Numerical Analysis

Youngstown State University

Youngstown State University

Prepared by

Youngstown State University

Youngstown State University

BROOKS/COLE
CENGAGE Leaming

© 2011 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to permissionrequest@cengage.com

ISBN-13: 978-0-538-73596-4
ISBN-10: 0-538-73596-1

Brooks/Cole

20 Channel Center Street
Boston, MA 02210
USA
Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit academic.cengage.com

Purchase any of our products at your local college store or at our preferred online store www.ichapters.com

NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.

READ IMPORTANT LICENSE INFORMATION

Dear Professor or Other Supplement Recipient:

Cengage Learning has provided you with this product (the "Supplement") for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the "Course"), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they
may not copy or distribute any portion of the Supplement to any third party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an "as is" basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State's conflict of law rules.

Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

Table of Contents

Preface vii
Mathematical Preliminaries 1
Exercise Set 1.1 1
Exercise Set 1.2 6
Exercise Set 1.3 12
Solutions of Equations of One Variable 19
Exercise Set 2.1 19
Exercise Set 2.2 22
Exercise Set 2.3 26
Exercise Set 2.4 31
Exercise Set 2.5 34
Exercise Set 2.6 36
Interpolation and Polynomial Approximation 41
Exercise Set 3.1 41
Exercise Set 3.2 47
Exercise Set 3.3 49
Exercise Set 3.4 52
Exercise Set 3.5 56
Exercise Set 3.6 68
Numerical Differentiation and Integration 71
Exercise Set 4.1 71
Exercise Set 4.2 78
Exercise Set 4.3 82
Exercise Set 4.4 87
Exercise Set 4.5 91
Exercise Set 4.6 94
Exercise Set 4.7 96
Exercise Set 4.8 99
Exercise Set 4.9 101
Initial-Value Problems for Ordinary Differential Equations 105
Exercise Set 5.1 105
Exercise Set 5.2 108
Exercise Set 5.3 113
Exercise Set 5.4 119
Exercise Set 5.5 129
Exercise Set 5.6 133
Exercise Set 5.7 144
Exercise Set 5.8 149
Exercise Set 5.9 152
Exercise Set 5.10 159
Direct Methods for Solving Linear Systems 169
Exercise Set 6.1 169
Exercise Set 6.2 174
Exercise Set 6.3 180
Exercise Set 6.4 188
Exercise Set 6.1 190
Exercise Set 6.6 194
Iterative Techniques in Matrix Algebra 201
Exercise Set 7.1 201
Exercise Set 7.2 206
Exercise Set 7.3 209
Exercise Set 7.4 215
Exercise Set 7.5 219
Exercise Set 7.6 221
Approximation Theory 231
Exercise Set 8.1 231
Exercise Set 8.2 232
Exercise Set 8.3 236
Exercise Set 8.4 238
Exercise Set 8.5 244
Exercise Set 8.6 247
Approximating Eigenvalues 251
Exercise Set 9.1 251
Exercise Set 9.2 257
Exercise Set 9.3 262
Exercise Set 9.4 266
Exercise Set 9.5 267
Exercise Set 9.6 273
Numerical Solutions of Nonlinear Systems of Equations 281
Exercise Set 10.1 281
Exercise Set 10.2 284
Exercise Set 10.3 287
Exercise Set 10.4 290
Exercise Set 10.5 291
Boundary-Value Problems for Ordinary Differential Equations 295
Exercise Set 11.1 295
Exercise Set 11.2 299
Exercise Set 11.3 303
Exercise Set 11.4 308
Exercise Set 11.5 313
Numerical Solutions to Partial Differential Equations 319
Exercise Set 12.1 319
Exercise Set 12.2 323
Exercise Set 12.3 333
Exercise Set 12.4 336

Preface

Preface

This Instructor's Manual for the Ninth Edition of Numerical Analysis by Burden and Faires contains solutions to all the exercises in the book. Although the answers to the odd exercises are also in the back of the text, we have found that users of the book appreciate having all the solutions in one source. In addition, the results listed in this Instructor's Manual often go beyond those given in the back of the book. For example, we do not place the long solutions to theoretical and applied exercises in the book. You will find them here.

A Student Study Guide for the Ninth Edition of Numerical Analysis is also available and the solutions given in the Guide are generally more detailed than those in the Instructor's Manual. In order to make it convenient for instructors, we have placed an asterisk $\left({ }^{*}\right)$ in this Manual in front of each exercise whose solution is given in the Student Study Guide. Hopefully this will help with your homework assignments and test problems.

We have added a number of exercises to the text that involve the use of a Computer Algebra System. We have chosen Maple as our standard, because their NumericalAnalysis package parallels the algorithms in this book, but any of these systems can be used. In our recent teaching of the course we found that students understood the concepts better when they worked through the algorithms step-by-step, but let the computer algebra system do the tedious computation.

It has been our practice to include structured algorithms in our Numerical Analysis book for all the techniques discussed in the text. The algorithms are given in a form that can be coded in any appropriate programming language, by students with even a minimal amount of programming expertise.

At our website for the book,
http://www.math.ysu.edu/~faires/Numerical-Analysis/
you will find all the algorithms written in the programming languages FORTRAN, Pascal, C, Java, as well as in the Computer Algebra Systems, Maple, MATLAB, and Mathematica. For the Ninth Edition, we have added new Maple programs to reflect the changes in their system and to include portions of their NumericalAnalysis package.

The website also contains additional information about the book and will be updated regularly to reflect any modifications that might be made. For example, we will place there any responses to questions from users of the book concerning interpretations of the exercises and appropriate applications of the techniques.

We will have a set of presentation material ready soon for many of the methods in the book. These are being constructed by Professor John Carroll of Dublin City University using the Beamer package of $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$, and will be placed on the website. The Beamer package creates PDF files that are similar to Power Point presentations but incorporates mathematical elements easily and correctly. We are quite excited about this material and expect to have many of the presentations ready before they would normally be covered in the Fall term of 2010. If you send us an e-mail we will keep you posted on our progress.

We hope our supplement package provides flexibility for instructors teaching Numerical Analysis. If you have any suggestions for improvements that can be incorporated into future editions of the book or the supplements, we would be most grateful to receive your comments. We can be most easily contacted by electronic mail at the addresses listed below.

Youngstown State University

August 20, 2010

Richard L. Burden burden@math.ysu.edu
J. Douglas Faires
faires@math.ysu.edu

Mathematical Preliminaries

Note: An asterisk (*) before an exercise indicates that there is a solution in the Student

 Study Guide.
Exercise Set 1.1, page 14

*1. For each part, $f \in C[a, b]$ on the given interval. Since $f(a)$ and $f(b)$ are of opposite sign, the Intermediate Value Theorem implies that a number c exists with $f(c)=0$.
2. (a) $[0,1]$
(b) $[0,1],[4,5],[-1,0]$
*(c) $[-2,-2 / 3],[0,1],[2,4]$
(d) $[-3,-2],[-1,-0.5]$, and $[-0.5,0]$
3. For each part, $f \in C[a, b], f^{\prime}$ exists on (a, b) and $f(a)=f(b)=0$. Rolle's Theorem implies that a number c exists in (a, b) with $f^{\prime}(c)=0$. For part (d), we can use $[a, b]=[-1,0]$ or $[a, b]=[0,2]$.
4. The maximum value for $|f(x)|$ is given below.
*(a) $(2 \ln 2) / 3 \approx 0.4620981$
(b) 0.8
(c) 5.164000
(d) 1.582572
*5. For $x<0, f(x)<2 x+k<0$, provided that $x<-\frac{1}{2} k$. Similarly, for $x>0, f(x)>2 x+k>0$, provided that $x>-\frac{1}{2} k$. By Theorem 1.11, there exists a number c with $f(c)=0$. If $f(c)=0$ and $f\left(c^{\prime}\right)=0$ for some $c^{\prime} \neq c$, then by Theorem 1.7, there exists a number p between c and c^{\prime} with $f^{\prime}(p)=0$. However, $f^{\prime}(x)=3 x^{2}+2>0$ for all x.
6. Suppose p and q are in $[a, b]$ with $p \neq q$ and $f(p)=f(q)=0$. By the Mean Value Theorem, there exists $\xi \in(a, b)$ with

$$
f(p)-f(q)=f^{\prime}(\xi)(p-q)
$$

But, $f(p)-f(q)=0$ and $p \neq q$. So $f^{\prime}(\xi)=0$, contradicting the hypothesis.
7. (a) $P_{2}(x)=0$
(b) $R_{2}(0.5)=0.125$; actual error $=0.125$
(c) $P_{2}(x)=1+3(x-1)+3(x-1)^{2}$
(d) $R_{2}(0.5)=-0.125$; actual error $=-0.125$
8. $\quad P_{3}(x)=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}$

x	0.5	0.75	1.25	1.5
$P_{3}(x)$	1.2265625	1.3310547	1.5517578	1.6796875
$\sqrt{x+1}$	1.2247449	1.3228757	1.5	1.5811388
$\left\|\sqrt{x+1}-P_{3}(x)\right\|$	0.0018176	0.0081790	0.0517578	0.0985487

