2-1 The center portion of the rubber balloon has a diameter of $d=100 \mathrm{~mm}$. If the air pressure within it causes the balloon's diameter to become $d=125 \mathrm{~mm}$, determine the average normal strain in the rubber.

Given:

$$
\mathrm{d}_{0}:=100 \mathrm{~mm}
$$

$$
\mathrm{d}:=125 \mathrm{~mm}
$$

Solution:

$$
\varepsilon:=\frac{\pi \mathrm{d}-\pi \mathrm{d}_{0}}{\pi \mathrm{~d}_{0}}
$$

$$
\varepsilon=0.2500 \frac{\mathrm{~mm}}{\mathrm{~mm}}
$$

Ans

Ans:

$\epsilon_{C E}=0.00250 \mathrm{~mm} / \mathrm{mm}, \epsilon_{B D}=0.00107 \mathrm{~mm} / \mathrm{mm}$

2-2. A thin strip of rubber has an unstretched length of 375 mm . If it is stretched around a pipe having an outer diameter of 125 mm , determine the average normal strain in the strip.
$L_{0}=375 \mathrm{~mm}$
$L=\pi(125 \mathrm{~mm})$
$\varepsilon=\frac{L-L_{0}}{L_{0}}=\frac{125 \pi-375}{375}=0.0472 \mathrm{~mm} / \mathrm{mm}$
Ans.

Ans:
$\epsilon=0.0472 \mathrm{~mm} / \mathrm{mm}$

2-3. The rigid beam is supported by a pin at A and wires $B D$ and $C E$. If the load \mathbf{P} on the beam causes the end C to be displaced 10 mm downward, determine the normal strain developed in wires $C E$ and $B D$.
$\frac{\Delta L_{B D}}{3}=\frac{\Delta L_{C E}}{7}$
$\Delta L_{B D}=\frac{3(10)}{7}=4.286 \mathrm{~mm}$
$\epsilon_{C E}=\frac{\Delta L_{C E}}{L}=\frac{10}{4000}=0.00250 \mathrm{~mm} / \mathrm{mm}$
$\epsilon_{B D}=\frac{\Delta L_{B D}}{L}=\frac{4.286}{4000}=0.00107 \mathrm{~mm} / \mathrm{mm}$

Ans.

Ans.

Ans:
$\epsilon_{C E}=0.00250 \mathrm{~mm} / \mathrm{mm}, \epsilon_{B D}=0.00107 \mathrm{~mm} / \mathrm{mm}$
*2-4. The force applied at the handle of the rigid lever causes the lever to rotate clockwise about the pin B through an angle of 2°. Determine the average normal strain developed in each wire. The wires are unstretched when the lever is in the horizontal position.

Geometry: The lever arm rotates through an angle of $\theta=\left(\frac{2^{\circ}}{180}\right) \pi \mathrm{rad}=0.03491 \mathrm{rad}$.
Since θ is small, the displacements of points A, C, and D can be approximated by

$$
\begin{aligned}
& \delta_{A}=200(0.03491)=6.9813 \mathrm{~mm} \\
& \delta_{C}=300(0.03491)=10.4720 \mathrm{~mm} \\
& \delta_{D}=500(0.03491)=17.4533 \mathrm{~mm}
\end{aligned}
$$

Average Normal Strain: The unstretched length of wires $A H, C G$, and $D F$ are $L_{A H}=200 \mathrm{~mm}, L_{C G}=300 \mathrm{~mm}$, and $L_{D F}=300 \mathrm{~mm}$. We obtain

$$
\begin{aligned}
& \left(\epsilon_{\mathrm{avg}}\right)_{A H}=\frac{\delta_{A}}{L_{A H}}=\frac{6.9813}{200}=0.0349 \mathrm{~mm} / \mathrm{mm} \\
& \left(\epsilon_{\mathrm{avg}}\right)_{C G}=\frac{\delta_{C}}{L_{C G}}=\frac{10.4720}{300}=0.0349 \mathrm{~mm} / \mathrm{mm} \\
& \left(\epsilon_{\mathrm{avg}}\right)_{D F}=\frac{\delta_{D}}{L_{D F}}=\frac{17.4533}{300}=0.0582 \mathrm{~mm} / \mathrm{mm}
\end{aligned}
$$

Ans.

Ans.

Ans.

(a)

2-5. The two wires are connected together at A. If the force \mathbf{P} causes point A to be displaced horizontally 2 mm , determine the normal strain developed in each wire.
$L_{A C}^{\prime}=\sqrt{300^{2}+2^{2}-2(300)(2) \cos 150^{\circ}}=301.734 \mathrm{~mm}$
$\epsilon_{A C}=\epsilon_{A B}=\frac{L_{A C}^{\prime}-L_{A C}}{L_{A C}}=\frac{301.734-300}{300}=0.00578 \mathrm{~mm} / \mathrm{mm}$
Ans.

