Solutions of Equations of One Variable

Exercise Set 2.1, page 54

- 1. $p_3 = 0.625$
- 2. (a) $p_3 = -0.6875$
 - (b) $p_3 = 1.09375$
- 3. The Bisection method gives:
 - (a) $p_7 = 0.5859$
 - (b) $p_8 = 3.002$
 - (c) $p_7 = 3.419$
- 4. The Bisection method gives:
 - (a) $p_7 = -1.414$
 - (b) $p_8 = 1.414$
 - (c) $p_7 = 2.727$
 - (d) $p_7 = -0.7265$
- 5. The Bisection method gives:
 - (a) $p_{17} = 0.641182$
 - (b) $p_{17} = 0.257530$
 - (c) For the interval [-3, -2], we have $p_{17} = -2.191307$, and for the interval [-1, 0], we have $p_{17} = -0.798164$.
 - (d) For the interval [0.2, 0.3], we have $p_{14} = 0.297528$, and for the interval [1.2, 1.3], we have $p_{14} = 1.256622$.
- 6. (a) $p_{17} = 1.51213837$
 - (b) $p_{18} = 1.239707947$
 - (c) For the interval [1,2], we have $p_{17} = 1.41239166$, and for the interval [2,4], we have $p_{18} = 3.05710602$.

- (d) For the interval [0, 0.5], we have $p_{16} = 0.20603180$, and for the interval [0.5, 1], we have $p_{16} = 0.68196869$.
- 7. (a)

- (b) Using [1.5, 2] from part (a) gives $p_{16} = 1.89550018$.
- 8. (a)

(b) Using [4.2, 4.6] from part (a) gives $p_{16} = 4.4934143$.

9. (a)

(b)
$$p_{17} = 1.00762177$$

10. (a)

9:29pm February 22, 2015

(b) $p_{11} = -1.250976563$

11. (a) 2

- (b) -2
- (c) -1
- (d) 1

12. (a) 0

- (b) 0
- (c) 2
- (d) -2

13. The cube root of 25 is approximately $p_{14} = 2.92401$, using [2, 3].

- 14. We have $\sqrt{3} \approx p_{14} = 1.7320$, using [1,2].
- 15. The depth of the water is 0.838 ft.
- 16. The angle θ changes at the approximate rate w = -0.317059.
- 17. A bound is $n \ge 14$, and $p_{14} = 1.32477$.
- 18. A bound for the number of iterations is $n \ge 12$ and $p_{12} = 1.3787$.
- 19. Since $\lim_{n\to\infty} (p_n p_{n-1}) = \lim_{n\to\infty} 1/n = 0$, the difference in the terms goes to zero. However, p_n is the *n*th term of the divergent harmonic series, so $\lim_{n\to\infty} p_n = \infty$.

20. For n > 1,

 \mathbf{SO}

$$|f(p_n)| = \left(\frac{1}{n}\right)^{10} \le \left(\frac{1}{2}\right)^{10} = \frac{1}{1024} < 10^{-3},$$
$$|p - p_n| = \frac{1}{n} < 10^{-3} \Leftrightarrow 1000 < n.$$

21. Since -1 < a < 0 and 2 < b < 3, we have 1 < a + b < 3 or 1/2 < 1/2(a + b) < 3/2 in all cases. Further,

$$f(x) < 0$$
, for $-1 < x < 0$ and $1 < x < 2$;
 $f(x) > 0$, for $0 < x < 1$ and $2 < x < 3$.

Thus, $a_1 = a$, $f(a_1) < 0$, $b_1 = b$, and $f(b_1) > 0$.

- (a) Since a + b < 2, we have $p_1 = \frac{a+b}{2}$ and $1/2 < p_1 < 1$. Thus, $f(p_1) > 0$. Hence, $a_2 = a_1 = a$ and $b_2 = p_1$. The only zero of f in $[a_2, b_2]$ is p = 0, so the convergence will be to 0.
- (b) Since a + b > 2, we have $p_1 = \frac{a+b}{2}$ and $1 < p_1 < 3/2$. Thus, $f(p_1) < 0$. Hence, $a_2 = p_1$ and $b_2 = b_1 = b$. The only zero of f in $[a_2, b_2]$ is p = 2, so the convergence will be to 2.
- (c) Since a + b = 2, we have $p_1 = \frac{a+b}{2} = 1$ and $f(p_1) = 0$. Thus, a zero of f has been found on the first iteration. The convergence is to p = 1.

Exercise Set 2.2, page 64

1. For the value of x under consideration we have

(a)
$$x = (3 + x - 2x^2)^{1/4} \Leftrightarrow x^4 = 3 + x - 2x^2 \Leftrightarrow f(x) = 0$$

(b) $x = \left(\frac{x + 3 - x^4}{2}\right)^{1/2} \Leftrightarrow 2x^2 = x + 3 - x^4 \Leftrightarrow f(x) = 0$
(c) $x = \left(\frac{x + 3}{x^2 + 2}\right)^{1/2} \Leftrightarrow x^2(x^2 + 2) = x + 3 \Leftrightarrow f(x) = 0$
(d) $x = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1} \Leftrightarrow 4x^4 + 4x^2 - x = 3x^4 + 2x^2 + 3 \Leftrightarrow f(x) = 0$

- 2. (a) $p_4 = 1.10782$; (b) $p_4 = 0.987506$; (c) $p_4 = 1.12364$; (d) $p_4 = 1.12412$; (b) Part (d) gives the best answer since $|p_4 - p_3|$ is the smallest for (d).
- 3. (a) Solve for 2x then divide by 2. $p_1 = 0.5625, p_2 = 0.58898926, p_3 = 0.60216264, p_4 = 0.60917204$
 - (b) Solve for x^3 , divide by x^2 . $p_1 = 0, p_2$ undefined
 - (c) Solve for x^3 , divide by x, then take positive square root. $p_1 = 0, p_2$ undefined
 - (d) Solve for x^3 , then take negative of the cubed root. $p_1 = 0, p_2 = -1, p_3 = -1.4422496, p_4 = -1.57197274$. Parts (a) and (d) seem promising.
- 4. (a) $x^4 + 3x^2 2 = 0 \Leftrightarrow 3x^2 = 2 x^4 \Leftrightarrow x = \sqrt{\frac{2-x^4}{3}}; p_0 = 1, p_1 = 0.577350269, p_2 = 0.79349204, p_3 = 0.73111023, p_4 = 0.75592901.$
 - (b) $x^4 + 3x^2 2 = 0 \Leftrightarrow x^4 = 2 3x^2 \Leftrightarrow x = \sqrt[4]{2 3x^2}; p_0 = 1, p_1$ undefined.
 - (c) $x^4 + 3x^2 2 = 0 \Leftrightarrow 3x^2 = 2 x^4 \Leftrightarrow x = \frac{2 x^4}{3x}$; $p_0 = 1, p_1 = \frac{1}{3}, p_2 = 1.9876543, p_3 = -2.2821844, p_4 = 3.6700326$.
 - (d) $x^4 + 3x^2 2 = 0 \Leftrightarrow x^4 = 2 3x^2 \Leftrightarrow x^3 = \frac{2 3x^2}{x} \Leftrightarrow x = \sqrt[3]{\frac{2 3x^2}{x}}; p_0 = 1, p_1 = -1, p_2 = 1, p_3 = -1, p_4 = 1.$

