Appendix A

FE Exam Review Problems

A-1.1: A plane truss has downward applied load P at joint 2 and another load P applied leftward at joint 5 . The force in member 3-5 is:
(A) 0
(B) $-P / 2$
(C) $-P$
(D) $+1.5 P$

Solution

$$
\begin{aligned}
& \Sigma M_{1}=0 \\
& V_{6}(3 L)+P L-P L=0 \\
& \text { so } \quad V_{6}=0
\end{aligned}
$$

Method of sections
Cut through members 3-5, 2-5 and 2-4; use right hand FBD
$\Sigma M_{2}=0$

$F_{35} L+P L=0$
$F_{35}=-P$

A-1.2: The force in member $F E$ of the plane truss below is approximately:
(A) -1.5 kN
(B) -2.2 kN
(C) 3.9 kN
(D) 4.7 kN

Solution

Statics

$$
\begin{aligned}
\Sigma M_{A}=0 & E_{y}(6 \mathrm{~m})-15 \mathrm{kN}(3 \mathrm{~m})-10 \mathrm{kN}(6 \mathrm{~m})-5 \mathrm{kN}(9 \mathrm{~m})=0 \\
& E_{y}=25 \mathrm{kN}
\end{aligned}
$$

Method of sections: cut through BC, BE and FE; use right-hand FBD; sum moments about B

$$
\frac{-3}{\sqrt{10}} F_{F E}(3 \mathrm{~m})-\frac{1}{\sqrt{10}} F_{F E}(3 \mathrm{~m})-10 \mathrm{kN}(3 \mathrm{~m})-5 \mathrm{kN}(6 \mathrm{~m})+E_{y}(3 \mathrm{~m})=0
$$

Solving

$$
\begin{aligned}
& F_{F E}=\frac{5}{4} \sqrt{10} \mathrm{kN} \\
& F_{F E}=3.95 \mathrm{kN}
\end{aligned}
$$

A-1.3: The moment reaction at A in the plane frame below is approximately:
(A) $+1400 \mathrm{~N} \cdot \mathrm{~m}$
(B) $-2280 \mathrm{~N} \cdot \mathrm{~m}$
(C) $-3600 \mathrm{~N} \cdot \mathrm{~m}$
(D) $+6400 \mathrm{~N} \cdot \mathrm{~m}$

Solution

Statics: use FBD of member BC to find reaction C_{y}

$$
\begin{aligned}
& \Sigma M_{B}=0 \quad C_{y}(3 \mathrm{~m})-900 \mathrm{~N}(1.2 \mathrm{~m})=0 \\
& C_{y}=\frac{900 \mathrm{~N}(1.2 \mathrm{~m})}{3 \mathrm{~m}}=360 \mathrm{~N}
\end{aligned}
$$

Sum moments about A for entire structure

$$
\begin{aligned}
& \Sigma M_{A}=0 \\
& M_{A}+C_{y}(3 \mathrm{~m})-900 \mathrm{~N}(1.2 \mathrm{~m})-\frac{1}{2}\left(1200 \frac{\mathrm{~N}}{\mathrm{~m}}\right) 4 \mathrm{~m}\left(\frac{2}{3} 4 \mathrm{~m}\right)=0
\end{aligned}
$$

Solving for M_{A}

$$
M_{A}=6400 \mathrm{~N} \cdot \mathrm{~m}
$$

A-1.4: A hollow circular post $A B C$ (see figure) supports a load $P_{1}=16 \mathrm{kN}$ acting at the top. A second load P_{2} is uniformly distributed around the cap plate at B. The diameters and thicknesses of the upper and lower parts of the post are $d_{A B}=30 \mathrm{~mm}, t_{A B}=12 \mathrm{~mm}, d_{B C}=60 \mathrm{~mm}$, and $t_{B C}=9 \mathrm{~mm}$, respectively. The lower part of the post must have the same compressive stress as the upper part. The required magnitude of the load P_{2} is approximately:
(A) 18 kN
(B) 22 kN
(C) 28 kN
(D) 46 kN

Solution

$$
\begin{gathered}
P_{1}=16 \mathrm{kN} \quad d_{A B}=30 \mathrm{~mm} \quad t_{A B}=12 \mathrm{~mm} \\
d_{B C}=60 \mathrm{~mm} \quad t_{B C}=9 \mathrm{~mm} \\
A_{A B}=\frac{\pi}{4}\left[d_{A B}^{2}-\left(d_{A B}-2 t_{A B}\right)^{2}\right]=679 \mathrm{~mm}^{2} \\
A_{B C}=\frac{\pi}{4}\left[d_{B C}^{2}-\left(d_{B C}-2 t_{B C}\right)^{2}\right]=1442 \mathrm{~mm}^{2} \\
\text { Stress in } A B: \quad \sigma_{A B}=\frac{P_{1}}{A_{A B}}=23.6 \mathrm{MPa} \\
\text { Stress in } B C: \quad \sigma_{B C}=\frac{P_{1}+P_{2}}{A_{B C}}<\text { must equal } \sigma_{A B}
\end{gathered}
$$