Ans:
$\epsilon_{A C}=\epsilon_{A B}=0.00578 \mathrm{~mm} / \mathrm{mm}$

2-6. The rubber band of unstretched length $2 r_{0}$ is forced down the frustum of the cone. Determine the average normal strain in the band as a function of z.

Geometry: Using similar triangles shown in Fig. a,

$$
\frac{h^{\prime}}{r_{0}}=\frac{h^{\prime}+h}{2 r_{0}} ; \quad h^{\prime}=h
$$

Subsequently, using the result of h^{\prime}

$$
\frac{r}{z+h}=\frac{r_{0}}{h} ; \quad r=\frac{r_{0}}{h}(z+h)
$$

Average Normal Strain: The length of the rubber band as a function of z is $L=2 \pi r=\frac{2 \pi r_{0}}{h}(z+h)$. With $L_{0}=2 r_{0}$, we have

$$
\epsilon_{\text {avg }}=\frac{L-L_{0}}{L_{0}}=\frac{\frac{2 \pi r_{0}}{h}(z+h)-2 r_{0}}{2 r_{0}}=\frac{\pi}{h}(z+h)-1
$$

Ans.

Ans:
$\epsilon_{\text {avg }}=\frac{\pi}{h}(z+h)-1$

2-7. The pin-connected rigid rods $A B$ and $B C$ are inclined at $\theta=30^{\circ}$ when they are unloaded. When the force \mathbf{P} is applied θ becomes 30.2°. Determine the average normal strain developed in wire $A C$.

Geometry: Referring to Fig. a, the unstretched and stretched lengths of wire $A D$ are

$$
\begin{aligned}
& L_{A C}=2\left(600 \sin 30^{\circ}\right)=600 \mathrm{~mm} \\
& L_{A C^{\prime}}=2\left(600 \sin 30.2^{\circ}\right)=603.6239 \mathrm{~mm}
\end{aligned}
$$

Average Normal Strain:

$$
\left(\epsilon_{\text {avg }}\right)_{A C}=\frac{L_{A C^{\prime}}-L_{A C}}{L_{A C}}=\frac{603.6239-600}{600}=6.04\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm} \quad \text { Ans. }
$$

(a)

Ans:

$\left(\epsilon_{\text {avg }}\right)_{A C}=6.04\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm}$
*2-8. Part of a control linkage for an airplane consists of a rigid member $C B D$ and a flexible cable $A B$. If a force is applied to the end D of the member and causes it to rotate by $\theta=0.3^{\circ}$, determine the normal strain in the cable. Originally the cable is unstretched.

$$
\begin{aligned}
A B & =\sqrt{400^{2}+300^{2}}=500 \mathrm{~mm} \\
A B^{\prime} & =\sqrt{400^{2}+300^{2}-2(400)(300) \cos 90.3^{\circ}} \\
& =501.255 \mathrm{~mm} \\
\epsilon_{A B} & =\frac{A B^{\prime}-A B}{A B}=\frac{501.255-500}{500} \\
& =0.00251 \mathrm{~mm} / \mathrm{mm}
\end{aligned}
$$

Ans.

2-9. Part of a control linkage for an airplane consists of a rigid member $C B D$ and a flexible cable $A B$. If a force is applied to the end D of the member and causes a normal strain in the cable of $0.0035 \mathrm{~mm} / \mathrm{mm}$, determine the displacement of point D. Originally the cable is unstretched.
$A B=\sqrt{300^{2}+400^{2}}=500 \mathrm{~mm}$
$A B^{\prime}=A B+\varepsilon_{A B} A B$
$=500+0.0035(500)=501.75 \mathrm{~mm}$
$501.75^{2}=300^{2}+400^{2}-2(300)(400) \cos \alpha$
$\alpha=90.4185^{\circ}$
$\theta=90.4185^{\circ}-90^{\circ}=0.4185^{\circ}=\frac{\pi}{180^{\circ}}(0.4185) \mathrm{rad}$
$\Delta_{D}=600(\theta)=600\left(\frac{\pi}{180^{\circ}}\right)(0.4185)=4.38 \mathrm{~mm}$

Ans.

Ans:

$\Delta_{D}=4.38 \mathrm{~mm}$

2-10. The corners of the square plate are given the displacements indicated. Determine the shear strain along the edges of the plate at A and B.