Only the method of part (a) seems promising.

- 5. The order in descending speed of convergence is (b), (d), and (a). The sequence in (c) does not converge.
- 6. The sequence in (c) converges faster than in (d). The sequences in (a) and (b) diverge.
- 7. With $g(x) = (3x^2 + 3)^{1/4}$ and $p_0 = 1$, $p_6 = 1.94332$ is accurate to within 0.01.
- 8. With $g(x) = \sqrt{1 + \frac{1}{x}}$ and $p_0 = 1$, we have $p_4 = 1.324$.
- 9. Since $g'(x) = \frac{1}{4}\cos\frac{x}{2}$, g is continuous and g' exists on $[0, 2\pi]$. Further, g'(x) = 0 only when $x = \pi$, so that $g(0) = g(2\pi) = \pi \leq g(x) = \leq g(\pi) = \pi + \frac{1}{2}$ and $|g'(x)| \leq \frac{1}{4}$, for $0 \leq x \leq 2\pi$. Theorem 2.3 implies that a unique fixed point p exists in $[0, 2\pi]$. With $k = \frac{1}{4}$ and $p_0 = \pi$, we have $p_1 = \pi + \frac{1}{2}$. Corollary 2.5 implies that

$$|p_n - p| \le \frac{k^n}{1-k} |p_1 - p_0| = \frac{2}{3} \left(\frac{1}{4}\right)^n.$$

For the bound to be less than 0.1, we need $n \ge 4$. However, $p_3 = 3.626996$ is accurate to within 0.01.

- 10. Using $p_0 = 1$ gives $p_{12} = 0.6412053$. Since $|g'(x)| = 2^{-x} \ln 2 \le 0.551$ on $\left[\frac{1}{3}, 1\right]$ with k = 0.551, Corollary 2.5 gives a bound of 16 iterations.
- 11. For $p_0 = 1.0$ and $g(x) = 0.5(x + \frac{3}{x})$, we have $\sqrt{3} \approx p_4 = 1.73205$.
- 12. For $g(x) = 5/\sqrt{x}$ and $p_0 = 2.5$, we have $p_{14} = 2.92399$.
- 13. (a) With [0, 1] and $p_0 = 0$, we have $p_9 = 0.257531$.
 - (b) With [2.5, 3.0] and $p_0 = 2.5$, we have $p_{17} = 2.690650$.
 - (c) With [0.25, 1] and $p_0 = 0.25$, we have $p_{14} = 0.909999$.
 - (d) With [0.3, 0.7] and $p_0 = 0.3$, we have $p_{39} = 0.469625$.
 - (e) With [0.3, 0.6] and $p_0 = 0.3$, we have $p_{48} = 0.448059$.
 - (f) With [0, 1] and $p_0 = 0$, we have $p_6 = 0.704812$.
- 14. The inequalities in Corollary 2.4 give $|p_n p| < k^n \max(p_0 a, b p_0)$. We want

$$k^n \max(p_0 - a, b - p_0) < 10^{-5}$$
 so we need $n > \frac{\ln(10^{-5}) - \ln(\max(p_0 - a, b - p_0))}{\ln k}$

- (a) Using $g(x) = 2 + \sin x$ we have k = 0.9899924966 so that with $p_0 = 2$ we have $n > \ln(0.00001) / \ln k = 1144.663221$. However, our tolerance is met with $p_{63} = 2.5541998$.
- (b) Using $g(x) = \sqrt[3]{2x+5}$ we have k = 0.1540802832 so that with $p_0 = 2$ we have $n > \ln(0.00001) / \ln k = 6.155718005$. However, our tolerance is met with $p_6 = 2.0945503$.
- (c) Using $g(x) = \sqrt{e^x/3}$ and the interval [0,1] we have k = 0.4759448347 so that with $p_0 = 1$ we have $n > \ln(0.0001) / \ln k = 15.50659829$. However, our tolerance is met with $p_{12} = 0.91001496$.
- (d) Using $g(x) = \cos x$ and the interval [0, 1] we have k = 0.8414709848 so that with $p_0 = 0$ we have $n > \ln(0.00001) / \ln k > 66.70148074$. However, our tolerance is met with $p_{30} = 0.73908230$.
- 15. For $g(x) = (2x^2 10\cos x)/(3x)$, we have the following:

$$p_0 = 3 \Rightarrow p_8 = 3.16193; \quad p_0 = -3 \Rightarrow p_8 = -3.16193.$$

For $g(x) = \arccos(-0.1x^2)$, we have the following:

$$p_0 = 1 \Rightarrow p_{11} = 1.96882; \quad p_0 = -1 \Rightarrow p_{11} = -1.96882.$$

- 16. For $g(x) = \frac{1}{\tan x} \frac{1}{x} + x$ and $p_0 = 4$, we have $p_4 = 4.493409$.
- 17. With $g(x) = \frac{1}{\pi} \arcsin\left(-\frac{x}{2}\right) + 2$, we have $p_5 = 1.683855$.
- 18. With $g(t) = 501.0625 201.0625e^{-0.4t}$ and $p_0 = 5.0$, $p_3 = 6.0028$ is within 0.01 s of the actual time.