Solve for $P_{2} \quad P_{2}=\sigma_{A B} A_{B C}-P_{1}=18.00 \mathrm{kN}$
Check: $\quad \sigma_{B C}=\frac{P_{1}+P_{2}}{A_{B C}}=23.6 \mathrm{MPa}<$ same as in $A B$

A-1.5: A circular aluminum tube of length $L=650 \mathrm{~mm}$ is loaded in compression by forces P. The outside and inside diameters are 80 mm and 68 mm , respectively. A strain gage on the outside of the bar records a normal strain in the longitudinal direction of 400×10^{-6}. The shortening of the bar is approximately:
(A) 0.12 mm
(B) 0.26 mm
(C) 0.36 mm
(D) 0.52 mm

Solution

$$
\begin{aligned}
& \varepsilon=400\left(10^{-6}\right) \quad L=650 \mathrm{~mm} \\
& \delta=\varepsilon L=0.260 \mathrm{~mm}
\end{aligned}
$$

A-1.6: A steel plate weighing 27 kN is hoisted by a cable sling that has a clevis at each end. The pins through the clevises are 22 mm in diameter. Each half of the cable is at an angle of 35° to the vertical. The average shear stress in each pin is approximately:
(A) 22 MPa
(B) 28 MPa
(C) 40 MPa
(D) 48 MPa

Solution

$$
W=27 \mathrm{kN} \quad d_{p}=22 \mathrm{~mm} \quad \theta=35^{\circ}
$$

Cross sectional area of each pin:

$$
A_{p}=\frac{\pi}{4} d_{p}^{2}=380 \mathrm{~mm}^{2}
$$

Tensile force in cable:

$$
T=\frac{\left(\frac{W}{2}\right)}{\cos (\theta)}=16.48 \mathrm{kN}
$$

Shear stress in each clevis pin (double shear):

$$
\tau=\frac{T}{2 A_{P}}=21.7 \mathrm{MPa}
$$

A-1.7: A steel wire hangs from a high-altitude balloon. The steel has unit weight $77 \mathrm{kN} / \mathrm{m}^{3}$ and yield stress of 280 MPa . The required factor of safety against yield is 2.0 . The maximum permissible length of the wire is approximately:
(A) 1800 m
(B) 2200 m
(C) 2600 m
(D) 3000 m

Solution

$$
\gamma=77 \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \quad \sigma_{\mathrm{Y}}=280 \mathrm{MPa} \quad F S_{Y}=2
$$

Allowable stress: $\quad \sigma_{\text {allow }}=\frac{\sigma_{Y}}{F S_{Y}}=140.0 \mathrm{MPa}$
Weight of wire of length $L: \quad W=\gamma A L$
Max. axial stress in wire of length $L: \quad \sigma_{\max }=\frac{W}{A} \quad \sigma_{\max }=\gamma L$
Max. length of wire: $\quad L_{\text {max }}=\frac{\sigma_{\text {allow }}}{\gamma}=1818 \mathrm{~m}$

A-1.8: An aluminum bar $(E=72 \mathrm{GPa}, v=0.33)$ of diameter 50 mm cannot exceed a diameter of 50.1 mm when compressed by axial force P. The maximum acceptable compressive load P is approximately:
(A) 190 kN
(B) 200 kN
(C) 470 kN
(D) 860 kN

Solution

$$
\begin{aligned}
& E=72 \mathrm{GPa} \quad d_{\text {init }}=50 \mathrm{~mm} \quad d_{\text {final }}=50.1 \mathrm{~mm} \quad v=0.33 \\
& \text { Lateral strain: } \quad \varepsilon_{L}=\frac{d_{\text {final }}-d_{\text {init }}}{d_{\text {init }}} \quad \varepsilon_{L}=0.002 \\
& \text { Axial strain: } \quad \varepsilon_{a}=\frac{-\varepsilon_{L}}{\nu}=-0.006 \\
& \text { Axial stress: } \quad \sigma=E \varepsilon_{a}=-436.4 \mathrm{MPa} \quad<\text { below yield stress of } 480 \mathrm{MPa} \\
& \text { so Hooke's Law applies }
\end{aligned}
$$

