COMPLETE SOLUTIONS MANUAL for Stewart's

MULTIVARIABLE CALCULUS: CONCEPTS AND CONTEXTS FOURTH EDITION

DAN CLEGG
Palomar College

© 2010 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions.

Further permissions questions can be e-mailed to permissionrequest@cengage.com.

ISBN-13: 978-0-495-56056-2
ISBN-10: 0-495-56056-1

Brooks/Cole

10 Davis Drive
Belmont, CA 94002-3098
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at www.cengage.com/international.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Brooks/Cole, visit
www.cengage.com/brookscole.
Purchase any of our products at your local college store or at our preferred online store www.ichapters.com.

READ IMPORTANT LICENSE INFORMATION

Dear Professor or Other Supplement Recipient:
Cengage Learning has provided you with this product (the "Supplement") for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the "Course"), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute any portion of the Supplement to any third
party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an "as is" basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State's conflict of law rules.

Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

PREFACE

This Complete Solutions Manual contains detailed solutions to all exercises in the text Multivariable Calculus: Concepts and Contexts, Fourth Edition (Chapters 8-13 of Calculus: Concepts and Contexts, Fourth Edition) by James Stewart. A Student Solutions Manual is also available, which contains solutions to the odd-numbered exercises in each chapter section, review section, True-False Quiz, and Focus on Problem Solving section as well as all solutions to the Concept Check questions. (It does not, however, include solutions to any of the projects.)

While I have extended every effort to ensure the accuracy of the solutions presented, I would appreciate correspondence regarding any errors that may exist. Other suggestions or comments are also welcome, and can be sent to me at the email address or mailing address below.

I would like to thank James Stewart for entrusting me with the writing of this manual and offering suggestions, Kathi Townes, Stephanie Kuhns, and Rebekah Steele of TECH-arts for typesetting and producing this manual, and Brian Betsill of TECH-arts for creating the illustrations. Brian Karasek prepared solutions for comparison of accuracy and style in addition to proofreading manuscript; his assistance and suggestions were very helpful and much appreciated. Finally, I would like to thank Richard Stratton and Elizabeth Neustaetter of Brooks/Cole, Cengage Learning for their trust, assistance, and patience.

DAN CLEGG
dclegg@palomar.edu
Palomar College
Department of Mathematics
1140 West Mission Road
San Marcos, CA 92069

NOT FOR SALE

CONTENTS

8.1 Sequences 1

Laboratory Project : Logistic Sequences 9
8.2 Series 13
8.3 The Integral and Comparison Tests; Estimating Sums 26
8.4 Other Convergence Tests 32
8.5 Power Series 39
8.6 Representations of Functions as Power Series 46
8.7 Taylor and Maclaurin Series 55

Laboratory Project an Elusive Limit 69
8.8 Applications of Taylor Polynomials 70

Applied Project - Radiation from the Stars 81
Review 83

Focus on Problem Solving 95

$9 \quad$ VECTORS AND THE GEOMETRY OF SPACE 101

9.1 Three-Dimensional Coordinate Systems 101
9.2 Vectors 108
9.3 The Dot Product 115
9.4 The Cross Product 122

Discovery Project - The Geometry of a Tetrahedron 130
9.5 Equations of Lines and Planes 132

Laboratory Project a Putting 3D in Perspective 141
9.6 Functions and Surfaces 143
9.7 Cylindrical and Spherical Coordinates 151

