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Signals and Systems

SIGNALS AND THEIR PROPERTIES
Solution 2.1

@ ds(z,y)=> 0 > dx—my—mn)=> " 6x—m) > _ (y—n), thereforeitisa
separable signal.

(b) &;(x,y) is separable if sin(26) = 0. In this case, either sind = 0 or cosd = 0, §;(x,y) is a product of a
constant function in one axis and a 1-D delta function in another. But in general, ¢;(x, y) is not separable.

(©) e(x,y) = exp[j2m(upz+voy)| = exp(j2mupx)-exp(j2mvoy) = e1p(x;ug)-e1p(y; vo), where e1p (t; w) =
exp(j2mwt). Therefore, e(z,y) is a separable signal.

(d) s(z,y) is a separable signal when ugvy = 0. For example, if ug = 0, s(x,y) = sin(27vgy) is the product
of a constant signal in x and a 1-D sinusoidal signal in y. But in general, when both wu( and vy are nonzero,
s(x,y) is not separable.

Solution 2.2
(a) Not periodic. d(z,y) is non-zero only when z = y = 0.

(b) Periodic. By definition

oo o0
comb(z,y) = Z Z 0(x —m,y—n).
For arbitrary integers M and N, we have
comb(z + M,y + N) = Z Z&(x—m—l—M,y—n—FN)

m—=—00 N=—00

> > d—py—q) lletp=m—Mg=n—N]

p=—00g=—00

comb(z,y) .
2
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So the smallest period is 1 in both x and y directions.

(c) Periodic. Let f(x + Ty, y) = f(z,y), we have
sin(27x) cos(4my) = sin(2w(z + T3,)) cos(4dmy) .

Solving the above equation, we have 27T, = 2k for arbitrary integer k. So the smallest period for z is
Tyo = 1. Similarly, we find that the smallest period for y is T, = 1/2.

(d) Periodic. Let f(x + T,,y) = f(z,y), we have
sin(27(z +y)) = sin(2w(x + T, + v)).

So the smallest period for x is T),o = 1 and the smallest period for y is T;p = 1.

(e) Not periodic. We can see this by contradiction. Suppose f(x,y) = sin(27(2? + y?)) is periodic; then there
exists some 7T}, such that f(z + T,,y) = f(x,y), and

sin(2n(2? +y?)) = sin(27((x + Tx)* +9?))
= sin(2r(2® +y* + 22T, + T2)).

In order for the above equation to hold, we must have that 22T}, + T2 = k for some integer k. The solution
for T}, depends on . So f(x,y) = sin(27(2? + y?)) is not periodic.

(f) Periodic. Let fq(m + M,n) = f4(m,n). Then

sin (Em) cos (En) = sin (E(m + M)) cos (In) )
5 5 5 5
Solving for M, we find that M = 10k for any integer k. The smallest period for both m and n is therefore
10.

(g) Not periodic. Following the same strategy as in (f), we let f4(m + M, n) = f4(m,n), and then

an (L) o (20 i (Lo 20 o (L)

The solution for M is M = 10kw. Since fy4(m,n) is a discrete signal, its period must be an integer
if it is to be periodic. There is no integer k£ that solves the equality for M = 10kw for some M. So,
fa(m,n) = sin (:m) cos (£n) is not periodic.

Solution 2.3

(a) We have

BG) = [ [ Sydeay
X ;Y oo
= Xlgnooylgnoo/_x/_y Z Z d(x —m,y —n)dedy

m=—0o0 Nn=—00

CXT+DEY]+1)

lim lim
—o0 Y —o0
o0,
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where | X | is the greatest integer that is smaller than or equal to X. We also have

_ 2
Poo (05) = leloylgnoozlxy/ / 0s (@, y) dvdy

o
m=—0o0 N=—0o0

~ lim lim G DEY 1)

X—=o00Y—o0 4XY
o faXY) X +2ly) | 1
- Xlﬂnooylﬂnoo{ IXY | 4xy iXy
= 1.
(b) We have
Eo(6) = / / |6(z cos + ysin® — 1) dx dy
= / / 0(xcosl + ysinh — 1) dx dy
|sm€|d‘r sinf # 0
Q:) o]
/ |Cosmaly7 cosf # 0

Equality (1) comes from the scaling property of the point impulse. The 1-D version of Eq. (2.8) in the text is

0(ax) = ‘17|§(x) Suppose cos 8 # 0. Then
. 1 sin 0 l
0(xcos 4+ ysinh —1) = m& (x+yc080 - cosﬂ) .
Therefore,
/_OO d(zcosf + ysinf — l)dx = Teosd]"

We also have

— . & —_ 7|2

Po(0;) = XlgnooylgnooleY/ / d(zcosb + ysinb — 1)|“dz dy
= Xlgnooylgnooif / 0(xcost + ysind — l)dx dy .

Without loss of generality, assume 6 = 0 and [ = 0, so that we have sin § = 0 and cos § = 1. Then it follows



that
1 Y
Poold) = in%&zﬁaﬁxfy“@““y
1 Y X
= QQM@QIEF_ {1 “@“}d

= i Ny /
2y

= Jgm Jim oS

(¢) We have

8
E

/ lexp [j27 (v + voy)]|? dz dy

1dx dy

8
8

-
L

And also

X Y
| [ tesplizetuna + vl do dy

Pele = i axy

= lim lim

Xﬁooy%ozlxy/ / Ldwdy
— 1.

(d) We have

oo po0O

sin?[27 (uoz + voy)) de dy

¢ g

8

2

/ 1 — cos 47r(2uox + voy)] dr dy

%dz dy — / / cos[dm (upx + voy)) drdy

—00 J —00

I® |
Q \8\\
’ 8

()

Equality () comes from the trigonometric identity cos(26) = 1 — 2sin?(#). Equality 3) holds because
the first integral goes to infinity. The absolute value of the second integral is bounded, although it does not
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converge as X and Y go to infinity. We also have

Po(s) = Xlgnooylgnoom/ / sin?[27 (uoz + voy)] dz dy

X
) ) 1 — cos[4m(upx + voy)]
A XY / {/ 2 e dy

lim lim . / { sm [47 (ug X + voy)] — sinf[dr(—ugX + on)]] dy

X—o00Y 00 4 8mug

@ . . sin(4mugX) cos(4dmvgy)
B Xlgnoo Ylgnoo 4XY X - 47T’LLO dy
. . 1 2sin(4mupX) sin(4rvgY)
= 1 1 — | 2XY —
Xgnoo anoo 4XY ( (47T)2'LL0’U0
_ 1
= 3

In order to get (), we have used the trigonometric identity sin(a + ) = sin avcos 8 + cos asin 5. The rest
of the steps are straightforward.

