# Supplement 1

# **Operational Decision-Making Tools: Decision Analysis**

S1-1. a. Minimin: South Korea 15.2 China 17.6 Taiwan 14.9 Poland 13.8 Mexico 12.5 ← minimum Select Mexico b. Minimax: South Korea 21.7 China 19.0 ← minimum Taiwan 19.2 Poland 22.5 Mexico 25.0 Select China c. Hurwicz ( $\alpha = 0.40$ ): South Korea: 15.2(0.40) + 21.7(0.60) = 19.10China: 17.6(0.40) + 19.0(0.60) = 18.44Taiwan:  $14.9(0.40) + 19.2(0.60) = 17.48 \leftarrow \text{minimum}$ Poland: 13.8(0.40) + 22.5(0.60) = 19.02Mexico: 12.5(0.40) + 25.0(0.60) = 20.0

### Select Taiwan

- d. Equal likelihood: South Korea: 21.7(0.33)+19.1(0.33)+15.2(0.33)=18.48China: 19.0(0.33)+18.5(0.33)+17.6(0.33)=18.18Taiwan:  $19.2(0.33)+17.1(0.33)+14.9(0.33)=16.90 \leftarrow$  minimum Poland: 22.5(0.33)+16.8(0.33)+13.8(0.33)=17.52Mexico: 25.0(0.33)+21.2(0.33)+12.5(0.33)=19.37Select Taiwan
- S1-2. EV (South Korea) = 21.7(.30) + 19.1(.40) + 15.2(.30) = 18.71EV (China) = 19.0(.30) + 18.5(.40) + 17.6(.30) = 18.38EV (Taiwan) =  $19.2(.30) + 17.1(.40) + 14.9(.30) = 17.07 \leftarrow$  minimum EV (Poland) = 22.5(.30) + 16.8(.40) + 13.8(.30) = 17.61EV (Mexico) = 25.0(.30) + 21.2(.40) + 12.5(.30) = 19.73Select Taiwan

Expected value of perfect information = 19(.30)+16.8(.40)+12.5(.30)=16.17EVPI = 16.17-17.07 = \$-0.9 million

The EVPI is the maximum amount the *cost* of the facility could be reduced (.9 million) if perfect information can be obtained.

- S1-3. a. Maximax criteria: Office building 4.5 ← maximum Parking lot 2.4 Warehouse 1.7 Shopping mall 3.6 Condominiums 3.2
  Select office building
  - b. Maximin criteria: Office building 0.5 Parking lot 1.5 ← maximum Warehouse 1.0 Shopping mall 0.7 Condominiums 0.6 Select parking lot
  - c. Equal likelihood:

Office building:  $0.5(0.33)+1.7(0.33)+4.5(0.33)=2.21 \leftarrow$  maximum Parking lot: 1.5(0.33)+1.9(0.33)+2.4(0.33)=1.91Warehouse: 1.7(0.33)+1.4(0.33)+1.0(0.33)=1.35Shopping mall:  $0.7(0.33)+2.4(0.33)+3.6(0.33)=2.21 \leftarrow$  maximum Condominiums: 3.2(0.33)+1.5(0.33)+0.6(0.33)=1.75Select office building or shopping mall

- d. Hurwicz criteria  $(\alpha = 0.3)$ : Office building: 4.5(0.3)+0.5(0.7)=1.70Parking lot:  $2.4(0.3)+1.5(0.7)=1.77 \leftarrow$  maximum Warehouse: 1.7(0.3)+1.0(0.7)=1.21Shopping mall: 3.6(0.3)+0.7(0.7)=1.57Condominiums: 3.2(0.3)+0.6(0.7)=1.38Select parking lot
- S1-4. a) EV (Office building) = .5(.50) + 1.7(.40) + 4.5(.10) = 1.38
  - EV(Parking lot) = 1.5(.50) + 1.9(.40) + 2.4(.10) = 1.75
  - EV(Warehouse) = 1.7(.50) + 1.4(.40) + 1.0(.10) = 1.51
  - EV (Shopping mall) = 0.7(.50) + 2.4(.40) + 3.6(.10) = 1.67
  - EV (Condominiums) =  $3.2(.50) + 1.5(.40) + .06(.10) = 2.26 \leftarrow$  maximum

### Select Condominium project

b) EVPI = Expected value of perfect information–expected value without perfect information = 3.01-2.26 =\$0.75 million

