Larson_Calculus_10e ch02sec01

MULTIPLE CHOICE

- 1. Find the slope m of the line tangent to the graph of the function f(x) = 2 7x at the point (-1, 9).
 - a. m = -7
 - b. m = -2
 - c. m = 2
 - d. m = 7
 - e. m = -9
 - ANS: A PTS: 1 DIF: Easy REF: Section 2.1
 - OBJ: Calculate the slope of a line tangent to the graph of a function at a specified point
 - MSC: Skill
- 2. Find the slope m of the line tangent to the graph of the function $g(x) = 9 x^2$ at the point (4, -7).
 - a. m = 4
 - b. m = 9
 - c. m = -8
 - d. m = -7
 - e. m = -18
 - ANS: C PTS: 1 REF: Section 2.1 DIF: Medium
 - OBJ: Calculate the slope of a line tangent to the graph of a function at a specified point
 - MSC: Skill
- 3. Find the derivative of the function g(x) = -2 by the limit process.
 - a. g'(x) = 2
 - b. g'(x) = 2x
 - c. g'(x) = -2x
 - d. g'(x) = 0
 - e. g'(x) = -2
 - DIF: Easy REF: Section 2.1
 - OBJ: Calculate the derivative of a function by the limit process MSC: Skill
- 4. Find the derivative of the function $h(s) = 7 + \frac{6}{7}s$ by the limit process.

 - a. h'(s) = 7b. $h'(s) = 7s + \frac{6}{7}s^2$
 - c. $h'(s) = \frac{6}{7}$
 - d. $h'(s) = \frac{55}{7}$
 - e. $h'(s) = 7s + \frac{6}{7}$

- 5. Find the derivative of the following function $f(x) = -3x^2 + 6x 8$ using the limiting process.
 - a. f'(x) = -6x + 6
 - b. f'(x) = -3x + 6
 - c. f'(x) = -6x + 6x 8
 - d. f'(x) = -3x 6
 - e. f'(x) = -6x 6
 - ANS: A PTS: 1 DIF: Easy REF: Section 2.1
 - OBJ: Calculate the derivative of a function by the limit process MSC: Skill
- 6. Find the derivative of the following function using the limiting process.
 - $f(x) = -4x^2 + 5x$
 - a. –4
 - b. -4x + 5
 - c. -8x 5
 - d. -8x
 - e. -8x + 5
 - ANS: E PTS: 1 DIF: Easy REF: Section 2.1
 - OBJ: Calculate the derivative of a function by the limit process MSC: Skill
- 7. Find the derivative of the following function using the limiting process.
 - $f(x) = 3x^3 9x^2 8$
 - a. $f'(x) = 9x^2 + 18x$
 - b. $f'(x) = 6x^2 18x$
 - c. $f'(x) = 9x^2 18x 8$
 - d. $f'(x) = 6x^2 + 18x$
 - e. $f'(x) = 9x^2 18x$
 - ANS: E PTS: 1 DIF: Medium REF: Section 2.1
 - OBJ: Calculate the derivative of a function by the limit process MSC: Skill
- 8. Find the derivative of the following function using the limiting process.
 - $f(x) = \frac{2}{x 3}$
 - a. $f'(x) = \frac{2}{(x+3)^2}$
 - b. $f'(x) = -\frac{2x}{(x-3)^2}$