Since s(x,y) is a periodic signal with periods Xo = 1/ug and Yy = 1/vg, we have an alternative way to
compute P, by considering only one period in each dimension. Accordingly,

Po(s) = 4X0Y0/ / sin?[27 (upx + voy)| dx dy
2 sin(4mug Xo) sin(4rvgYp)
= 2XoY
4X0Y0 < 0s0 (47)%ugvg
B 1 2sin(4m) sin(4m)
4X0Y) <2XOYO  (4m)2uouo
_ !
= 5

SYSTEMS AND THEIR PROPERTIES
Solution 2.4

Suppose two LSI systems S; and Ss are connected in cascade. For any two input signals f;(z,y), f2(x,y), and
two constants a; and as, we have the following:

So[Silarfi(w,y) +axfo(z,y)]] = SalarSilfi(w,y)] + aSi[fa(z, y)]]
= 1S8[S1[fi(z, )] + axS2[Si[fa(z, y)]] -

So the cascade of two LSI systems is also linear. Now suppose for a given signal f(x,y) we have S1[f(z,y)] =
g(x,y), and Sz[g(x,y)] = h(x,y). By using the shift-invariance of the systems, we can prove that the cascade of
two LSI systems is also shift invariant:

S [Silf(r =&y —n)]] = Salg(x =&y —n)] =h(z - &y —n).



This proves that two LSI systems in cascade is an LSI system
To prove Eq. (2.46) we carry out the following:

9(@,y) = ha(z,y)*[hi(2,y) * f(z,y)]
ha(z,y) * / / hi(€,n)f(x — &y —mn)d§dn

/ / ha(u,v) [/ / hEn)fle—uw—&y—v— )dfdn} du dv
[ [ hetwoens - u- gy - v ddnuds
/ / hi(€,m) [/ / ho(u, ) f (2 — € — uyy — nu)dudv}dgdn

hi(x,y) * [ha(z,y) * f(z,y)]

This proves the second equality in (2.46). By letting « = u + £, and 8 = v + 7, we have

/°° /°° /OO /OO ha(u,v)hi(&,0) f(z —u— &y — v —n)d dndu dv

/ U / ho(a =&, 8 =mnhi(&n) dEdn| f(z — o,y — B)dadp
[ha(z, y)*hz(x v)l * f(z,y),

which proves the second equality in (2.46).

g(x,y)

To prove (2.47) we start with the definition of convolution

o) = [ [ bt~ &y - mds dn
- hl(aj?y) * h2(l‘7y) .
We then make the substitution « = x — ¢ and 8 = y — 1 and manipulate the result
7=_Oo_ooh—7—h7—d—d
sen= | /m 2@~y — B)h(a B)(~da) (~d9)
/ / B)ha(x — a,y — BdadB
/ / Mha(e — €,y — n)de d
ha(x,y) *

hi(z,y),

where the next to last equality follows since o and J are just dummy variables in the integral.
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Solution 2.5
1. Suppose the PSF of an LSI system is absolutely integrable.

/ / h(z,y)|dxdy < C < o0 (S2.1)
where C is a finite constant. For a bounded input signal f(z,y)
Fay)| <B<oo, forevery (1), (522)
for some finite B, we have
lg(z,y)l = [h(z,y) * f(z,y)|

‘/ / ha =&y —n)f(&n)dsdn

< [ e -co-nl i€ nldedy
< B/ / h(z,y)| dx dy
< BC <o, forevery(x,y) (S2.3)

So g(x,y) is also bounded. The system is BIBO stable.

2. We use contradiction to show that if the LSI system is BIBO stable, its PSF must be absolutely integrable.
Suppose the PSF of a BIBO stable LSI system is h(x, y), which is not absolutely integrable, that is,

/ / h(z,y)| dx dy

is not bounded. Then for a bounded input signal f(z,y) = 1, the output is

l9(e,9)| = [h(z,y) + a:y|—// h(z,y)| dz dy,

which is also not bounded. So the system can not be BIBO stable. This shows that if the LSI system is BIBO stable,
its PSF must be absolutely integrable.

Solution 2.6

(a) If ¢’(x, y) is the response of the system to input Zle w fr(x,y), then
g'(z,y) = Zwkfk z,—1) +Zwkfk 0,9)
k=1

wi[fr(z, =1) + fr(0,y)]

M 1

WGk (.CL', y)

=~
Il

1



where gy (z, y) is the response of the system to input fy(z,y). Therefore, the system is linear.
(b) If ¢'(x, y) is the response of the system to input f(x — g,y — yo), then

g (x,y) = f(x —x0,—1 = yo) + f(=z0,y — %0);

while
g(x —xo,y —yo) = f(x — w0, —1) + f(0,y — %0)-

Since ¢'(x,y) # g(x — xo,y — yo), the system is not shift-invariant.

Solution 2.7

(a) If g’ (z, y) is the response of the system to input Zszl wy fr(z,y), then

K K
g'(zy) = (Zwkfk(%y)) <Zwkfk(fﬂﬂf0>yy0)>
k=1 k=1

K K

Zzwiwjfi(x,y)fj(x — 20,y — Y0)»

i=1 j=1

while

K K
Zwkgk($7y) = Zwkfk(x7y)fk(x — X0,y — yO)
k=1

k=1

Since ¢'(z,y) # Zszl gx(x,y), the system is nonlinear.