- S1-5. a. Maximax: Risk fund, maximax payoff = \$167,000
  - b. Maximin: Savings bond maximin payoff = \$30,000
  - c. Equal likelihood: Bond fund, maximum payoff = \$35,000
- S1-6. a. Best decision, given probabilities: Bond fund, maximum payoff = \$35,000
  b. Expected value *given* perfect information
  = (5\*0.1) + (4\*0.2) + (4.2\*0.4) + (9.3\*0.2) + (16.7\*0.1) = \$6.51
  EVPI = \$6.51-\$3.50 = \$3.01 or \$30,100
- S1-7. Since the payoff table includes "costs," the decision criteria must be reversed.
  - a. Minimin: Philippines, minimum cost = \$170,000
  - b. Minimax: Brazil, minimum cost = \$570,000
  - c. Equal likelihood: Philippines, minimum cost = \$399,000
  - d. Minimax regret: Philippines, minimum regret = \$70,000
- S1-8 a. EV (China) = 5.328
  - EV (India) = 5.375
  - EV (Philippines) = 5.218
  - EV (Brazil) = 5.178 Select
  - EV (Mexico) = 5.202
  - b. EV given perfect information = \$(1.7)(0.09) + (3.8)(0.27) + (5.4)(0.64) = \$4.635 EVPI = \$5.178 - 4.365 = \$0.813 or \$813,000
- S1-9. Since this payoff table includes "losses," the decision criteria must be reversed.
  - a. Minimin: Thailand, minimum loss = \$3 million
  - b. Minimax: India, minimum loss = \$14 million
  - c. Equal likelihood: India, minimum loss = \$8.91 million
  - d. Minimax regret: Philippines, minimum regret = \$2 million
- S1-10. EV (China) = \$10.91 EV (India) = 7.21 *Select* EV (Thailand) = 9.77 EV (Philippines) = 7.54

S1-11. a.

| Product | Expected Value                                     |
|---------|----------------------------------------------------|
| Widget  | 160,000(0.2)+90,000(0.5)-50,000(0.3)=\$62,000      |
| Hummer  | 70,000(0.2) + 40,000(0.5) + 20,000(0.3) = \$40,000 |
| Nimnot  | 45,000(0.2) + 35,000(0.5) + 30,000(0.3) = \$35,500 |

The best option is to introduce the widget.

b. EV given perfect information:

160,000(0.2)+90,000(0.5)+30,000(0.3)=\$86,000.

EV without perfect information: Widget at \$62,000. Value of perfect information: \$86,000 - \$62,000 = \$24,000

The company would consider this a maximum; since perfect information is rare, it would probably pay

less than \$24,000.

- c. Maximax: Introduce widget, maximax payoff = \$160,000 Maximin: Introduce nimnot, maximin payoff = \$30,000. Minimax regret: Introduce widget, Minimax regret = \$80,000 Equal likelihood: Introduce widget, maximum payoff = \$66,000
- S1-12. a. Maximax: Major physical revision, maximum payoff = \$972,000
  - b. Maximin: Paperback, maximum payoff = \$68,000
  - c. Equal likelihood: Major content revision, maximum payoff = \$419,430
  - d. Hurwicz: Major content revision, maximum payoff = \$273,900

S1-13.

| Publication Decision    | Expected Value |
|-------------------------|----------------|
| Paperback               | \$216,290      |
| Similar revision        | 386,340        |
| Major content revision  | 468,780        |
| Major physical revision | 405,970        |

Best decision = major content revision Overall "best" decision appears to be a "major content revision"

EVPI = (.23)(68,000) + (.46)(515,000) + (.31)(972,000) - 468,780= \$85,080

This is the maximum amount Wiley would pay an "expert" for additional information about the future competitive market.

- S1-14. a. Maximax: Singapore, maximum payoff = \$71 million
  - b. Maximin: Kaohsiung, maximum payoff = -\$15 million
  - c. Equal likelihood: Kaohsiung, maximum payoff = \$28.05 million
  - d. Hurwicz: Singapore, maximum payoff = \$37.8 million
  - e. Minimax regret: Singapore, minimum regret = \$9 million

#### S1-15. Expected value

| Port      | Expected Value |
|-----------|----------------|
| Hong Kong | \$22.99        |
| Singapore | 34.52          |
| Shanghai  | 24.54          |
| Busan     | 28.30          |
| Kaohsiung | 33.66          |

- a. Best decision = Singapore
- b. Singapore appears to be the best "overall" decision.

