
2

Object-Oriented
Software Engineering

 An Agile Unified Methodology

David Kung

Solutions Manual

Object-Oriented Software Engineering An Agile Unified Methodology 1st Edition Kung Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/object-oriented-software-engineering-an-agile-unified-methodology-1st-edition-kung-solutions-manual/

3

Message to Instructors

July 10, 2013

The solutions provided in this manual may not be complete, or 100% correct, due to my limitation

and the nature of some software engineering problems. Although I have tried to check and correct

grammar errors and typos, I am sure the manual may still have many. I will continue to improve

it and apologize for any inconvenience that may cause to you.

Dave

Contents

I INTRODUCTION AND SYSTEM ENGINEERING 0

1 Introduction 2

2 Software Process and Methodology 10

3 System Engineering 16

II ANALYSIS AND ARCHITECTURAL DESIGN 25

4 Software Requirements Elicitation 27

5 Domain Modeling 38

6 Architectural Design 45

III MODELING AND DESIGN OF INTERACTIVE SYSTEMS 49

7 Deriving Use Cases from Requirements 51

8 Actor-System Interaction Modeling 58

9 Object Interaction Modeling 66

4

CONTENTS 5

10 Applying Responsibility-Assignment Patterns 76

11 Deriving a Design Class Diagram 81

12 User Interface Design 85

IV MODELING AND DESIGN OF OTHER TYPES OF SYSTEMS 89

13 Object State Modeling 91

14 Activity Modeling for Transformational Systems 101

15 Modeling and Design of Rule-Based Systems 104

V APPLYING SITUATION-SPECIFIC PATTERNS 111

16 Applying Patterns to Design a State Diagram Editor 113

17 Applying Patterns to Design a Persistence Framework 122

VI IMPLEMENTATION AND QUALITY ASSURANCE 134

18 Implementation Considerations 136

19 Software Quality Assurance 146

20 Software Testing 149

VII MAINTENANCE AND CONFIGURATION MANAGEMENT 161

21 Software Maintenance 163

6 CONTENTS

22 Software Configuration Management 167

VIII PROJECT MANAGEMENT AND SOFTWARE SECURITY 172

23 Software Project Management 174

24 Software Security 184

Part I

INTRODUCTION AND SYSTEM

ENGINEERING

0

Chapter 1

Introduction

1.1 Search the literature and find four other definitions of software engineering in addition to the

one given in this chapter. Discuss the similarities and differences between these definitions.

Solution. Below are five definitions of software engineering including the one in the text-

book, listed chronologically. The similarities and differences are shown in Figure 1.1. A better

solution should also provide a convincing explanation of the differences, and significant im-

plications of the differences. For example, software engineering education, and significant

improvement of software PQCT are important considerations of software engineering.

1. IEEE. The IEEE Computer Society defines software engineering as: “(1) The applica-

tion of a systematic, disciplined, quantifiable approach to the development, operation,

and maintenance of software; that is, the application of engineering to software. (2)

The study of approaches as in (1).” (“IEEE Standard Glossary of Software Engineering

Terminology,” IEEE std 610.12-1990, 1990.)

2. Ghezzi. “Software engineering is the field of computer science that deals with the

building of software systems that are so large or so complex that they are built by a

2

3

 IEEE Ghezzi Brugge Sommerville Kung

(1) Application of engineering to software √ √ √ √

(2) Study of approaches as in (1) √ √

(3) Modeling, problem-solving, knowledge acquisition,

and rationale driven activity
√ √ √ √ √

(4) Education of engineering processes and

methodologies

 √

(5) Significantly improve software PQCT (that is,

engineering and business aspects)

 √

Figure 1.1: Similarities and differences between SE definitions

team or teams of engineers.” It is “the application of engineering to software.” (Carlo

Ghezzi, Mehdi Jazayeri, and Dino Mandrioli, “Fundamentals of Software Engineering,”

2nd Edition, Prentice Hall, 2003.)

3. Brugge and Dutoit. Software engineering is a modeling, problem-solving, knowledge

acquisition, and rationale-driven activity. (Bernd Brugge and Allen H. Dutoit, “Object-

Oriented Software Engineering Using UML, Patterns, and Java,” 3rd Edition, Prentice

Hall, 2010.)

4. Sommerville. “Software engineering is an engineering discipline that is concerned with

all aspects of software production from the early stages of system specification through

to maintaining the system after it has gone into use.” (Ian Sommerville, “Software

Engineering,” 9th Edition, Addison-Wesley, 2011.)