On the other hand, if ¢’ (x, y) is the response of the system to input f(z — a,y — b), then

g (x,y) = fle—ay—bf(zx—a—z0y—b—1y)
= g(z—a,y—0)

and the system is thus shift-invariant.

(b) If ¢'(x, y) is the response of the system to input Zle wy fr(x,y), then

o K
Jew) = [ S wdlamdn

T k=1

éwk (/_Z fela,m) dn)

K
Z wkgk)(xa y))
k=1

where gy (z, y) is the response of the system to input fy(z,y). Therefore, the system is linear.
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On the other hand, if ¢'(x, y) is the response of the system to input f(z — zq,y — yo), then

g (xy) = [ [z —20,m—yo)dn

/DO J(x —z0,m—yo) d(n — yo)

[ f(x —x0,n)dn

Since g(z — o,y — yo) = [ . f(x — xo,n) dn, the system is shift-invariant.

Solution 2.8

From the results in Problem 2.5, we know that an LSI system is BIBO stable if and only if its PSF is absolutely
integrable.

(a) Not stable. The PSF h(z,y) goes to infinite when x and/or y go to infinity. [°_ [* |h(z,y)|dxdy =

f_ ffo (22 + y?)dx dy = ffooo [ffooo de] dy—i—f_oo [f_oo 2aly} dz. Since f_oo x2dx = ffooo y2dy
is not bounded, then [ [* (2% + y?)dax dy is not bounded.

, 12
(b) Stable. [ [* |h(z,y)|dedy = [7_ [T (exp{—(2? + y?)})dz dy = [ffooo e ® da:] = 7, which is
bounded. So the system is stable.

C ot stable. € absolute integral | _xrte” ’ ray = | _«x e ’ yldr = | TXTar 1s
(¢) Not stable. The absolute i L[ [ 2%e v dad ot | [T eVidy|d = Vmatde i
unbounded. So the system is not stable.

Solution 2.9

@) g(z) = [ flz—t)f(t)dt.
(b) Given an input as a f1(x) + bfs(x), where a, b are some constant, the output is
g'(x) = [afi(x) +bfa(2)] * [afi(z) + bf2(z)]
= d’f () * f1(x) + 2abf1(x) * fa(z) + b2f2(x) * fo(x)
# agi(x) + bga(z),

where g1 (z) and go(z) are the output corresponding to an input of f;(z) and f(z) respectively.

Hence, the system is nonlinear.
(c) Given a shifted input f1(x) = f(x — ), the corresponding output is
gi(z) = * fi(x)
/ file — O fu0)dt

[ f(x—t—ﬂfo)ﬁ(t—xo)dt



Changing variable ¢’ = t — x in the above integration, we get

g1(z) /_OO flx —2xo —t') f1(t)dt

g(x — 2x0).

Thus, if the input is shifted by z, the output is shifted by 2x(. Hence, the system is not shift-invariant.

CONVOLUTION OF SIGNALS
Solution 2.10
(a)
f((E,y)(S(ZL'—l,y—2) = f(1,2)5($—1,y—2)
= (1+2%)8(z—1,y—2)
50(x — 1,y — 2)
(b)

oo o0

flzy)xd(z—-1,y—-2) = f€n)o(xr—&—1,y—n—2)dédn

88

/ fla—1Ly—2)0(x—&—1,y—n—2)dédy

—
2 g

= f(m—ly—Q/ / 0(x—E&—1,y—n—2)dEdn
fle=1,y-2)

= (e-1)+(@y-2)7
()

| [ se-ry-osenwy @[T [ - 1y-250.8d0d

— 00 — 00 — 00 — 00

/ §(z — 1,y — 2)(1 + 3*)dx dy

—00 J —00

10/ O(x— 1,y — 2)dxdy

— 00 — 00

[®)

Equality (1) comes from the Eq. (2.7) in the text. Equality 2) comes from the fact:

/ / 5(x—1,y—2)dxdy:/ / O(z,y)dedy = 1.

11
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(d)
Sa—ly-sfrtlytr2 2 /Z ZM— —Ly—n—=2)f(§+1L,n+2)d¢dn
@ /Z ZM_ —Ly—n-2f(z—1)+1,(y—2)+2)dEdn
_ /Z O;éx— ~ Ly —n—2)f(e.y)de dn

1@

flay) =a+y’

(3 comes from the definition of convolution; (4) comes from the Eq. (2.7) in text; (5) is the same as (2) in part
(¢). Alternatively, by using the sifting property of (x, y) and defining g(z,y) = f(x + 1,y + 2), we have

5(I71,y72)*g($,y) = g($71,y72)
= flz—14+1,y—2+2)
= flz,y)
= z+y°.

Solution 2.11

(a)
faw oty = [ [ rengte - gy dean
= [ 5©nma - ot s
tan o) = ([~ n@ne-94) ([ nonay-nd).

Hence, their convolution is also separable.

(b)
f(@,y) * 9(z,y) = (f1(2) * 91(2)) (f2(y) * 92(y)) -
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Solution 2.12

glz,y) = flz,y)*h(z,y)
= / / flz =&y —n)h(&, n)dsdn

= / / (x — &+ y — n)exp{— (&> + n*) }d&dn

= :c—i—y/ / e=& " dgdn — / / ce=8 " dedn — / / ne=€ =" dgdn
- (“y)[/_oo ﬁdé] [ [/ 5e—fd£}dn | e U_ooe”dn]df

= 7w(z+y) (S2.4)

We get (52.4) by noticing that since £ is an odd function and e~¢” is an even function, we must have
/ ceSde =0.

/_Zef2d§ = 7.