Laboratory Project . Families of Surfaces 156
Review 158
Focus on Problem Solving 169
10
VECTOR FUNCTIONS 175
10.1 Vector Functions and Space Curves 175
10.2 Derivatives and Integrals of Vector Functions 185
10.3 Arc Length and Curvature 195
10.4 Motion in Space: Velocity and Acceleration 208
Applied Project - Kepler's Laws 218
10.5 Parametric Surfaces 219
Review 225
Focus on Problem Solving 231
$11 \quad$ PARTIAL DERIVATIVES 239
11.1 Functions of Several Variables 239
11.2 Limits and Continuity 249
11.3 Partial Derivatives 256
11.4 Tangent Planes and Linear Approximations 272
11.5 The Chain Rule 280
11.6 Directional Derivatives and the Gradient Vector 290
11.7 Maximum and Minimum Values 302
Applied Project - Designing a Dumpster 318
Discovery Project • Quadratic Approximations and Critical Points 320
11.8 Lagrange Multipliers 323
Applied Project - Rocket Science 333
Applied Project : Hydro-Turbine Optimization 335
Review 338
Focus on Problem Solving 351
12 MULTIPLE INTEGRALS 357
12.1 Double Integrals over Rectangles 357
12.2 Iterated Integrals 362
12.3 Double Integrals over General Regions 368
12.4 Double Integrals in Polar Coordinates 380
12.5 Applications of Double Integrals 386
12.6 Surface Area 395
12.7 Triple Integrals 400
Discovery Project • Volumes of Hyperspheres 416
12.8 Triple Integrals in Cylindrical and Spherical Coordinates 417
Applied Project • Roller Derby 425
Discovery Project - The Intersection of Three Cylinders 427
12.9 Change of Variables in Multiple Integrals 429
Review 435
Focus on Problem Solving 447
13 VECTOR CALCULUS 453
13.1 Vector Fields 453
13.2 Line Integrals 458
13.3 The Fundamental Theorem for Line Integrals 466
13.4 Green's Theorem 471
13.5 Curl and Divergence 478
13.6 Surface Integrals 486
13.7 Stokes' Theorem 497
13.8 The Divergence Theorem 501
Review 505
Focus on Problem Solving 515
APPENDIXES 519
D Precise Definitions of Limits 519
H Polar Coordinates 519
Discovery Project - Conic Sections in Polar Coordinates 543
I Complex Numbers 544