19. Since g' is continuous at p and |g'(p)| > 1, by letting $\epsilon = |g'(p)| - 1$ there exists a number $\delta > 0$ such that |g'(x) - g'(p)| < |g'(p)| - 1 whenever $0 < |x - p| < \delta$. Hence, for any x satisfying $0 < |x - p| < \delta$, we have

$$|g'(x)| \ge |g'(p)| - |g'(x) - g'(p)| > |g'(p)| - (|g'(p)| - 1) = 1.$$

If p_0 is chosen so that $0 < |p - p_0| < \delta$, we have by the Mean Value Theorem that

$$|p_1 - p| = |g(p_0) - g(p)| = |g'(\xi)||p_0 - p|,$$

for some ξ between p_0 and p. Thus, $0 < |p - \xi| < \delta$ so $|p_1 - p| = |g'(\xi)||p_0 - p| > |p_0 - p|$.

20. (a) If fixed-point iteration converges to the limit p, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} 2p_{n-1} - Ap_{n-1}^2 = 2p - Ap^2.$$

Solving for p gives $p = \frac{1}{A}$.

(b) Any subinterval [c, d] of $\left(\frac{1}{2A}, \frac{3}{2A}\right)$ containing $\frac{1}{A}$ suffices. Since

$$g(x) = 2x - Ax^2$$
, $g'(x) = 2 - 2Ax$,

so g(x) is continuous, and g'(x) exists. Further, g'(x) = 0 only if $x = \frac{1}{A}$. Since

$$g\left(\frac{1}{A}\right) = \frac{1}{A}, \quad g\left(\frac{1}{2A}\right) = g\left(\frac{3}{2A}\right) = \frac{3}{4A}, \quad \text{and we have} \quad \frac{3}{4A} \le g(x) \le \frac{1}{A}.$$

For x in $\left(\frac{1}{2A}, \frac{3}{2A}\right)$, we have

$$\left|x - \frac{1}{A}\right| < \frac{1}{2A}$$
 so $|g'(x)| = 2A \left|x - \frac{1}{A}\right| < 2A \left(\frac{1}{2A}\right) = 1.$

- 21. One of many examples is $g(x) = \sqrt{2x-1}$ on $\left[\frac{1}{2}, 1\right]$.
- 22. (a) The proof of existence is unchanged. For uniqueness, suppose p and q are fixed points in [a, b] with $p \neq q$. By the Mean Value Theorem, a number ξ in (a, b) exists with

$$p-q = g(p) - g(q) = g'(\xi)(p-q) \le k(p-q) < p-q,$$

giving the same contradiction as in Theorem 2.3.

(b) Consider $g(x) = 1 - x^2$ on [0, 1]. The function g has the unique fixed point

$$p = \frac{1}{2} \left(-1 + \sqrt{5} \right).$$

With $p_0 = 0.7$, the sequence eventually alternates between 0 and 1.

23. (a) Suppose that $x_0 > \sqrt{2}$. Then

$$x_1 - \sqrt{2} = g(x_0) - g\left(\sqrt{2}\right) = g'(\xi)\left(x_0 - \sqrt{2}\right),$$

where $\sqrt{2} < \xi < x$. Thus, $x_1 - \sqrt{2} > 0$ and $x_1 > \sqrt{2}$. Further,

$$x_1 = \frac{x_0}{2} + \frac{1}{x_0} < \frac{x_0}{2} + \frac{1}{\sqrt{2}} = \frac{x_0 + \sqrt{2}}{2}$$

and $\sqrt{2} < x_1 < x_0$. By an inductive argument,

$$\sqrt{2} < x_{m+1} < x_m < \ldots < x_0.$$

Thus, $\{x_m\}$ is a decreasing sequence which has a lower bound and must converge. Suppose $p = \lim_{m \to \infty} x_m$. Then

$$p = \lim_{m \to \infty} \left(\frac{x_{m-1}}{2} + \frac{1}{x_{m-1}} \right) = \frac{p}{2} + \frac{1}{p}.$$
 Thus $p = \frac{p}{2} + \frac{1}{p}$

which implies that $p = \pm \sqrt{2}$. Since $x_m > \sqrt{2}$ for all m, we have $\lim_{m \to \infty} x_m = \sqrt{2}$. (b) We have

$$0 < \left(x_0 - \sqrt{2}\right)^2 = x_0^2 - 2x_0\sqrt{2} + 2,$$

so $2x_0\sqrt{2} < x_0^2 + 2$ and $\sqrt{2} < \frac{x_0}{2} + \frac{1}{x_0} = x_1$.

(c) Case 1: $0 < x_0 < \sqrt{2}$, which implies that $\sqrt{2} < x_1$ by part (b). Thus,

$$0 < x_0 < \sqrt{2} < x_{m+1} < x_m < \ldots < x_1$$
 and $\lim_{m \to \infty} x_m = \sqrt{2}$

Case 2: $x_0 = \sqrt{2}$, which implies that $x_m = \sqrt{2}$ for all m and $\lim_{m \to \infty} x_m = \sqrt{2}$. Case 3: $x_0 > \sqrt{2}$, which by part (a) implies that $\lim_{m \to \infty} x_m = \sqrt{2}$.

$$g(x) = \frac{x}{2} + \frac{A}{2x}.$$

Note that $g\left(\sqrt{A}\right) = \sqrt{A}$. Also,

$$g'(x) = 1/2 - A/(2x^2)$$
 if $x \neq 0$ and $g'(x) > 0$ if $x > \sqrt{A}$

If $x_0 = \sqrt{A}$, then $x_m = \sqrt{A}$ for all m and $\lim_{m \to \infty} x_m = \sqrt{A}$. If $x_0 > A$, then

$$x_1 - \sqrt{A} = g(x_0) - g\left(\sqrt{A}\right) = g'(\xi)\left(x_0 - \sqrt{A}\right) > 0.$$

Further,

$$x_1 = \frac{x_0}{2} + \frac{A}{2x_0} < \frac{x_0}{2} + \frac{A}{2\sqrt{A}} = \frac{1}{2}\left(x_0 + \sqrt{A}\right).$$

Thus, $\sqrt{A} < x_1 < x_0$. Inductively,

$$\sqrt{A} < x_{m+1} < x_m < \ldots < x_0$$

and $\lim_{m\to\infty} x_m = \sqrt{A}$ by an argument similar to that in Exercise 23(a). If $0 < x_0 < \sqrt{A}$, then

$$0 < (x_0 - \sqrt{A})^2 = x_0^2 - 2x_0\sqrt{A} + A$$
 and $2x_0\sqrt{A} < x_0^2 + A$,

which leads to

$$\sqrt{A} < \frac{x_0}{2} + \frac{A}{2x_0} = x_1.$$

Thus

$$0 < x_0 < \sqrt{A} < x_{m+1} < x_m < \ldots < x_1,$$

and by the preceding argument, $\lim_{m\to\infty} x_m = \sqrt{A}$.

