Student Solutions Manual for

MULTIVARIABLE CALCULUS

 SEVENTH EDITIONDAN CLEGG
Palomar College
BARBARA FRANK
Cape Fear Community College

© 2012 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at
www.cengage.com/permissions
Further permissions questions can be emailed to permissionrequest@cengage.com

ISBN-13: 987-0-8400-4945-2
ISBN-10: 0-8400-4945-5

Brooks/Cole

20 Davis Drive
Belmont, CA 94002-3098
USA
Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:

www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Brooks/Cole, visit www.cengage.com/brookscole

Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com

PREFACE

This Student Solutions Manual contains detailed solutions to selected exercises in the text Multivariable Calculus, Seventh Edition (Chapters 10-17 of Calculus, Seventh Edition, and Calculus: Early Transcendentals, Seventh Edition) by James Stewart. Specifically, it includes solutions to the odd-numbered exercises in each chapter section, review section, True-False Quiz, and Problems Plus section. Also included are all solutions to the Concept Check questions.

Because of differences between the regular version and the Early Transcendentals version of the text, some references are given in a dual format. In these cases, readers of the Early Transcendentals text should use the references denoted by "ET."

Each solution is presented in the context of the corresponding section of the text. In general, solutions to the initial exercises involving a new concept illustrate that concept in more detail; this knowledge is then utilized in subsequent solutions. Thus, while the intermediate steps of a solution are given, you may need to refer back to earlier exercises in the section or prior sections for additional explanation of the concepts involved. Note that, in many cases, different routes to an answer may exist which are equally valid; also, answers can be expressed in different but equivalent forms. Thus, the goal of this manual is not to give the definitive solution to each exercise, but rather to assist you as a student in understanding the concepts of the text and learning how to apply them to the challenge of solving a problem.

We would like to thank James Stewart for entrusting us with the writing of this manual and offering suggestions and Kathi Townes of TECH-arts for typesetting and producing this manual as well as creating the illustrations. We also thank Richard Stratton, Liz Covello, and Elizabeth Neustaetter of Brooks/Cole, Cengage Learning, for their trust, assistance, and patience.

DAN CLEGG
Palomar College
BARBARA FRANK
Cape Fear Community College

ABBREVIATIONS AND SYMBOLS

CD	concave downward
CU	concave upward
D	the domain of f
FDT	First Derivative Test
HA	horizontal asymptote(s)
I	interval of convergence
I/D	Increasing/Decreasing Test
IP	inflection point(s)
R	radius of convergence
VA	vertical asymptote(s)
$\stackrel{\text { CAS }}{=}$	indicates the use of a computer algebra system.
$\stackrel{\text { H }}{=}$	indicates the use of l'Hospital's Rule.
$\stackrel{j}{=}$	indicates the use of Formula j in the Table of Integrals in the back endpapers.
$\stackrel{\text { s }}{=}$	indicates the use of the substitution $\{u=\sin x, d u=\cos x d x\}$.
$\stackrel{\text { c }}{=}$	indicates the use of the substitution $\{u=\cos x, d u=-\sin x d x\}$.