#### S1-16. Expected value

| Lease Decision | Expected Value |
|----------------|----------------|
| 1 – year       | \$65,980       |
| 2 – year       | 103,010        |
| 3 – year       | 133,810        |

| 4 – year | 154,300 |
|----------|---------|
| 5 – year | 114,210 |

S1-17. EVPI = (.17)(1,228,000) + (.34)(516,000) + (.49)(-551,000) - 154,300= \$237,740

This is the maximum amount the restaurant owner would pay an energy "expert" for additional information about future energy prices.

- S1-18. a. Maximax: Food court, maximum payoff = \$87,000
  - b. Maximin: Child care center, maximum payoff = \$17,000
  - c. Hurwicz: Lockers and showers, maximum payoff = \$32,250
  - d. Equal likelihood: Lockers and showers, maximum payoff = \$34,980

S1-19.

| Service Facility    | Expected Value |
|---------------------|----------------|
| Child care center   | \$30,560       |
| Swimming pool       | 7,610          |
| Lockers and showers | 44,150         |
| Food court          | 15,440         |
| Spa                 | 20,580         |

Best decision = Lockers and showers

## S1-16. a. Payoff table:

|            | Demand |       |       |       |       |
|------------|--------|-------|-------|-------|-------|
|            | 20     | 21    | 22    | 23    | 24    |
| Stock (lb) | 0.10   | 0.20  | 0.30  | 0.30  | 0.10  |
| 20         | 20.00  | 20.00 | 20.00 | 20.00 | 20.00 |
| 21         | 18.50  | 21.00 | 21.00 | 21.00 | 21.00 |
| 22         | 17.00  | 19.50 | 22.00 | 22.00 | 22.00 |
| 23         | 15.50  | 18.00 | 20.50 | 23.00 | 23.00 |
| 24         | 14.00  | 16.50 | 19.00 | 21.50 | 24.00 |

EV(20) = \$20

EV(21) = 18.50(0.1) + 21(0.2) + 21(0.3) + 21(0.3) + 21(0.1) = \$20.75 EV(22) = 17(0.1) + 19.50(0.2) + 22(0.3) + 22(0.3) + 22(0.1) = \$21.00 EV(23) = 15.50(0.1) + 18(0.2) + 20.50(0.3) + 23(0.3) + 23(0.1) = \$20.50 EV(24) = 14(0.1) + 16.50(0.2) + 19(0.3) + 21.50(0.3) + 24(0.1)= \$19.25

Order 22 lb of apples for a profit of \$21.00.

b. Maximax: Stock 24 lb for a maximax profit of \$24.00. Maximin: Stock 20 lb for a maximin profit of \$20.00.

#### S1-21. a. Payoff table:

| _          | Demand |            |      |      |            |      |
|------------|--------|------------|------|------|------------|------|
| Stock (lb) | 25     | 26<br>0.15 | 27   | 28   | 29<br>0.15 | 30   |
| (boxes)    | 0.10   | 0.15       | 0.30 | 0.20 | 0.15       | 0.10 |
| 25         | 50     | 50         | 50   | 50   | 50         | 50   |
| 26         | 49     | 52         | 52   | 52   | 52         | 52   |
| 27         | 48     | 51         | 54   | 54   | 54         | 54   |
| 28         | 47     | 50         | 53   | 56   | 56         | 56   |
| 29         | 46     | 49         | 52   | 55   | 58         | 58   |
| 30         | 45     | 48         | 51   | 54   | 57         | 60   |

EV(25) = 50(0.1) + 50(0.15) + 50(0.3) + 50(0.2) + 50(0.15) + 50(0.1) = \$50.00 EV(26) = 49(0.1) + 52(0.15) + 52(0.3) + 52(0.2) + 52(0.15) + 52(0.1) = \$51.70 EV(27) = 48(0.1) + 51(0.15) + 54(0.3) + 54(0.2) + 54(0.15) + 54(0.1) = \$52.95 EV(28) = 47(0.1) + 50(0.15) + 53(0.3) + 56(0.2) + 56(0.15) + 56(0.1) = \$53.30 EV(29) = 46(0.1) + 49(0.15) + 52(0.3) + 55(0.2) + 58(0.15) + 58(0.1) = \$53.05EV(30) = 45(0.1) + 48(0.15) + 51(0.3) + 54(0.2) + 57(0.15) + 60(0.1) = \$52.35

Best decision: Stock 28 boxes, for a profit of \$53.30.