NOT FOR SALE

$8 \square$ INFINITE SEQUENCES AND SERIES

8.1 Sequences

1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.
(b) The terms a_{n} approach 8 as n becomes large. In fact, we can make a_{n} as close to 8 as we like by taking n sufficiently large.
(c) The terms a_{n} become large as n becomes large. In fact, we can make a_{n} as large as we like by taking n sufficiently large.
2. (a) From Definition 1, a convergent sequence is a sequence for which $\lim _{n \rightarrow \infty} a_{n}$ exists. Examples: $\{1 / n\},\left\{1 / 2^{n}\right\}$
(b) A divergent sequence is a sequence for which $\lim _{n \rightarrow \infty} a_{n}$ does not exist. Examples: $\{n\},\{\sin n\}$
3. The first six terms of $a_{n}=\frac{n}{2 n+1}$ are $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{5}{11}, \frac{6}{13}$. It appears that the sequence is approaching $\frac{1}{2}$. $\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\lim _{n \rightarrow \infty} \frac{1}{2+1 / n}=\frac{1}{2}$
4. $\{\cos (n \pi / 3)\}_{n=1}^{9}=\left\{\frac{1}{2},-\frac{1}{2},-1,-\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2},-\frac{1}{2},-1\right\}$. The sequence does not appear to have a limit. The values will cycle through the first six numbers in the sequence-never approaching a particular number.
5. $\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\right\}$. The denominator of the nth term is the nth positive odd integer, so $a_{n}=\frac{1}{2 n-1}$.
6. $\left\{1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \ldots\right\}$. The denominator of the nth term is the $(n-1)$ st power of 3 , so $a_{n}=\frac{1}{3^{n-1}}$.
7. $\{2,7,12,17, \ldots\}$. Each term is larger than the preceding one by 5 , so $a_{n}=a_{1}+d(n-1)=2+5(n-1)=5 n-3$.
8. $\left\{-\frac{1}{4}, \frac{2}{9},-\frac{3}{16}, \frac{4}{25}, \ldots\right\}$. The numerator of the nth term is n and its denominator is $(n+1)^{2}$. Including the alternating signs, we get $a_{n}=(-1)^{n} \frac{n}{(n+1)^{2}}$.
9. $\left\{1,-\frac{2}{3}, \frac{4}{9},-\frac{8}{27}, \ldots\right\}$. Each term is $-\frac{2}{3}$ times the preceding one, so $a_{n}=\left(-\frac{2}{3}\right)^{n-1}$.
10. $\{5,1,5,1,5,1, \ldots\}$. The average of 5 and 1 is 3 , so we can think of the sequence as alternately adding 2 and -2 to 3 . Thus, $a_{n}=3+(-1)^{n+1} \cdot 2$.
11. $a_{n}=\frac{3+5 n^{2}}{n+n^{2}}=\frac{\left(3+5 n^{2}\right) / n^{2}}{\left(n+n^{2}\right) / n^{2}}=\frac{5+3 / n^{2}}{1+1 / n}$, so $a_{n} \rightarrow \frac{5+0}{1+0}=5$ as $n \rightarrow \infty$. Converges
12. $a_{n}=\frac{n^{3}}{n^{3}+1}=\frac{n^{3} / n^{3}}{\left(n^{3}+1\right) / n^{3}}=\frac{1}{1+1 / n^{3}}$, so $a_{n} \rightarrow \frac{1}{1+0}=1$ as $n \rightarrow \infty$. Converges
13. $a_{n}=1-(0.2)^{n}$, so $\lim _{n \rightarrow \infty} a_{n}=1-0=1$ by (7). Converges
14. $a_{n}=\frac{n^{3}}{n+1}=\frac{n^{3} / n}{(n+1) / n}=\frac{n^{2}}{1+1 / n^{2}}$, so $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$ since $\lim _{n \rightarrow \infty} n^{2}=\infty$ and $\lim _{n \rightarrow \infty}\left(1+1 / n^{2}\right)=1$. Diverges
15. Because the natural exponential function is continuous at 0 , Theorem 5 enables us to write
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} e^{1 / n}=e^{\lim _{n \rightarrow \infty}(1 / n)}=e^{0}=1 . \quad$ Converges
16. $a_{n}=\frac{3^{n+2}}{5^{n}}=\frac{3^{2} 3^{n}}{5^{n}}=9\left(\frac{3}{5}\right)^{n}$, so $\lim _{n \rightarrow \infty} a_{n}=9 \lim _{n \rightarrow \infty}\left(\frac{3}{5}\right)^{n}=9 \cdot 0=0$ by (7) with $r=\frac{3}{5}$. Converges
17. If $b_{n}=\frac{2 n \pi}{1+8 n}$, then $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{(2 n \pi) / n}{(1+8 n) / n}=\lim _{n \rightarrow \infty} \frac{2 \pi}{1 / n+8}=\frac{2 \pi}{8}=\frac{\pi}{4}$. Since \tan is continuous at $\frac{\pi}{4}$, by Theorem 5, $\lim _{n \rightarrow \infty} \tan \left(\frac{2 n \pi}{1+8 n}\right)=\tan \left(\lim _{n \rightarrow \infty} \frac{2 n \pi}{1+8 n}\right)=\tan \frac{\pi}{4}=1$. Converges