5. Kung. “Software engineering as a discipline is focused on the research, education,

and application of engineering processes and methods to significantly increase software

productivity and software quality while reducing software costs and time to market.”

(David Kung, “Object-Oriented Software Engineering: An Agile Unified Methodology,”

McGraw-Hill Higher Education, 2013.)

1.2 Describe in a brief article the functions of software development process, software quality

4 CHAPTER 1. INTRODUCTION

assurance, software project management, and software configuration management. Discuss

how these work together during the software development life cycle. Discuss how they improve

software PQCT.

Solution. This sample solution includes the main points. A student’s solution may expand

on issues discussed here.

“A software development process transforms an initial system concept into an operational sys-

tem running in the target environment. Its functions include identification of business needs,

conducting feasibility study, formulating capabilities that the system must deliver as well as

design, implementation, testing and deployment of the system to the target environment.

The functions of software quality assurance (SQA) include definition of quality assurance

standards and procedures, and verification, validation and testing activities to ensure that

the development process is carried out properly, and the software artifacts produced by the

development activities meet the software requirements and desired quality standards. Soft-

ware project management oversees the control and administration of the development and

SQA activities. Its functions include effort estimation, project planning and scheduling, risk

management, and project administration. These activities ensure that the software system

is delivered on time and within budget. During the development process, numerous software

artifacts are produced including software requirements specification (SRS), software design,

code, test cases, user’s manual, etc. These are the software, or part of it, under different

stages of the development process. These documents depend on each other. This implies

that changes to one document may affect other documents, which may need changes as well.

Software configuration management (SCM) is a mechanism to coordinate changes to ensure

that changes are made consistently and cost-effectively.

All of software development process, SQA, project management and SCM contribute to

5

PQCT. In particular, good software development practices would apply well-established soft-

ware development methodologies, software design principles, software design patterns, coding

standards, test-driven development. These could lead to improvement of software productiv-

ity and software quality while at the same time reduce software costs and time to market.

SQA ensures that the software meets the requirements and quality standards. It contributes

to improvement of software quality. This in turn reduces rework and field-detected bugs; and

hence, it also improves software productivity, reduces costs associated with rework and fixing

field-detected bugs. Software project management ensures proper planning and administra-

tion of the software project. In particular, it should request the needed resources to develop

the software system, properly schedule the development activities and SQA activities, man-

age budget and risks. These indirectly contribute to improvement of software productivity

and software quality. Proper planning and administration of development and SQA activ-

ities directly contribute to reducing software development costs and time to market. This

is because these activities could be performed smoothly, e.g., the needed components and

resources are in place. SCM supports project management, SQA and software development

process. It ensures that components of the software system are constructed and modified

consistently and cost-effectively. Consistent modification implies productivity and quality,

and cost-effectiveness implies reduction in cost and time to market.

A student’s answer to this question may also include a discussion of the balance between

PQCT. See Exercise 1.5.”

1.3 Should optimization be a focus of software engineering? Briefly explain, and justify your

answer with a practical example.

Solution. The answer to this question may depend on the interpretation of “optimization.”

6 CHAPTER 1. INTRODUCTION

If it is about “optimization of software PQCT,” then it is the focus of software engineering.

If it is about performance optimization, then it should not be a focus, although SE also

considers performance issues such as testing for performance. The database access example

discussed in Section 1.5 is a practical example.

Optimization could be a focus for a given project. For example, the construction of a compiler

for multicore computers. In this case, it depends on whether the project is classified as

a software engineering, or a computer science project. It might be an SE project. For

example, it is constructed for a certain application. (See solution to Exercise 1.6 for more on

optimization and SE.)

1.4 Identify three computer science courses of your choice. Show the usefulness of these courses in

the software life-cycle activities.

Solution. An Algorithms and Data Structures course is useful in the implementation phase

for the design and implementation of algorithms and data structures to implement business

processes. In particular, the course lets the student know the available algorithms and related

data structures. The computational complexity lets the student select appropriate algorithms

and data structures according to the nature of the computation.

A Database Systems course is useful in the analysis, design, and implementation phases.

In the analysis phase, it helps the student understand database related requirements such

as the need to support multiple databases for some applications. In the design phase, the

course enables the student to design the database to fulfill the requirements and constraints.

In the implementation phase, the course provides the student abilities to store and retrieve

information with a database.