- b. Expected value under uncertainty: EV = 500(0.10) + 52(0.15) + 54(0.30) + 56(0.20) + 58(0.15) + 60(0.10) = \$54.90 EVPI = \$54.90 - \$53.30 = \$1.60
- S1-22. a) Stock 25, maximum of minimum payoffs = \$50
  b) Stock 30, maximum of maximum payoffs = \$60
  c) 25:50(.4)+50(.6) = 50; 26:52(.4)+49(.6) = 50.2; 27:54(.4)+48(.6) = 50.4; 28:56(.4)+47(.6) = 50.6; 29:58(.4)+46(.6) = 50.8; 30:60(.4)+45(.6) = 51; stock 30 boxes.
  d) Stock 28 or 29 boxes; minimum regret = \$4.
- S1-23. EV(press) = 40,000(.4) 8,000(.6) = \$11,200; EV(lathe) = 20,000(.4) + 4,000(.6) = \$10,400;EV(grinder) = 12,000(.4) + 10,000(.6) = \$10,800; Purchase press.

S1-24.



- S1-25. a. Maximax = Gordon
  - b. Maximin = Jackson
    - c. Hurwicz ( $\alpha = 0.25$ ) Morris = 4.4(0.25)+(-3.2)(0.75) = -\$1.3M O'Neil = 6.3(0.25)+(-5.1)(0.75) = -\$2.3M Jackson = 5.8(0.25)+(-2.7)(0.75) = -\$0.58M Gordon = 9.6(0.25)+(-6.3)(0.75) = -\$2.33M Select Jackson
    - d. Equal likelihood

Morris = 4.4(0.33) + (1.3)(0.33) + (-3.2)(0.33) =\$.83M O'Neil = 6.3(0.33) + (1.8)(0.33) + (-5.1)(0.33) = +\$.99M Jackson = 5.8(0.33) + (0.7)(0.33) + (-2.7)(0.33) = +\$1.254M Gordon = 9.6(0.33) + (-1.6)(0.33) + (-6.3)(0.33) =\$.561M Select Jackson

- e. EV (Morris) = (-3.2)(0.15) + (1.3)(0.55) + (4.4)(0.30) = \$1.56MEV(O'Neil) = (-5.1)(0.18) + (1.8)(0.26) + (6.3)(0.56) = \$3.08MEV (Jackson) = (-2.7)(0.21) + (0.7)(0.32) + (5.8)(0.47) = \$2.38MEV (Gordon) = (-6.3)(0.30) + (-1.6)(0.25) + (9.6)(0.45) = \$2.03MSelect O'Neil.
- S1-26. a. Maximax = Real Estate b. Maximin = Nursing
  - c. Equal Likelihood: select Real Estate Graphic design = \$170,000 Nursing = \$187,500 Real Estate = \$202,500 Medical Technology = \$195,000 Culinary technology = \$170,000 Computer information technology = \$186,250
  - d. Hurwicz (alpha = 0.25): select Nursing Graphic design = \$141,250
    Nursing = \$161,250
    Real Estate = \$158,750
    Medical Technology = \$157,500
    Culinary technology = \$136,250
    Computer information technology = \$158,750
- S1-27. EV(Graphic design) = \$164,250EV(Nursing) = \$183,500EV(Real Estate) = \$174,400EV(Medical Technology) = \$187,500EV(Culinary technology) = \$149,250EV(Computer information technology) = \$174,750

| S1-28. | a. Maximax = Juan Ramon     |        |
|--------|-----------------------------|--------|
|        | b. Maximin = Alan Rodriguez |        |
|        | c. Equal likelihood:        |        |
|        | Garcia = 106.92             |        |
|        | <b>Ramon = 119.46</b>       | SELECT |
|        | Terry = 103.29              |        |
|        | Rodriguez = $96.03$         |        |
|        | Washburn $= 92.73$          |        |
|        | d. Hurwicz:                 |        |
|        | Garcia = 91.95              |        |
|        | Ramon = 95.10               | SELECT |
|        | Terry = 94.55               |        |
|        | Rodriguez = $95.75$         |        |
|        | Washburn $= 84.35$          |        |
| G1 20  | EV(Carrie) = 100.2          |        |
| 51-29. | a. $EV(Garcia) = 100.5$     |        |
|        | EV(Ramon) = 112.4 SELEC     | Т      |
|        | EV(Terry) = 98.2            |        |

EV(Terry) = 98.2 EV(Rodriguez) = 91.6EV(Washburn) = 85.2

b. Probably Terry; he seems to have the best tradeoff between low cost and wins. However, this is an objective opinion depending on the degree of risk the decision maker is willing to take on.