*9. Since

$$
P_{2}(x)=1+x \quad \text { and } \quad R_{2}(x)=\frac{-2 e^{\xi}(\sin \xi+\cos \xi)}{6} x^{3}
$$

for some ξ between x and 0 , we have the following:
(a) $P_{2}(0.5)=1.5$ and $\left|f(0.5)-P_{2}(0.5)\right| \leq 0.0932$;
(b) $\left|f(x)-P_{2}(x)\right| \leq 1.252$;
(c) $\int_{0}^{1} f(x) d x \approx 1.5$;
(d) $\left|\int_{0}^{1} f(x) d x-\int_{0}^{1} P_{2}(x) d x\right| \leq \int_{0}^{1}\left|R_{2}(x)\right| d x \leq 0.313$, and the actual error is 0.122 .
10. $\quad P_{2}(x)=1.461930+0.617884\left(x-\frac{\pi}{6}\right)-0.844046\left(x-\frac{\pi}{6}\right)^{2}$ and $R_{2}(x)=-\frac{1}{3} e^{\xi}(\sin \xi+\cos \xi)\left(x-\frac{\pi}{6}\right)^{3}$ for some ξ between x and $\frac{\pi}{6}$.
(a) $P_{2}(0.5)=1.446879$ and $f(0.5)=1.446889$. An error bound is 1.01×10^{-5}, and the actual error is 1.0×10^{-5}.
(b) $\left|f(x)-P_{2}(x)\right| \leq 0.135372$ on $[0,1]$
(c) $\int_{0}^{1} P_{2}(x) d x=1.376542$ and $\int_{0}^{1} f(x) d x=1.378025$
(d) An error bound is 7.403×10^{-3}, and the actual error is 1.483×10^{-3}.
11. $P_{3}(x)=(x-1)^{2}-\frac{1}{2}(x-1)^{3}$
(a) $P_{3}(0.5)=0.312500, f(0.5)=0.346574$. An error bound is $0.291 \overline{6}$, and the actual error is 0.034074 .
(b) $\left|f(x)-P_{3}(x)\right| \leq 0.291 \overline{6}$ on $[0.5,1.5]$
(c) $\int_{0.5}^{1.5} P_{3}(x) d x=0.08 \overline{3}, \int_{0.5}^{1.5}(x-1) \ln x d x=0.088020$
(d) An error bound is $0.058 \overline{3}$, and the actual error is 4.687×10^{-3}.
12. (a) $P_{3}(x)=-4+6 x-x^{2}-4 x^{3} ; P_{3}(0.4)=-2.016$
(b) $\left|R_{3}(0.4)\right| \leq 0.05849 ;\left|f(0.4)-P_{3}(0.4)\right|=0.013365367$
(c) $P_{4}(x)=-4+6 x-x^{2}-4 x^{3} ; P_{4}(0.4)=-2.016$
(d) $\left|R_{4}(0.4)\right| \leq 0.01366 ;\left|f(0.4)-P_{4}(0.4)\right|=0.013365367$
13. $P_{4}(x)=x+x^{3}$
(a) $\left|f(x)-P_{4}(x)\right| \leq 0.012405$
(b) $\int_{0}^{0.4} P_{4}(x) d x=0.0864, \int_{0}^{0.4} x e^{x^{2}} d x=0.086755$
(c) 8.27×10^{-4}
(d) $P_{4}^{\prime}(0.2)=1.12, f^{\prime}(0.2)=1.124076$. The actual error is 4.076×10^{-3}.
*14. First we need to convert the degree measure for the sine function to radians. We have $180^{\circ}=\pi$ radians, so $1^{\circ}=\frac{\pi}{180}$ radians. Since,

$$
f(x)=\sin x, \quad f^{\prime}(x)=\cos x, \quad f^{\prime \prime}(x)=-\sin x, \quad \text { and } \quad f^{\prime \prime \prime}(x)=-\cos x
$$

we have $f(0)=0, f^{\prime}(0)=1$, and $f^{\prime \prime}(0)=0$.
The approximation $\sin x \approx x$ is given by

$$
f(x) \approx P_{2}(x)=x, \quad \text { and } \quad R_{2}(x)=-\frac{\cos \xi}{3!} x^{3}
$$

If we use the bound $|\cos \xi| \leq 1$, then

$$
\left|\sin \frac{\pi}{180}-\frac{\pi}{180}\right|=\left|R_{2}\left(\frac{\pi}{180}\right)\right|=\left|\frac{-\cos \xi}{3!}\left(\frac{\pi}{180}\right)^{3}\right| \leq 8.86 \times 10^{-7}
$$

15. Since $42^{\circ}=7 \pi / 30$ radians, use $x_{0}=\pi / 4$. Then

$$
\left|R_{n}\left(\frac{7 \pi}{30}\right)\right| \leq \frac{\left(\frac{\pi}{4}-\frac{7 \pi}{30}\right)^{n+1}}{(n+1)!}<\frac{(0.053)^{n+1}}{(n+1)!}
$$

For $\left|R_{n}\left(\frac{7 \pi}{30}\right)\right|<10^{-6}$, it suffices to take $n=3$. To 7 digits,

$$
\cos 42^{\circ}=0.7431448 \quad \text { and } \quad P_{3}\left(42^{\circ}\right)=P_{3}\left(\frac{7 \pi}{30}\right)=0.7431446
$$

so the actual error is 2×10^{-7}.
*16. (a) $P_{3}(x)=\frac{1}{3} x+\frac{1}{6} x^{2}+\frac{23}{648} x^{3}$
(b) We have

$$
f^{(4)}(x)=\frac{-119}{1296} e^{x / 2} \sin \frac{x}{3}+\frac{5}{54} e^{x / 2} \cos \frac{x}{3},
$$

so

$$
\left|f^{(4)}(x)\right| \leq\left|f^{(4)}(0.60473891)\right| \leq 0.09787176, \quad \text { for } \quad 0 \leq x \leq 1
$$

and

$$
\left|f(x)-P_{3}(x)\right| \leq \frac{\left|f^{(4)}(\xi)\right|}{4!}|x|^{4} \leq \frac{0.09787176}{24}(1)^{4}=0.004077990
$$

17. (a) $P_{3}(x)=\ln (3)+\frac{2}{3}(x-1)+\frac{1}{9}(x-1)^{2}-\frac{10}{81}(x-1)^{3}$
(b) $\max _{0 \leq x \leq 1}\left|f(x)-P_{3}(x)\right|=\left|f(0)-P_{3}(0)\right|=0.02663366$
(c) $\tilde{P}_{3}(x)=\ln (2)+\frac{1}{2} x^{2}$
(d) $\max _{0 \leq x \leq 1}\left|f(x)-\tilde{P}_{3}(x)\right|=\left|f(1)-\tilde{P}_{3}(1)\right|=0.09453489$
(e) $P_{3}(0)$ approximates $f(0)$ better than $\tilde{P}_{3}(1)$ approximates $f(1)$.
18. $P_{n}(x)=\sum_{k=0}^{n} x^{k}, n \geq 19$
19. $\quad P_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} x^{k}, n \geq 7$
20. For n odd, $P_{n}(x)=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+\frac{1}{n}(-1)^{(n-1) / 2} x^{n}$. For n even, $P_{n}(x)=P_{n-1}(x)$.
21. A bound for the maximum error is 0.0026 .
22. (a) $P_{n}^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right)$ for $k=0,1, \ldots, n$. The shapes of P_{n} and f are the same at x_{0}.
(b) $P_{2}(x)=3+4(x-1)+3(x-1)^{2}$.
23. (a) The assumption is that $f\left(x_{i}\right)=0$ for each $i=0,1, \ldots, n$. Applying Rolle's Theorem on each on the intervals $\left[x_{i}, x_{i+1}\right]$ implies that for each $i=0,1, \ldots, n-1$ there exists a number z_{i} with $f^{\prime}\left(z_{i}\right)=0$. In addition, we have

$$
a \leq x_{0}<z_{0}<x_{1}<z_{1}<\cdots<z_{n-1}<x_{n} \leq b
$$

(b) Apply the logic in part (a) to the function $g(x)=f^{\prime}(x)$ with the number of zeros of g in $[a, b]$ reduced by 1 . This implies that numbers w_{i}, for $i=0,1, \ldots, n-2$ exist with

$$
g^{\prime}\left(w_{i}\right)=f^{\prime \prime}\left(w_{i}\right)=0, \quad \text { and } \quad a<z_{0}<w_{0}<z_{1}<w_{1}<\cdots w_{n-2}<z_{n-1}<b
$$

(c) Continuing by induction following the logic in parts (a) and (b) provides $n+1-j$ distinct zeros of $f^{(j)}$ in $[a, b]$.
(d) The conclusion of the theorem follows from part (c) when $j=n$, for in this case there will be (at least) $(n+1)-n=1$ zero in $[a, b]$.
*24. First observe that for $f(x)=x-\sin x$ we have $f^{\prime}(x)=1-\cos x \geq 0$, because $-1 \leq \cos x \leq 1$ for all values of x. Also, the statement clearly holds when $|x| \geq \pi$, because $|\sin x| \leq 1$.
(a) The observation implies that $f(x)$ is non-decreasing for all values of x, and in particular that $f(x)>f(0)=0$ when $x>0$. Hence for $x \geq 0$, we have $x \geq \sin x$, and when $0 \leq x \leq \pi,|\sin x|=\sin x \leq x=|x|$.
(b) When $-\pi<x<0$, we have $\pi \geq-x>0$. Since $\sin x$ is an odd function, the fact (from part (a)) that $\sin (-x) \leq(-x)$ implies that $|\sin x|=-\sin x \leq-x=|x|$.
As a consequence, for all real numbers x we have $|\sin x| \leq|x|$.
25. Since $R_{2}(1)=\frac{1}{6} e^{\xi}$, for some ξ in $(0,1)$, we have $\left|E-R_{2}(1)\right|=\frac{1}{6}\left|1-e^{\xi}\right| \leq \frac{1}{6}(e-1)$.
26. (a) Use the series

$$
e^{-t^{2}}=\sum_{k=0}^{\infty} \frac{(-1)^{k} t^{2 k}}{k!} \quad \text { to integrate } \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

and obtain the result.
(b) We have

$$
\begin{aligned}
\frac{2}{\sqrt{\pi}} e^{-x^{2}} \sum_{k=0}^{\infty} \frac{2^{k} x^{2 k+1}}{1 \cdot 3 \cdots(2 k+1)}= & \frac{2}{\sqrt{\pi}}\left[1-x^{2}+\frac{1}{2} x^{4}-\frac{1}{6} x^{7}+\frac{1}{24} x^{8}+\cdots\right] \\
& \cdot\left[x+\frac{2}{3} x^{3}+\frac{4}{15} x^{5}+\frac{8}{105} x^{7}+\frac{16}{945} x^{9}+\cdots\right] \\
= & \frac{2}{\sqrt{\pi}}\left[x-\frac{1}{3} x^{3}+\frac{1}{10} x^{5}-\frac{1}{42} x^{7}+\frac{1}{216} x^{9}+\cdots\right]=\operatorname{erf}(x)
\end{aligned}
$$

(c) 0.8427008
(d) 0.8427069
(e) The series in part (a) is alternating, so for any positive integer n and positive x we have the bound

$$
\left|\operatorname{erf}(x)-\frac{2}{\sqrt{\pi}} \sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1) k!}\right|<\frac{x^{2 n+3}}{(2 n+3)(n+1)!}
$$

We have no such bound for the positive term series in part (b).
27. (a) Let x_{0} be any number in $[a, b]$. Given $\epsilon>0$, let $\delta=\epsilon / L$. If $\left|x-x_{0}\right|<\delta$ and $a \leq x \leq b$, then $\left|f(x)-f\left(x_{0}\right)\right| \leq L\left|x-x_{0}\right|<\epsilon$.
(b) Using the Mean Value Theorem, we have