Also,

FOURIER TRANSFORMS AND THEIR PROPERTIES
Solution 2.13

(a) See the solution to part (b) below. The Fourier transform is

FQ{és(x’y)} = 55(’&,1))

(b)

Fofdu(a,y: A, Ay)} = / / 5.(,y; A, Ag)e =) 4y dy

ds(z,y; Az, Ay) is a periodic signal with periods Az and Ay in z and y axes. Therefore it can be written
as a Fourier series expansion. (Please review Oppenheim, Willsky, and Nawad, Signals and Systems for the
definition of Fourier series expansion of periodic signals.)

e An A= 33 G R,

m=—00 N=—0o0
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where
1 Az Ay
2 2 . ny
mn = — Os Az, A _]27‘—(%+Ty) dx d
& ArAy A/%’ (z,y; Az, Ay)e x dy
Az Ay S’ 0o
1 2z [z _jan(e 4 an)
= Aedy | ose | s Z Z 0(x — mAz,y — nAy)e artay) do dy.
2 Mm=—00 Nn=—00
In the integration region —42 < 2 < &% and — 2 < y < Azy there is only one impulse corresponding to
m = 0, n = 0. Therefore, We have
Ay
— j27r(0A— A—J)
Cmn AmAy / Al / Ay .23 y)e dz dy
_ 1
 AzAy
We have:
5 A A J27T 7n1,+ny) )
ey = o 3 Y
m=—00 n=—00
Therefore,

i) = / / 5. (e, : A, Ag)e P =) 4y gy

jor(me ) —j2m(uz+toy)
- [ e XY ey,

m=—0o0 Nn=—0o0

- Z ; AxlAy

oo o0

ejQﬂ(X—:—i-%) —j2m(uz+vy) dx dy

m=—o00 n=—00 0 0
= 1
- ¥ ¥ CR
AxAy
m=—0o0 n=
o0 o0

I
N
N
>
8| =
>
Nay
(%)
7 N
4E
u@
4
N—

(&)

Z Z NN A - AzAyd(uAz — m,vAy —n)

m=—00 N=—00

Fo{ds} = ds(ulAz,vAy)

Equality 5) comes from the property d(ax) = Tal Ls(x).



(c)

(d)

Fols(z,y)} S(l‘,y)efj%(“m+“y) dzx dy

Il
—
—

= / / sin[27 (ugx + voy)]e 72 W) dg: dy

_ /OO /OO i [ejzw(uox—s-voy) _ e—j%(uox‘*“oy)] e 2 ) s dy
1_00 T 2
= 29 |:/ / e’ 71'(uoaxc"'voy)e_j m(uetoy) dzx dy
—00 J —c0
0o 0o
_ / / e—j27r(uo;c+voy)e_jZﬂ'(“wJ'_vy) dx dy:|
—00 J —c0
L[> [~
=5 U / =32 l(u—uo)e+(v=vo)yl g gy,

B /oo /OO e_j27r[(u+u0)w+(v+v0)y] dx dy]
1

Fo{s(z,y)} = Q—j[é(u—uom—vo)—5(u+u0,v+v0)].

We used Eq. (2.69) twice to get the last equality.

Falo)(u,v) = / / e, y)e T2 g gy

= / / cos[2m (upx + voy)]e 72U dy: dy

2

% |:/OO /oo €j27r(u03c+vgy)e—jQTr(ux+vy) dr dy

+/oo /OO e-jQﬂ—(uox-{—voy)e—j27r(ux+vy) dx dy:|
—00 J —o0

1 o0 o0 .
3 [/ / e—92m[(u—uo)z+(v—2v0)y] g, dy
— 00 — 00

o0 o0
+/ / e~ 12m[(utuo)z+(v+vo)y] g, dy]
1

5[6(u — ug,v — vg) + §(u + ug, v + vp)].

= / / l[eﬂﬂ(uor-&-voy) + e—j27r(uor+voy)]e—j27r(ur+vy) dx dy

Fa(e)(u,v)

We used Eq. (2.69) twice to get the last equality.

15
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(e)

o0
oo

6 — (22 4y?) /202 7J27T(uw+vy) dr dy

RNy = [ / o y)e ) g ay
- [/

o0

— /OO /OO 1 67(12+j47r02uz)/20'267(y2+j47r02vy)/2a2 dx dy

2
oo oo 2TO

— - 1 7(x2+j47r0'2ux)/202 dx OO 1 67(y2+j47ra'2vy)/20'2 dy
71'02 - 2mo?

2 g

_ : 282 /6 2 2.8\2 /5 2
(z4j2mo u)? /20 e(]27r0 u)? /20 dx

271'0'2

/ ;ef(y+j27m2v)2/2a2e(j27r¢72v)2/2cr2 dy}

L/ —oo 2mo?
— —271'202u2/ 1 e—(z+j27'ra'2u)2/20'2 dx] .
oo V2mo?

oo
e
[ —2n202%0? > 1 —(y+j2mo?v)? /202
(& e dy
e

2mo?

2 2 2
—2m%0c u
e .

Fo(f)(u,v) = e 270 wi+e)

—271'2021)2

Solution 2.14
The Fourier transform of f(x) is

u) = /jo f(z)e I2mue gy,

F*(u) = /00 [f(x)e_ﬂm”“']*dx

= / f(&)e=72mueqe  since f(—x) = f(x) and f(z) is real

|
>
£
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(b) Similarly, assuming f(z) is real and f(x) = —f(—x),
P = [ rege

_ /_OO —f(&)e 1P UEdE | since f(—x) = —f(z)
= —F(u).

Solution 2.15

In deriving the symmetric property F*(u) = F(u), we used the fact that f(z) is real. If f(z) is a complex
signal, we have f*(—¢) = f*(€) instead of f*(—&) = f(&). Therefore,

F*(u) = h [f(x)e_ﬂ"“:”]* dx

8

JH(=€)eTP g, tet € = ~a

3

f (€)e72muede,
{f ()}

Il
“ﬁ\ﬁ\ "\
8

Solution 2.16

(a) Conjugate property: Fa(f*)(u,v) = F*(—u, —v).

Falf)u0) = /jo [w P ()2 g dy

e’} [oe] ) *
[ [ e aea)
9] [eS)
[/oo /oo f x y e —727[(—u)z+(—v)y] dxdy:|

= [F(~u,—v)]"
= F*(—u,—v).