CONTENTS

10 PARAMETRIC EQUATIONS AND POLAR COORDINATES 1
10.1 Curves Defined by Parametric Equations 1
10.2 Calculus with Parametric Curves 7
10.3 Polar Coordinates 13
10.4 Areas and Lengths in Polar Coordinates 20
10.5 Conic Sections 26
10.6 Conic Sections in Polar Coordinates 32
Review 35
Problems Plus 43
11 INFINITE SEQUENCES AND SERIES 45
11.1 Sequences 45
11.2 Series 51
11.3 The Integral Test and Estimates of Sums 59
11.4 The Comparison Tests 62
11.5 Alternating Series 65
11.6 Absolute Convergence and the Ratio and Root Tests 68
11.7 Strategy for Testing Series 72
11.8 Power Series 74
11.9 Representations of Functions as Power Series 78
11.10 Taylor and Maclaurin Series 83
11.11 Applications of Taylor Polynomials 90
Review 97
Problems Plus 105
12 VECTORS AND THE GEOMETRY OF SPACE 111
12.1 Three-Dimensional Coordinate Systems 111
12.2 Vectors 114
12.3 The Dot Product 119
12.4 The Cross Product 123
12.5 Equations of Lines and Planes 128
12.6 Cylinders and Quadric Surfaces 135
Review 140
Problems Plus 147
13 VECTOR FUNCTIONS 151
13.1 Vector Functions and Space Curves 151
13.2 Derivatives and Integrals of Vector Functions 157
13.3 Arc Length and Curvature 161
13.4 Motion in Space: Velocity and Acceleration 168
Review 173
Problems Plus 179
14 PARTIAL DERIVATIVES 183
14.1 Functions of Several Variables 183
14.2 Limits and Continuity 192
14.3 Partial Derivatives 195
14.4 Tangent Planes and Linear Approximations 203
14.5 The Chain Rule 207
14.6 Directional Derivatives and the Gradient Vector 213
14.7 Maximum and Minimum Values 220
14.8 Lagrange Multipliers 229
Review 234
Problems Plus 245

\qquad
15 MULTIPLE INTEGRALS 247
15.1 Double Integrals over Rectangles 247
15.2 Iterated Integrals 249
15.3 Double Integrals over General Regions 251
15.4 Double Integrals in Polar Coordinates 258
15.5 Applications of Double Integrals 261
15.6 Surface Area 267
15.7 Triple Integrals 269
15.8 Triple Integrals in Cylindrical Coordinates 276
15.9 Triple Integrals in Spherical Coordinates 280
15.10 Change of Variables in Multiple Integrals 285
Review 289
Problems Plus 297
16 VECTOR CALCULUS 303
16.1 Vector Fields 303
16.2 Line Integrals 305
16.3 The Fundamental Theorem for Line Integrals 310
16.4 Green's Theorem 313
16.5 Curl and Divergence 316
16.6 Parametric Surfaces and Their Areas 321
16.7 Surface Integrals 328
16.8 Stokes' Theorem 333
16.9 The Divergence Theorem 335
Review 337
Problems Plus 343
17 SECOND-ORDER DIFFERENTIAL EQUATIONS 345
17.1 Second-Order Linear Equations 345
17.2 Nonhomogeneous Linear Equations 347
17.3 Applications of Second-Order Differential Equations 350
17.4 Series Solutions 352
Review 354
APPENDIX 359
H Complex Numbers 359

$10 \square$ PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1. $x=t^{2}+t, \quad y=t^{2}-t, \quad-2 \leq t \leq 2$

t	-2	-1	0	1	2
x	2	0	0	2	6
y	6	2	0	0	2

3. $x=\cos ^{2} t, \quad y=1-\sin t, \quad 0 \leq t \leq \pi / 2$

t	0	$\pi / 6$	$\pi / 3$	$\pi / 2$
x	1	$3 / 4$	$1 / 4$	0
y	1	$1 / 2$	$1-\frac{\sqrt{3}}{2} \approx 0.13$	0

5. $x=3-4 t, y=2-3 t$
(a)

t	-1	0	1	2
x	7	3	-1	-5
y	5	2	-1	-4

(b) $x=3-4 t \Rightarrow 4 t=-x+3 \Rightarrow t=-\frac{1}{4} x+\frac{3}{4}$, so

$$
y=2-3 t=2-3\left(-\frac{1}{4} x+\frac{3}{4}\right)=2+\frac{3}{4} x-\frac{9}{4} \quad \Rightarrow \quad y=\frac{3}{4} x-\frac{1}{4}
$$

7. $x=1-t^{2}, y=t-2,-2 \leq t \leq 2$
(a)

t	-2	-1	0	1	2
x	-3	0	1	0	-3
y	-4	-3	-2	-1	0

(b) $y=t-2 \Rightarrow t=y+2$, so $x=1-t^{2}=1-(y+2)^{2} \quad \Rightarrow$
 $x=-(y+2)^{2}+1$, or $x=-y^{2}-4 y-3$, with $-4 \leq y \leq 0$
9. $x=\sqrt{t}, y=1-t$
(a)

t	0	1	2	3	4
x	0	1	1.414	1.732	2
y	1	0	-1	-2	-3

(b) $x=\sqrt{t} \Rightarrow t=x^{2} \Rightarrow y=1-t=1-x^{2}$. Since $t \geq 0, x \geq 0$.