Max. acceptable compressive load:

$$
P_{\max }=\sigma\left(\frac{\pi}{4} d_{\mathrm{init}}^{2}\right)=857 \mathrm{kN}
$$

A-1.9: An aluminum $\operatorname{bar}(E=70 \mathrm{GPa}, v=0.33)$ of diameter 20 mm is stretched by axial forces P, causing its diameter to decrease by 0.022 mm . The load P is approximately:
(A) 73 kN
(B) 100 kN
(C) 140 kN
(D) 339 kN

Solution

$$
E=70 \mathrm{GPa} \quad d_{\text {init }}=20 \mathrm{~mm} \quad \Delta d=-0.022 \mathrm{~mm} \quad v=0.33
$$

Lateral strain:

$$
\varepsilon_{L}=-0.001
$$

Axial strain:

$$
\varepsilon_{a}=\frac{-\varepsilon_{L}}{v}=3.333 \times 10^{-3}
$$

Axial stress: $\quad \sigma=E \varepsilon_{a}=233.3 \mathrm{MPa} \quad<$ below yield stress of 270 MPa so Hooke's Law applies

Max. acceptable load:

$$
P_{\max }=\sigma\left(\frac{\pi}{4} d_{\mathrm{init}}^{2}\right)=73.3 \mathrm{kN}
$$

A-1.10: A polyethylene bar $(E=1.4 \mathrm{GPa}, v=0.4)$ of diameter 80 mm is inserted in a steel tube of inside diameter 80.2 mm and then compressed by axial force P. The gap between steel tube and polyethylene bar will close when compressive load P is approximately:
(A) 18 kN
(B) 25 kN
(C) 44 kN
(D) 60 kN

Solution

$$
E=1.4 \mathrm{GPa}
$$

$$
d_{1}=80 \mathrm{~mm}
$$

$$
\Delta d_{1}=0.2 \mathrm{~mm}
$$

$$
v=0.4
$$

$$
\text { Lateral strain: } \quad \varepsilon_{L}=\frac{\Delta d_{1}}{d_{1}}
$$

$$
\varepsilon_{L}=0.003
$$

Axial strain: $\quad \varepsilon_{a}=\frac{-\varepsilon_{L}}{v}=-6.250 \times 10^{-3}$
Axial stress: $\quad \sigma=E \varepsilon_{a}=-8.8 \mathrm{MPa}$
< well below ultimate stress of 28 MPa so Hooke's Law applies

Max. acceptable compressive load:

$$
P_{\max }=\sigma\left(\frac{\pi}{4} d_{1}^{2}\right)=44.0 \mathrm{kN}
$$

A-1.11: A pipe $(E=110 \mathrm{GPa})$ carries a load $P_{1}=120 \mathrm{kN}$ at A and a uniformly distributed load $P_{2}=100 \mathrm{kN}$ on the cap plate at B. Initial pipe diameters and thicknesses are: $d_{A B}=38 \mathrm{~mm}, t_{A B}=12 \mathrm{~mm}, d_{B C}=70 \mathrm{~mm}, t_{B C}=10 \mathrm{~mm}$. Under loads P_{1} and P_{2}, wall thickness $t_{B C}$ increases by 0.0036 mm . Poisson's ratio v for the pipe material is approximately:
(A) 0.27
(B) 0.30
(C) 0.31
(D) 0.34

Solution

$$
\begin{array}{llll}
E=110 \mathrm{GPa} & d_{A B}=38 \mathrm{~mm} & t_{A B}=12 \mathrm{~mm} & d_{B C}=70 \mathrm{~mm} \\
t_{B C}=10 \mathrm{~mm} & P_{1}=120 \mathrm{kN} & P_{2}=100 \mathrm{kN} & \\
A_{B C}=\frac{\pi}{4}\left[d_{B C}{ }^{2}-\left(d_{B C}-2 t_{B C}\right)^{2}\right]=1885 \mathrm{~mm}^{2} &
\end{array}
$$

Axial strain of $B C: \quad \varepsilon_{B C}=\frac{-\left(P_{1}+P_{2}\right)}{E A_{B C}}=-1.061 \times 10^{-3}$

Axial stress in $B C: \quad \sigma_{B C}=E \varepsilon_{B C}=-116.7 \mathrm{MPa}$
(well below yield stress of 550 MPa so Hooke's Law applies)

Lateral strain of $B C: \quad \Delta t_{B C}=0.0036 \mathrm{~mm}$

$$
\varepsilon_{L}=\frac{\Delta t_{B C}}{t_{B C}}=3.600 \times 10^{-4}
$$

Poisson's ratio: $\quad v=\frac{-\varepsilon_{L}}{\varepsilon_{B C}}=0.34 \ll$ confirms value for brass given in properties table