18. Using the last limit law for sequences and the continuity of the square root function,
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{9 n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n+1}{9 n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{1+1 / n}{9+1 / n}}=\sqrt{\frac{1}{9}}=\frac{1}{3} . \quad$ Converges
19. $a_{n}=\frac{(-1)^{n-1} n}{n^{2}+1}=\frac{(-1)^{n-1}}{n+1 / n}$, so $0 \leq\left|a_{n}\right|=\frac{1}{n+1 / n} \leq \frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, so $a_{n} \rightarrow 0$ by the Squeeze Theorem and Theorem 4. Converges
20. $a_{n}=\frac{(-1)^{n} n^{3}}{n^{3}+2 n^{2}+1}$. Now $\left|a_{n}\right|=\frac{n^{3}}{n^{3}+2 n^{2}+1}=\frac{1}{1+\frac{2}{n}+\frac{1}{n^{3}}} \rightarrow 1$ as $n \rightarrow \infty$, but the terms of the sequence $\left\{a_{n}\right\}$ alternate in sign, so the sequence $a_{1}, a_{3}, a_{5}, \ldots$ converges to -1 and the sequence $a_{2}, a_{4}, a_{6}, \ldots$ converges to +1 . This shows that the given sequence diverges since its terms don't approach a single real number.
21. $a_{n}=\frac{e^{n}+e^{-n}}{e^{2 n}-1} \cdot \frac{e^{-n}}{e^{-n}}=\frac{1+e^{-2 n}}{e^{n}-e^{-n}} \rightarrow 0$ as $n \rightarrow \infty$ because $1+e^{-2 n} \rightarrow 1$ and $e^{n}-e^{-n} \rightarrow \infty$. Converges
22. $a_{n}=\cos (2 / n)$. As $n \rightarrow \infty, 2 / n \rightarrow 0$, so $\cos (2 / n) \rightarrow \cos 0=1$ because cos is continuous. Converges
23. $a_{n}=n^{2} e^{-n}=\frac{n^{2}}{e^{n}}$. Since $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{2 x}{e^{x}} \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0$, it follows from Theorem 2 that $\lim _{n \rightarrow \infty} a_{n}=0$. Converges
24. $2 n \rightarrow \infty$ as $n \rightarrow \infty$, so since $\lim _{x \rightarrow \infty} \arctan x=\frac{\pi}{2}$, we have $\lim _{n \rightarrow \infty} \arctan 2 n=\frac{\pi}{2}$. Converges
25. $0 \leq \frac{\cos ^{2} n}{2^{n}} \leq \frac{1}{2^{n}} \quad\left[\right.$ since $\left.0 \leq \cos ^{2} n \leq 1\right]$, so since $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0,\left\{\frac{\cos ^{2} n}{2^{n}}\right\}$ converges to 0 by the Squeeze Theorem.
26. $a_{n}=n \cos n \pi=n(-1)^{n}$. Since $\left|a_{n}\right|=n \rightarrow \infty$ as $n \rightarrow \infty$, the given sequence diverges.
27. $y=\left(1+\frac{2}{x}\right)^{x} \Rightarrow \ln y=x \ln \left(1+\frac{2}{x}\right)$, so
$\lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln (1+2 / x)}{1 / x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\left(\frac{1}{1+2 / x}\right)\left(-\frac{2}{x^{2}}\right)}{-1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{2}{1+2 / x}=2 \Rightarrow$ $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}=\lim _{x \rightarrow \infty} e^{\ln y}=e^{2}$, so by Theorem 2, $\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n}=e^{2}$. Convergent
28. $a_{n}=\sqrt[n]{2^{1+3 n}}=\left(2^{1+3 n}\right)^{1 / n}=\left(2^{1} 2^{3 n}\right)^{1 / n}=2^{1 / n} 2^{3}=8 \cdot 2^{1 / n}$, so
$\lim _{n \rightarrow \infty} a_{n}=8 \lim _{n \rightarrow \infty} 2^{1 / n}=8 \cdot 2^{\lim _{n \rightarrow \infty}(1 / n)}=8 \cdot 2^{0}=8$ by Theorem 5 , since the function $f(x)=2^{x}$ is continuous at 0.
Convergent
29. $a_{n}=\frac{(2 n-1)!}{(2 n+1)!}=\frac{(2 n-1)!}{(2 n+1)(2 n)(2 n-1)!}=\frac{1}{(2 n+1)(2 n)} \rightarrow 0$ as $n \rightarrow \infty$. Converges
30. $a_{n}=\frac{\sin 2 n}{1+\sqrt{n}} . \quad\left|a_{n}\right| \leq \frac{1}{1+\sqrt{n}}$ and $\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{n}}=0$, so $\frac{-1}{1+\sqrt{n}} \leq a_{n} \leq \frac{1}{1+\sqrt{n}} \quad \Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=0$ by the