Conjugate symmetry property: If f(z,y) is real, F'(u,v) = F*(—u,—v). Since f(x,y) is real, f*(z,y) =
f(x,y). Therefore,
F*(—u, —v) = Fo{f*(z,9)} = Fo{f(z,9)} = F(u,0).
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(b) Scaling property: Fo(f)(u,v) = ﬁ]-}(f) (L,2).
Erwn) = [ [ fan e et asay
_ /7 O:O 1 O:o Flaz, by)eszw[uwﬂc)/a+v<by>/b}%d(ax) dby)

B |1b|/°° /°° F(p, q)e= 32w/ @p+ /)l gp g
ab| J_ oo J_oo

- 03

(c¢) Convolution property: Fa(f * g)(u,v) = Fa(g)(u,v) - Fo(f)(u,v).

Aregwo = [ [ [/ / f(@n)g(acs,yn)dfdn} =TT+ gy

Interchange the order of integration to yield

Ao = [ [ sen [/ / g(xf,ymemwy)dzdy] dé dn

/Z/Zf(&n) [/Z/Zg(xs,ym

o= 2mlu(e—§)+o(y—n)] g —i2m (uE-+vn) g dy} de dn
/ / F(gm)e 2mluetem) / / gle =&y —n)
ej2w[u<m£>+v(yn)1dxdy} dg dn

/ / F(&, me-d2mueton / / g(p,q)e—ﬂ“[”“”q]dpdq} de di

/ i / ) F(&,m)e P2 Ty (g) (u, v) dE dn

Fag)wo)- [ h / e e s ge
Fo(f+g)(u,v) = Falg)(u,v) - Fo(f)(u,v).
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(d) Product property: Fa2(fg)(u,v) = F(u,v) * G(u,v).
.Fz(fg)(u,v) = / / f(x’y)g(xvy)efj%r(uervy) dx dy
_ /oo /oo |:/oo /00 G(g,n)ejQﬂ(x£+yn) df dn:| f(x’y)eijﬂ'(u:chvy) dx dy

— 00 — 00

Solution 2.17

Since both the rect and sinc functions are separable, it is sufficient to show the result for 1-D rect and sinc
functions. A 1-D rect function is

1
1, f < =
- forla| <
rect(x) =
1
0, forlz|> =
or |x| 5

F{rect(z)} = /OO rect(z)e 2T dy

1/2 )
_ / 67327rua:d1,
—1/2

1/2 1/2 ‘
= / cos(2mux)dr — j/ sin(2rux)dz, €% =cosf + jsind
—1/2

Therefore, we have F{sinc(x)} = rect(u). Using Parseval’s Theorem, we have

o o
E, = / / || rect(z, y)||>dx dy
—0o0 —0o0

/2 ,1/2
dx dy
—172J-1/2
=1
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For the sinc function, P, = 0, because F is finite.

Solution 2.18
Since the signal is separable, we have

Flf(x,y)] = Fip[sin(2max)] Fip|cos(27by)],
Fiplsin(2razx)] = % [0(u—a)—06(u+a),
Fuvlcos(2rby)] = % [6 (v —b)+ 6 (v+b)] .
So,

Flif(z,y)] = 41] [0(u—a)d(v—b) —0(u+a)d(v—">0)+6(u—a)d(v+b) —d(u+a)d(v+D) .

Now we need to show that 6(u)d(v) = d(u,v) (in a generalized way):
d(u)d(v) =0, foru#0,orv+0

Therefore,

//fuv ()dudv_/ZUZf(u,m(u } dv—/ F(0,0)5(v)dv = £(0,0).

Based on the argument above §(u)d(v) = §(u,v), and

Flf(z,y)] :4%,[5(u—a,v—b)—5(u+a,v—b)—|—5(u—a,v+b)—5(u—|—a,v+b)] .

The above solution can also be obtained by using the relationship:

sin(2max) cos(2mwby) = % [sin(27(ax — by)) + sin(27(az + by))] .

Solution 2.19
A function f(z,y) can be expressed in polar coordinates as:

flz,y) = f(rcosf,rsinf) = f,(r,0).

If it is circularly symmetric, we have f,(r, #) is constant for fixed r. The Fourier transform of f(z, y) is defined as:
F(u,v) = / / flx,y)e —a2m(uetvy) g dy
2 ) )
/ / fp(r7 9)6—]271'(1“‘(:03 0+wvr sin G)Td’f’ do
o Jo

0 27
= / fp(r,0) [/ g2 (urcosttursing) g 4. gy
0

0



Letting u = g cos ¢ and v = g sin ¢, the above equation becomes:

0 2
F(u,v) :/ fp(r,0) [/ e‘jzwqmos(“ﬁ_e)dﬁ} rdr.
0 0

21

Since F'(u,v) is also circularly symmetric, it can be written as Fy (g, ¢) and is constant for fixed ¢. In particular,

F,(q,¢) = F,(q,m/2), and therefore

') 2T
Fy(g,6) = Fylq.m/2) = /0 £,(r,6) [ /0 ejzﬂq”inede}rdr.

Now we will show that (2.108) holds.

o o 27
/ e—d2marsing gy _ / cos(2mgrsin6)df — j / sin(2mqr sin 6)
0 0 0

@ 2/ cos(2mgr sin 6)df
0

= 2w Jo(2mqr) .

Equality (D) holds because cos(—6) = cos(#), and sin(f) = — sin(6).
Based on the above derivation, we have proven (2.108).

Solution 2.20

The unit disk is expressed as f(r) = rect(r) and its Hankel transform is

o0
F(q) = 277/ fr)Jo(2mgr)r dr
0
= 27r/ rect(r)Jo(2mgr)r dr
0
1/2
= 277/ Jo(2mgr)rdr.
0
Now apply the following change of variables
s = 2mqr,
s
T = a_
2mq
d
dr = 5 ,
2mq

to yield
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From mathematical tables, we note that

Therefore,
Ji(mq)
F —  J\74)
(9) %
= jinc(q) .
TRANSFER FUNCTION
Solution 2.21

(a) The impulse response function is shown in Figure S2.1.

\ T
1\l

i

I
\‘\“\\“““‘.‘\\‘\‘\\\‘
X

Figure S2.1 Impulse response function of the system. See Problem 2.21(a).