- (b) If $x_0 < 0$, then $\lim_{m \to \infty} x_m = -\sqrt{A}$.
- 25. Replace the second sentence in the proof with: "Since g satisfies a Lipschitz condition on [a, b] with a Lipschitz constant L < 1, we have, for each n,

$$|p_n - p| = |g(p_{n-1}) - g(p)| \le L|p_{n-1} - p|.$$

The rest of the proof is the same, with k replaced by L.

26. Let $\varepsilon = (1 - |g'(p)|)/2$. Since g' is continuous at p, there exists a number $\delta > 0$ such that for $x \in [p - \delta, p + \delta]$, we have $|g'(x) - g'(p)| < \varepsilon$. Thus, $|g'(x)| < |g'(p)| + \varepsilon < 1$ for $x \in [p - \delta, p + \delta]$. By the Mean Value Theorem

$$|g(x) - g(p)| = |g'(c)||x - p| < |x - p|,$$

for $x \in [p - \delta, p + \delta]$. Applying the Fixed-Point Theorem completes the problem.

Exercise Set 2.3, page 75

- 1. $p_2 = 2.60714$
- 2. $p_2 = -0.865684$; If $p_0 = 0$, $f'(p_0) = 0$ and p_1 cannot be computed.
- 3. (a) 2.45454
 - (b) 2.44444
 - (c) Part (a) is better.
- 4. (a) -1.25208
 - (b) -0.841355
- 5. (a) For $p_0 = 2$, we have $p_5 = 2.69065$.
 - (b) For $p_0 = -3$, we have $p_3 = -2.87939$.
 - (c) For $p_0 = 0$, we have $p_4 = 0.73909$.

- (d) For $p_0 = 0$, we have $p_3 = 0.96434$.
- 6. (a) For $p_0 = 1$, we have $p_8 = 1.829384$.
 - (b) For $p_0 = 1.5$, we have $p_4 = 1.397748$.
 - (c) For $p_0 = 2$, we have $p_4 = 2.370687$; and for $p_0 = 4$, we have $p_4 = 3.722113$.
 - (d) For $p_0 = 1$, we have $p_4 = 1.412391$; and for $p_0 = 4$, we have $p_5 = 3.057104$.
 - (e) For $p_0 = 1$, we have $p_4 = 0.910008$; and for $p_0 = 3$, we have $p_9 = 3.733079$.
 - (f) For $p_0 = 0$, we have $p_4 = 0.588533$; for $p_0 = 3$, we have $p_3 = 3.096364$; and for $p_0 = 6$, we have $p_3 = 6.285049$.
- 7. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_{11} = 2.69065$
 - (b) $p_7 = -2.87939$
 - (c) $p_6 = 0.73909$
 - (d) $p_5 = 0.96433$
- 8. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_7 = 1.829384$
 - (b) $p_9 = 1.397749$
 - (c) $p_6 = 2.370687; p_7 = 3.722113$
 - (d) $p_8 = 1.412391; p_7 = 3.057104$
 - (e) $p_6 = 0.910008; p_{10} = 3.733079$
 - (f) $p_6 = 0.588533; p_5 = 3.096364; p_5 = 6.285049$
- 9. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_{16} = 2.69060$
 - (b) $p_6 = -2.87938$
 - (c) $p_7 = 0.73908$
 - (d) $p_6 = 0.96433$
- 10. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_8 = 1.829383$
 - (b) $p_9 = 1.397749$
 - (c) $p_6 = 2.370687; p_8 = 3.722112$
 - (d) $p_{10} = 1.412392; p_{12} = 3.057099$
 - (e) $p_7 = 0.910008; p_{29} = 3.733065$
 - (f) $p_9 = 0.588533; p_5 = 3.096364; p_5 = 6.285049$
- 11. (a) Newton's method with $p_0 = 1.5$ gives $p_3 = 1.51213455$. The Secant method with $p_0 = 1$ and $p_1 = 2$ gives $p_{10} = 1.51213455$. The Method of False Position with $p_0 = 1$ and $p_1 = 2$ gives $p_{17} = 1.51212954$.

- (b) Newton's method with $p_0 = 0.5$ gives $p_5 = 0.976773017$. The Secant method with $p_0 = 0$ and $p_1 = 1$ gives $p_5 = 10.976773017$. The Method of False Position with $p_0 = 0$ and $p_1 = 1$ gives $p_5 = 0.976772976$.
- 12. (a) We have

	Initial Approximation	Result	Initial Approximation	Result
Newton's	$p_0 = 1.5$	$p_4 = 1.41239117$	$p_0 = 3.0$	$p_4 = 3.05710355$
Secant	$p_0 = 1, p_1 = 2$	$p_8 = 1.41239117$	$p_0 = 2, p_1 = 4$	$p_{10} = 3.05710355$
False Position	$p_0 = 1, p_1 = 2$	$p_{13} = 1.41239119$	$p_0 = 2, p_1 = 4$	$p_{19} = 3.05710353$

(b) We have

	Initial Approximation	Result	Initial Approximation	Result
Newton's	$p_0 = 0.25$	$p_4 = 0.206035120$	$p_0 = 0.75$	$p_4 = 0.681974809$
Secant	$p_0 = 0, p_1 = 0.5$	$p_9 = 0.206035120$	$p_0 = 0.5, p_1 = 1$	$p_8 = 0.681974809$
False Position	$p_0 = 0, p_1 = 0.5$	$p_{12} = 0.206035125$	$p_0 = 0.5, p_1 = 1$	$p_{15} = 0.681974791$