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|f^{\prime}(\xi)\right|\left|x_{2}-x_{1}\right|
$$

for some ξ between x_{1} and x_{2}, so

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leq L\left|x_{2}-x_{1}\right|
$$

(c) One example is $f(x)=x^{1 / 3}$ on $[0,1]$.
*28. (a) The number $\frac{1}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)$ is the average of $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$, so it lies between these two values of f. By the Intermediate Value Theorem 1.11 there exist a number ξ between x_{1} and x_{2} with

$$
f(\xi)=\frac{1}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)=\frac{1}{2} f\left(x_{1}\right)+\frac{1}{2} f\left(x_{2}\right)
$$

(b) Let $m=\min \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$ and $M=\max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$. Then $m \leq f\left(x_{1}\right) \leq M$ and $m \leq f\left(x_{2}\right) \leq M$, so

$$
c_{1} m \leq c_{1} f\left(x_{1}\right) \leq c_{1} M \quad \text { and } \quad c_{2} m \leq c_{2} f\left(x_{2}\right) \leq c_{2} M
$$

Thus

$$
\left(c_{1}+c_{2}\right) m \leq c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right) \leq\left(c_{1}+c_{2}\right) M
$$

and

$$
m \leq \frac{c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)}{c_{1}+c_{2}} \leq M
$$

By the Intermediate Value Theorem 1.11 applied to the interval with endpoints x_{1} and x_{2}, there exists a number ξ between x_{1} and x_{2} for which

$$
f(\xi)=\frac{c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)}{c_{1}+c_{2}}
$$

(c) Let $f(x)=x^{2}+1, x_{1}=0, x_{2}=1, c_{1}=2$, and $c_{2}=-1$. Then for all values of x,

$$
f(x)>0 \quad \text { but } \quad \frac{c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)}{c_{1}+c_{2}}=\frac{2(1)-1(2)}{2-1}=0 .
$$

29. (a) Since f is continuous at p and $f(p) \neq 0$, there exists a $\delta>0$ with

$$
|f(x)-f(p)|<\frac{|f(p)|}{2}
$$

for $|x-p|<\delta$ and $a<x<b$. We restrict δ so that $[p-\delta, p+\delta]$ is a subset of $[a, b]$. Thus, for $x \in[p-\delta, p+\delta]$, we have $x \in[a, b]$. So

$$
-\frac{|f(p)|}{2}<f(x)-f(p)<\frac{|f(p)|}{2} \quad \text { and } \quad f(p)-\frac{|f(p)|}{2}<f(x)<f(p)+\frac{|f(p)|}{2}
$$

If $f(p)>0$, then

$$
f(p)-\frac{|f(p)|}{2}=\frac{f(p)}{2}>0, \quad \text { so } \quad f(x)>f(p)-\frac{|f(p)|}{2}>0
$$

If $f(p)<0$, then $|f(p)|=-f(p)$, and

$$
f(x)<f(p)+\frac{|f(p)|}{2}=f(p)-\frac{f(p)}{2}=\frac{f(p)}{2}<0 .
$$

In either case, $f(x) \neq 0$, for $x \in[p-\delta, p+\delta]$.
(b) Since f is continuous at p and $f(p)=0$, there exists a $\delta>0$ with

$$
|f(x)-f(p)|<k, \quad \text { for } \quad|x-p|<\delta \quad \text { and } \quad a<x<b
$$

We restrict δ so that $[p-\delta, p+\delta]$ is a subset of $[a, b]$. Thus, for $x \in[p-\delta, p+\delta]$, we have

$$
|f(x)|=|f(x)-f(p)|<k .
$$

Exercise Set 1.2, page 28

1. We have

	Absolute error	Relative error
(a)	0.001264	4.025×10^{-4}
(b)	7.346×10^{-6}	2.338×10^{-6}
(c)	2.818×10^{-4}	1.037×10^{-4}
(d)	2.136×10^{-4}	1.510×10^{-4}
(e)	2.647×10^{1}	1.202×10^{-3}
(f)	1.454×10^{1}	1.050×10^{-2}
(g)	420	1.042×10^{-2}
(h)	3.343×10^{3}	9.213×10^{-3}

2. The largest intervals are:
(a) $(3.1412784,3.1419068)$
(b) $(2.7180100,2.7185536)$
*(c) $(1.4140721,1.4143549)$
(d) $(1.9127398,1.9131224)$
3. The largest intervals are
(a) $(149.85,150.15)$
(b) $(899.1,900.9)$
(c) $(1498.5,1501.5)$
(d) $(89.91,90.09)$
4. The calculations and their errors are:
(a) (i) $17 / 15$
(ii) 1.13 (iii) 1.13 (iv) both 3×10^{-3}
(b) (i) $4 / 15$
(ii) 0.266 (iii) 0.266 (iv) both 2.5×10^{-3}
(c) (i) $139 / 660$
(ii) 0.211 (iii) 0.210
(iv) $2 \times 10^{-3}, 3 \times 10^{-3}$
(d) (i) $301 / 660$
(ii) 0.455 (iii) 0.456
(iv) $2 \times 10^{-3}, 1 \times 10^{-4}$
5. We have

	Approximation	Absolute error	Relative error
(a)	134	0.079	5.90×10^{-4}
(b)	133	0.499	3.77×10^{-3}
(c)	2.00	0.327	0.195
(d)	1.67	0.003	1.79×10^{-3}
*(e)	1.80	0.154	0.0786
(f)	-15.1	0.0546	3.60×10^{-3}
(g)	0.286	2.86×10^{-4}	10^{-3}
(h)	0.00	0.0215	1.00

6. We have

	Approximation	Absolute error	Relative error
(a)	133.9	0.021	1.568×10^{-4}
(b)	132.5	0.001	7.55×10^{-6}
(c)	1.700	0.027	0.01614
(d)	1.673	0	0
(e)	1.986	0.03246	0.01662
(f)	-15.16	0.005377	3.548×10^{-4}
(g)	0.2857	1.429×10^{-5}	5×10^{-5}
(h)	-0.01700	0.0045	0.2092

7. We have

	Approximation	Absolute error	Relative error
(a)	133	0.921	6.88×10^{-3}
(b)	132	0.501	3.78×10^{-3}
(c)	1.00	0.673	0.402
(d)	1.67	0.003	1.79×10^{-3}
(e)	3.55	1.60	0.817
(f)	-15.2	0.0454	0.00299
(g)	0.284	0.00171	0.00600
(h)	0	0.02150	1

8. We have

	Approximation	Absolute error	Relative error
(a)	133.9	0.021	1.568×10^{-4}
(b)	132.5	0.001	7.55×10^{-6}
(c)	1.600	0.073	0.04363
(d)	1.673	0	0
(e)	1.983	0.02945	0.01508
(f)	-15.15	0.004622	3.050×10^{-4}
(g)	0.2855	2.143×10^{-4}	7.5×10^{-4}
(h)	-0.01700	0.0045	0.2092

9. We have

	Approximation	Absolute error	Relative error
*(a)	3.14557613	3.983×10^{-3}	1.268×10^{-3}
(b)	3.14162103	2.838×10^{-5}	9.032×10^{-6}

10. We have

	Approximation	Absolute error	Relative error
(a)	2.7166667	0.0016152	5.9418×10^{-4}
(b)	2.718281801	2.73×10^{-8}	1.00×10^{-8}

11. (a) We have

$$
\lim _{x \rightarrow 0} \frac{x \cos x-\sin x}{x-\sin x}=\lim _{x \rightarrow 0} \frac{-x \sin x}{1-\cos x}=\lim _{x \rightarrow 0} \frac{-\sin x-x \cos x}{\sin x}=\lim _{x \rightarrow 0} \frac{-2 \cos x+x \sin x}{\cos x}=-2
$$

(b) $f(0.1) \approx-1.941$
(c) $\frac{x\left(1-\frac{1}{2} x^{2}\right)-\left(x-\frac{1}{6} x^{3}\right)}{x-\left(x-\frac{1}{6} x^{3}\right)}=-2$
(d) The relative error in part (b) is 0.029. The relative error in part (c) is 0.00050 .
12. (a) $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{x}=\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}}{1}=2$
(b) $f(0.1) \approx 2.05$
(c) $\frac{1}{x}\left(\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}\right)-\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}\right)\right)=\frac{1}{x}\left(2 x+\frac{1}{3} x^{3}\right)=2+\frac{1}{3} x^{2}$; using three-digit rounding arithmetic and $x=0.1$, we obtain 2.00 .
(d) The relative error in part (b) is $=0.0233$. The relative error in part (c) is $=0.00166$.
13. We have

	x_{1}	Absolute error	Relative error	x_{2}	Absolute error	Relative error
(a)	92.26	0.01542	1.672×10^{-4}	0.005419	6.273×10^{-7}	1.157×10^{-4}
(b)	0.005421	1.264×10^{-6}	2.333×10^{-4}	-92.26	4.580×10^{-3}	4.965×10^{-5}
(c)	10.98	6.875×10^{-3}	6.257×10^{-4}	0.001149	7.566×10^{-8}	6.584×10^{-5}
(d)	-0.001149	7.566×10^{-8}	6.584×10^{-5}	-10.98	6.875×10^{-3}	6.257×10^{-4}

14. We have

| | Approximation for | x_{1} | Absolute error |
| :---: | :---: | :---: | :---: | Relative error

| | Approximation for | x_{2} | Absolute error |
| :---: | :---: | :---: | :---: | Relative error | (a) | 0.005418 | 2.373×10^{-6} | 4.377×10^{-4} |
| :---: | :---: | :---: | :---: |
| (b) | -92.25 | 5.420×10^{-3} | 5.875×10^{-5} |
| (c) | 0.001149 | 7.566×10^{-8} | 6.584×10^{-5} |
| (d) | -10.98 | 6.875×10^{-3} | 6.257×10^{-4} |

15. The machine numbers are equivalent to
(a) 3224
(b) -3224
*(c) 1.32421875
(d) 1.3242187500000002220446049250313080847263336181640625
16. (a) Next Largest: 3224.00000000000045474735088646411895751953125;

Next Smallest: 3223.99999999999954525264911353588104248046875
(b) Next Largest: - 3224.00000000000045474735088646411895751953125 ;

Next Smallest: - 3223.99999999999954525264911353588104248046875
*(c) Next Largest: 1.3242187500000002220446049250313080847263336181640625 ;
Next Smallest: 1.3242187499999997779553950749686919152736663818359375
(d) Next Largest: 1.324218750000000444089209850062616169452667236328125;