At A :

$$
\begin{aligned}
& \frac{\theta^{\prime}}{2}=\tan ^{-1}\left(\frac{9.7}{10.2}\right)=43.561^{\circ} \\
& \theta^{\prime}=1.52056 \mathrm{rad} \\
& \left(\gamma_{A}\right)_{n t}=\frac{\pi}{2}-1.52056 \\
& \quad=0.0502 \mathrm{rad}
\end{aligned}
$$

At B :

$$
\begin{aligned}
& \frac{\phi^{\prime}}{2}=\tan ^{-1}\left(\frac{10.2}{9.7}\right)=46.439^{\circ} \\
& \phi^{\prime}=1.62104 \mathrm{rad} \\
& \left(\gamma_{B}\right)_{n t}=\frac{\pi}{2}-1.62104 \\
& \quad=-0.0502 \mathrm{rad}
\end{aligned}
$$

Ans.

Ans.

Ans:
$\left(\gamma_{A}\right)_{n t}=0.0502 \mathrm{rad},\left(\gamma_{B}\right)_{n t}=-0.0502 \mathrm{rad}$

2-11. The corners B and D of the square plate are given the displacements indicated. Determine the average normal strains along side $A B$ and diagonal $D B$.

Referring to Fig. a,
$L_{A B}=\sqrt{16^{2}+16^{2}}=\sqrt{512} \mathrm{~mm}$
$L_{A B^{\prime}}=\sqrt{16^{2}+13^{2}}=\sqrt{425} \mathrm{~mm}$
$L_{B D}=16+16=32 \mathrm{~mm}$
$L_{B^{\prime} D^{\prime}}=13+13=26 \mathrm{~mm}$
Thus,
$\left(\varepsilon_{\text {avg }}\right)_{A B}=\frac{L_{A B^{\prime}}-L_{A B}}{L_{A B}}=\frac{\sqrt{425}-\sqrt{512}}{\sqrt{512}}=-0.0889 \mathrm{~mm} / \mathrm{mm}$
$\left(\varepsilon_{\mathrm{avg}}\right)_{B D}=\frac{L_{B^{\prime} D^{\prime}}-L_{B D}}{L_{B D}}=\frac{26-32}{32}=-0.1875 \mathrm{~mm} / \mathrm{mm}$
Ans.

Ans.
(a)

Ans:
$\epsilon_{D B}=\epsilon_{A B} \cos ^{2} \theta+\epsilon_{C B} \sin ^{2} \theta$

2-14. The force \mathbf{P} applied at joint D of the square frame causes the frame to sway and form the dashed rhombus. Determine the average normal strain developed in wire $A C$. Assume the three rods are rigid.

Geometry: Referring to Fig. a, the stretched length of $L_{A C^{\prime}}$ of wire $A C^{\prime}$ can be determined using the cosine law.

$$
L_{A C^{\prime}}=\sqrt{400^{2}+400^{2}-2(400)(400) \cos 93^{\circ}}=580.30 \mathrm{~mm}
$$

The unstretched length of wire $A C$ is

$$
L_{A C}=\sqrt{400^{2}+400^{2}}=565.69 \mathrm{~mm}
$$

Average Normal Strain:

$$
\left(\epsilon_{\text {avg }}\right)_{A C}=\frac{L_{A C^{\prime}}-L_{A C}}{L_{A C}}=\frac{580.30-565.69}{565.69}=0.0258 \mathrm{~mm} / \mathrm{mm} \quad \text { Ans. }
$$

(a)

2-15. The force \mathbf{P} applied at joint D of the square frame causes the frame to sway and form the dashed rhombus. Determine the average normal strain developed in wire $A E$. Assume the three rods are rigid.

Geometry: Referring to Fig. a, the stretched length of $L_{A E^{\prime}}$ of wire $A E$ can be determined using the cosine law.

$$
L_{A E^{\prime}}=\sqrt{400^{2}+200^{2}-2(400)(200) \cos 93^{\circ}}=456.48 \mathrm{~mm}
$$

The unstretched length of wire $A E$ is

$$
L_{A E}=\sqrt{400^{2}+200^{2}}=447.21 \mathrm{~mm}
$$

Average Normal Strain:

$$
\left(\epsilon_{\text {avg }}\right)_{A E}=\frac{L_{A E^{\prime}}-L_{A E}}{L_{A E}}=\frac{456.48-447.21}{447.21}=0.0207 \mathrm{~mm} / \mathrm{mm} \quad \text { Ans. }
$$

(a)

*2-16. The triangular plate $A B C$ is deformed into the shape shown by the dashed lines. If at $A, \varepsilon_{A B}=0.0075$, $\epsilon_{A C}=0.01$ and $\gamma_{x y}=0.005 \mathrm{rad}$, determine the average normal strain along edge $B C$.