A Discrete Mathematical Structures course is useful in many phases of the life cycle. In

7

particular, mathematical logic lets the student design and implement logically consistent

and logically complete algorithms, and check for such properties during design review and

code review. Graph theory helps the student understand design diagrams such as UML

diagrams because UML diagrams are directed graphs. Thus, concepts and algorithms of graph

theory can be applied. Examples include fan-in and fan-out of a class, transitive closure for

computing the change impact of a class, traversal algorithms for calculating reachability in a

state diagram.

Courses on programming languages are useful for implementation, testing, and SQA activities.

Network courses are helpful in SE project that must communicate with a remote computer,

such as accessing a remote database. Artificial intelligence courses are useful for SE projects

that involve heuristic, and/or learning algorithms.

1.5 There are interdependencies between software productivity, quality, cost, and time to market.

For example, more time and effort spent in coding could increase productivity. This may

result in less time and effort in software quality assurance because the total time and effort

are constants. Poor quality could cost productivity due to rework. Identify three pairs of

such interdependencies of your choice. Discuss their short-term and long-term impacts on the

software development organization. How should software engineering solve the “dilemmas”

induced by the interdependencies?

Solution. Barry Boehm in his papers on software engineering economics pointed out that the

cost to fix a requirements error increases exponentially with time. That is, removing errors

as early as possible is a cost-saving effort. This also coincides with the philosophy advocated

by agile methods — that is, test early and often. Thus, if SQA is carried out as a life-cycle

activity and follows a good SQA process, then it should detect requirements, design and

8 CHAPTER 1. INTRODUCTION

implementation errors early. This reduces bug fixing costs exponentially. Moreover, since

SQA is a cooperate-wide practice, developers are conscious of developing quality software.

This should significantly reduce the error rate; and hence, it reduces the cost that would

otherwise have to be spent to fix the bugs.

In the short term, implementing and executing an SQA framework may reduce productivity,

increase costs and time to market. However, in the long term, quality software brings many

benefits to the organization. These include significant reduction in error rate and error cor-

rection costs, customer satisfaction, and increase in software capability maturity level. These

should positively impact productivity, cost and time to market.

One should be aware that quality is not the more the better. To a certain point, there is

the so-called “diminishing returns.” Thus, how much SQA is appropriate remains a research

problem in general and for a software organization in particular.

1.6 What are the differences and relationships between OO software engineering and conventional

software engineering? Discuss whether OO software engineering will replace conventional

software engineering.

Solution. The main difference between conventional software engineering and OO software

engineering is paradigm shift — that is, how they view the world and systems. Because

of this, they differ in the basic concepts, basic building blocks, and starting point for the

conceptualization, design and implementation of software systems. These in turn affect SQA,

project management (for example, effort estimation and planning), and SCM.

Will OO replace the conventional paradigm? The answer should be no1. The reasons are:

1A student’s solution may indicate “yes,” and provide convincing arguments. Such a solution should also be

considered a good solution.

9

1. There are numerous systems that were developed using one or more of the conventional

paradigms. It is very costly and risky to replace these systems. Therefore, the other

paradigms will continue to exist because bug fixing, performance improvements, and

functional enhancements to these systems are required.

2. There are hundreds of thousand organizations and millions of software developers using

only the conventional paradigms. It is practically impossible and unjustifiable to require

them to convert to the OO paradigm.

3. A conventional paradigm may be more suitable for some projects. For example, scientific

computing typically involves series of transformations of input into output. Therefore,

the function-oriented paradigm is more suitable for such applications. Moreover, scien-

tific computing emphasizes computing speed, the ability to solve complex computation

problems, and the accuracy of the result. OO programming languages may not sat-

isfy such requirements. These and the facts that scientific computing is there to stay

and expand into computational sciences imply that the function-oriented paradigm will

continue to exist.

In addition to the above, one should know that different parts of a system may be developed

using different paradigms. For example, a subsystem that performs scientific computing

may be developed using the function-oriented paradigm. A database subsystem may be

developed using the data-oriented paradigm. In practice, there are systems that are modeled

and designed using the OO paradigm but implemented in a non-OO language. Similarly, there

are projects that are modeled and designed using a conventional paradigm but implemented

in SmallTalk or C++.

Chapter 2

Software Process and Methodology

2.1 What are the similarities and differences between the conventional waterfall model and the

Unified Process model? Identify and explain three advantages and three disadvantages of

each of these two models.

Solution. The waterfall model and the Unified Process (UP) model are similar in the sense

that they are process models, they define phases, the activities and products of each of the

phases. The waterfall process is a sequential process although backtracking is possible. The

UP, on the other hand, is an iterative, incremental process.