Next Smallest: 1.32421875
17. (b) The first formula gives -0.00658 , and the second formula gives -0.0100 . The true threedigit value is -0.0116 .
18. (a) -1.82
(b) 7.09×10^{-3}
(c) The formula in (b) is more accurate since subtraction is not involved.
19. The approximate solutions to the systems are
(a) $x=2.451, y=-1.635$
(b) $x=507.7, y=82.00$
20. (a) $x=2.460 \quad y=-1.634$
(b) $x=477.0 \quad y=76.93$
*21. (a) In nested form, we have $f(x)=\left(\left(\left(1.01 e^{x}-4.62\right) e^{x}-3.11\right) e^{x}+12.2\right) e^{x}-1.99$.
(b) -6.79
(c) -7.07
(d) The absolute errors are

$$
|-7.61-(-6.71)|=0.82 \quad \text { and } \quad|-7.61-(-7.07)|=0.54
$$

Nesting is significantly better since the relative errors are

$$
\left|\frac{0.82}{-7.61}\right|=0.108 \quad \text { and } \quad\left|\frac{0.54}{-7.61}\right|=0.071
$$

22. We have $39.375 \leq$ Volume ≤ 86.625 and $71.5 \leq$ Surface Area ≤ 119.5.
23. (a) $n=77$
(b) $n=35$
*24. When $d_{k+1}<5$,

$$
\left|\frac{y-f l(y)}{y}\right|=\frac{0 . d_{k+1} \ldots \times 10^{n-k}}{0 . d_{1} \ldots \times 10^{n}} \leq \frac{0.5 \times 10^{-k}}{0.1}=0.5 \times 10^{-k+1}
$$

When $d_{k+1}>5$,

$$
\left|\frac{y-f l(y)}{y}\right|=\frac{\left(1-0 . d_{k+1} \ldots\right) \times 10^{n-k}}{0 . d_{1} \ldots \times 10^{n}}<\frac{(1-0.5) \times 10^{-k}}{0.1}=0.5 \times 10^{-k+1}
$$

25. (a) $m=17$
(b) We have
$\binom{m}{k}=\frac{m!}{k!(m-k)!}=\frac{m(m-1) \cdots(m-k-1)(m-k)!}{k!(m-k)!}=\left(\frac{m}{k}\right)\left(\frac{m-1}{k-1}\right) \cdots\left(\frac{m-k-1}{1}\right)$
(c) $m=181707$
(d) $2,597,000$; actual error 1960; relative error 7.541×10^{-4}
26. (a) The actual error is $\left|f^{\prime}(\xi) \epsilon\right|$, and the relative error is $\left|f^{\prime}(\xi) \epsilon\right| \cdot\left|f\left(x_{0}\right)\right|^{-1}$, where the number ξ is between x_{0} and $x_{0}+\epsilon$.
(b) (i) $1.4 \times 10^{-5} ; 5.1 \times 10^{-6}$ (ii) $2.7 \times 10^{-6} ; 3.2 \times 10^{-6}$
(c) (i) $1.2 ; 5.1 \times 10^{-5}$ (ii) $4.2 \times 10^{-5} ; 7.8 \times 10^{-5}$
27. (a) 124.03
(b) 124.03
(c) -124.03
(d) -124.03
(e) 0.0065
(f) 0.0065
(g) -0.0065
(h) -0.0065
*28. Since $0.995 \leq P \leq 1.005,0.0995 \leq V \leq 0.1005,0.082055 \leq R \leq 0.082065$, and $0.004195 \leq$ $N \leq 0.004205$, we have $287.61^{\circ} \leq T \leq 293.42^{\circ}$. Note that $15^{\circ} \mathrm{C}=288.16 \mathrm{~K}$.
When P is doubled and V is halved, $1.99 \leq P \leq 2.01$ and $0.0497 \leq V \leq 0.0503$ so that $286.61^{\circ} \leq T \leq 293.72^{\circ}$. Note that $19^{\circ} \mathrm{C}=292.16 \mathrm{~K}$. The laboratory figures are within an acceptable range.

Exercise Set 1.3, page 39

1. (a) $\frac{1}{1}+\frac{1}{4} \ldots+\frac{1}{100}=1.53 ; \quad \frac{1}{100}+\frac{1}{81}+\ldots+\frac{1}{1}=1.54$.

The actual value is 1.549. Significant round-off error occurs much earlier in the first method.
(b) The following algorithm will sum the series $\sum_{i=1}^{N} x_{i}$ in the reverse order.

```
INPUT \(N ; x_{1}, x_{2}, \ldots, x_{N}\)
OUTPUT SUM
STEP 1 Set \(S U M=0\)
STEP 2 For \(j=1, \ldots, N\) set \(\quad i=N-j+1\)
\(S U M=S U M+x_{i}\)
STEP 3 OUTPUT(SUM);
```

 STOP.
 2. We have

	Approximation	Absolute Error	Relative Error
(a)	2.715	3.282×10^{-3}	1.207×10^{-3}
(b)	2.716	2.282×10^{-3}	8.394×10^{-4}
(c)	2.716	2.282×10^{-3}	8.394×10^{-4}
(d)	2.718	2.818×10^{-4}	1.037×10^{-4}

*3. (a) 2000 terms
(b) $20,000,000,000$ terms
4. 4 terms
*5. 3 terms
6. (a) $O\left(\frac{1}{n}\right)$
(b) $O\left(\frac{1}{n^{2}}\right)$
(c) $O\left(\frac{1}{n^{2}}\right)$
(d) $O\left(\frac{1}{n}\right)$
7. The rates of convergence are:
(a) $O\left(h^{2}\right)$
(b) $O(h)$
(c) $O\left(h^{2}\right)$
(d) $O(h)$
*8. (a) $n(n+1) / 2$ multiplications; $(n+2)(n-1) / 2$ additions.
(b) $\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{i} b_{j}\right)$ requires n multiplications; $(n+2)(n-1) / 2$ additions.
9. The following algorithm computes $P\left(x_{0}\right)$ using nested arithmetic.

```
\(\operatorname{INPUT} n, a_{0}, a_{1}, \ldots, a_{n}, x_{0}\)
OUTPUT \(y=P\left(x_{0}\right)\)
STEP 1 Set \(y=a_{n}\).
STEP 2 For \(i=n-1, n-2, \ldots, 0\) set \(y=x_{0} y+a_{i}\).
STEP 3 OUTPUT ( \(y\) );
        STOP.
```

*10. The following algorithm uses the most effective formula for computing the roots of a quadratic equation.
INPUT A, B, C.
OUTPUT x_{1}, x_{2}.
STEP 1 If $A=0$ then

$$
\begin{aligned}
\text { if } B=0 \text { then } & \text { OUTPUT ('NO SOLUTIONS'); } \\
& \text { STOP. } \\
\text { else } & \text { set } x_{1}=-C / B ; \\
& \text { OUTPUT ('ONE SOLUTION', } \left.x_{1}\right) ; \\
& \text { STOP. }
\end{aligned}
$$

STEP 2 Set $D=B^{2}-4 A C$.
STEP 3 If $D=0$ then set $x_{1}=-B /(2 A)$;
OUTPUT ('MULTIPLE ROOTS', x_{1});
STOP.
STEP 4 If $D<0$ then set

$$
\begin{aligned}
& \qquad b=\sqrt{-D} /(2 A) \\
& \quad a=-B /(2 A) ; \\
& \text { OUTPUT ('COMPLEX CONJUGATE ROOTS'); } \\
& \quad x_{1}=a+b i ; \\
& x_{2}=a-b i ; \\
& \text { OUTPUT }\left(x_{1}, x_{2}\right) ; \\
& \text { STOP. }
\end{aligned}
$$

STEP 5 If $B \geq 0$ then set

$$
d=B+\sqrt{D}
$$

$x_{1}=-2 C / d ;$
$x_{2}=-d /(2 A)$
else set

$$
d=-B+\sqrt{D}
$$

$$
x_{1}=d /(2 A)
$$

$$
x_{2}=2 C / d
$$

STEP 6 OUTPUT $\left(x_{1}, x_{2}\right)$;
STOP.
11. The following algorithm produces the product $P=\left(x-x_{0}\right), \ldots,\left(x-x_{n}\right)$.
$\operatorname{INPUT} n, x_{0}, x_{1}, \cdots, x_{n}, x$
OUTPUT P.
STEP 1 Set $P=x-x_{0}$;

$$
i=1
$$

STEP 2 While $P \neq 0$ and $i \leq n$ set

$$
\begin{aligned}
& P=P \cdot\left(x-x_{i}\right) \\
& i=i+1
\end{aligned}
$$

STEP 3 OUTPUT (P); STOP.
12. The following algorithm determines the number of terms needed to satisfy a given tolerance.

INPUT number x, tolerance $T O L$, maximum number of iterations M.
OUTPUT number N of terms or a message of failure.

$$
\begin{aligned}
\text { STEP } 1 \quad \text { Set } & S U M=(1-2 x) /\left(1-x+x^{2}\right) \\
& S=(1+2 x) /\left(1+x+x^{2}\right) \\
& N=2
\end{aligned}
$$

STEP 2 While $N \leq M$ do Steps 3-5.

$$
\begin{array}{lll}
\text { STEP } 3 \text { Set } & j=2^{N-1} \\
& & y=x^{j} \\
& t_{1}=\frac{j y}{x}(1-2 y) \\
& t_{2}=y(y-1)+1 \\
& S U M=S U M+\frac{t_{1}}{t_{2}} \\
\text { STEP } 4 \text { If } \quad|S U M-S|<T O L \text { then }
\end{array}
$$

$$
\text { OUTPUT }(N) ;
$$

STOP.

$$
\text { STEP } 5 \quad \text { Set } \quad N=N+1
$$

STEP 6 OUTPUT('Method failed'); STOP.