Average Normal Strain: The stretched length of sides $A B$ and $A C$ are

$$
\begin{aligned}
& L_{A C^{\prime}}=\left(1+\varepsilon_{y}\right) L_{A C}=(1+0.01)(300)=303 \mathrm{~mm} \\
& L_{A B^{\prime}}=\left(1+\varepsilon_{x}\right) L_{A B}=(1+0.0075)(400)=403 \mathrm{~mm}
\end{aligned}
$$

Also,

$$
\theta=\frac{\pi}{2}-0.005=1.5658 \mathrm{rad}\left(\frac{180^{\circ}}{\pi \mathrm{rad}}\right)=89.7135^{\circ}
$$

The unstretched length of edge $B C$ is

$$
L_{B C}=\sqrt{300^{2}+400^{2}}=500 \mathrm{~mm}
$$

and the stretched length of this edge is

$$
\begin{aligned}
L_{B^{\prime} C^{\prime}} & =\sqrt{303^{2}+403^{2}-2(303)(403) \cos 89.7135^{\circ}} \\
& =502.9880 \mathrm{~mm}
\end{aligned}
$$

We obtain,

$$
\epsilon_{B C}=\frac{L_{B^{\prime} C^{\prime}}-L_{B C}}{L_{B C}}=\frac{502.9880-500}{500}=5.98\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm}
$$

Ans.

(a)

2-17. The plate is deformed uniformly into the shape shown by the dashed lines. If at $A, \gamma_{x y}=0.0075 \mathrm{rad}$., while $\epsilon_{A B}=\epsilon_{A F}=0$, determine the average shear strain at point G with respect to the x^{\prime} and y^{\prime} axes.

Geometry: Here, $\gamma_{x y}=0.0075 \mathrm{rad}\left(\frac{180^{\circ}}{\pi \mathrm{rad}}\right)=0.4297^{\circ}$. Thus,

$$
\psi=90^{\circ}-0.4297^{\circ}=89.5703^{\circ} \quad \beta=90^{\circ}+0.4297^{\circ}=90.4297^{\circ}
$$

Subsequently, applying the cosine law to triangles $A G F^{\prime}$ and $G B C^{\prime}$, Fig. a,

$$
\begin{aligned}
& L_{G F^{\prime}}=\sqrt{600^{2}+300^{2}-2(600)(300) \cos 89.5703^{\circ}}=668.8049 \mathrm{~mm} \\
& L_{G C^{\prime}}=\sqrt{600^{2}+300^{2}-2(600)(300) \cos 90.4297^{\circ}}=672.8298 \mathrm{~mm}
\end{aligned}
$$

Then, applying the sine law to the same triangles,

$$
\begin{array}{ll}
\frac{\sin \phi}{600}=\frac{\sin 89.5703^{\circ}}{668.8049} ; & \phi=63.7791^{\circ} \\
\frac{\sin \alpha}{300}=\frac{\sin 90.4297^{\circ}}{672.8298} ; & \alpha=26.4787^{\circ}
\end{array}
$$

Thus,

$$
\begin{aligned}
\theta & =180^{\circ}-\phi-\alpha=180^{\circ}-63.7791^{\circ}-26.4787^{\circ} \\
& =89.7422^{\circ}\left(\frac{\pi \mathrm{rad}}{180^{\circ}}\right)=1.5663 \mathrm{rad}
\end{aligned}
$$

Shear Strain:

$$
\left(\gamma_{G}\right)_{x^{\prime} y^{\prime}}=\frac{\pi}{2}-\theta=\frac{\pi}{2}-1.5663=4.50\left(10^{-3}\right) \mathrm{rad}
$$

Ans.

(a)

Ans:

$\left(\gamma_{G}\right)_{x^{\prime} y^{\prime}}=4.50\left(10^{-3}\right) \mathrm{rad}$

2-18. The piece of plastic is originally rectangular. Determine the shear strain $\gamma_{x y}$ at corners A and B if the plastic distorts as shown by the dashed lines.

Geometry: For small angles,
$\alpha=\psi=\frac{2}{302}=0.00662252 \mathrm{rad}$
$\beta=\theta=\frac{2}{403}=0.00496278 \mathrm{rad}$

Shear Strain:

$$
\begin{aligned}
\left(\gamma_{B}\right)_{x y} & =\alpha+\beta \\
& =0.0116 \mathrm{rad}=11.6\left(10^{-3}\right) \mathrm{rad} \\
\left(\gamma_{A}\right)_{x y} & =\theta+\psi \\
& =0.0116 \mathrm{rad}=11.6\left(10^{-3}\right) \mathrm{rad}
\end{aligned}
$$

Ans.

Ans:

$\left(\gamma_{B}\right)_{x y}=11.6\left(10^{-3}\right) \mathrm{rad}$,
$\left(\gamma_{A}\right)_{x y}=11.6\left(10^{-3}\right) \mathrm{rad}$

2-19. The piece of plastic is originally rectangular. Determine the shear strain $\gamma_{x y}$ at corners D and C if the plastic distorts as shown by the dashed lines.