Waterfall process advantages are: (1) it facilitates project management, scheduling and sta-

tus tracking, (2) its can be used for function-oriented team organzation, and (3) it is more

appropriate for some types of software project. Its disadvantages are: (1) it is difficult to

respond to requirements change, (2) the long development duration is unacceptable, and (3)

users cannot experiment with the system until late in the development life cycle.

UP advantages are: (1) its iterative process can better accommodate requirements change

because changes can be made to remaining iterations, (2) it is use-case driven, allowing the

development team to focus on customer value — that is, development and deployment of

10

11

high-priority use cases as early as possible, (3) it is incremental, this reduces the risk of

requirements misconception. It disadvantages are: (1) an iterative process is more difficult to

manage and schedule, (2) the early versions of the UP emphasize too much on documentation

and much of it is not used, (3) the UP is a process, not a methodology, therefore, it is useful

only for experienced software developers.

2.2 Write an essay about how a good process and a good methodology help tackling the project

and product challenges. Limit the length of the essay to five pages, or according to the

instructions of the instructor.

Solution. There could be many different answers to this exercise. It is difficult to come up

with a standard solution and use it to grade the submissions. However, the answer should

show how a good process and methodology address each of the challenges. Figure 2.1 of this

manual highlights the main points and provides pointers to related chapters.

Grading of this exercise could be done by reading the solutions submitted by the students,

according to the writing, the grader classifies the solutions into 3-5 categories such as very

good, good, fair, below, and poor. Each of the categories is then reviewed and a score is

assigned to each of the solution.

2.3 Write a brief essay on the differences between a software process and a software methodology.

Solution. Figure 2.11 of the textbook shows the differences between a process and a method-

ology. Therefore, the student needs only to explain the differences in the essay. Section 2.6.1

of the textbook presents the differences. A student’s solution may reuse the materials in the

section, and/or augment with practical examples, or experience.

2.4 Write an essay that discusses the following two issues:

12 CHAPTER 2. SOFTWARE PROCESS AND METHODOLOGY

 Description Process or Methodology Solutions

Project

Challenge

1

How do we plan, schedule and

manage a project without

sufficient knowledge about what

will happen in the next several

years?

• Effort estimation, and project planning and scheduling (Chapter

23)

• Agile planning (Chapter 23)

• Agile manifesto, principles, practices, and values (Chapter 2, and

throughout the book)

• Agile development, i.e., design for change, frequent delivery of

small increments in short intervals (various chapters)

• Risk management (Chapter 23)

Project

Challenge

2

How do we divide the work

among different departments and

teams, and smoothly integrate

the resulting components?

• System engineering (Chapter 2)

• Software architectural design, behavioral design, and derivation of

design class diagram (Chapters 6-16)

• Peer review, inspection and walkthrough (Chapter 18)

• Integration testing (Chapter 19)

Project

Challenge

3

How do we ensure proper

communication and coordination

among the departments and

teams?

• Modeling, analysis, and design using a unified modeling language

such as UML (various chapters)

• Applying design patterns during the design process (Chapters 11

and 16)

• Software configuration management (Chapter 22)

Product

Challenge

1

How do we develop the system

to ensure that these requirements

and constraints are met?

• Deriving use cases from requirements (Chapter 5)

• Use case driven (various chapters)

• Peer review, inspection and walkthrough (Chapter 18)

• Acceptance testing and system testing (Chapter 19)

Product

Challenge

2

How do we cope with changes? • Design for change (various design chapters)

• Applying design patterns to provide the needed flexibility

(Chapters 11 and 16)

Product

Challenge

3

How do we design the system so

that

changes can be made relatively

easily and without much impact

to

the rest of the system?

Same as product challenge 2

Product

Challenge

4

How do we design the system to

hide the hardware, platform and

implementation so that changes

to

these will not affect the rest of

the system?

Same as product challenge 2

Figure 2.1: Dealing with project and product challenges

13

a. The pros and cons of plan-driven development and agile development processes, respec-

tively.

b. Whether and why agile development will, or will not, replace plan-driven approaches.

Solution. The solution to 2.4a is similar to the solution about the differences between the

waterfall and UP process models. The answer to 2.4b can be “yes” or “no,” and the answer

is not that important. The importance is the understanding of the differences between the

two approaches, and the student’s reasoning to justify the conclusion. This exercise should

be graded using the method described in the solution for Exercise 2.2.