(b) The transfer function of the function is the Fourier transform of the impulse response function:

F{h(z,y)}
= .7-'{6_”2 }f{e‘”92/4} , since h(x,y) is separable
— 2€—ﬂ(u2+4v2) )

H(u,v)
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Solution 2.22

(a) The 1D profile of the bar phantom is:

o
IAIA

el

+

w

xT
x

INIA

k—1
f(x){ é’ EF1

w
w

v ‘

where k is an integer. The response of the system to the bar phantom is:

ola) = f@) s Uw) = [ fa - (6.
At the center of the bar, we have
9(0) = i F(O=8)I(&)ds

w/2

= / cos(ag)d¢
—w/2
2 . /ow

- ().

At the point halfway between two adjacent bars, we have

o(w) = /_ Flw — )i(€)de
w/2 w+m /20
_ / cos(a€)de + / cos(a€)dg
w—m /2 3w/2
w/2
= 2 cos(af)d¢
w—m/2a

- 2 fin() o)

(b) From the line spread function alone, we cannot tell whether the system is isotropic. The line spread function
is a “projection” of the PSF. During the projection, the information along the y direction is lost.

(c) Since the system is separable with h(x,y) = hip(z)h1p(y), we know that

ie) = [ nwiy

mo(a) [ " ha(w)dy.
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Therefore hip(z) = cl(x) where 1/c = [*°_hip(y)dy. Hence,

e = [ awa.

/2
1/ = / cos(ay)dy ,
—m /2

1/ = 2/a.

Therefore,

2 cos(azx) cos(ay) |ax| < 7/2and |ay| < w/2
h(m7y):: 2
0 otherwise

The transfer function is

H(u,v) = Fop{h(z,y)}

= / / h(z, y)eﬂ”“zdw} eI2™Y dy

= / / th(x)hlp(y)eﬂ”"cdx} eI dy

—oco LJ —

- / / th(x)ejz’mxdm] th(y)ejQ’T"ydy

—0o0 LJ —0o0

— / th(aj)eﬂ’mIdQ:/ th(y)eﬂ’r“ydy
= Hip(u)Hip(v),

which is also separable with H (u,v) = Hip(u)Hip(v). We have

Hp = \/7}-1D{l
\/7]:1D{COS (o)} * Fip {TeCt ( )}
= \/; [smc (Z(u—a/Qﬂ)) +smc( (u+04/277)>} .

Therefore, the transfer function is
H(u,v) = g [Sinc (E (u— a/27r)) + sinc (E (u+ a/27r))}
a !
. m . ™
{smc (a (v— a/27r)) + sinc (a (v+ a/27r))} .

APPLICATIONS, EXTENSIONS AND ADVANCED TOPICS
Solution 2.23
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(a) The system is separable because h(x,y) = e~ (21+Iv) = e=lele=lvl,

(b) The system is not isotropic since h(x,y) is not a function of r = /22 + y2.

Additional comments: An easy check is to pluginz = 1,y = 1 and z = 0, y = /2 into h(zx,y). By
noticing that 2(1,1) # h(0,/2), we can conclude that h(z,%) is not rotationally invariant, and hence not
isotropic.

Isotropy is rotational symmetry around the origin, not just symmetry about a few axes, e.g., the x- and
y-axes. h(z,y) = e~ (=1+19) is symmetric about a few lines, but it is not rotationally invariant.

When we studied the properties of Fourier transform, we learned that if a signal is isotropic then its Fourier
transform has a certain symmetry. Note that the symmetry of the Fourier transform is only a necessary, but
not sufficient, condition for the signal to be isotropic.

(¢) The response is

g(z,y) = h(z,y)* f(z,y)

(d) The response is

g(z,y) = h(z,y)* f(z,y)

oo
oo
_ / eIl e=le=vtnl gy

1. Now assume z — y < 0, then x — y + 1 < 7. The range of integration in the above can be divided into
three parts (see Fig. S2.2):

L 7€ (—00,0). Inthisinterval, x —y+n<n<0.|n|=-n |z —y+n=—(r—y+n);
MIypel0,—(x—y)) Inthisinterva, z —y+n <0<n. |n|=n, |z —y+n=—(x —y+n);

L. n € [—(x —y),00). Inthisinterva, 0 <z —y+n<n. |n|=n |zt —y+n = —y+n.
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n<0 n>0 n>0
x-y+n<0 . xyn<0 x-y+n>0

0 -(x-») n

Figure S2.2 For =z — y < 0 the integration interval (—oo,00) can be partitioned into three segments. See Prob-
lem 2.23(d).

Based on the above analysis, we have:

gy = / eIl —le=v+al gy
0 —(z—vy) o0
_ / e—(\n\+lz—y+n|>dn+/ e*(\n\+|w*y+n|)+/ o~ (Inl+la—y-+n1)
—o0 0 —(z—vy)
0 —(z—y) )
= / e”_y”"dn—&—/ e“_ydn—i—/ e—(w—y+2n)dn
—00 0 —(z—y)
1 1
= 5696721 —(x—y)e" Y+ iexfy

1= (z—y)le™".

2. Forx —y > 0,7 < x — y + n. The range of integration in the above can be divided into three parts (see
Fig. S2.3):

n<0 n<0 n>0
x-y+n<0 _ x-yin>0 x-y+n>0

~(x-y) 0 n

Figure S2.3 For z — y > 0 the integration interval (—oo,00) can be partitioned into three segments. See Prob-
lem 2.23(d).

Lne(—o0,—(z—y)). Inthisinterval, n <z —y+n<0.|n|=-n, |z —y+n =—(x—y+n);
IL.pe[—(x—y),0) Inthisinterval, n <0<z —y+n. |n|=-n |z —y+n=c—y+n
L. 7 € [0,00). In this interval, 0 < p <z —y +n. |n| =7,

c—y+nl=z-—y+n
Based on the above analysis, we have:

g((p,y) — / 6_|77|6_‘93_y+77‘d77
—(z—y) 0 00
_ / e—(|n|+\w—y+n\)dn+/ e—(|n|+|w—y+n|)+/ o~ (Inl+la—y-+n)
—00 —(z—vy) 0

—(z—y) 0 e
/ Y em—y+2ndn+/ e_(m_y)dn—l—/ e—(ﬂc—y—ir2n)d77
—o0 —(z—vy) 0

1 1
= 5e*(ﬂvfy) + (z—y)e @Y 4 ief(zfy)

= [+ (@—y)e .
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Based on the above two steps, we have:

g(z,y) = (1 + |z —y[)e =70

Solution 2.24

(a) Yes, it is shift invariant because its impulse response depends on x — .