Geometry: For small angles,
$\alpha=\psi=\frac{2}{403}=0.00496278 \mathrm{rad}$
$\beta=\theta=\frac{2}{302}=0.00662252 \mathrm{rad}$

Shear Strain:

$$
\begin{aligned}
\left(\gamma_{C}\right)_{x y} & =\alpha+\beta \\
& =0.0116 \mathrm{rad}=11.6\left(10^{-3}\right) \mathrm{rad} \\
\left(\gamma_{D}\right)_{x y} & =\theta+\psi \\
& =0.0116 \mathrm{rad}=11.6\left(10^{-3}\right) \mathrm{rad}
\end{aligned}
$$

Ans.

Ans:
$\left(\gamma_{C}\right)_{x y}=11.6\left(10^{-3}\right) \mathrm{rad}$, $\left(\gamma_{D}\right)_{x y}=11.6\left(10^{-3}\right) \mathrm{rad}$
*2-20. The piece of plastic is originally rectangular. Determine the average normal strain that occurs along the diagonals $A C$ and $D B$.

Geometry:

$A C=D B=\sqrt{400^{2}+300^{2}}=500 \mathrm{~mm}$
$D B^{\prime}=\sqrt{405^{2}+304^{2}}=506.4 \mathrm{~mm}$
$A^{\prime} C^{\prime}=\sqrt{401^{2}+300^{2}}=500.8 \mathrm{~mm}$

Average Normal Strain:

$\epsilon_{A C}=\frac{A^{\prime} C^{\prime}-A C}{A C}=\frac{500.8-500}{500}$

$$
=0.00160 \mathrm{~mm} / \mathrm{mm}=1.60\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm}
$$

$\epsilon_{D B}=\frac{D B^{\prime}-D B}{D B}=\frac{506.4-500}{500}$
$=0.0128 \mathrm{~mm} / \mathrm{mm}=12.8\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm}$

Ans.

Ans.

2-21. The rectangular plate is deformed into the shape of a parallelogram shown by the dashed lines. Determine the average shear strain $\gamma_{x y}$ at corners A and B.

Geometry: Referring to Fig. a and using small angle analysis,

$$
\begin{aligned}
& \theta=\frac{5}{300}=0.01667 \mathrm{rad} \\
& \phi=\frac{5}{400}=0.0125 \mathrm{rad}
\end{aligned}
$$

Shear Strain: Referring to Fig. a,

$$
\begin{aligned}
& \left(\gamma_{A}\right)_{x y}=\theta+\phi=0.01667+0.0125=0.0292 \mathrm{rad} \\
& \left(\gamma_{B}\right)_{x y}=\theta+\phi=0.01667+0.0125=0.0292 \mathrm{rad}
\end{aligned}
$$

(a)

Ans.
Ans.

Ans:

$\left(\gamma_{A}\right)_{x y}=0.0292 \mathrm{rad},\left(\gamma_{B}\right)_{x y}=0.0292 \mathrm{rad}$

2-22. The triangular plate is fixed at its base, and its apex A is given a horizontal displacement of 5 mm . Determine the shear strain, $\gamma_{x y}$, at A.

$$
L=\sqrt{800^{2}+5^{2}-2(800)(5) \cos 135^{\circ}}=803.54 \mathrm{~mm}
$$

$$
\frac{\sin 135^{\circ}}{803.54}=\frac{\sin \theta}{800} ; \quad \theta=44.75^{\circ}=0.7810 \mathrm{rad}
$$

$$
\gamma_{x y}=\frac{\pi}{2}-2 \theta=\frac{\pi}{2}-2(0.7810)
$$

$$
=0.00880 \mathrm{rad}
$$

Ans.

Ans:
$\gamma_{x y}=0.00880 \mathrm{rad}$

2-23. The triangular plate is fixed at its base, and its apex A is given a horizontal displacement of 5 mm . Determine the average normal strain ϵ_{x} along the x axis.

Ans.

Ans:

$\epsilon_{x}=0.00443 \mathrm{~mm} / \mathrm{mm}$
*2-24. The triangular plate is fixed at its base, and its apex A is given a horizontal displacement of 5 mm . Determine the average normal strain $\epsilon_{x^{\prime}}$ along the x^{\prime} axis.
$L=800 \cos 45^{\circ}=565.69 \mathrm{~mm}$
$\epsilon_{x^{\prime}}=\frac{5}{565.69}=0.00884 \mathrm{~mm} / \mathrm{mm}$

Ans.

2-25. The square rubber block is subjected to a shear strain of $\gamma_{x y}=40\left(10^{-6}\right) x+20\left(10^{-6}\right) y$, where x and y are in mm . This deformation is in the shape shown by the dashed lines, where all the lines parallel to the y axis remain vertical after the deformation. Determine the normal strain along edge $B C$.