So the curve is the right half of the parabola $y=1-x^{2}$.

11. (a) $x=\sin \frac{1}{2} \theta, y=\cos \frac{1}{2} \theta,-\pi \leq \theta \leq \pi$.
$x^{2}+y^{2}=\sin ^{2} \frac{1}{2} \theta+\cos ^{2} \frac{1}{2} \theta=1$. For $-\pi \leq \theta \leq 0$, we have
$-1 \leq x \leq 0$ and $0 \leq y \leq 1$. For $0<\theta \leq \pi$, we have $0<x \leq 1$ and $1>y \geq 0$. The graph is a semicircle.
(b)

13. (a) $x=\sin t, y=\csc t, 0<t<\frac{\pi}{2}$. $y=\csc t=\frac{1}{\sin t}=\frac{1}{x}$.

For $0<t<\frac{\pi}{2}$, we have $0<x<1$ and $y>1$. Thus, the curve is the portion of the hyperbola $y=1 / x$ with $y>1$.
15. (a) $x=e^{2 t} \Rightarrow 2 t=\ln x \quad \Rightarrow \quad t=\frac{1}{2} \ln x$.

$$
y=t+1=\frac{1}{2} \ln x+1
$$

17. (a) $x=\sinh t, y=\cosh t \Rightarrow y^{2}-x^{2}=\cosh ^{2} t-\sinh ^{2} t=1$. Since $y=\cosh t \geq 1$, we have the upper branch of the hyperbola $y^{2}-x^{2}=1$.
(b)

(b)

(b)

18. $x=3+2 \cos t, y=1+2 \sin t, \pi / 2 \leq t \leq 3 \pi / 2$. By Example 4 with $r=2, h=3$, and $k=1$, the motion of the particle takes place on a circle centered at $(3,1)$ with a radius of 2 . As t goes from $\frac{\pi}{2}$ to $\frac{3 \pi}{2}$, the particle starts at the point $(3,3)$ and moves counterclockwise along the circle $(x-3)^{2}+(y-1)^{2}=4$ to $(3,-1)$ [one-half of a circle].
19. $x=5 \sin t, y=2 \cos t \Rightarrow \sin t=\frac{x}{5}$, $\cos t=\frac{y}{2} . \quad \sin ^{2} t+\cos ^{2} t=1 \quad \Rightarrow \quad\left(\frac{x}{5}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1$. The motion of the particle takes place on an ellipse centered at $(0,0)$. As t goes from $-\pi$ to 5π, the particle starts at the point $(0,-2)$ and moves clockwise around the ellipse 3 times.
20. We must have $1 \leq x \leq 4$ and $2 \leq y \leq 3$. So the graph of the curve must be contained in the rectangle $[1,4]$ by $[2,3]$.
21. When $t=-1,(x, y)=(0,-1)$. As t increases to $0, x$ decreases to -1 and y increases to 0 . As t increases from 0 to $1, x$ increases to 0 and y increases to 1 . As t increases beyond 1, both x and y increase. For $t<-1, x$ is positive and decreasing and y is negative and increasing. We could achieve greater accuracy by estimating x - and y-values for selected values of t from the given graphs and plotting the corresponding points.

22. When $t=0$ we see that $x=0$ and $y=0$, so the curve starts at the origin. As t increases from 0 to $\frac{1}{2}$, the graphs show that y increases from 0 to 1 while x increases from 0 to 1 , decreases to 0 and to -1 , then increases back to 0 , so we arrive at the point $(0,1)$. Similarly, as t increases from $\frac{1}{2}$ to $1, y$ decreases from 1
 to 0 while x repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating x - and y-values for selected values of t from the given graphs and plotting the corresponding points.
23. Use $y=t$ and $x=t-2 \sin \pi t$ with a t-interval of $[-\pi, \pi]$.