Squeeze Theorem. Converges
31. $\{0,1,0,0,1,0,0,0,1, \ldots\}$ diverges since the sequence takes on only two values, 0 and 1 , and never stays arbitrarily close to either one (or any other value) for n sufficiently large.
32. $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x} \stackrel{\text { H }}{=} \lim _{x \rightarrow \infty} \frac{2(\ln x)(1 / x)}{1}=2 \lim _{x \rightarrow \infty} \frac{\ln x}{x} \stackrel{\text { H }}{=} 2 \lim _{x \rightarrow \infty} \frac{1 / x}{1}=0$, so by Theorem $3, \lim _{n \rightarrow \infty} \frac{(\ln n)^{2}}{n}=0$. Convergent
33. $a_{n}=\ln \left(2 n^{2}+1\right)-\ln \left(n^{2}+1\right)=\ln \left(\frac{2 n^{2}+1}{n^{2}+1}\right)=\ln \left(\frac{2+1 / n^{2}}{1+1 / n^{2}}\right) \rightarrow \ln 2$ as $n \rightarrow \infty$. Convergent
34. $0<\left|a_{n}\right|=\frac{3^{n}}{n!}=\frac{3}{1} \cdot \frac{3}{2} \cdot \frac{3}{3} \cdots \cdots \frac{3}{(n-1)} \cdot \frac{3}{n} \leq \frac{3}{1} \cdot \frac{3}{2} \cdot \frac{3}{n} \quad[$ for $n>2]=\frac{27}{2 n} \rightarrow 0$ as $n \rightarrow \infty$, so by the Squeeze Theorem and Theorem 4, $\left\{(-3)^{n} / n!\right\}$ converges to 0 .
35. 2

36.

From the graph, it appears that the sequence converges to 1 .

$$
\left\{(-2 / e)^{n}\right\} \text { converges to } 0 \text { by }(7) \text {, and hence }\left\{1+(-2 / e)^{n}\right\}
$$ converges to $1+0=1$.

From the graph, it appears that the sequence converges to a number greater than 3 .