Shear Strain: Along edge $D C, y=400 \mathrm{~mm}$. Thus, $\left(\gamma_{x y}\right)_{D C}=40\left(10^{-6}\right) x+0.008$. Here, $\frac{d y}{d x}=\tan \left(\gamma_{x y}\right)_{D C}=\tan \left[40\left(10^{-6}\right) x+0.008\right]$. Then,

$$
\begin{aligned}
& \int_{0}^{\delta_{c}} d y=\int_{0}^{300 \mathrm{~mm}} \tan \left[40\left(10^{-6}\right) x+0.008\right] d x \\
& \delta_{c}=-\left.\frac{1}{40\left(10^{-6}\right)}\left\{\ln \cos \left[40\left(10^{-6}\right) x+0.008\right]\right\}\right|_{0} ^{300 \mathrm{~mm}} \\
& \quad=4.2003 \mathrm{~mm}
\end{aligned}
$$

Along edge $A B, y=0$. Thus, $\left(\gamma_{x y}\right)_{A B}=40\left(10^{-6}\right) x$. Here, $\frac{d y}{d x}=\tan \left(\gamma_{x y}\right)_{A B}=$ $\tan \left[40\left(10^{-6}\right) x\right]$. Then,

$$
\begin{aligned}
& \int_{0}^{\delta_{B}} d y=\int_{0}^{300 \mathrm{~mm}} \tan \left[40\left(10^{-6}\right) x\right] d x \\
& \delta_{B}=-\left.\frac{1}{40\left(10^{-6}\right)}\left\{\ln \cos \left[40\left(10^{-6}\right) x\right]\right\}\right|_{0} ^{300 \mathrm{~mm}} \\
& \quad=1.8000 \mathrm{~mm}
\end{aligned}
$$

Average Normal Strain: The stretched length of edge $B C$ is

$$
L_{B^{\prime} C^{\prime}}=400+4.2003-1.8000=402.4003 \mathrm{~mm}
$$

We obtain,

$$
\left(\epsilon_{\mathrm{avg}}\right)_{B C}=\frac{L_{B^{\prime} C^{\prime}}-L_{B C}}{L_{B C}}=\frac{402.4003-400}{400}=6.00\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm}
$$

Ans.

(a)

Ans:

$\left(\epsilon_{\text {avg }}\right)_{B C}=6.00\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm}$

2-26. The Polysulfone block is glued at its top and bottom to the rigid plates. If a tangential force, applied to the top plate, causes the material to deform so that its sides are described by the equation $y=3.56 x^{1 / 4}$, determine the shear strain in the material at its corners Λ and B.

Prob. 2-33
:

$$
\begin{aligned}
y & =3.56 x^{1 / 4} \\
\frac{d y}{d x} & =0.890 x^{-3 / 4} \\
\frac{d x}{d y} & =1.123 x^{3 / 4}
\end{aligned}
$$

At $A, x=0$

$$
\gamma_{A}=\frac{d x}{d y}=0 \quad \text { Ans }
$$

At B,

$$
\begin{gathered}
2=3.56 x^{1 / 4} \\
x=0.0996 \mathrm{~mm} \\
\gamma_{B}=\frac{d x}{d y}=1.123(0.0996)^{3 / 4}=0.199 \mathrm{rad}
\end{gathered}
$$

Ans

Ans:
$\left(\epsilon_{\text {avg }}\right)_{C A}=-5.59\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm}$

2-27. The square plate $A B C D$ is deformed into the shape shown by the dashed lines. If $D C$ has a normal strain $\epsilon_{x}=0.004, D A$ has a normal strain $\epsilon_{y}=0.005$ and at D, $\gamma_{x y}=0.02 \mathrm{rad}$, determine the shear strain at point E with respect to the x^{\prime} and y^{\prime} axes.

Average Normal Strain: The stretched length of sides $D C$ and $B C$ are

$$
\begin{aligned}
& L_{D C^{\prime}}=\left(1+\epsilon_{x}\right) L_{D C}=(1+0.004)(600)=602.4 \mathrm{~mm} \\
& L_{B^{\prime} C^{\prime}}=\left(1+\epsilon_{y}\right) L_{B C}=(1+0.005)(600)=603 \mathrm{~mm}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \alpha=\frac{\pi}{2}-0.02=1.5508 \mathrm{rad}\left(\frac{180^{\circ}}{\pi \mathrm{rad}}\right)=88.854^{\circ} \\
& \phi=\frac{\pi}{2}+0.02=1.5908 \mathrm{rad}\left(\frac{180^{\circ}}{\pi \mathrm{rad}}\right)=91.146^{\circ}
\end{aligned}
$$

Thus, the length of $C^{\prime} A^{\prime}$ and $D B^{\prime}$ can be determined using the cosine law with reference to Fig. a.