24. (a) $x=x_{1}+\left(x_{2}-x_{1}\right) t, y=y_{1}+\left(y_{2}-y_{1}\right) t, 0 \leq t \leq 1$. Clearly the curve passes through $P_{1}\left(x_{1}, y_{1}\right)$ when $t=0$ and through $P_{2}\left(x_{2}, y_{2}\right)$ when $t=1$. For $0<t<1, x$ is strictly between x_{1} and x_{2} and y is strictly between y_{1} and y_{2}. For every value of t, x and y satisfy the relation $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$, which is the equation of the line through $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$.

Finally, any point (x, y) on that line satisfies $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$; if we call that common value t, then the given parametric equations yield the point (x, y); and any (x, y) on the line between $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ yields a value of t in $[0,1]$. So the given parametric equations exactly specify the line segment from $P_{1}\left(x_{1}, y_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}\right)$.
(b) $x=-2+[3-(-2)] t=-2+5 t$ and $y=7+(-1-7) t=7-8 t$ for $0 \leq t \leq 1$.
33. The circle $x^{2}+(y-1)^{2}=4$ has center $(0,1)$ and radius 2, so by Example 4 it can be represented by $x=2 \cos t$, $y=1+2 \sin t, 0 \leq t \leq 2 \pi$. This representation gives us the circle with a counterclockwise orientation starting at $(2,1)$.
(a) To get a clockwise orientation, we could change the equations to $x=2 \cos t, y=1-2 \sin t, 0 \leq t \leq 2 \pi$.
(b) To get three times around in the counterclockwise direction, we use the original equations $x=2 \cos t, y=1+2 \sin t$ with the domain expanded to $0 \leq t \leq 6 \pi$.
(c) To start at $(0,3)$ using the original equations, we must have $x_{1}=0$; that is, $2 \cos t=0$. Hence, $t=\frac{\pi}{2}$. So we use $x=2 \cos t, y=1+2 \sin t, \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$.
Alternatively, if we want t to start at 0 , we could change the equations of the curve. For example, we could use $x=-2 \sin t, y=1+2 \cos t, 0 \leq t \leq \pi$.
35. Big circle: It's centered at $(2,2)$ with a radius of 2 , so by Example 4, parametric equations are

$$
x=2+2 \cos t, \quad y=2+2 \sin t, \quad 0 \leq t \leq 2 \pi
$$

Small circles: They are centered at $(1,3)$ and $(3,3)$ with a radius of 0.1 . By Example 4, parametric equations are
and \quad (right) $\quad x=3+0.1 \cos t, \quad y=3+0.1 \sin t, \quad 0 \leq t \leq 2 \pi$
Semicircle: It's the lower half of a circle centered at $(2,2)$ with radius 1. By Example 4, parametric equations are

$$
x=2+1 \cos t, \quad y=2+1 \sin t, \quad \pi \leq t \leq 2 \pi
$$

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last t-interval to $[0,2 \pi]$ in order to match the others. We can do this by changing t to $0.5 t$. This change gives us the upper half. There are several ways to get the lower half-one is to change the " + " to a " - " in the y-assignment, giving us

$$
x=2+1 \cos (0.5 t), \quad y=2-1 \sin (0.5 t), \quad 0 \leq t \leq 2 \pi
$$

37. (a) $x=t^{3} \Rightarrow t=x^{1 / 3}$, so $y=t^{2}=x^{2 / 3}$.

We get the entire curve $y=x^{2 / 3}$ traversed in a left to right direction.

