure). The cables, which have effective cross-sectional area 
A � 48.0 mm2 and effective modulus of elasticity E � 160 GPa, are identical except that one 
cable is longer than the other when they are hanging separately and unloaded. The difference 
in lengths is d � 100 mm. The cables are made of steel having an elastoplastic stress-strain 
diagram with sY � 500 MPa. Assume that the weight W is initially zero and is slowly increased 
by the addition of material to the container.

(a) Determine the weight WY that first produces yielding of the shorter cable. Also, determine 
the corresponding elongation dY of the shorter cable.

(b) Determine the weight WP that produces yielding of both cables. Also, determine the 
elongation dP of the shorter cable when the weight W just reaches the value WP.

(c) Construct a load-displacement diagram showing the weight W as ordinate and the 
elongation d of the shorter cable as abscissa. (Hint: The load displacement diagram is 
not a single straight line in the region 0  W  WY.)

L

W
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Solution 2.12-10 Two cables supporting a load

L � 40 m A � 48.0 mm2

E � 160 GPa

d � difference in length � 100 mm

sY � 500 MPa

INITIAL STRETCHING OF CABLE 1

Initially, cable 1 supports all of the load.
Let W1 � load required to stretch cable 1
to the same length as cable 2

d1 � 100 mm (elongation of cable 1)

(a) YIELD LOAD WY

Cable 1 yields first. F1 � sYA � 24 kN

d1Y � total elongation of cable 1

; � 28.8 kN

WY � F1 + F2 � 24 kN + 4.8 kN 

F2 �
EA

L
 d2Y � 4.8 kN 

 � d1Y � d � 25 mm 

d2Y � elongation of cable 2 

; dY � d1Y � 125 mm

d1Y �
F1L

EA
�

sYL

E
� 0.125 m � 125 mm 

d1Y � total elongation of cable 1 

s1 �
W1

A
�

Ed

L
� 400 MPa (s1 6 sY ‹ 7 OK) 

W1 �
EA

L
d � 19.2 kN 

(b) PLASTIC LOAD WP

F1 � sYA F2 � sYA

WP � 2sYA � 48 kN

d2P � elongation of cable 2

d1P � d2P 	 d � 225 mm

dP � d1P � 225 mm

(c) LOAD-DISPLACEMENT DIAGRAM

;

� F2a L

EA
b �

sYL

E
� 0.125 mm � 125 mm 

;

0 � W � W1: slope � 192,000 N/m

W1 � W � WY: slope � 384,000 N/m

WY � W � WP: slope � 192,000 N/m

WP

WY
� 1.667 dP

dY
� 1.8 

WY

W1
� 1.5 dY

d1
� 1.25 
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Problem 2.12-11 A hollow circular tube T of length L � 15 in. 
is uniformly compressed by a force P acting through a rigid plate 
(see figure). The outside and inside diameters of the tube are 3.0 and 
2.75 in., repectively. A concentric solid circular bar B of 1.5 in.
diameter is mounted inside the tube. When no load is present, there is
a clearance c � 0.010 in. between the bar B and the rigid plate. Both
bar and tube are made of steel having an elastoplastic stress-strain
diagram with E � 29 � 103 ksi and sY � 36 ksi.

(a) Determine the yield load PY and the corresponding shortening
dY of the tube.

(b) Determine the plastic load PP and the corresponding shortening
dP of the tube.

(c) Construct a load-displacement diagram showing the load P as
ordinate and the shortening d of the tube as abscissa. (Hint: The
load-displacement diagram is not a single straight line in the
region 0  P  PY.)

c

L

P

T B T B

T

Solution 2.12-11 Tube and bar supporting a load

L � 15 in.

c � 0.010 in.

E � 29 � 103 ksi

sY � 36 ksi

TUBE:

d2 � 3.0 in.

d1 � 2.75 in.

AT �
p

4 
 (d2

2 � d1
2) � 1.1290 in.2 
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BAR

d � 1.5 in.

INITIAL SHORTENING OF TUBE T

Initially, the tube supports all of the load.

Let P1 � load required to close the clearance

Let d1 � shortening of tube d1 � c � 0.010 in.

(s1 � sY � OK)

(a) YIELD LOAD PY

Because the tube and bar are made of the same
material, and because the strain in the tube is larger
than the strain in the bar, the tube will yield first.

FT � sYAT � 40,644 lb

dTY � shortening of tube at the yield stress

dY � dTY � 0.018621 in.

dBY � shortening of bar

� dTY � c � 0.008621 in.

PY � FT 	 FB � 40,644 lb 	 29,453 lb

� 70,097 lb

PY � 70,100 lb ;

FB �
EAB

L
dBY � 29,453 lb 

;

sTY �
FTL

EAT
�

sYL

E
� 0.018621 in. 

s1 �
P1

AT
� 19,330 psi 

P1 �
EAT

L
c � 21,827 lb 

AB �
pd2

4
� 1.7671 in.2 

(b) PLASTIC LOAD PP

FT � sYAT FB � sYAB

PP � FT 	 FB � sY(AT 	 AB)

� 104,300 lb

dBP � shortening of bar

dTP � dBP 	 c � 0.028621 in.

dP � dTP � 0.02862 in.

(c) LOAD-DISPLACEMENT DIAGRAM

;

� FBa L

EAB
b �

sYL

E
� 0.018621 in. 

;

0 � P � P1: slope � 2180 k/in.

P1 � P � PY: slope � 5600 k/in.

PY � P � PP: slope � 3420 k/in.

PP

PY
� 1.49 dP

dY
� 1.54 

PY

P1
� 3.21 dY

d1
� 1.86 
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