(b) By linearity, the output is

—(z+1)? —(@)? o

glx)=e" 2 +e 2z +e

Solution 2.25

(a) The impulse response of the filter is the inverse Fourier transform of H (u), which can be written as

H(u) =1 — rect (;&)) .

Using the linearity of the Fourier transform and the Fourier transform pairs
F{o@)}y = 1,
F{sinc(t)} = rect(u),
we have

h(t) FH{H(u)}

d(t) — 2Up sinc(2Upt) .

(b) The system response to f(t) = cis 0, since f(¢) contains only a zero frequency component while h(t)
passes only high frequency components. Formal proof:

f@) «h(t) = [f(t)*][6(t) — 2Uysinc(2Upt))
= f(t) —2Uu f(t) * sinc(2Upt)

= c— c/ 20U sinc(2Upt)dt

— 00

= c—c/ sine(7)dr
= 0.
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The system response to f(t) = { (1)’ i i 8 is
f@)=h(t) = f(t)*[d(t) — 2Uy sinc(2Upt)]

= f(t) = 2Uo f(t)  sinc(2Uot)

= f(t)— /_00 f(x)2Ug sinc(2Uy (t — x))dx
= f@t)— /00 2Uy sinc(2Uy (t — x))dx
= +/ OQ2U0 sinc(2Uy (y))dy

2U0 sine(2Uy (y))dy

0
2Uy sinc(2Uy (y))dy —

— 00

QUO sinc(2Up(y))dy ¢t >0

c\

0
/ 2Uy sinc(2Up(y))dy +/ 2Uy sinc(2Up(y))dy ¢ < 0
Jr

/0 2Upsinc(2Up(y))dy  t <0

l\D\H

1 t
1-— 3~ / 2Uy sinc(2Up(y))dy ¢t >0
0

1 0
—5 +/ 2Uy sinc(2Up(y))dy ¢t <0
¢

1
2

¢
- / 2Uysinc(2Up(y))dy ~ t >0
0
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Solution 2.26
(a) The rect function is defined as
_ )L <12
rect(t) = { 0, otherwise
So we have
rect i _ L =T/
T) | 0, otherwise
and
t+0.757T\ [ 1, [t+0.75T|<T/4
0.5T ~ ] 0, otherwise
Therefore,

1T, -T<t<-T/2
1/T, “T/2<t<T/2
-1/T, T/2<t<T

0, otherwise

h(t) =

The impulse response is plotted in Fig. S2.4.

h(z)
/T
T |12 112 r
t
-ur

Figure S2.4 The impulse response h(t). See Problem 2.26(a).

The absolute integral of A(t) is [ |h(t)|2dt = 2/T. So The system is stable when T' > 0. The system is
not causal, since h(t) # 0 for =T < t < 0.

(b) The response of the system to a constant signal f(t) = cis

g(t) = f(t) xh(t) = /_OO fit = 1)h(r)dr = c/ h(r)dr =0.

— 00

(c) The response of the system to the unit step function is

t

g(t) = f(t) x h(t) = /_00 ft —71)h(r)dr = / h(r)dr

0, t<-T

—t/T -1, -T<t<-T/2
g(t) =< t/T, ~T/2<t<T/2

—t/T+1, T/2<t<T

0, t>T

The response of the system to the unit step signal is plotted in Figure S2.5.
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g()
112
-T -T2 T2 T
t
1-12

Figure S2.5 The response of the system to the unit step signal. See Problem 2.26(c).

(d) The Fourier transform of a rect function is a sinc function (see Problem 2.17). By using the properties of the
Fourier transform (scaling, shifting, and linearity), we have

H(u) = F{h(t)}
= —0.5e772mu(=0T5D) ginc(0.5uT) 4 sinc(uT’) — 0.5¢~727OTT) ginc(0.5uT)

= sinc(uT’) — cos(1.5muT) sinc(0.5uT") .

(e) The magnitude spectrum of h(t) is plotted in Figure S2.6.

1.4

[H(u)l

Figure S2.6 The magnitude spectrum of h(t). See Problem 2.26(e).

(f) From the calculation in part (d) and the plot in part (c), it can be seen that | H(0)| = 0. So the output of the
system does not have a DC component. The system is not a low pass filter. The system is not a high-pass
filter since it also filters out high frequency components. As 7" — 0, the pass band of the system moves to

higher frequencies, and the system tends toward a high-pass filter.
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Solution 2.27

(a) The inverse Fourier transform of A (o) is

— 0 [ejQﬂ'rg + e—jQﬂ'Tg] dQ
0

[
= 2/ ocos(2mro)do
0
e _/9" Sin(27rrg)d
0 0 27r ¢

Q:
©o
=0

1
= 5753 [cos(2mr0g) + 277 g sin(27r0g) — 1] .

_ osin(27ro)
B 2r

_ osin(27wrog)  cos(27mrp)
B 27 4722

(b) The response of the filter is g(r) = f(r) * h(r), hence G(0) = F(0)H(p). i) A constant function f(r) = ¢
has the Fourier transform

F(e) = cd(o)-
The transfer function of a ramp filter has a value zero at ¢ = 0. So the system response has the Fourier
transform
G(o) =0.