(c) $x=e^{-3 t}=\left(e^{-t}\right)^{3} \quad\left[\right.$ so $\left.e^{-t}=x^{1 / 3}\right]$,
$y=e^{-2 t}=\left(e^{-t}\right)^{2}=\left(x^{1 / 3}\right)^{2}=x^{2 / 3}$.
If $t<0$, then x and y are both larger than 1 . If $t>0$, then x and y are between 0 and 1 . Since $x>0$ and $y>0$, the curve never quite reaches the origin.
39. The case $\frac{\pi}{2}<\theta<\pi$ is illustrated. C has coordinates $(r \theta, r)$ as in Example 7, and Q has coordinates $(r \theta, r+r \cos (\pi-\theta))=(r \theta, r(1-\cos \theta))$ [since $\cos (\pi-\alpha)=\cos \pi \cos \alpha+\sin \pi \sin \alpha=-\cos \alpha]$, so P has coordinates $(r \theta-r \sin (\pi-\theta), r(1-\cos \theta))=(r(\theta-\sin \theta), r(1-\cos \theta))$ [since $\sin (\pi-\alpha)=\sin \pi \cos \alpha-\cos \pi \sin \alpha=\sin \alpha$]. Again we have the parametric equations $x=r(\theta-\sin \theta), y=r(1-\cos \theta)$.

Mんltivariable Calculus 7th Edition Stewart Solutions Manual

41. It is apparent that $x=|O Q|$ and $y=|Q P|=|S T|$. From the diagram, $x=|O Q|=a \cos \theta$ and $y=|S T|=b \sin \theta$. Thus, the parametric equations are $x=a \cos \theta$ and $y=b \sin \theta$. To eliminate θ we rearrange: $\sin \theta=y / b \Rightarrow$ $\sin ^{2} \theta=(y / b)^{2}$ and $\cos \theta=x / a \Rightarrow \cos ^{2} \theta=(x / a)^{2}$. Adding the two equations: $\sin ^{2} \theta+\cos ^{2} \theta=1=x^{2} / a^{2}+y^{2} / b^{2}$. Thus, we have an ellipse.

42. $C=(2 a \cot \theta, 2 a)$, so the x-coordinate of P is $x=2 a \cot \theta$. Let $B=(0,2 a)$. Then $\angle O A B$ is a right angle and $\angle O B A=\theta$, so $|O A|=2 a \sin \theta$ and $A=((2 a \sin \theta) \cos \theta,(2 a \sin \theta) \sin \theta)$. Thus, the y-coordinate of P is $y=2 a \sin ^{2} \theta$.

43. (a)

There are 2 points of intersection: $(-3,0)$ and approximately $(-2.1,1.4)$.
(b) A collision point occurs when $x_{1}=x_{2}$ and $y_{1}=y_{2}$ for the same t. So solve the equations:

$$
\begin{align*}
& 3 \sin t=-3+\cos t \\
& 2 \cos t=1+\sin t \tag{2}
\end{align*}
$$

From (2), $\sin t=2 \cos t-1$. Substituting into (1), we get $3(2 \cos t-1)=-3+\cos t \Rightarrow 5 \cos t=0 \quad(\star) \Rightarrow$ $\cos t=0 \Rightarrow t=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$. We check that $t=\frac{3 \pi}{2}$ satisfies (1) and (2) but $t=\frac{\pi}{2}$ does not. So the only collision point occurs when $t=\frac{3 \pi}{2}$, and this gives the point $(-3,0)$. [We could check our work by graphing x_{1} and x_{2} together as functions of t and, on another plot, y_{1} and y_{2} as functions of t. If we do so, we see that the only value of t for which both pairs of graphs intersect is $t=\frac{3 \pi}{2}$.]
(c) The circle is centered at $(3,1)$ instead of $(-3,1)$. There are still 2 intersection points: $(3,0)$ and $(2.1,1.4)$, but there are no collision points, since (\star) in part (b) becomes $5 \cos t=6 \Rightarrow \cos t=\frac{6}{5}>1$.
47. $x=t^{2}, y=t^{3}-c t$. We use a graphing device to produce the graphs for various values of c with $-\pi \leq t \leq \pi$. Note that all the members of the family are symmetric about the x-axis. For $c<0$, the graph does not cross itself, but for $c=0$ it has a cusp at $(0,0)$ and for $c>0$ the graph crosses itself at $x=c$, so the loop grows larger as c increases.

[^0]
[^0]: (c) 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