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \sqrt{n} \sin \left(\frac{\pi}{\sqrt{n}}\right)=\lim _{n \rightarrow \infty} \frac{\sin (\pi / \sqrt{n})}{\pi / \sqrt{n}} \cdot \pi \\
& =\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \cdot \pi \quad[x=\pi / \sqrt{n}]=1 \cdot \pi=\pi .
\end{aligned}
$$

37.

38.

From the graph, it appears that the sequence converges to $\frac{1}{2}$.
As $n \rightarrow \infty$,

$$
\begin{aligned}
& a_{n}=\sqrt{\frac{3+2 n^{2}}{8 n^{2}+n}}=\sqrt{\frac{3 / n^{2}+2}{8+1 / n}} \Rightarrow \sqrt{\frac{0+2}{8+0}}=\sqrt{\frac{1}{4}}=\frac{1}{2}, \\
& \text { so } \lim _{n \rightarrow \infty} a_{n}=\frac{1}{2}
\end{aligned}
$$

From the graph, it appears that the sequence converges to 5 .

$$
\begin{aligned}
5=\sqrt[n]{5^{n}} & \leq \sqrt[n]{3^{n}+5^{n}} \leq \sqrt[n]{5^{n}+5^{n}}=\sqrt[n]{2} \sqrt[n]{5^{n}} \\
& =\sqrt[n]{2} \cdot 5 \rightarrow 5 \text { as } n \rightarrow \infty \quad\left[\lim _{n \rightarrow \infty} 2^{1 / n}=2^{0}=1\right]
\end{aligned}
$$

Hence, $a_{n} \rightarrow 5$ by the Squeeze Theorem.

Alternate solution: Let $y=\left(3^{x}+5^{x}\right)^{1 / x}$. Then
$\lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln \left(3^{x}+5^{x}\right)}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{3^{x} \ln 3+5^{x} \ln 5}{3^{x}+5^{x}}=\lim _{x \rightarrow \infty} \frac{\left(\frac{3}{5}\right)^{x} \ln 3+\ln 5}{\left(\frac{3}{5}\right)^{x}+1}=\ln 5$,
so $\lim _{x \rightarrow \infty} y=e^{\ln 5}=5$, and so $\left\{\sqrt[n]{3^{n}+5^{n}}\right\}$ converges to 5 .
39.
 From the graph, it appears that the sequence $\left\{a_{n}\right\}=\left\{\frac{n^{2} \cos n}{1+n^{2}}\right\}$ is divergent, since it oscillates between 1 and -1 (approximately). To prove this, suppose that $\left\{a_{n}\right\}$ converges to L. If $b_{n}=\frac{n^{2}}{1+n^{2}}$, then $\left\{b_{n}\right\}$ converges to 1 , and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{1}=L$. But $\frac{a_{n}}{b_{n}}=\cos n$, so $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ does not exist. This contradiction shows that $\left\{a_{n}\right\}$ diverges.
40.

From the graph, it appears that the sequence approaches 0 .

$$
\begin{aligned}
0<a_{n} & =\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}{(2 n)^{n}}=\frac{1}{2 n} \cdot \frac{3}{2 n} \cdot \frac{5}{2 n} \cdots \cdots \frac{2 n-1}{2 n} \\
& \leq \frac{1}{2 n} \cdot(1) \cdot(1) \cdots(1)=\frac{1}{2 n} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

So by the Squeeze Theorem, $\left\{\frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{(2 n)^{n}}\right\}$ converges to 0 .
41. (a) $a_{n}=1000(1.06)^{n} \Rightarrow a_{1}=1060, a_{2}=1123.60, a_{3}=1191.02, a_{4}=1262.48$, and $a_{5}=1338.23$.
(b) $\lim _{n \rightarrow \infty} a_{n}=1000 \lim _{n \rightarrow \infty}(1.06)^{n}$, so the sequence diverges by (7) with $r=1.06>1$.
42. (a) Substitute 1 to 6 for n in $I_{n}=100\left(\frac{1.0025^{n}-1}{0.0025}-n\right)$ to get $I_{1}=\$ 0, I_{2}=\$ 0.25, I_{3}=\$ 0.75, I_{4}=\$ 1.50$, $I_{5}=\$ 2.51$, and $I_{6}=\$ 3.76$.
(b) For two years, use $2 \cdot 12=24$ for n to get $\$ 70.28$.
43. (a) We are given that the initial population is 5000 , so $P_{0}=5000$. The number of catfish increases by 8% per month and is decreased by 300 per month, so $P_{1}=P_{0}+8 \% P_{0}-300=1.08 P_{0}-300, P_{2}=1.08 P_{1}-300$, and so on. Thus, $P_{n}=1.08 P_{n-1}-300$.
(b) Using the recursive formula with $P_{0}=5000$, we get $P_{1}=5100, P_{2}=5208, P_{3}=5325$ (rounding any portion of a catfish), $P_{4}=5451, P_{5}=5587$, and $P_{6}=5734$, which is the number of catfish in the pond after six months.
44. $a_{n+1}=\left\{\begin{array}{ll}\frac{1}{2} a_{n} & \text { if } a_{n} \text { is an even number } \\ 3 a_{n}+1 & \text { if } a_{n} \text { is an odd number }\end{array} \quad\right.$ When $a_{1}=11$, the first 40 terms are $11,34,17,52,26,13,40,20,10,5$, $16,8,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4$. When $a_{1}=25$, the first 40 terms are $25,76,38$, $19,58,29,88,44,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4$.