- 13. (a) For $p_0 = -1$ and $p_1 = 0$, we have $p_{17} = -0.04065850$, and for $p_0 = 0$ and $p_1 = 1$, we have $p_9 = 0.9623984$.
 - (b) For $p_0 = -1$ and $p_1 = 0$, we have $p_5 = -0.04065929$, and for $p_0 = 0$ and $p_1 = 1$, we have $p_{12} = -0.04065929$.
 - (c) For $p_0 = -0.5$, we have $p_5 = -0.04065929$, and for $p_0 = 0.5$, we have $p_{21} = 0.9623989$.
- 14. (a) The Bisection method yields $p_{10} = 0.4476563$.
 - (b) The method of False Position yields $p_{10} = 0.442067$.
 - (c) The Secant method yields $p_{10} = -195.8950$.
- 15. Newton's method for the various values of p_0 gives the following results.
 - (a) $p_0 = -10, p_{11} = -4.30624527$
 - (b) $p_0 = -5, p_5 = -4.30624527$
 - (c) $p_0 = -3, p_5 = 0.824498585$
 - (d) $p_0 = -1, p_4 = -0.824498585$
 - (e) $p_0 = 0, p_1$ cannot be computed because f'(0) = 0
 - (f) $p_0 = 1, p_4 = 0.824498585$
 - (g) $p_0 = 3, p_5 = -0.824498585$
 - (h) $p_0 = 5, p_5 = 4.30624527$

(i) $p_0 = 10, p_{11} = 4.30624527$

- 16. Newton's method for the various values of p_0 gives the following results.
 - (a) $p_8 = -1.379365$
 - (b) $p_7 = -1.379365$
 - (c) $p_7 = 1.379365$
 - (d) $p_7 = -1.379365$
 - (e) $p_7 = 1.379365$
 - (f) $p_8 = 1.379365$
- 17. For $f(x) = \ln(x^2 + 1) e^{0.4x} \cos \pi x$, we have the following roots.
 - (a) For $p_0 = -0.5$, we have $p_3 = -0.4341431$.
 - (b) For $p_0 = 0.5$, we have $p_3 = 0.4506567$. For $p_0 = 1.5$, we have $p_3 = 1.7447381$. For $p_0 = 2.5$, we have $p_5 = 2.2383198$. For $p_0 = 3.5$, we have $p_4 = 3.7090412$.
 - (c) The initial approximation n 0.5 is quite reasonable.
 - (d) For $p_0 = 24.5$, we have $p_2 = 24.4998870$.
- 18. Newton's method gives $p_{15} = 1.895488$, for $p_0 = \frac{\pi}{2}$; and $p_{19} = 1.895489$, for $p_0 = 5\pi$. The sequence does not converge in 200 iterations for $p_0 = 10\pi$. The results do not indicate the fast convergence usually associated with Newton's method.
- 19. For $p_0 = 1$, we have $p_5 = 0.589755$. The point has the coordinates (0.589755, 0.347811).
- 20. For $p_0 = 2$, we have $p_2 = 1.866760$. The point is (1.866760, 0.535687).
- 21. The two numbers are approximately 6.512849 and 13.487151.
- 22. We have $\lambda \approx 0.100998$ and $N(2) \approx 2,187,950$.
- 23. The borrower can afford to pay at most 8.10%.
- 24. The minimal annual interest rate is 6.67%.
- 25. We have $P_L = 363432$, c = -1.0266939, and k = 0.026504522. The 1990 population is P(30) = 248,319, and the 2020 population is P(60) = 300,528.
- 26. We have $P_L = 446505$, c = 0.91226292, and k = 0.014800625. The 1990 population is P(30) = 248,707, and the 2020 population is P(60) = 306,528.
- 27. Using $p_0 = 0.5$ and $p_1 = 0.9$, the Secant method gives $p_5 = 0.842$.
- 28. (a) $\frac{1}{3}e, t = 3$ hours
 - (b) 11 hours and 5 minutes
 - (c) 21 hours and 14 minutes

29. (a) We have, approximately,

$$A = 17.74, \quad B = 87.21, \quad C = 9.66, \quad \text{and} \quad E = 47.47$$

With these values we have

$$A\sin\alpha\cos\alpha + B\sin^2\alpha - C\cos\alpha - E\sin\alpha = 0.02.$$

- (b) Newton's method gives $\alpha \approx 33.2^{\circ}$.
- 30. This formula involves the subtraction of nearly equal numbers in both the numerator and denominator if p_{n-1} and p_{n-2} are nearly equal.
- 31. The equation of the tangent line is

$$y - f(p_{n-1}) = f'(p_{n-1})(x - p_{n-1}).$$

To complete this problem, set y = 0 and solve for $x = p_n$.

32. For some ξ_n between p_n and p,

$$f(p) = f(p_n) + (p - p_n)f'(p_n) + \frac{(p - p_n)^2}{2}f''(\xi_n)$$

$$0 = f(p_n) + (p - p_n)f'(p_n) + \frac{(p - p_n)^2}{2}f''(\xi_n)$$

Since $f'(p_n) \neq 0$,

$$0 = \frac{f(p_n)}{f'(p_n)} + p - p_n + \frac{(p - p_n)^2}{2f'(p_n)}f''(\xi_n)$$

we have

$$p - [p_n - \frac{f(p_n)}{f'(p_n)}] = -\frac{(p - p_n)^2}{2f'(p_n)}f''(\xi_n)$$

and

$$p - p_{n+1} = -\frac{(p - p_n)^2}{2f'(p_n)}f''(p_n).$$

 So

$$|p - p_{n+1}| \le \frac{M^2}{2|f'(p_n)|}(p - p_n)^2.$$

Exercise Set 2.4, page 85

- 1. (a) For $p_0 = 0.5$, we have $p_{13} = 0.567135$.
 - (b) For $p_0 = -1.5$, we have $p_{23} = -1.414325$.
 - (c) For $p_0 = 0.5$, we have $p_{22} = 0.641166$.
 - (d) For $p_0 = -0.5$, we have $p_{23} = -0.183274$.
- 2. (a) For $p_0 = 0.5$, we have $p_{15} = 0.739076589$.
 - (b) For $p_0 = -2.5$, we have $p_9 = -1.33434594$.
 - (c) For $p_0 = 3.5$, we have $p_5 = 3.14156793$.
 - (d) For $p_0 = 4.0$, we have $p_{44} = 3.37354190$.
- 3. Modified Newton's method in Eq. (2.11) gives the following:
 - (a) For $p_0 = 0.5$, we have $p_3 = 0.567143$.
 - (b) For $p_0 = -1.5$, we have $p_2 = -1.414158$.
 - (c) For $p_0 = 0.5$, we have $p_3 = 0.641274$.
 - (d) For $p_0 = -0.5$, we have $p_5 = -0.183319$.
- 4. (a) For $p_0 = 0.5$, we have $p_4 = 0.739087439$.
 - (b) For $p_0 = -2.5$, we have $p_{53} = -1.33434594$.
 - (c) For $p_0 = 3.5$, we have $p_5 = 3.14156793$.
 - (d) For $p_0 = 4.0$, we have $p_3 = -3.72957639$.
- 5. Newton's method with $p_0 = -0.5$ gives $p_{13} = -0.169607$. Modified Newton's method in Eq. (2.11) with $p_0 = -0.5$ gives $p_{11} = -0.169607$.
- 6. (a) Since