2.5 Write a short article that answers the following questions:

a. What are the similarities and differences between the spiral process, the Unified Process,

and an agile process.

b. What are the pros and cons of each of these processes.

c. Which types of projects should apply which of these processes?

Solution. The similarities are that they are iterative processes, and meant to be an improve-

ment over the existing processes. However, the iterations in the spiral process is situation

dependent — that is, what to perform next depends on the outcome of the current iteration.

Moreover, risk management is a unique feature of the spiral process. Unlike the spiral process,

the UP repeats the same four phases in each iteration. It does not require the spiral process

like decision making. It also does not indicate risk management. Agile processes are different

from the spiral and UP in the agile manifesto, agile practices and values, and agile principles.

In addition, agile development tend to adopt short iterations and frequent delivery of small

increments. There are other differences but a solution should focus on these.

Among the three choices, projects that are research-oriented or exploratory may use the

14 CHAPTER 2. SOFTWARE PROCESS AND METHODOLOGY

spiral process. Projects that require adequate documentation should use the UP. Projects

that need to respond quickly to changing business environments, and hence software require-

ments, should use an agile process. There are subtle differences between “research-oriented”

and “changing requirements.” Both need to tackle changing requirements. Research-oriented

requirements need to be discovered with research tasks and experiments, which require con-

siderable time and effort, and the costs are high.

2.6 Explain in an essay why the waterfall process is a process for solving tame problems.

Solution. The waterfall process requires that the requirements of the system must be identi-

fied, clearly and completely defined before the design and implementation of the system. This

is at least true in theory, although many real-world projects do not happen like this. The first

two properties of wicked problems are: (1) a wicked problem does not have a definite formu-

lation, and (2) the specification of the problem and the solution cannot be separated. Clearly,

the waterfall process cannot solve wicked problems because the problem-solving process does

not address these two wicked-problem properties. A student’s solution may address other

properties as well. (See also solution to Exercise 2.7, especially Figure 2.2 of this manual.

From the discussion and the Figure 2.2, one may infer more on the inadequacy of waterfall

in solving software development as a wicked problem.)

2.7 Explain in an essay how agile development tackles application software development as a wicked

problem.

Solution. Software development as a wicked problem implies that the requirements for a

software system cannot be completely and definitely formulated, and the specification and

the solution cannot be separated — the specification is the solution, and vice versa. Agile

development recognizes these and advocates responding to requirements change. The 20/80

15

Properties of a Wicked Problem Agile Development Solution

1) A wicked problem does not have a definite

formulation.

2) For a wicked problem, the specification is the

solution and vice versa.

• Value working software over comprehensive

documentation.

• Value responding to change over following a

plan.

• Capture requirements at a high level,

lightweight, and visual.

• User involvement is imperative.

• Good enough is enough.

3) There is no stopping rule for a wicked problem

--- you can always do it better.
• Requirements evolve but the timescale is fixed.

• Don’t work over 40 hours a week.

4) Solutions to wicked problems can only be

evaluated in terms of good or bad, and the

judgment is subjective.

• User involvement is imperative.

• The team is empowered to make decisions.

• Users perform testing.

5) Each step of the problem-solving process has

an infinite number of choices ---everything goes

as a matter of principle.

• Value individual and interaction over processes

and tools.

• The team is empowered to make decisions.

6) Cause-effect reason is premise-based, leading

to varying actions, but hard to tell which one is

the best.

7) The solution cannot be tested immediately and

is subject to life-long testing.

8) Every wicked problem is unique.

9) The solution process is a political process.

10) The problem-solver has no right to be wrong

because the consequence is disastrous.

• User involvement, value individual and

interaction, team decision making.

• A collaborative and cooperative approach

between all stakeholders is essential.

• Value customer collaboration over contract

negotiation.

Figure 2.2: Wicked problems and agile development as a solution

rule indicates that it is good enough to identify 80% of the requirements that are of high

customer value. In additiion, it advocates capturing requirements at a high level, lightweight,

and visual. That is, low-level requirements are to be captured during the implementation

phase. This is because the specification and the solution cannot be separated. Agile devel-

opment also emphasizes on user involvement because the “correctness” of a software system

cannot be determined objectively and scientifically. Figure 2.2 of this manual shows how agile

manifesto and principles solve wicked problems.

Object-Oriented Software Engineering An Agile Unified Methodology 1st Edition Kung Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/object-oriented-software-engineering-an-agile-unified-methodology-1st-edition-kung-solutions-manual/

	Kung_solutions_manual_final.pdf