When $T O L=10^{-6}$, we need to have $N \geq 4$.
13. (a) If $\left|\alpha_{n}-\alpha\right| /\left(1 / n^{p}\right) \leq K$, then

$$
\left|\alpha_{n}-\alpha\right| \leq K\left(1 / n^{p}\right) \leq K\left(1 / n^{q}\right) \quad \text { since } \quad 0<q<p
$$

Thus

$$
\left|\alpha_{n}-\alpha\right| /\left(1 / n^{p}\right) \leq K \quad \text { and } \quad\left\{\alpha_{n}\right\}_{n=1}^{\infty} \rightarrow \alpha
$$

with rate of convergence $O\left(1 / n^{p}\right)$.
(b)

n	$1 / n$	$1 / n^{2}$	$1 / n^{3}$	$1 / n^{5}$
5	0.2	0.04	0.008	0.0016
10	0.1	0.01	0.001	0.0001
50	0.02	0.0004	8×10^{-6}	1.6×10^{-7}
100	0.01	10^{-4}	10^{-6}	10^{-8}

The most rapid convergence rate is $O\left(1 / n^{4}\right)$.
14. (a) If $F(h)=L+O\left(h^{p}\right)$, there is a constant $k>0$ such that

$$
|F(h)-L| \leq k h^{p}
$$

for sufficiently small $h>0$. If $0<q<p$ and $0<h<1$, then $h^{q}>h^{p}$. Thus, $k h^{p}<k h^{q}$, so

$$
|F(h)-L| \leq k h^{q} \quad \text { and } \quad F(h)=L+O\left(h^{q}\right) .
$$

(b) For various powers of h we have the entries in the following table.

h	h^{2}	h^{3}	h^{4}
0.5	0.25	0.125	0.0625
0.1	0.01	0.001	0.0001
0.01	0.0001	0.00001	10^{-8}
0.001	10^{-6}	10^{-9}	10^{-12}

The most rapid convergence rate is $O\left(h^{4}\right)$.
*15. Suppose that for sufficiently small $|x|$ we have positive constants k_{1} and k_{2} independent of x, for which

$$
\left|F_{1}(x)-L_{1}\right| \leq K_{1}|x|^{\alpha} \quad \text { and } \quad\left|F_{2}(x)-L_{2}\right| \leq K_{2}|x|^{\beta} .
$$

Let $c=\max \left(\left|c_{1}\right|,\left|c_{2}\right|, 1\right), K=\max \left(K_{1}, K_{2}\right)$, and $\delta=\max (\alpha, \beta)$.
(a) We have

$$
\begin{aligned}
\left|F(x)-c_{1} L_{1}-c_{2} L_{2}\right| & =\left|c_{1}\left(F_{1}(x)-L_{1}\right)+c_{2}\left(F_{2}(x)-L_{2}\right)\right| \\
& \leq\left|c_{1}\right| K_{1}|x|^{\alpha}+\left|c_{2}\right| K_{2}|x|^{\beta} \leq c K\left[|x|^{\alpha}+|x|^{\beta}\right] \\
& \leq c K|x|^{\gamma}\left[1+|x|^{\delta-\gamma}\right] \leq \tilde{K}|x|^{\gamma}
\end{aligned}
$$

for sufficiently small $|x|$ and some constant \tilde{K}. Thus, $F(x)=c_{1} L_{1}+c_{2} L_{2}+O\left(x^{\gamma}\right)$.
(b) We have

$$
\begin{aligned}
\left|G(x)-L_{1}-L_{2}\right| & =\left|F_{1}\left(c_{1} x\right)+F_{2}\left(c_{2} x\right)-L_{1}-L_{2}\right| \\
& \leq K_{1}\left|c_{1} x\right|^{\alpha}+K_{2}\left|c_{2} x\right|^{\beta} \leq K c^{\delta}\left[|x|^{\alpha}+|x|^{\beta}\right] \\
& \leq K c^{\delta}|x|^{\gamma}\left[1+|x|^{\delta-\gamma}\right] \leq \tilde{K}|x|^{\gamma}
\end{aligned}
$$

for sufficiently small $|x|$ and some constant \tilde{K}. Thus, $G(x)=L_{1}+L_{2}+O\left(x^{\gamma}\right)$.
*16. Since

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=x \quad \text { and } \quad x_{n+1}=1+\frac{1}{x_{n}}
$$

we have

$$
x=1+\frac{1}{x}, \quad \text { so } \quad x^{2}-x-1=0
$$

The quadratic formula implies that

$$
x=\frac{1}{2}(1+\sqrt{5}) .
$$

This number is called the golden ratio. It appears frequently in mathematics and the sciences.
*17. (a) To save space we will show the Maple output for each step in one line. Maple would produce this output on separate lines.
$n:=98 ; f:=1 ; s:=1$

$$
n:=98 \quad f:=1 \quad s:=1
$$

for i from 1 to n do

$$
l:=f+s ; f:=s ; s:=l ; \text { od }:
$$

$$
l:=2 \quad f:=1 \quad s:=2
$$

$$
l:=3 \quad f:=2 \quad s:=3
$$

$$
\vdots
$$

$$
l:=218922995834555169026 \quad f:=135301852344706746049 \quad s:=218922995834555169026
$$

$$
l:=354224848179261915075
$$

(b) $F 100:=\frac{1}{\operatorname{sqrt}(5)}\left(\left(\frac{(1+\operatorname{sqrt}(5)}{2}\right)^{100}-\left(\frac{1-\operatorname{sqrt}(5)}{2}\right)^{100}\right)$

$$
F 100:=\frac{1}{\sqrt{5}}\left(\left(\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)^{100}-\left(\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)^{100}\right)
$$

$\operatorname{evalf(F100)}$

$$
0.3542248538 \times 10^{21}
$$

(c) The result in part (a) is computed using exact integer arithmetic, and the result in part (b) is computed using ten-digit rounding arithmetic.
(d) The result in part (a) required traversing a loop 98 times.
(e) The result is the same as the result in part (a).
18. (a) $n=50$
(b) $n=500$

Solutions of Equations of One Variable

Exercise Set 2.1, page 54

*1. $p_{3}=0.625$
2. $*$ (a) $p_{3}=-0.6875$
(b) $p_{3}=1.09375$
3. The Bisection method gives:
(a) $p_{7}=0.5859$
(b) $p_{8}=3.002$
(c) $p_{7}=3.419$
4. The Bisection method gives:
(a) $p_{7}=-1.414$
(b) $p_{8}=1.414$
(c) $p_{7}=2.727$
(d) $p_{7}=-0.7265$
5. The Bisection method gives:
(a) $p_{17}=0.641182$
(b) $p_{17}=0.257530$
(c) For the interval $[-3,-2]$, we have $p_{17}=-2.191307$, and for the interval $[-1,0]$, we have $p_{17}=-0.798164$.
(d) For the interval [0.2, 0.3], we have $p_{14}=0.297528$, and for the interval [1.2, 1.3], we have $p_{14}=1.256622$.
6. (a) $p_{17}=1.51213837$
(b) $p_{17}=0.97676849$
(c) For the interval $[1,2]$, we have $p_{17}=1.41239166$, and for the interval $[2,4]$, we have $p_{18}=3.05710602$.
(d) For the interval $[0,0.5]$, we have $p_{16}=0.20603180$, and for the interval $[0.5,1]$, we have $p_{16}=0.68196869$.
7. (a)

(b) Using [1.5, 2] from part (a) gives $p_{16}=1.89550018$.
*8. (a)

(b) Using [4.2, 4.6] from part (a) gives $p_{16}=4.4934143$.
9. (a)

(b) $p_{17}=1.00762177$
10. (a) 0
(b) 0
(c) 2
(d) -2
11. *(a) 2
(b) -2
*(c) -1
(d) 1
*12. We have $\sqrt{3} \approx p_{14}=1.7320$, using [1, 2].
13. The third root of 25 is approximately $p_{14}=2.92401$, using $[2,3]$.
*14. A bound for the number of iterations is $n \geq 12$ and $p_{12}=1.3787$.
15. A bound is $n \geq 14$, and $p_{14}=1.32477$.
16. For $n>1$,

$$
\left|f\left(p_{n}\right)\right|=\left(\frac{1}{n}\right)^{10} \leq\left(\frac{1}{2}\right)^{10}=\frac{1}{1024}<10^{-3}
$$

so

$$
\left|p-p_{n}\right|=\frac{1}{n}<10^{-3} \Leftrightarrow 1000<n
$$

*17. Since $\lim _{n \rightarrow \infty}\left(p_{n}-p_{n-1}\right)=\lim _{n \rightarrow \infty} 1 / n=0$, the difference in the terms goes to zero. However, p_{n} is the nth term of the divergent harmonic series, so $\lim _{n \rightarrow \infty} p_{n}=\infty$.
18. Since $-1<a<0$ and $2<b<3$, we have $1<a+b<3$ or $1 / 2<1 / 2(a+b)<3 / 2$ in all cases. Further,

$$
\begin{aligned}
& f(x)<0, \quad \text { for }-1<x<0 \quad \text { and } 1<x<2 \\
& f(x)>0, \quad \text { for } 0<x<1 \quad \text { and } \quad 2<x<3
\end{aligned}
$$

Thus, $a_{1}=a, f\left(a_{1}\right)<0, b_{1}=b$, and $f\left(b_{1}\right)>0$.
(a) Since $a+b<2$, we have $p_{1}=\frac{a+b}{2}$ and $1 / 2<p_{1}<1$. Thus, $f\left(p_{1}\right)>0$. Hence, $a_{2}=a_{1}=a$ and $b_{2}=p_{1}$. The only zero of f in $\left[a_{2}, b_{2}\right]$ is $p=0$, so the convergence will be to 0 .
(b) Since $a+b>2$, we have $p_{1}=\frac{a+b}{2}$ and $1<p_{1}<3 / 2$. Thus, $f\left(p_{1}\right)<0$. Hence, $a_{2}=p_{1}$ and $b_{2}=b_{1}=b$. The only zero of f in $\left[a_{2}, b_{2}\right]$ is $p=2$, so the convergence will be to 2 .
(c) Since $a+b=2$, we have $p_{1}=\frac{a+b}{2}=1$ and $f\left(p_{1}\right)=0$. Thus, a zero of f has been found on the first iteration. The convergence is to $p=1$.
*19. The depth of the water is 0.838 ft .
20. The angle θ changes at the approximate rate $w=-0.317059$.