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{n+1} = 1,$$

we have linear convergence. To have $|p_n - p| < 5 \times 10^{-2}$, we need $n \ge 20$. (b) Since

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^2 = 1,$$

we have linear convergence. To have $|p_n - p| < 5 \times 10^{-2}$, we need $n \ge 5$.

7. (a) For k > 0,

$$\lim_{n \to \infty} \frac{|p_{n+1} - 0|}{|p_n - 0|} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^k}}{\frac{1}{n^k}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^k = 1,$$

so the convergence is linear.

- (b) We need to have $N > 10^{m/k}$.
- 8. (a) Since

$$\lim_{n \to \infty} \frac{|p_{n+1} - 0|}{|p_n - 0|^2} = \lim_{n \to \infty} \frac{10^{-2^{n+1}}}{(10^{-2^n})^2} = \lim_{n \to \infty} \frac{10^{-2^{n+1}}}{10^{-2^{n+1}}} = 1,$$

the sequence is quadratically convergent.

(b) We have

$$\lim_{n \to \infty} \frac{|p_{n+1} - 0|}{|p_n - 0|^2} = \lim_{n \to \infty} \frac{10^{-(n+1)^k}}{\left(10^{-n^k}\right)^2} = \lim_{n \to \infty} \frac{10^{-(n+1)^k}}{10^{-2n^k}}$$
$$= \lim_{n \to \infty} 10^{2n^k - (n+1)^k} = \lim_{n \to \infty} 10^{n^k (2 - \left(\frac{n+1}{n}\right)^k)} = \infty,$$

so the sequence $p_n = 10^{-n^k}$ does not converge quadratically.

- 9. Typical examples are
 - (a) $p_n = 10^{-3^n}$ (b) $p_n = 10^{-\alpha^n}$
- 10. Suppose $f(x) = (x p)^m q(x)$. Since

$$g(x) = x - \frac{m(x-p)q(x)}{mq(x) + (x-p)q'(x)},$$

we have g'(p) = 0.

11. This follows from the fact that

$$\lim_{n \to \infty} \frac{\left|\frac{b-a}{2^{n+1}}\right|}{\left|\frac{b-a}{2^n}\right|} = \frac{1}{2}.$$

12. If f has a zero of multiplicity m at p, then f can be written as

$$f(x) = (x - p)^m q(x),$$

for $x \neq p$, where

$$\lim_{x \to p} q(x) \neq 0.$$

Thus,

$$f'(x) = m(x-p)^{m-1}q(x) + (x-p)^m q'(x)$$

and f'(p) = 0. Also,

$$f''(x) = m(m-1)(x-p)^{m-2}q(x) + 2m(x-p)^{m-1}q'(x) + (x-p)^m q''(x)$$

and f''(p) = 0. In general, for $k \leq m$,

$$f^{(k)}(x) = \sum_{j=0}^{k} \binom{k}{j} \frac{d^{j}(x-p)^{m}}{dx^{j}} q^{(k-j)}(x) = \sum_{j=0}^{k} \binom{k}{j} m(m-1) \cdots (m-j+1)(x-p)^{m-j} q^{(k-j)}(x).$$

Thus, for $0 \le k \le m-1$, we have $f^{(k)}(p) = 0$, but $f^{(m)}(p) = m! \lim_{x \to p} q(x) \ne 0$. Conversely, suppose that

$$f(p) = f'(p) = \dots = f^{(m-1)}(p) = 0$$
 and $f^{(m)}(p) \neq 0$.

Consider the (m-1)th Taylor polynomial of f expanded about p:

$$f(x) = f(p) + f'(p)(x-p) + \dots + \frac{f^{(m-1)}(p)(x-p)^{m-1}}{(m-1)!} + \frac{f^{(m)}(\xi(x))(x-p)^m}{m!}$$
$$= (x-p)^m \frac{f^{(m)}(\xi(x))}{m!},$$

where $\xi(x)$ is between x and p.

Since $f^{(m)}$ is continuous, let

$$q(x) = \frac{f^{(m)}(\xi(x))}{m!}.$$

Then $f(x) = (x - p)^m q(x)$ and

$$\lim_{x \to p} q(x) = \frac{f^{(m)}(p)}{m!} \neq 0.$$

Hence f has a zero of multiplicity m at p.

13. If

$$\frac{|p_{n+1}-p|}{|p_n-p|^3} = 0.75 \quad \text{and} \quad |p_0-p| = 0.5, \quad \text{then} \quad |p_n-p| = (0.75)^{(3^n-1)/2} |p_0-p|^{3^n}.$$

To have $|p_n - p| \le 10^{-8}$ requires that $n \ge 3$.

14. Let $e_n = p_n - p$. If

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^{\alpha}} = \lambda > 0,$$

then for sufficiently large values of $n,\, |e_{n+1}|\approx \lambda |e_n|^\alpha.$ Thus,

$$|e_n| \approx \lambda |e_{n-1}|^{\alpha}$$
 and $|e_{n-1}| \approx \lambda^{-1/\alpha} |e_n|^{1/\alpha}$.

Using the hypothesis gives

$$\lambda |e_n|^{\alpha} \approx |e_{n+1}| \approx C |e_n| \lambda^{-1/\alpha} |e_n|^{1/\alpha}, \quad \text{so} \quad |e_n|^{\alpha} \approx C \lambda^{-1/\alpha - 1} |e_n|^{1+1/\alpha}.$$

Since the powers of $|e_n|$ must agree,

$$\alpha = 1 + 1/\alpha$$
 and $\alpha = \frac{1 + \sqrt{5}}{2} \approx 1.62.$

The number α is the golden ratio that appeared in Exercise 11 of section 1.3.