$$
\begin{aligned}
& L_{C^{\prime} A^{\prime}}=\sqrt{602.4^{2}+603^{2}-2(602.4)(603) \cos 88.854^{\circ}}=843.7807 \mathrm{~mm} \\
& L_{D B^{\prime}}=\sqrt{602.4^{2}+603^{2}-2(602.4)(603) \cos 91.146^{\circ}}=860.8273 \mathrm{~mm}
\end{aligned}
$$

Thus,

$$
L_{E^{\prime} A^{\prime}}=\frac{L_{C^{\prime} A^{\prime}}}{2}=421.8903 \mathrm{~mm} \quad L_{E^{\prime} B^{\prime}}=\frac{L_{D B^{\prime}}}{2}=430.4137 \mathrm{~mm}
$$

Using this result and applying the cosine law to the triangle $A^{\prime} E^{\prime} B^{\prime}$, Fig. a,

$$
\begin{aligned}
& 602.4^{2}=421.8903^{2}+430.4137^{2}-2(421.8903)(430.4137) \cos \theta \\
& \theta=89.9429^{\circ}\left(\frac{\pi \mathrm{rad}}{180^{\circ}}\right)=1.5698 \mathrm{rad}
\end{aligned}
$$

Shear Strain:

$$
\left(\gamma_{E}\right)_{x^{\prime} y^{\prime}}=\frac{\pi}{2}-\theta=\frac{\pi}{2}-1.5698=0.996\left(10^{-3}\right) \mathrm{rad}
$$

Ans.

Ans:

$\left(\gamma_{E}\right)_{x^{\prime} y^{\prime}}=0.996\left(10^{-3}\right) \mathrm{rad}$
*2-28. The wire is subjected to a normal strain that is defined by $\epsilon=(x / L) e^{-(x / L)^{2}}$. If the wire has an initial length L, determine the increase in its length.

$$
\begin{aligned}
\Delta L & =\frac{1}{L} \int_{0}^{L} x e^{-(x / L)^{2}} d x \\
& =-L\left[\frac{e^{-(x / L)^{2}}}{2}\right]_{0}^{L}=\frac{L}{2}[1-(1 / e)] \\
& =\frac{L}{2 e}[e-1]
\end{aligned}
$$

Ans.

2-29.

Ans:
$\left(\epsilon_{\text {avg }}\right)_{A C}=0.0168 \mathrm{~mm} / \mathrm{mm}$, $\left(\gamma_{A}\right)_{x y}=0.0116 \mathrm{rad}$

2-30. The rectangular plate is deformed into the shape shown by the dashed lines. Determine the average normal strain along diagonal $B D$, and the average shear strain at corner B.

Geometry: The unstretched length of diagonal $B D$ is

$$
L_{B D}=\sqrt{300^{2}+400^{2}}=500 \mathrm{~mm}
$$

Referring to Fig. a, the stretched length of diagonal $B D$ is

$$
L_{B^{\prime} D^{\prime}}=\sqrt{(300+2-2)^{2}+(400+3-2)^{2}}=500.8004 \mathrm{~mm}
$$

Referring to Fig. a and using small angle analysis,

$$
\begin{aligned}
& \phi=\frac{2}{403}=0.004963 \mathrm{rad} \\
& \alpha=\frac{3}{300+6-2}=0.009868 \mathrm{rad}
\end{aligned}
$$

Average Normal Strain: Applying Eq. 2,

$$
\left(\epsilon_{\text {avg }}\right)_{B D}=\frac{L_{B^{\prime} D^{\prime}}-L_{B D}}{L_{B D}}=\frac{500.8004-500}{500}=1.60\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm} \text { Ans. }
$$

Shear Strain: Referring to Fig. a,

$$
\left(\gamma_{B}\right)_{x y}=\phi+\alpha=0.004963+0.009868=0.0148 \mathrm{rad}
$$

(a)

2-31. The nonuniform loading causes a normal strain in the shaft that can be expressed as $\epsilon_{x}=k x^{2}$, where k is a constant. Determine the displacement of the end B. Also, what is the average normal strain in the rod?
$\frac{d(\Delta x)}{d x}=\epsilon_{x}=k x^{2}$
$(\Delta x)_{B}=\int_{0}^{L} k x^{2}=\frac{k L^{3}}{3}$
$\left(\epsilon_{x}\right)_{\text {avg }}=\frac{(\Delta x)_{B}}{L}=\frac{\frac{k L^{3}}{3}}{L}=\frac{k L^{2}}{3}$

Ans.

Ans.

Ans:
$(\Delta x)_{B}=\frac{k L^{3}}{3},\left(\epsilon_{x}\right)_{\mathrm{avg}}=\frac{k L^{2}}{3}$
*2-32 The rubber block is fixed along edge $A B$, and edge $C D$ is moved so that the vertical displacement of any point in the block is given by $v(x)=\left(v_{0} / b^{3}\right) x^{3}$. Determine the shear strain $\gamma_{x y}$ at points $(b / 2, a / 2)$ and (b, a).