|        | c. EV(Garcia) = 109.71<br><b>EV(Ramon) = 109.74</b><br>EV(Terry)= 106.81<br>EV(Rodriguez) = 100.00<br>EV(Washburn) = 93.48 |
|--------|----------------------------------------------------------------------------------------------------------------------------|
| S1-30. | a. Maximax = Hong Kong                                                                                                     |
|        | b. Maximin = Pusan                                                                                                         |
|        | c. Equal likelihood:                                                                                                       |
|        | Shanghai = $$0.44$ billion                                                                                                 |
|        | Singapore = $$0.37$ billion                                                                                                |
|        | Pusan = \$0.43 billion                                                                                                     |
|        | Kaoshiung $=$ \$0.41 billion                                                                                               |
|        | Hong Kong = \$0.47 billion                                                                                                 |
|        | d. Hurwicz (alpha = $.55$ ):                                                                                               |
|        | Shanghai = $$0.47$ billion                                                                                                 |
|        | Singapore = $$0.41$ billion                                                                                                |
|        | Pusan = $\$0.46$ billion                                                                                                   |
|        | Kaoshiung = $\$0.54$ billion                                                                                               |
|        | Hong Kong = \$0.77 billion                                                                                                 |
|        |                                                                                                                            |

S1-31. EV(Shanghai) = 0.608 billion EV(Singapore) = 0.606 billion EV(Pusan) = 0.502 billion EV(Kaoshiung) = 0.487 billion EV(Hong Kong) = 0.724 billion

### S1-32. EV (snow shoveler) = 30(.12) + 60(.19) + 90(.24) + 120(.22) + 150(.13) + 180(.08) + 210(.02) = 101.10

The cost of the snow blower (\$575) is much more than the annual cost of the snow shoveler, thus on the basis of one year the snow shoveler should not be purchased. However, the snow blower could be used for an extended period of time such that after approximately 6 years the cost of the snow blower would be recouped. Thus, the decision hinges on weather or not the decision maker thinks 6 years is too long to wait to recoup the cost of the snow blower.

S1-33.



Since cost of installation (\$900,000) is greater than expected value of not installing (\$552,000), do not install an emergency power generator

S1-34.



Select strategy 3; Change oil regularly; EV = \$98.80

S1-35.



Select Strategy 4; Change oil and sample; EV = \$716.40

S1-36. a.



b. 
$$.98[9.2x+1.5(1-x)]+(.02)(1.5) = 3.810$$
  
 $.98[7.7x+1.5]+.030 = 3.810$   
 $7.546x+1.47+.030 = 3.810$   
 $7.546x = 2.31$   
 $x = .306$  probability of winning in overtime

S1-37.



S1-38. The following table includes the medical costs for all the final nodes in the decision tree.

| Expense | Plan 1 | Plan 2 | Plan 3 |  |
|---------|--------|--------|--------|--|
| 100     | 481    | 160    | 318    |  |
| 500     | 884    | 560    | 438    |  |
| 1,500   | 984    | 1,290  | 738    |  |
| 3,000   | 1,134  | 1,440  | 1,188  |  |
| 5,000   | 1,334  | 1,640  | 1,788  |  |
| 10,000  | 1,834  | 2,140  | 3,288  |  |

E(1) = 954E(2) = 976.5E(3) = 810Select plan 3 S1-39.



S1-40.



# CASE S1.1: Whither an MBA at Strutledge? -Continued

- a. Maximax: IT, maximum payoff = \$517,000
- b. Maximin: Health Administration, maximum payoff = -\$75,000
- c. Equal likelihood: Nursing, maximum payoff = \$114,500
- d. Hurwicz: Nursing, maximum payoff = \$86,000
- e. They do not have sufficient insight into the probability of the future success of the programs to indicate either optimism or pessimism; or for "political" reasons they feel it is imprudent to express a "preference."
- f. Best decision = Nursing

| Graduate Program       | Expected Value |
|------------------------|----------------|
| MBA                    | -27,470        |
| Computer Science       | -45,000        |
| Information Technology | 10,790         |
| Nursing                | 126,760        |
| Health Administration  | 124,250        |

- g. Nursing appears to be the best overall decision.
- h. Depends on student answer.

## CASE S1.2 : Transformer Replacement at Mountain State Electric Service

The decision tree solution for this problem is shown below. The decision should be to retain the existing transformer; the cost of replacement (\$85,000) is greater than the cost of retention (\$61,000).



CASE S1.3: Evaluating Projects at Nexcom Systems

| <b>Project</b> | EV      |
|----------------|---------|
| 1              | 404,368 |
| 2              | 434,976 |
| 3              | 442,891 |
| 4              | 344,490 |
| 5              | 262,252 |