c.
$$f'(x) = -\frac{2}{(x-3)^2}$$

d.
$$f'(x) = \frac{2}{(x-3)^2}$$

e.
$$f'(x) = -\frac{2}{(x+3)^2}$$

ANS: C PTS: 1 DIF: Medium REF: Section 2.1

OBJ: Calculate the derivative of a function by the limit process MSC: Skill

9. Find the derivative of the following function using the limiting process.

$$f(x) = \frac{1}{x^4}$$

a.
$$f'(x) = \frac{4}{x^5}$$

b.
$$f'(x) = -\frac{4}{x^3}$$

c.
$$f'(x) = \frac{4}{r^3}$$

$$d. \quad f'(x) = -\frac{5}{x^5}$$

e.
$$f'(x) = -\frac{4}{x^5}$$

ANS: E PTS: 1 DIF: Medium REF: Section 2.1

OBJ: Calculate the derivative of a function by the limit process MSC: Skill

10. Find the derivative of the function $f(x) = \sqrt{7x-3}$ using the limiting process.

a.
$$f'(x) = \frac{7}{2\sqrt{7x-3}}$$

b.
$$f'(x) = -\frac{7}{2\sqrt{7x-3}}$$

c.
$$f'(x) = -\frac{7x}{\sqrt{7x-3}}$$

d.
$$f'(x) = \frac{7}{2} \sqrt{7x-3}$$

e.
$$f'(x) = -\frac{7}{\sqrt{7x-3}}$$

ANS: A PTS: 1 DIF: Medium REF: Section 2.1

OBJ: Calculate the derivative of a function by the limit process MSC: Skill

11. Find the derivative of the function $f(x) = \frac{20}{\sqrt{x}}$ by the limit process.

a.
$$f'(x) = \frac{20}{x}$$

b.
$$f'(x) = -\frac{10\sqrt{x}}{x}$$

c.
$$f'(x) = \frac{10}{x}$$

$$f'(x) = -\frac{10}{x\sqrt{x}}$$

e.
$$f'(x) = -\frac{20}{x\sqrt{x}}$$

OBJ: Calculate the derivative of a function by the limit process MSC: Skill

12. Find an equation of the tangent line to the graph of the function
$$f(x) = x^2 + 5x + 2$$
 at the point $(-5, 2)$.

a.
$$y = -23$$

b.
$$y = -5x - 23$$

c.
$$y = 15x$$

d.
$$y = 5x$$

e.
$$y = -15x - 73$$

MSC: Skill

13. Find an equation of the tangent line to the graph of the function
$$f(x) = \sqrt{x-2}$$
 at the point (18,4).

a.
$$y = \frac{x}{4} + \frac{7}{2}$$

b.
$$y = \frac{x}{8} + \frac{7}{4}$$

c.
$$y = \frac{x}{8} + \frac{9}{2}$$

$$y = \frac{x}{4} + \frac{9}{2}$$

e.
$$y = \frac{x}{8} + \frac{9}{4}$$

MSC: Skill

14. Find an equation of the line that is tangent to the graph of the function
$$f(x) = 8x^2$$
 and parallel to the line $16x + y + 6 = 0$.

a.
$$16x + y + 8 = 0$$

b.
$$12x - y + 6 = 0$$

c.
$$16x - y + 8 = 0$$

d.
$$16x + y + 6 = 0$$

e.
$$12x + y + 6 = 0$$

ANS: A PTS: 1 DIF: Medium REF: Section 2.1

OBJ: Write an equation of a line tangent to the graph of a function that is parallel to a given line

MSC: Skill

15. Find an equation of the line that is tangent to the graph of f and parallel to the given line.

$$f(x) = 3x^3, 9x - y + 9 = 0$$

a.
$$y = -9x + 6$$

b.
$$y = -3x + 6$$

c.
$$y = 9x - 3$$
 and $y = 9x + 3$

d.
$$y = -9x - 6$$

e.
$$y = 9x - 6$$
 and $y = 9x + 6$

ANS: E PTS: 1 DIF: Medium REF: Section 2.1

OBJ: Write an equation of a line tangent to the graph of a function that is parallel to a given line

MSC: Skill

16. Find an equation of the line that is tangent to the graph of the function $f(x) = \frac{7}{\sqrt{x}}$ and parallel to the

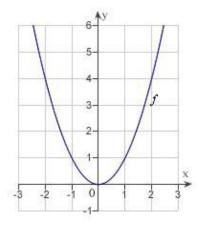
line
$$7x + 2y - 18 = 0$$
.

a.
$$7x + y + 21 = 0$$

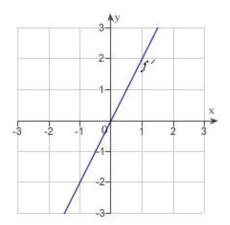
b.
$$9x + y - 18 = 0$$

c.
$$9x + 2y + 9 = 0$$

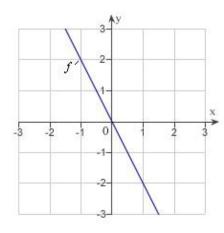
d.
$$7x + 2y - 21 = 0$$

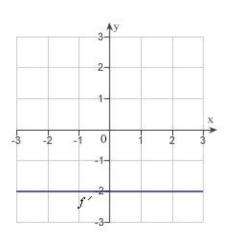

e.
$$7x + 2y - 14 = 0$$

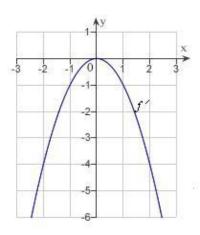
ANS: D PTS: 1 DIF: Medium REF: Section 2.1