Exercise Set 2.2, page 64

1. For the value of x under consideration we have
(a) $x=\left(3+x-2 x^{2}\right)^{1 / 4} \Leftrightarrow x^{4}=3+x-2 x^{2} \Leftrightarrow f(x)=0$
(b) $x=\left(\frac{x+3-x^{4}}{2}\right)^{1 / 2} \Leftrightarrow 2 x^{2}=x+3-x^{4} \Leftrightarrow f(x)=0$
(c) $x=\left(\frac{x+3}{x^{2}+2}\right)^{1 / 2} \Leftrightarrow x^{2}\left(x^{2}+2\right)=x+3 \Leftrightarrow f(x)=0$
(d) $x=\frac{3 x^{4}+2 x^{2}+3}{4 x^{3}+4 x-1} \Leftrightarrow 4 x^{4}+4 x^{2}-x=3 x^{4}+2 x^{2}+3 \Leftrightarrow f(x)=0$
2. (a) $p_{4}=1.10782 ; \quad$ (b) $p_{4}=0.987506 ; \quad$ (c) $p_{4}=1.12364 ; \quad$ (d) $p_{4}=1.12412$;
(b) Part (d) gives the best answer since $\left|p_{4}-p_{3}\right|$ is the smallest for (d).
*3. The order in descending speed of convergence is (b), (d), and (a). The sequence in (c) does not converge.
3. The sequence in (c) converges faster than in (d). The sequences in (a) and (b) diverge.
4. With $g(x)=\left(3 x^{2}+3\right)^{1 / 4}$ and $p_{0}=1, p_{6}=1.94332$ is accurate to within 0.01 .
5. With $g(x)=\sqrt{1+\frac{1}{x}}$ and $p_{0}=1$, we have $p_{4}=1.324$.
6. Since $g^{\prime}(x)=\frac{1}{4} \cos \frac{x}{2}, g$ is continuous and g^{\prime} exists on $[0,2 \pi]$. Further, $g^{\prime}(x)=0$ only when $x=\pi$, so that $g(0)=g(2 \pi)=\pi \leq g(x)=\leq g(\pi)=\pi+\frac{1}{2}$ and $\left|g^{\prime}(x)\right| \leq \frac{1}{4}$, for $0 \leq x \leq 2 \pi$. Theorem 2.3 implies that a unique fixed point p exists in $[0,2 \pi]$. With $k=\frac{1}{4}$ and $p_{0}=\pi$, we have $p_{1}=\pi+\frac{1}{2}$. Corollary 2.5 implies that

$$
\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right|=\frac{2}{3}\left(\frac{1}{4}\right)^{n}
$$

For the bound to be less than 0.1 , we need $n \geq 4$. However, $p_{3}=3.626996$ is accurate to within 0.01.
8. Using $p_{0}=1$ gives $p_{12}=0.6412053$. Since $\left|g^{\prime}(x)\right|=2^{-x} \ln 2 \leq 0.551$ on $\left[\frac{1}{3}, 1\right]$ with $k=0.551$, Corollary 2.5 gives a bound of 16 iterations.
${ }^{*} 9$. For $p_{0}=1.0$ and $g(x)=0.5\left(x+\frac{3}{x}\right)$, we have $\sqrt{3} \approx p_{4}=1.73205$.
10. For $g(x)=5 / \sqrt{x}$ and $p_{0}=2.5$, we have $p_{14}=2.92399$.
11. (a) With $[0,1]$ and $p_{0}=0$, we have $p_{9}=0.257531$.
(b) With $[2.5,3.0]$ and $p_{0}=2.5$, we have $p_{17}=2.690650$.
(c) With $[0.25,1]$ and $p_{0}=0.25$, we have $p_{14}=0.909999$.
(d) With $[0.3,0.7]$ and $p_{0}=0.3$, we have $p_{39}=0.469625$.
(e) With $[0.3,0.6]$ and $p_{0}=0.3$, we have $p_{48}=0.448059$.
(f) With $[0,1]$ and $p_{0}=0$, we have $p_{6}=0.704812$.
12. The inequalities in Corollary 2.4 give $\left|p_{n}-p\right|<k^{n} \max \left(p_{0}-a, b-p_{0}\right)$. We want

$$
k^{n} \max \left(p_{0}-a, b-p_{0}\right)<10^{-5} \quad \text { so we need } \quad n>\frac{\ln \left(10^{-5}\right)-\ln \left(\max \left(p_{0}-a, b-p_{0}\right)\right)}{\ln k}
$$

(a) Using $g(x)=2+\sin x$ we have $k=0.9899924966$ so that with $p_{0}=2$ we have $n>$ $\ln (0.00001) / \ln k=1144.663221$. However, our tolerance is met with $p_{63}=2.5541998$.
(b) Using $g(x)=\sqrt[3]{2 x+5}$ we have $k=0.1540802832$ so that with $p_{0}=2$ we have $n>$ $\ln (0.00001) / \ln k=6.155718005$. However, our tolerance is met with $p_{6}=2.0945503$.

* (c) Using $g(x)=\sqrt{e^{x} / 3}$ and the interval $[0,1]$ we have $k=0.4759448347$ so that with $p_{0}=1$ we have $n>\ln (0.00001) / \ln k=15.50659829$. However, our tolerance is met with $p_{12}=0.91001496$.
(d) Using $g(x)=\cos x$ and the interval $[0,1]$ we have $k=0.8414709848$ so that with $p_{0}=0$ we have $n>\ln (0.00001) / \ln k>66.70148074$. However, our tolerance is met with $p_{30}=$ 0.73908230 .

13. For $g(x)=\left(2 x^{2}-10 \cos x\right) /(3 x)$, we have the following:

$$
p_{0}=3 \Rightarrow p_{8}=3.16193 ; \quad p_{0}=-3 \Rightarrow p_{8}=-3.16193
$$

For $g(x)=\arccos \left(-0.1 x^{2}\right)$, we have the following:

$$
p_{0}=1 \Rightarrow p_{11}=1.96882 ; \quad p_{0}=-1 \Rightarrow p_{11}=-1.96882
$$

${ }^{*}$ 14. For $g(x)=\frac{1}{\tan x}-\frac{1}{x}+x$ and $p_{0}=4$, we have $p_{4}=4.493409$.
15. With $g(x)=\frac{1}{\pi} \arcsin \left(-\frac{x}{2}\right)+2$, we have $p_{5}=1.683855$.
16. (a) If fixed-point iteration converges to the limit p, then

$$
p=\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} 2 p_{n-1}-A p_{n-1}^{2}=2 p-A p^{2}
$$

Solving for p gives $p=\frac{1}{A}$.
(b) Any subinterval $[c, d]$ of $\left(\frac{1}{2 A}, \frac{3}{2 A}\right)$ containing $\frac{1}{A}$ suffices.

Since

$$
g(x)=2 x-A x^{2}, \quad g^{\prime}(x)=2-2 A x
$$

so $g(x)$ is continuous, and $g^{\prime}(x)$ exists. Further, $g^{\prime}(x)=0$ only if $x=\frac{1}{A}$.
Since

$$
g\left(\frac{1}{A}\right)=\frac{1}{A}, \quad g\left(\frac{1}{2 A}\right)=g\left(\frac{3}{2 A}\right)=\frac{3}{4 A}, \quad \text { and we have } \quad \frac{3}{4 A} \leq g(x) \leq \frac{1}{A}
$$

For x in $\left(\frac{1}{2 A}, \frac{3}{2 A}\right)$, we have

$$
\left|x-\frac{1}{A}\right|<\frac{1}{2 A} \quad \text { so } \quad\left|g^{\prime}(x)\right|=2 A\left|x-\frac{1}{A}\right|<2 A\left(\frac{1}{2 A}\right)=1
$$

17. One of many examples is $g(x)=\sqrt{2 x-1}$ on $\left[\frac{1}{2}, 1\right]$.
*18. (a) The proof of existence is unchanged. For uniqueness, suppose p and q are fixed points in $[a, b]$ with $p \neq q$. By the Mean Value Theorem, a number ξ in (a, b) exists with

$$
p-q=g(p)-g(q)=g^{\prime}(\xi)(p-q) \leq k(p-q)<p-q,
$$

giving the same contradiction as in Theorem 2.3.
(b) Consider $g(x)=1-x^{2}$ on $[0,1]$. The function g has the unique fixed point

$$
p=\frac{1}{2}(-1+\sqrt{5}) .
$$

With $p_{0}=0.7$, the sequence eventually alternates between 0 and 1 .
*19. (a) Suppose that $x_{0}>\sqrt{2}$. Then

$$
x_{1}-\sqrt{2}=g\left(x_{0}\right)-g(\sqrt{2})=g^{\prime}(\xi)\left(x_{0}-\sqrt{2}\right)
$$

where $\sqrt{2}<\xi<x_{0}$. Thus, $x_{1}-\sqrt{2}>0$ and $x_{1}>\sqrt{2}$. Further,

$$
x_{1}=\frac{x_{0}}{2}+\frac{1}{x_{0}}<\frac{x_{0}}{2}+\frac{1}{\sqrt{2}}=\frac{x_{0}+\sqrt{2}}{2}
$$

and $\sqrt{2}<x_{1}<x_{0}$. By an inductive argument,

$$
\sqrt{2}<x_{m+1}<x_{m}<\ldots<x_{0}
$$

Thus, $\left\{x_{m}\right\}$ is a decreasing sequence which has a lower bound and must converge.
Suppose $p=\lim _{m \rightarrow \infty} x_{m}$. Then

$$
p=\lim _{m \rightarrow \infty}\left(\frac{x_{m-1}}{2}+\frac{1}{x_{m-1}}\right)=\frac{p}{2}+\frac{1}{p} . \quad \text { Thus } \quad p=\frac{p}{2}+\frac{1}{p}
$$

which implies that $p= \pm \sqrt{2}$. Since $x_{m}>\sqrt{2}$ for all m, we have $\lim _{m \rightarrow \infty} x_{m}=\sqrt{2}$.
(b) We have

$$
0<\left(x_{0}-\sqrt{2}\right)^{2}=x_{0}^{2}-2 x_{0} \sqrt{2}+2
$$

so $2 x_{0} \sqrt{2}<x_{0}^{2}+2$ and $\sqrt{2}<\frac{x_{0}}{2}+\frac{1}{x_{0}}=x_{1}$.
(c) Case 1: $0<x_{0}<\sqrt{2}$, which implies that $\sqrt{2}<x_{1}$ by part (b). Thus,

$$
0<x_{0}<\sqrt{2}<x_{m+1}<x_{m}<\ldots<x_{1} \quad \text { and } \quad \lim _{m \rightarrow \infty} x_{m}=\sqrt{2}
$$