Exercise Set 2.5, page 90

1. The results are listed in the following table.

	(a)	(b)	(c)	(d)
\hat{p}_0	0.258684	0.907859	0.548101	0.731385
\hat{p}_1	0.257613	0.909568	0.547915	0.736087
\hat{p}_2	0.257536	0.909917	0.547847	0.737653
\hat{p}_3	0.257531	0.909989	0.547823	0.738469
\hat{p}_4	0.257530	0.910004	0.547814	0.738798
\hat{p}_5	0.257530	0.910007	0.547810	0.738958

- 2. Newton's Method gives $p_{16} = -0.1828876$ and $\hat{p}_7 = -0.183387$.
- 3. Steffensen's method gives $p_0^{(1)} = 0.826427$.
- 4. Steffensen's method gives $p_0^{(1)} = 2.152905$ and $p_0^{(2)} = 1.873464$.
- 5. Steffensen's method gives $p_1^{(0)} = 1.5$.
- 6. Steffensen's method gives $p_2^{(0)} = 1.73205$.

7. For
$$g(x) = \sqrt{1 + \frac{1}{x}}$$
 and $p_0^{(0)} = 1$, we have $p_0^{(3)} = 1.32472$.

8. For
$$g(x) = 2^{-x}$$
 and $p_0^{(0)} = 1$, we have $p_0^{(3)} = 0.64119$.

9. For
$$g(x) = 0.5(x + \frac{3}{x})$$
 and $p_0^{(0)} = 0.5$, we have $p_0^{(4)} = 1.73205$.

10. For $g(x) = \frac{5}{\sqrt{x}}$ and $p_0^{(0)} = 2.5$, we have $p_0^{(3)} = 2.92401774$.

11. (a) For
$$g(x) = (2 - e^x + x^2)/3$$
 and $p_0^{(0)} = 0$, we have $p_0^{(3)} = 0.257530$.

- (b) For $g(x) = 0.5(\sin x + \cos x)$ and $p_0^{(0)} = 0$, we have $p_0^{(4)} = 0.704812$.
- (c) With $p_0^{(0)} = 0.25$, $p_0^{(4)} = 0.910007572$.
- (d) With $p_0^{(0)} = 0.3, \, p_0^{(4)} = 0.469621923.$

12. (a) For $g(x) = 2 + \sin x$ and $p_0^{(0)} = 2$, we have $p_0^{(4)} = 2.55419595$. (b) For $g(x) = \sqrt[3]{2x+5}$ and $p_0^{(0)} = 2$, we have $p_0^{(2)} = 2.09455148$. (c) With $g(x) = \sqrt{\frac{e^x}{3}}$ and $p_0^{(0)} = 1$, we have $p_0^{(3)} = 0.910007574$. (d) With $g(x) = \cos x$, and $p_0^{(0)} = 0$, we have $p_0^{(4)} = 0.739085133$.

13. Aitken's Δ^2 method gives:

(a) $\hat{p}_{10} = 0.0\overline{45}$

- (b) $\hat{p}_2 = 0.0363$
- 14. (a) A positive constant λ exists with

$$\lambda = \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}}$$

Hence

$$\lim_{n \to \infty} \left| \frac{p_{n+1} - p}{p_n - p} \right| = \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} \cdot |p_n - p|^{\alpha - 1} = \lambda \cdot 0 = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{p_{n+1} - p}{p_n - p} = 0.$$

- (b) One example is $p_n = \frac{1}{n^n}$.
- 15. We have

 \mathbf{SO}

$$\frac{|p_{n+1} - p_n|}{|p_n - p|} = \frac{|p_{n+1} - p + p - p_n|}{|p_n - p|} = \left|\frac{p_{n+1} - p}{p_n - p} - 1\right|,$$

$$\lim_{n \to \infty} \frac{|p_{n+1} - p_n|}{|p_n - p|} = \lim_{n \to \infty} \left| \frac{p_{n+1} - p}{p_n - p} - 1 \right| = 1.$$

16.

$$\frac{\hat{p}_n - p}{p_n - p} = \frac{\lambda \left(\delta_n + \delta_{n+1}\right) - 2\delta_n + \delta_n \delta_{n+1} - 2\delta_n (\lambda - 1) - \delta_n^2}{(\lambda - 1)^2 + \lambda \left(\delta_n + \delta_{n+1}\right) - 2\delta_n + \delta_n \delta_{n+1}}$$

17. (a) Since
$$p_n = P_n(x) = \sum_{k=0}^n \frac{1}{k!} x^k$$
, we have
 $p_n - p = P_n(x) - e^x = \frac{-e^{\xi}}{(n+1)!} x^{n+1}$,

where ξ is between 0 and x. Thus, $p_n - p \neq 0$, for all $n \ge 0$. Further,

$$\frac{p_{n+1}-p}{p_n-p} = \frac{\frac{-e^{\xi_1}}{(n+2)!}x^{n+2}}{\frac{-e^{\xi}}{(n+1)!}x^{n+1}} = \frac{e^{(\xi_1-\xi)}x}{n+2},$$

where ξ_1 is between 0 and 1. Thus, $\lambda = \lim_{n \to \infty} \frac{e^{(\xi_1 - \xi)}x}{n+2} = 0 < 1$. (b)

n	p_n	\hat{p}_n
0	1	3
1	2	2.75
2	2.5	$2.7\overline{2}$
3	$2.\overline{6}$	2.71875
4	$2.708\overline{3}$	$2.718\overline{3}$
5	$2.71\overline{6}$	2.7182870
6	$2.7180\overline{5}$	2.7182823
7	2.7182539	2.7182818
8	2.7182787	2.7182818
9	2.7182815	
10	2.7182818	

(c) Aitken's Δ^2 method gives quite an improvement for this problem. For example, \hat{p}_6 is accurate to within 5×10^{-7} . We need p_{10} to have this accuracy.