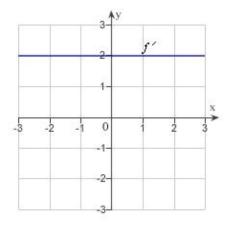

OBJ: Write an equation of a line tangent to the graph of a function that is parallel to a given line

MSC: Skill


17. The graph of the function f is given below. Select the graph of f'.


a.


d.


b.

e.

c.

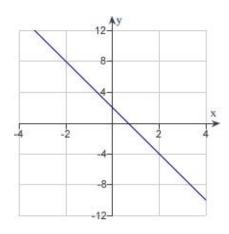
ANS: A

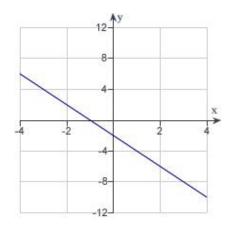
PTS: 1

DIF: Medium

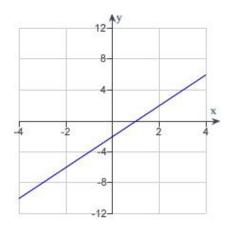
REF: Section 2.1

OBJ: Identify the graph of f' using the given graph of f

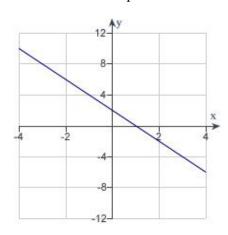

MSC: Skill


18. Identify the graph which has the following characteristics.

$$f(0) = -2$$


$$f'(x) = 2$$
, $-\infty < x < \infty$

Graph 1



Graph 3

Graph 4

- a. Graph 2
- b. Graph 3
- Graph 1
- Graph 4 d.
- none of the above

ANS: B

PTS: 1

DIF: Easy

REF: Section 2.1

OBJ: Identify the graph of a function given information about the function and its derivative

MSC: Skill

19. Use the alternative form of the derivative to find the derivative of the function $f(x) = x^2 - 9$ at x = 5.

a.
$$f'(5) = 1$$

b.
$$f'(5) = 250$$

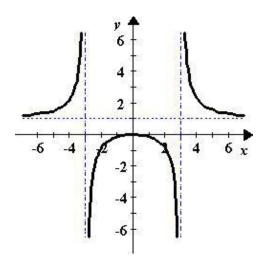
c.
$$f'(5) = 2$$

d.
$$f'(5) = 125$$

e.
$$f'(5) = 10$$

PTS: 1

DIF: Easy


REF: Section 2.1

OBJ: Calculate the derivative of a function at a specified point using the alternative form

MSC: Skill

- 20. Use the alternative form of the derivative to find the derivative of the function $f(x) = \frac{3}{x^2}$ at x = 2.
 - a. $f'(2) = \frac{3}{4}$

 - b. $f'(2) = -\frac{3}{4}$ c. $f'(2) = \frac{3}{8}$ d. $f'(2) = -\frac{3}{2}$
 - e. $f'(2) = -\frac{9}{16}$
- PTS: 1
- DIF: Medium
- REF: Section 2.1
- OBJ: Calculate the derivative of a function at a specified point using the alternative form
- MSC: Skill
- 21. Describe the x-values at which the graph of the function $f(x) = \frac{x^2}{x^2 9}$ given below is differentiable.

- a. f(x) is differentiable at $x = \pm 3$.
- b. f(x) is differentiable everywhere except at $x = \pm 3$.
- c. f(x) is differentiable everywhere except at x = 0.
- d. f(x) is differentiable on the interval (-2, 2).
- f(x) is differentiable on the interval $(2, \infty)$.
- PTS: 1
- DIF: Medium
- REF: Section 2.1
- OBJ: Identify the x-value (or values) at which a function is differential
- MSC: Skill