Therefore, the responses of a ramp filter to a constant function is g(r) = 0. ii) The Fourier transform of a
sinusoid function f(r) = sin(wr) is

Hence,

Glo) = 1y 0(e=57) o (e gp)] m=e

0 otherwise
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Therefore, the response of a ramp filter to a sinusoid function is
0 otherwise

Solution 2.28
Suppose the Fourier transform of f(x,y) is F(u,v). Using the scaling properties, we have that the Fourier
transform of f(ax, by) is |ab‘ F (E 3) The output of the system is

1 U v
F
]:{|ab| ( b)}
= u v —j2m (urtvy) 4o g
/ /oolab a’b>6 he

|ab|/ / eﬂﬂ(af( x)+bn( y))|ab|d§d77

g(,y)

Given the inverse Fourier transform

(z,9) / / (u,v) eJQW(W'*'”y)du dv

/ / F(€,)e> @S0 |ab|dgdy = abl f(—az, ~by)

— 00 — 00

we have

Therefore, g(z,y) = f(—ax, —by) is a scaled and inverted replica of the input.

Solution 2.29
The Fourier transform of the signal f(x,y) and the noise 7n(z, y) are:

F(U,U) = ]—‘{f(:my)}
= |ab|F {sinc(az, by)}

— |ab] {II rect (Z Z)}

- ()

_ |1 Jz[<lal/2and [y| < |b]/2
0, otherwise

bl

E(u,v) = F{n(z,y)}
_ %[5(%14,1),3)%(%/1,%3)].

Using the linearity of Fourier transform, the Fourier transform of the measurements g(z, y) is

G(u, v) = rect (g%) +%[6(U—A,v—B)+§(u+A,v+B)] ,
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which is plotted in Figure S2.7. In order for an ideal low pass filter to recover f(z,y), the cutoff frequencies of the

1/28(u-A,v-B)

rect(u/a,v/b)/ | B____
| .
l- A7
Pl 2, .
% s
1728(utA,v+B) L - a2 4 u

e ’
, ,
, L L
’
.
’
,
,

Figure S2.7 The Fourier transform of g(z,y). See Problem 2.29.

filter must satisfy
la|/2 < U < Aand |b|/2 <V < B.

The Fourier transform of h(z,y) is rect (%, %) therefore, the impulse response is

hz,y) = F! {rect (%, %)} = 4UV sinc(2Ux) sinc(2Vy) .

For given a and b, we need A > |a|/2 and B > |b|/2. Otherwise we cannot find an ideal low pass filter to exactly
recover f(x,y).

Solution 2.30

(a) The continuous Fourier transform of a rect function is a sinc function. Using the scaling property of the
Fourier transform, we have:
G(u) = Fip{g(x)} = 2sinc(2u).

A sinc function, sinc(z), is shown in Figure 2.4(b).

(b) If the sampling period is Az = 1/2, we have

ntm) =glom/2) = {

—2<m<2
otherwise

Its DTFT is
Gi(w) = Fprrr{gi(m)}
ejQw+ejw+1ej0w+e—jw+26—j2w

1+ 2cos(w) 4 2 cos(2w) .

The DTFT of g; (m) is shown in Figure S2.8.
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i
1 \/\/ \m/\

® {m M)

IS

(A

I\)

O

Figure S2.8 The DTFT g;(m). See Problem 2.30(b).

3.5

3

25

Figure S2.9 The DTFT g2(m). See Problem 2.30(c).

(¢) If the sampling period is Az, = 1, we have

(m)=gmy=4 o 1=m=l
g2 =9 “ 1 0, otherwise
Its DTFT is
Ga(w) = Fprrr{gz(m)}
= Y4+ 1% f eI
= 1+4+2cos(w).

The DTFT of g(m) is shown in Figure S2.9.
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(d) The discrete version of signal g(x) can be written as
g1(m) = g(x — mAzy), m=—o0,---,—1,0,1,-- ,+00.
The DTFT of g1 (m) is

Gi(w) = Fprrrigi(m)}
+oo

=Y p(mpeiem

—+o0

Z g(mAxy)e 7™

m=—0o0

N / 9(z)0s(2; Axy e 95 da

— 00

In the above, 05(x; Axq) is the sampling function with the space between impulses equal to Az, . Because of
the sampling function, we are able to convert the summation into integration. The last equation in the above
is the continuous Fourier transform of the product of g(z) and d4(x; Az) evaluated as v = w/(2wrAxy).
Using the product property of the continuous Fourier transform, we have:

Gi(w) = Flg(@)}* F{os(x; Az1)}H,—/2man)
= G(u)* comb(qul)\u:w/(%Awl) .

The convolution of G(u) and comb(uAz) is to replicate G(u) to u = k/Ax;. Since u = w/(2wAxy),
G1(w) is periodic with period Q2 = 27.

(e) The proof is similar to that for the continuous Fourier transform:

Forer{e(m) «y(m)} = Forr {a(m) * y(m)}
_ fDm{ > x(mn>y<n>}
_ mio i im o(m — n)y(n)
- n_fjm L_iw M n>] y)
— ni)oe—im Li e—fwkx(k)] y(n)

(letk=m —n)

= Z e 7" Fprpr{z(m)}y(n)

n=—oo

= ]:DTFT{JJ(m)}fDTFT{y(m)} :
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(f) First we evaluate the convolution of g1 (m) with ga(m):

3, —-1<m<1
gi(m)+ga(m) =4 3 T
0, otherwise
Then by direct computation, we have
Forrr{g1(m) * ga(m)} = 343 x 2cos(w) + 2 x 2cos(2w) + 2 cos(3w)

= 3+ 6cos(w) + 4 cos(2w) + 2 cos(3w) .

On the other hand, we have

Forrrigi(m)} = 1+ 2cos(w) + 2 cos(2w)

and
Forrr{g2(m)} =1+ 2cos(w).
So, the product of the DTFT’s of g1 (m) and g2 (m) is

Forrr{gi(m)}Forrr{g2(m)} = [1+ 2cos(w)][1+ 2cos(w) + 2cos(2w)]
= 1+ 4cos(w) + 2cos(2w)
+4 cos?(w) + 4 cos(w) cos(2w)
= 14+ 4cos(w) + 2cos(2w)
1 + cos(2w) N 4cos(w) + cos(3w)

2 2
3 + 6 cos(w) + 4 cos(2w) + 2 cos(3w) .

+4

Therefore,
Forrr{gi(m) * g2(m)} = Forrr{gi1(m)} Forrr{gz(m)} .
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