Exercise Set 2.6, page 100

- 1. (a) For $p_0 = 1$, we have $p_{22} = 2.69065$.
 - (b) For $p_0 = 1$, we have $p_5 = 0.53209$; for $p_0 = -1$, we have $p_3 = -0.65270$; and for $p_0 = -3$, we have $p_3 = -2.87939$.
 - (c) For $p_0 = 1$, we have $p_5 = 1.32472$.
 - (d) For $p_0 = 1$, we have $p_4 = 1.12412$; and for $p_0 = 0$, we have $p_8 = -0.87605$.
 - (e) For $p_0 = 0$, we have $p_6 = -0.47006$; for $p_0 = -1$, we have $p_4 = -0.88533$; and for $p_0 = -3$, we have $p_4 = -2.64561$.
 - (f) For $p_0 = 0$, we have $p_{10} = 1.49819$.
- 2. (a) For $p_0 = 0$, we have $p_9 = -4.123106$; and for $p_0 = 3$, we have $p_6 = 4.123106$. The complex roots are $-2.5 \pm 1.322879i$.
 - (b) For $p_0 = 1$, we have $p_7 = -3.548233$; and for $p_0 = 4$, we have $p_5 = 4.38111$. The complex roots are $0.5835597 \pm 1.494188i$.
 - (c) The only roots are complex, and they are $\pm\sqrt{2}i$ and $-0.5\pm0.5\sqrt{3}i$.
 - (d) For $p_0 = 1$, we have $p_5 = -0.250237$; for $p_0 = 2$, we have $p_5 = 2.260086$; and for $p_0 = -11$, we have $p_6 = -12.612430$. The complex roots are $-0.1987094 \pm 0.8133125i$.
 - (e) For $p_0 = 0$, we have $p_8 = 0.846743$; and for $p_0 = -1$, we have $p_9 = -3.358044$. The complex roots are $-1.494350 \pm 1.744219i$.
 - (f) For $p_0 = 0$, we have $p_8 = 2.069323$; and for $p_0 = 1$, we have $p_3 = 0.861174$. The complex roots are $-1.465248 \pm 0.8116722i$.
 - (g) For $p_0 = 0$, we have $p_6 = -0.732051$; for $p_0 = 1$, we have $p_4 = 1.414214$; for $p_0 = 3$, we have $p_5 = 2.732051$; and for $p_0 = -2$, we have $p_6 = -1.414214$.
 - (h) For $p_0 = 0$, we have $p_5 = 0.585786$; for $p_0 = 2$, we have $p_2 = 3$; and for $p_0 = 4$, we have $p_6 = 3.414214$.

32

	p_0	p_1	p_2	Approximate roots	Complex Conjugate roots
(a)	-1	0	1	$p_7 = -0.34532 - 1.31873i$	-0.34532 + 1.31873i
. ,	0	1	2	$p_6 = 2.69065$	
(b)	0	1	2	$p_6 = 0.53209$	
	1	2	3	$p_9 = -0.65270$	
	-2	-3	-2.5	$p_4 = -2.87939$	
(c)	0	1	2	$p_5 = 1.32472$	
		-1		$p_7 = -0.66236 - 0.56228i$	-0.66236 + 0.56228i
(d)	0	1	2	$p_5 = 1.12412$	
. ,	2	3	4	$p_{12} = -0.12403 + 1.74096i$	-0.12403 - 1.74096i
	-2	0	-1	$p_5 = -0.87605$	
(e)	0	1	2	$p_{10} = -0.88533$	
. /	1	0	-0.5	$p_5 = -0.47006$	
	-1	-2	-3	$p_5 = -2.64561$	
(f)	0	1	2	$p_6 = 1.49819$	
. /	-1	-2	-3	$p_{10} = -0.51363 - 1.09156i$	-0.51363 + 1.09156i
	1				0.26454 + 1.32837i

3. The following table lists the initial approximation and the roots.

	p_0	p_1	p_2	Approximate roots	Complex Conjugate roots
(a)	0	1	2	$p_{11} = -2.5 - 1.322876i$	-2.5 + 1.322876i
	1	2	3	$p_6 = 4.123106$	
	-3	-4	-5	$p_5 = -4.123106$	
(b)	0	1	2	$p_7 = 0.583560 - 1.494188i$	0.583560 + 1.494188i
	2	3	4	$p_6 = 4.381113$	
	-2	-3	-4	$p_5 = -3.548233$	
(c)	0	1	2	$p_{11} = 1.414214i$	-1.414214i
	-1	-2	-3	$p_{10} = -0.5 + 0.866025i$	-0.5 - 0.866025i
(d)	0	1	2	$p_7 = 2.260086$	
	3	4	5	$p_{14} = -0.198710 + 0.813313i$	-0.198710 + 0.813313i
	11	12	13	$p_{22} = -0.250237$	
	-9	-10	-11	$p_6 = -12.612430$	
(e)	0	1	2	$p_6 = 0.846743$	
	3	4	5	$p_{12} = -1.494349 + 1.744218i$	-1.494349 - 1.744218i
	-1	-2	-3	$p_7 = -3.358044$	
(f)	0	1	2	$p_6 = 2.069323$	
	$^{-1}$	0	1	$p_5 = 0.861174$	
	-1	-2	-3	$p_8 = -1.465248 + 0.811672i$	-1.465248 - 0.811672i
(g)	0	1	2	$p_6 = 1.414214$	
	-2	-1	0	$p_7 = -0.732051$	
	0	-2	-1	$p_7 = -1.414214$	
	2	3	4	$p_6 = 2.732051$	
(h)	0	1	2	$p_8 = 3$	
	-1	0	1	$p_5 = 0.585786$	
	2.5	3.5	4	$p_6 = 3.414214$	

4. The following table lists the initial approximation and the roots.

- 5. (a) The roots are 1.244, 8.847, and -1.091, and the critical points are 0 and 6.
 - (b) The roots are 0.5798, 1.521, 2.332, and -2.432, and the critical points are 1, 2.001, and -1.5.
- 6. We get convergence to the root 0.27 with $p_0 = 0.28$. We need p_0 closer to 0.29 since $f'(0.28\overline{3}) = 0$.
- 7. The methods all find the solution 0.23235.
- 8. The width is approximately W = 16.2121 ft.
- 9. The minimal material is approximately 573.64895 cm².
- 10. Fibonacci's answer was 1.3688081078532, and Newton's Method gives 1.36880810782137 with a tolerance of 10^{-16} , so Fibonacci's answer is within 4×10^{-11} . This accuracy is amazing for the time.

Exercise Set 2.6

9:29pm February 22, 2015

Visit TestBankDeal.com to get complete for all chapters