The famous Collatz conjecture is that this sequence always reaches 1 , regardless of the starting point a_{1}.
45. (a) $a_{1}=1, a_{n+1}=4-a_{n}$ for $n \geq 1 . \quad a_{1}=1, a_{2}=4-a_{1}=4-1=3, a_{3}=4-a_{2}=4-3=1$, $a_{4}=4-a_{3}=4-1=3, a_{5}=4-a_{4}=4-3=1$. Since the terms of the sequence alternate between 1 and 3, the sequence is divergent.
(b) $a_{1}=2, a_{2}=4-a_{1}=4-2=2, a_{3}=4-a_{2}=4-2=2$. Since all of the terms are $2, \lim _{n \rightarrow \infty} a_{n}=2$ and hence, the sequence is convergent.
46. (a) Since $\lim _{n \rightarrow \infty} a_{n}=L$, the terms a_{n} approach L as n becomes large. Because we can make a_{n} as close to L as we wish, a_{n+1} will also be close, and so $\lim _{n \rightarrow \infty} a_{n+1}=L$.
(b) $a_{1}=1, a_{2}=\frac{1}{1+a_{1}}=\frac{1}{1+1}=\frac{1}{2}=0.5, \quad a_{3}=\frac{1}{1+a_{2}}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3} \approx 0.66667$,
$a_{4}=\frac{1}{1+a_{3}}=\frac{1}{1+\frac{2}{3}}=\frac{3}{5}=0.6, \quad a_{5}=\frac{1}{1+a_{4}}=\frac{1}{1+\frac{3}{5}}=\frac{5}{8}=0.625$,
$a_{6}=\frac{1}{1+a_{5}}=\frac{1}{1+\frac{5}{8}}=\frac{8}{13} \approx 0.61538, \quad a_{7}=\frac{1}{1+a_{6}}=\frac{1}{1+\frac{8}{13}}=\frac{13}{21} \approx 0.61905$,
$a_{8}=\frac{1}{1+a_{7}}=\frac{1}{1+\frac{13}{21}}=\frac{21}{34} \approx 0.61765, \quad a_{9}=\frac{1}{1+a_{8}}=\frac{1}{1+\frac{21}{34}}=\frac{34}{55} \approx 0.61818$,
$a_{10}=\frac{1}{1+a_{9}}=\frac{1}{1+\frac{34}{55}}=\frac{55}{89} \approx 0.61800$. It appears that $\lim _{n \rightarrow \infty} a_{n} \approx 0.618$; hence, the sequence is convergent.
(c) If $L=\lim _{n \rightarrow \infty} a_{n}$ then $\lim _{n \rightarrow \infty} a_{n+1}=L$ also, so L must satisfy
$L=1 /(1+L) \quad \Rightarrow \quad L^{2}+L-1=0 \quad \Rightarrow \quad L=\frac{-1+\sqrt{5}}{2} \approx 0.618$ (since L has to be non-negative if it exists).
47. (a) Let a_{n} be the number of rabbit pairs in the nth month. Clearly $a_{1}=1=a_{2}$. In the nth month, each pair that is 2 or more months old (that is, a_{n-2} pairs) will produce a new pair to add to the a_{n-1} pairs already present. Thus, $a_{n}=a_{n-1}+a_{n-2}$, so that $\left\{a_{n}\right\}=\left\{f_{n}\right\}$, the Fibonacci sequence.
(b) $a_{n}=\frac{f_{n+1}}{f_{n}} \Rightarrow a_{n-1}=\frac{f_{n}}{f_{n-1}}=\frac{f_{n-1}+f_{n-2}}{f_{n-1}}=1+\frac{f_{n-2}}{f_{n-1}}=1+\frac{1}{f_{n-1} / f_{n-2}}=1+\frac{1}{a_{n-2}}$. If $L=\lim _{n \rightarrow \infty} a_{n}$, then $L=\lim _{n \rightarrow \infty} a_{n-1}$ and $L=\lim _{n \rightarrow \infty} a_{n-2}$, so L must satisfy $L=1+\frac{1}{L} \Rightarrow L^{2}-L-1=0 \Rightarrow L=\frac{1+\sqrt{5}}{2}$ [since L must be positive].
48. For $\{\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \ldots\}, a_{1}=2^{1 / 2}, a_{2}=2^{3 / 4}, a_{3}=2^{7 / 8}, \ldots$, so $a_{n}=2^{\left(2^{n}-1\right) / 2^{n}}=2^{1-\left(1 / 2^{n}\right)}$.
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} 2^{1-\left(1 / 2^{n}\right)}=2^{1}=2$.
Alternate solution: Let $L=\lim _{n \rightarrow \infty} a_{n}$. (We could show the limit exists by showing that $\left\{a_{n}\right\}$ is bounded and increasing.) Then L must satisfy $L=\sqrt{2 \cdot L} \quad \Rightarrow \quad L^{2}=2 L \quad \Rightarrow \quad L(L-2)=0 . L \neq 0$ since the sequence increases, so $L=2$.
49. $a_{n}=\frac{1}{2 n+3}$ is decreasing since $a_{n+1}=\frac{1}{2(n+1)+3}=\frac{1}{2 n+5}<\frac{1}{2 n+3}=a_{n}$ for each $n \geq 1$. The sequence is bounded since $0<a_{n} \leq \frac{1}{5}$ for all $n \geq 1$. Note that $a_{1}=\frac{1}{5}$.
50. $a_{n}=\frac{2 n-3}{3 n+4}$ defines an increasing sequence since for $f(x)=\frac{2 x-3}{3 x+4}$,
$f^{\prime}(x)=\frac{(3 x+4)(2)-(2 x-3)(3)}{(3 x+4)^{2}}=\frac{17}{(3 x+4)^{2}}>0$. The sequence is bounded since $a_{n} \geq a_{1}=-\frac{1}{7}$ for $n \geq 1$, and $a_{n}<\frac{2 n-3}{3 n}<\frac{2 n}{3 n}=\frac{2}{3}$ for $n \geq 1$.
51. The terms of $a_{n}=n(-1)^{n}$ alternate in sign, so the sequence is not monotonic. The first five terms are $-1,2,-3,4$, and -5 . Since $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} n=\infty$, the sequence is not bounded.
52. $a_{n}=n+\frac{1}{n}$ defines an increasing sequence since the function $g(x)=x+\frac{1}{x}$ is increasing for $x>1 .\left[g^{\prime}(x)=1-1 / x^{2}>0\right.$ for $x>$ 1.] The sequence is unbounded since $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. (It is, however, bounded below by $a_{1}=2$.)