Case 2: $x_{0}=\sqrt{2}$, which implies that $x_{m}=\sqrt{2}$ for all m and $\lim _{m \rightarrow \infty} x_{m}=\sqrt{2}$.
Case 3: $x_{0}>\sqrt{2}$, which by part (a) implies that $\lim _{m \rightarrow \infty} x_{m}=\sqrt{2}$.
20. (a) Let

$$
g(x)=\frac{x}{2}+\frac{A}{2 x}
$$

Note that $g(\sqrt{A})=\sqrt{A}$. Also,

$$
g^{\prime}(x)=1 / 2-A /\left(2 x^{2}\right) \text { if } x \neq 0 \quad \text { and } \quad g^{\prime}(x)>0 \text { if } x>\sqrt{A}
$$

If $x_{0}=\sqrt{A}$, then $x_{m}=\sqrt{A}$ for all m and $\lim _{m \rightarrow \infty} x_{m}=\sqrt{A}$.
If $x_{0}>A$, then

$$
x_{1}-\sqrt{A}=g\left(x_{0}\right)-g(\sqrt{A})=g^{\prime}(\xi)\left(x_{0}-\sqrt{A}\right)>0
$$

Further,

$$
x_{1}=\frac{x_{0}}{2}+\frac{A}{2 x_{0}}<\frac{x_{0}}{2}+\frac{A}{2 \sqrt{A}}=\frac{1}{2}\left(x_{0}+\sqrt{A}\right) .
$$

Thus, $\sqrt{A}<x_{1}<x_{0}$. Inductively,

$$
\sqrt{A}<x_{m+1}<x_{m}<\ldots<x_{0}
$$

and $\lim _{m \rightarrow \infty} x_{m}=\sqrt{A}$ by an argument similar to that in Exercise 19(a). If $0<x_{0}<\sqrt{A}$, then

$$
0<\left(x_{0}-\sqrt{A}\right)^{2}=x_{0}^{2}-2 x_{0} \sqrt{A}+A \quad \text { and } \quad 2 x_{0} \sqrt{A}<x_{0}^{2}+A
$$

which leads to

$$
\sqrt{A}<\frac{x_{0}}{2}+\frac{A}{2 x_{0}}=x_{1}
$$

Thus

$$
0<x_{0}<\sqrt{A}<x_{m+1}<x_{m}<\ldots<x_{1}
$$

and by the preceding argument, $\lim _{m \rightarrow \infty} x_{m}=\sqrt{A}$.
(b) If $x_{0}<0$, then $\lim _{m \rightarrow \infty} x_{m}=-\sqrt{A}$.
21. Replace the second sentence in the proof with: "Since g satisfies a Lipschitz condition on $[a, b]$ with a Lipschitz constant $L<1$, we have, for each n,

$$
\left|p_{n}-p\right|=\left|g\left(p_{n-1}\right)-g(p)\right| \leq L\left|p_{n-1}-p\right| . "
$$

The rest of the proof is the same, with k replaced by L.
22. Let $\varepsilon=\left(1-\left|g^{\prime}(p)\right|\right) / 2$. Since g^{\prime} is continuous at p, there exists a number $\delta>0$ such that for $x \in[p-\delta, p+\delta]$, we have $\left|g^{\prime}(x)-g^{\prime}(p)\right|<\varepsilon$. Thus, $\left|g^{\prime}(x)\right|<\left|g^{\prime}(p)\right|+\varepsilon<1$ for $x \in[p-\delta, p+\delta]$. By the Mean Value Theorem

$$
|g(x)-g(p)|=\left|g^{\prime}(c)\right||x-p|<|x-p|
$$

for $x \in[p-\delta, p+\delta]$. Applying the Fixed-Point Theorem completes the problem.
23. With $g(t)=501.0625-201.0625 e^{-0.4 t}$ and $p_{0}=5.0, p_{3}=6.0028$ is within 0.01 s of the actual time.
*24. Since g^{\prime} is continuous at p and $\left|g^{\prime}(p)\right|>1$, by letting $\epsilon=\left|g^{\prime}(p)\right|-1$ there exists a number $\delta>0$ such that $\left|g^{\prime}(x)-g^{\prime}(p)\right|<\left|g^{\prime}(p)\right|-1$ whenever $0<|x-p|<\delta$. Hence, for any x satisfying $0<|x-p|<\delta$, we have

$$
\left|g^{\prime}(x)\right| \geq\left|g^{\prime}(p)\right|-\left|g^{\prime}(x)-g^{\prime}(p)\right|>\left|g^{\prime}(p)\right|-\left(\left|g^{\prime}(p)\right|-1\right)=1
$$

If p_{0} is chosen so that $0<\left|p-p_{0}\right|<\delta$, we have by the Mean Value Theorem that

$$
\left|p_{1}-p\right|=\left|g\left(p_{0}\right)-g(p)\right|=\left|g^{\prime}(\xi)\right|\left|p_{0}-p\right|
$$

for some ξ between p_{0} and p. Thus, $0<|p-\xi|<\delta$ so $\left|p_{1}-p\right|=\left|g^{\prime}(\xi)\right|\left|p_{0}-p\right|>\left|p_{0}-p\right|$.

Exercise Set 2.3, page 75

*1. $p_{2}=2.60714$
2. $p_{2}=-0.865684$; If $p_{0}=0, f^{\prime}\left(p_{0}\right)=0$ and p_{1} cannot be computed.
*3. (a) 2.45454
(b) 2.44444
(c) Part (a) is better.
4. (a) -1.25208
(b) -0.841355
5. (a) For $p_{0}=2$, we have $p_{5}=2.69065$.
(b) For $p_{0}=-3$, we have $p_{3}=-2.87939$.
*(c) For $p_{0}=0$, we have $p_{4}=0.73909$.
(d) For $p_{0}=0$, we have $p_{3}=0.96434$.
6. (a) For $p_{0}=1$, we have $p_{8}=1.829384$.
(b) For $p_{0}=1.5$, we have $p_{4}=1.397748$.
(c) For $p_{0}=2$, we have $p_{4}=2.370687$; and for $p_{0}=4$, we have $p_{4}=3.722113$.
(d) For $p_{0}=1$, we have $p_{4}=1.412391$; and for $p_{0}=4$, we have $p_{5}=3.057104$.
(e) For $p_{0}=1$, we have $p_{4}=0.910008$; and for $p_{0}=3$, we have $p_{9}=3.733079$.
(f) For $p_{0}=0$, we have $p_{4}=0.588533$; for $p_{0}=3$, we have $p_{3}=3.096364$; and for $p_{0}=6$, we have $p_{3}=6.285049$.
7. Using the endpoints of the intervals as p_{0} and p_{1}, we have:
(a) $p_{11}=2.69065$
(b) $p_{7}=-2.87939$
*(c) $p_{6}=0.73909$
(d) $p_{5}=0.96433$
8. Using the endpoints of the intervals as p_{0} and p_{1}, we have:
(a) $p_{7}=1.829384$
(b) $p_{9}=1.397749$
(c) $p_{6}=2.370687 ; p_{7}=3.722113$
(d) $p_{8}=1.412391 ; p_{7}=3.057104$
(e) $p_{6}=0.910008 ; p_{10}=3.733079$
(f) $p_{6}=0.588533 ; p_{5}=3.096364 ; p_{5}=6.285049$
9. Using the endpoints of the intervals as p_{0} and p_{1}, we have:
(a) $p_{16}=2.69060$
(b) $p_{6}=-2.87938$
*(c) $p_{7}=0.73908$
(d) $p_{6}=0.96433$
10. Using the endpoints of the intervals as p_{0} and p_{1}, we have:
(a) $p_{8}=1.829383$
(b) $p_{9}=1.397749$
(c) $p_{6}=2.370687 ; p_{8}=3.722112$
(d) $p_{10}=1.412392 ; p_{12}=3.057099$
(e) $p_{7}=0.910008 ; p_{29}=3.733065$
(f) $p_{9}=0.588533 ; p_{5}=3.096364 ; p_{5}=6.285049$
11. (a) Newton's method with $p_{0}=1.5$ gives $p_{3}=1.51213455$.

The Secant method with $p_{0}=1$ and $p_{1}=2$ gives $p_{10}=1.51213455$.
The Method of False Position with $p_{0}=1$ and $p_{1}=2$ gives $p_{17}=1.51212954$.
(b) Newton's method with $p_{0}=0.5$ gives $p_{5}=0.976773017$.

The Secant method with $p_{0}=0$ and $p_{1}=1$ gives $p_{5}=10.976773017$.
The Method of False Position with $p_{0}=0$ and $p_{1}=1$ gives $p_{5}=0.976772976$.
12. (a) We have

	Initial Approximation	Result	Initial Approximation	Result
Newton's	$p_{0}=1.5$	$p_{4}=1.41239117$	$p_{0}=3.0$	$p_{4}=3.05710355$
Secant	$p_{0}=1, p_{1}=2$	$p_{8}=1.41239117$	$p_{0}=2, p_{1}=4$	$p_{10}=3.05710355$
False Position	$p_{0}=1, p_{1}=2$	$p_{13}=1.41239119$	$p_{0}=2, p_{1}=4$	$p_{19}=3.05710353$

(b) We have

	Initial Approximation	Result	Initial Approximation	Result
Newton's	$p_{0}=0.25$	$p_{4}=0.206035120$	$p_{0}=0.75$	$p_{4}=0.681974809$
Secant	$p_{0}=0, p_{1}=0.5$	$p_{9}=0.206035120$	$p_{0}=0.5, p_{1}=1$	$p_{8}=0.681974809$
False Position	$p_{0}=0, p_{1}=0.5$	$p_{12}=0.206035125$	$p_{0}=0.5, p_{1}=1$	$p_{15}=0.681974791$

*13. For $p_{0}=1$, we have $p_{5}=0.589755$. The point has the coordinates $(0.589755,0.347811)$.
14. For $p_{0}=2$, we have $p_{2}=1.866760$. The point is $(1.866760,0.535687)$.
15. The equation of the tangent line is

$$
y-f\left(p_{n-1}\right)=f^{\prime}\left(p_{n-1}\right)\left(x-p_{n-1}\right)
$$