Shear Strain: From Fig. a,

$$
\begin{aligned}
& \frac{d v}{d x}=\tan \gamma_{x y} \\
& \frac{3 v_{0}}{b^{3}} x^{2}=\tan \gamma_{x y} \\
& \gamma_{x y}=\tan ^{-1}\left(\frac{3 v_{0}}{b^{3}} x^{2}\right)
\end{aligned}
$$

Thus, at point $(b / 2, a / 2)$,

$$
\begin{aligned}
\gamma_{x y} & =\tan ^{-1}\left[\frac{3 v_{0}}{b^{3}}\left(\frac{b}{2}\right)^{2}\right] \\
& =\tan ^{-1}\left[\frac{3}{4}\left(\frac{v_{0}}{b}\right)\right]
\end{aligned}
$$

and at point (b, a),

$$
\begin{aligned}
\gamma_{x y} & =\tan ^{-1}\left[\frac{3 v_{0}}{b^{3}}\left(b^{2}\right)\right] \\
& =\tan ^{-1}\left[3\left(\frac{v_{0}}{b}\right)\right]
\end{aligned}
$$

(a)

Ans.

2-33. The fiber $A B$ has a length L and orientation θ. If its ends A and B undergo very small displacements u_{A} and v_{B}, respectively, determine the normal strain in the fiber when it is in position $A^{\prime} B^{\prime}$.

Geometry:

$$
\begin{aligned}
L_{A^{\prime} B^{\prime}}= & \sqrt{\left(L \cos \theta-u_{A}\right)^{2}+\left(L \sin \theta+v_{B}\right)^{2}} \\
& =\sqrt{L^{2}+u_{A}^{2}+v_{B}^{2}+2 L\left(v_{B} \sin \theta-u_{A} \cos \theta\right)}
\end{aligned}
$$

Average Normal Strain:

$\epsilon_{A B}=\frac{L_{A^{\prime} B^{\prime}}-L}{L}$

$$
=\sqrt{1+\frac{u_{A}^{2}+v_{B}^{2}}{L^{2}}+\frac{2\left(v_{B} \sin \theta-u_{A} \cos \theta\right)}{L}}-1
$$

Neglecting higher terms u_{A}^{2} and v_{B}^{2}
$\epsilon_{A B}=\left[1+\frac{2\left(v_{B} \sin \theta-u_{A} \cos \theta\right)}{L}\right]^{\frac{1}{2}}-1$
Using the binomial theorem:
$\epsilon_{A B}=1+\frac{1}{2}\left(\frac{2 v_{B} \sin \theta}{L}-\frac{2 u_{A} \cos \theta}{L}\right)+\ldots-1$
$=\frac{v_{B} \sin \theta}{L}-\frac{u_{A} \cos \theta}{L}$

Ans.

Ans.
$\epsilon_{A B}=\frac{v_{B} \sin \theta}{L}-\frac{u_{A} \cos \theta}{L}$

2-34. If the normal strain is defined in reference to the final length, that is,

$$
\epsilon_{n}^{\prime}=\lim _{p \rightarrow p^{\prime}}\left(\frac{\Delta s^{\prime}-\Delta s}{\Delta s^{\prime}}\right)
$$

instead of in reference to the original length, Eq. 2-2, show that the difference in these strains is represented as a second-order term, namely, $\epsilon_{n}-\epsilon_{n}^{\prime}=\epsilon_{n} \epsilon_{n}^{\prime}$.

$$
\epsilon_{B}=\frac{\Delta S^{\prime}-\Delta S}{\Delta S}
$$

$$
\epsilon_{B}-\epsilon_{A}^{\prime}=\frac{\Delta S^{\prime}-\Delta S}{\Delta S}-\frac{\Delta S^{\prime}-\Delta S}{\Delta S^{\prime}}
$$

$$
=\frac{\Delta S^{\prime 2}-\Delta S \Delta S^{\prime}-\Delta S^{\prime} \Delta S+\Delta S^{2}}{\Delta S \Delta S^{\prime}}
$$

$$
=\frac{\Delta S^{\prime 2}+\Delta S^{2}-2 \Delta S^{\prime} \Delta S}{\Delta S \Delta S^{\prime}}
$$

$$
=\frac{\left(\Delta S^{\prime}-\Delta S\right)^{2}}{\Delta S \Delta S^{\prime}}=\left(\frac{\Delta S^{\prime}-\Delta S}{\Delta S}\right)\left(\frac{\Delta S^{\prime}-\Delta S}{\Delta S^{\prime}}\right)
$$

$$
=\epsilon_{A} \epsilon_{B}^{\prime} \text { (Q.E.D) }
$$