53. Since $\left\{a_{n}\right\}$ is a decreasing sequence, $a_{n}>a_{n+1}$ for all $n \geq 1$. Because all of its terms lie between 5 and $8,\left\{a_{n}\right\}$ is a bounded sequence. By the Monotonic Sequence Theorem, $\left\{a_{n}\right\}$ is convergent; that is, $\left\{a_{n}\right\}$ has a limit $L . L$ must be less than 8 since $\left\{a_{n}\right\}$ is decreasing, so $5 \leq L<8$.
54. (a) Let P_{n} be the statement that $a_{n+1} \geq a_{n}$ and $a_{n} \leq 3 . P_{1}$ is obviously true. We will assume that P_{n} is true and then show that as a consequence P_{n+1} must also be true. $a_{n+2} \geq a_{n+1} \Leftrightarrow \sqrt{2+a_{n+1}} \geq \sqrt{2+a_{n}} \Leftrightarrow$
$2+a_{n+1} \geq 2+a_{n} \Leftrightarrow a_{n+1} \geq a_{n}$, which is the induction hypothesis. $a_{n+1} \leq 3 \Leftrightarrow \sqrt{2+a_{n}} \leq 3 \Leftrightarrow$ $2+a_{n} \leq 9 \Leftrightarrow a_{n} \leq 7$, which is certainly true because we are assuming that $a_{n} \leq 3$. So P_{n} is true for all n, and so $a_{1} \leq a_{n} \leq 3$ (showing that the sequence is bounded), and hence by the Monotonic Sequence Theorem, $\lim _{n \rightarrow \infty} a_{n}$ exists.
(b) If $L=\lim _{n \rightarrow \infty} a_{n}$, then $\lim _{n \rightarrow \infty} a_{n+1}=L$ also, so $L=\sqrt{2+L} \Rightarrow L^{2}=2+L \quad \Leftrightarrow \quad L^{2}-L-2=0 \quad \Leftrightarrow$ $(L+1)(L-2)=0 \quad \Leftrightarrow \quad L=2$ [since L can't be negative].
55. $a_{1}=1, a_{n+1}=3-\frac{1}{a_{n}}$. We show by induction that $\left\{a_{n}\right\}$ is increasing and bounded above by 3 . Let P_{n} be the proposition that $a_{n+1}>a_{n}$ and $0<a_{n}<3$. Clearly P_{1} is true. Assume that P_{n} is true. Then $a_{n+1}>a_{n} \Rightarrow \frac{1}{a_{n+1}}<\frac{1}{a_{n}} \Rightarrow$ $-\frac{1}{a_{n+1}}>-\frac{1}{a_{n}}$. Now $a_{n+2}=3-\frac{1}{a_{n+1}}>3-\frac{1}{a_{n}}=a_{n+1} \quad \Leftrightarrow \quad P_{n+1}$. This proves that $\left\{a_{n}\right\}$ is increasing and bounded above by 3 , so $1=a_{1}<a_{n}<3$, that is, $\left\{a_{n}\right\}$ is bounded, and hence convergent by the Monotonic Sequence Theorem. If $L=\lim _{n \rightarrow \infty} a_{n}$, then $\lim _{n \rightarrow \infty} a_{n+1}=L$ also, so L must satisfy $L=3-1 / L \Rightarrow L^{2}-3 L+1=0 \Rightarrow L=\frac{3 \pm \sqrt{5}}{2}$. But $L>1$, so $L=\frac{3+\sqrt{5}}{2}$.
56. $a_{1}=2, a_{n+1}=\frac{1}{3-a_{n}}$. We use induction. Let P_{n} be the statement that $0<a_{n+1} \leq a_{n} \leq 2$. Clearly P_{1} is true, since $a_{2}=1 /(3-2)=1$. Now assume that P_{n} is true. Then $a_{n+1} \leq a_{n} \Rightarrow-a_{n+1} \geq-a_{n} \Rightarrow 3-a_{n+1} \geq 3-a_{n} \Rightarrow$ $a_{n+2}=\frac{1}{3-a_{n+1}} \leq \frac{1}{3-a_{n}}=a_{n+1}$. Also $a_{n+2}>0$ [since $3-a_{n+1}$ is positive] and $a_{n+1} \leq 2$ by the induction hypothesis, so P_{n+1} is true. To find the limit, we use the fact that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1} \Rightarrow L=\frac{1}{3-L} \Rightarrow$ $L^{2}-3 L+1=0 \Rightarrow L=\frac{3 \pm \sqrt{5}}{2}$. But $L \leq 2$, so we must have $L=\frac{3-\sqrt{5}}{2}$.
57. $(0.8)^{n}<0.000001 \Rightarrow \ln (0.8)^{n}<\ln (0.000001) \quad \Rightarrow \quad n \ln (0.8)<\ln (0.000001) \Rightarrow n>\frac{\ln (0.000001)}{\ln (0.8)} \Rightarrow$ $n>61.9$, so n must be at least 62 to satisfy the given inequality.
58. (a) If f is continuous, then $f(L)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} a_{n}=L$ by Exercise 46(a).
(b) By repeatedly pressing the cosine key on the calculator (that is, taking cosine of the previous answer) until the displayed value stabilizes, we see that $L \approx 0.73909$.
59. (a) Suppose $\left\{p_{n}\right\}$ converges to p. Then $p_{n+1}=\frac{b p_{n}}{a+p_{n}} \Rightarrow \lim _{n \rightarrow \infty} p_{n+1}=\frac{b \lim _{n \rightarrow \infty} p_{n}}{a+\lim _{n \rightarrow \infty} p_{n}} \quad \Rightarrow \quad p=\frac{b p}{a+p} \Rightarrow$

$$
p^{2}+a p=b p \quad \Rightarrow \quad p(p+a-b)=0 \quad \Rightarrow \quad p=0 \text { or } p=b-a
$$

(b) $p_{n+1}=\frac{b p_{n}}{a+p_{n}}=\frac{\left(\frac{b}{a}\right) p_{n}}{1+\frac{p_{n}}{a}}<\left(\frac{b}{a}\right) p_{n}$ since $1+\frac{p_{n}}{a}>1$.