To complete this problem, set $y=0$ and solve for $x=p_{n}$.
*16. Newton's method gives $p_{15}=1.895488$, for $p_{0}=\frac{\pi}{2}$; and $p_{19}=1.895489$, for $p_{0}=5 \pi$. The sequence does not converge in 200 iterations for $p_{0}=10 \pi$. The results do not indicate the fast convergence usually associated with Newton's method.
17. (a) For $p_{0}=-1$ and $p_{1}=0$, we have $p_{17}=-0.04065850$, and for $p_{0}=0$ and $p_{1}=1$, we have $p_{9}=0.9623984$.
(b) For $p_{0}=-1$ and $p_{1}=0$, we have $p_{5}=-0.04065929$, and for $p_{0}=0$ and $p_{1}=1$, we have $p_{12}=-0.04065929$.
(c) For $p_{0}=-0.5$, we have $p_{5}=-0.04065929$, and for $p_{0}=0.5$, we have $p_{21}=0.9623989$.
18. (a) The Bisection method yields $p_{10}=0.4476563$.
(b) The method of False Position yields $p_{10}=0.442067$.
(c) The Secant method yields $p_{10}=-195.8950$.
*19. This formula involves the subtraction of nearly equal numbers in both the numerator and denominator if p_{n-1} and p_{n-2} are nearly equal.
20. Newton's method for the various values of p_{0} gives the following results.
(a) $p_{8}=-1.379365$
(b) $p_{7}=-1.379365$
(c) $p_{7}=1.379365$
(d) $p_{7}=-1.379365$
(e) $p_{7}=1.379365$
(f) $p_{8}=1.379365$
21. Newton's method for the various values of p_{0} gives the following results.
(a) $p_{0}=-10, p_{11}=-4.30624527$
(b) $p_{0}=-5, p_{5}=-4.30624527$
(c) $p_{0}=-3, p_{5}=0.824498585$
(d) $p_{0}=-1, p_{4}=-0.824498585$
(e) $p_{0}=0, p_{1}$ cannot be computed because $f^{\prime}(0)=0$
(f) $p_{0}=1, p_{4}=0.824498585$
(g) $p_{0}=3, p_{5}=-0.824498585$
(h) $p_{0}=5, p_{5}=4.30624527$
(i) $p_{0}=10, p_{11}=4.30624527$
*22. The required accuracy is met in 7 iterations of Newton's method.
*23. For $f(x)=\ln \left(x^{2}+1\right)-e^{0.4 x} \cos \pi x$, we have the following roots.
(a) For $p_{0}=-0.5$, we have $p_{3}=-0.4341431$.
(b) For $p_{0}=0.5$, we have $p_{3}=0.4506567$.

For $p_{0}=1.5$, we have $p_{3}=1.7447381$.
For $p_{0}=2.5$, we have $p_{5}=2.2383198$.
For $p_{0}=3.5$, we have $p_{4}=3.7090412$.
(c) The initial approximation $n-0.5$ is quite reasonable.
(d) For $p_{0}=24.5$, we have $p_{2}=24.4998870$.
24. We have $\lambda \approx 0.100998$ and $N(2) \approx 2,187,950$.
25. The two numbers are approximately 6.512849 and 13.487151 .
*26. The minimal annual interest rate is 6.67%.
27. The borrower can afford to pay at most 8.10%.
*28. (a) $\frac{1}{3} e, t=3$ hours
(b) 11 hours and 5 minutes
(c) 21 hours and 14 minutes
*29. (a) First define the function by

$$
f:=x->3^{3 x+1}-7 \cdot 5^{2 x} \quad f:=x \rightarrow 3^{(3 x+1)}-75^{2 x}
$$

$\operatorname{solve}(f(x)=0, x)$

$$
-\frac{\ln (3 / 7)}{\ln (27 / 25)}
$$

fsolve $(f(x)=0, x)$

$$
\text { fsolve }\left(3^{(3 x+1)}-75^{(2 x)}=0, x\right)
$$

The procedure solve gives the exact solution, and fsolve fails because the negative x-axis is an asymptote for the graph of $f(x)$.
(b) Using the Maple command $\operatorname{plot}(\{f(x)\}, x=10.5 . .11 .5)$ produces the following graph.

(c) Define $f^{\prime}(x)$ using
$f p:=x->(D)(f)(x)$

$$
f p:=x \rightarrow 33^{(3 x+1)} \ln (3)-145^{(2 x)} \ln (5)
$$

Digits $:=18 ; p 0:=11$

$$
\begin{gathered}
\text { Digits }:=18 \\
p 0:=11
\end{gathered}
$$

for i from 1 to 5 do
$p 1:=\operatorname{evalf}(p 0-f(p 0) / f p(p 0))$
err $:=a b s(p 1-p 0)$
$p 0:=p 1$
od
The results are given in the following table.

i	p_{i}	$\left\|p_{i}-p_{i-1}\right\|$
1	11.0097380401552503	.0097380401552503
2	11.0094389359662827	.0002991041889676
3	11.0094386442684488	$.291697833910^{-6}$
4	11.0094386442681716	$.277210^{-2}$
5	11.0094386442681716	0

(d) We have $3^{3 x+1}=7 \cdot 5^{2 x}$. Taking the natural logarithm of both sides gives

$$
(3 x+1) \ln 3=\ln 7+2 x \ln 5
$$

Thus

$$
3 x \ln 3-2 x \ln 5=\ln 7-\ln 3, \quad x(3 \ln 3-2 \ln 5)=\ln \frac{7}{3}
$$

and

$$
x=\frac{\ln 7 / 3}{\ln 27-\ln 25}=\frac{\ln 7 / 3}{\ln 27 / 25}=-\frac{\ln 3 / 7}{\ln 27 / 25}
$$

This agrees with part (a).
30. (a) solve $\left(2^{x^{2}}-3 \cdot 7^{(x+1)}, x\right)$ fails and f solve $\left(2^{x^{2}}-3 \cdot 7^{(x+1)}, x\right)$ returns -1.118747530 .
(b) $\operatorname{plot}\left(2^{x^{2}}-3 \cdot 7^{(x+1)}, x=-2 . .4\right)$ shows there is also a root near $x=4$.
(c) With $p_{0}=1, p_{4}=-1.1187475303988963$ is accurate to 10^{-16}; with $p_{0}=4, p_{6}=$ 3.9261024524565005 is accurate to 10^{-16}
(d) The roots are

$$
\frac{\ln (7) \pm \sqrt{[\ln (7)]^{2}+4 \ln (2) \ln (4)}}{2 \ln (2)}
$$

31. We have $P_{L}=265816, c=-0.75658125$, and $k=0.045017502$. The 1980 population is $P(30)=222,248,320$, and the 2010 population is $P(60)=252,967,030$.
32. $\quad P_{L}=290228, c=0.6512299$, and $k=0.03020028$;

The 1980 population is $P(30)=223,069,210$, and the 2010 population is $P(60)=260,943,806$.
33. Using $p_{0}=0.5$ and $p_{1}=0.9$, the Secant method gives $p_{5}=0.842$.
34. (a) We have, approximately,

$$
A=17.74, \quad B=87.21, \quad C=9.66, \quad \text { and } \quad E=47.47
$$

With these values we have

$$
A \sin \alpha \cos \alpha+B \sin ^{2} \alpha-C \cos \alpha-E \sin \alpha=0.02
$$

(b) Newton's method gives $\alpha \approx 33.2^{\circ}$.

Exercise Set 2.4, page 85

1. $*(\mathrm{a})$ For $p_{0}=0.5$, we have $p_{13}=0.567135$.
(b) For $p_{0}=-1.5$, we have $p_{23}=-1.414325$.
(c) For $p_{0}=0.5$, we have $p_{22}=0.641166$.
(d) For $p_{0}=-0.5$, we have $p_{23}=-0.183274$.
2. (a) For $p_{0}=0.5$, we have $p_{15}=0.739076589$.
(b) For $p_{0}=-2.5$, we have $p_{9}=-1.33434594$.
(c) For $p_{0}=3.5$, we have $p_{5}=3.14156793$.
(d) For $p_{0}=4.0$, we have $p_{44}=3.37354190$.
3. Modified Newton's method in Eq. (2.11) gives the following:
*(a) For $p_{0}=0.5$, we have $p_{3}=0.567143$.
(b) For $p_{0}=-1.5$, we have $p_{2}=-1.414158$.
(c) For $p_{0}=0.5$, we have $p_{3}=0.641274$.
(d) For $p_{0}=-0.5$, we have $p_{5}=-0.183319$.
4. (a) For $p_{0}=0.5$, we have $p_{4}=0.739087439$.
(b) For $p_{0}=-2.5$, we have $p_{53}=-1.33434594$.
(c) For $p_{0}=3.5$, we have $p_{5}=3.14156793$.
(d) For $p_{0}=4.0$, we have $p_{3}=-3.72957639$.
5. Newton's method with $p_{0}=-0.5$ gives $p_{13}=-0.169607$. Modified Newton's method in Eq. (2.11) with $p_{0}=-0.5$ gives $p_{11}=-0.169607$.
6. *(a) Since

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

we have linear convergence. To have $\left|p_{n}-p\right|<5 \times 10^{-2}$, we need $n \geq 20$.
(b) Since

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|}=\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1)^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2}=1
$$

we have linear convergence. To have $\left|p_{n}-p\right|<5 \times 10^{-2}$, we need $n \geq 5$.
7. (a) For $k>0$,

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-0\right|}{\left|p_{n}-0\right|}=\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1)^{k}}}{\frac{1}{n^{k}}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{k}=1
$$

so the convergence is linear.
(b) We need to have $N>10^{m / k}$.
*8. (a) Since

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-0\right|}{\left|p_{n}-0\right|^{2}}=\lim _{n \rightarrow \infty} \frac{10^{-2^{n+1}}}{\left(10^{-2^{n}}\right)^{2}}=\lim _{n \rightarrow \infty} \frac{10^{-2^{n+1}}}{10^{-2^{n+1}}}=1
$$

the sequence is quadratically convergent.
(b) We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-0\right|}{\left|p_{n}-0\right|^{2}} & =\lim _{n \rightarrow \infty} \frac{10^{-(n+1)^{k}}}{\left(10^{-n^{k}}\right)^{2}}=\lim _{n \rightarrow \infty} \frac{10^{-(n+1)^{k}}}{10^{-2 n^{k}}} \\
& =\lim _{n \rightarrow \infty} 10^{2 n^{k}-(n+1)^{k}}=\lim _{n \rightarrow \infty} 10^{n^{k}\left(2-\left(\frac{n+1}{n}\right)^{k}\right)}=\infty
\end{aligned}
$$

so the sequence $p_{n}=10^{-n^{k}}$ does not converge quadratically.
9. Typical examples are
(a) $p_{n}=10^{-3^{n}}$
(b) $p_{n}=10^{-\alpha^{n}}$
*10. Suppose $f(x)=(x-p)^{m} q(x)$. Since

$$
g(x)=x-\frac{m(x-p) q(x)}{m q(x)+(x-p) q^{\prime}(x)}
$$

we have $g^{\prime}(p)=0$.

