Gerd Keiser, Optical Fiber Communications, McGraw-Hill, $4^{\text {th }}$ ed., 2011

Problem Solutions for Chapter 1

1.1 (a) Using Eq. 1.3 for the relationship between photon energy and wavelength, we find that $\mathrm{E}(850)=1.46 \mathrm{eV}, \mathrm{E}(1310)=0.95 \mathrm{eV}, \mathrm{E}(1490)=0.83 \mathrm{eV}$, and $\mathrm{E}(1550)=$ 0.80 eV .
(b) The number of photons $\mathrm{N}=\frac{\text { (Pulse width) }(\text { Pulse power })}{(\text { Energy } / \text { photon in } \mathrm{eV})\left(1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}$

Therefore $\mathrm{N}(850)=428, \mathrm{~N}(1310)=657, \mathrm{~N}(1490)=753$, and $\mathrm{N}(1550)=781$.
1.2 In terms of wavelength, at a central wavelength of 1546 nm a $100-\mathrm{GHz}$ channel spacing is
$\Delta \lambda=\frac{\lambda^{2}}{c} \Delta f=\frac{(1546 \mathrm{~nm})^{2}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}} 100 \times 10^{9} \mathrm{~s}^{-1}=0.80 \mathrm{~nm}$
The number of wavelength channels fitting into the 1536 -to- 1556 spectral band then is $\mathrm{N}=(1556-1536 \mathrm{~nm}) / 0.80 \mathrm{~nm}=25$.
1.3 Three sine waves have the following periods T: $25 \mu \mathrm{~s}, 250 \mathrm{~ns}, 125 \mathrm{ps}$. Their frequencies are $\mathrm{f}=1 / \mathrm{T}=40 \mathrm{kHz}, 4.0 \mathrm{MHz}$, and 8 GHz , respectively.
1.4 A sine wave is offset $1 / 6$ of a cycle with respect to time zero. Its phase in degrees is 60 and in radians is $\pi / 3$.
1.5 Two signals have the same frequency, but when the amplitude of the first signal is at its maximum, the amplitude of the second signal is at half its maximum. The phase shift between the two signals is 90 degrees.
1.6 Three signals have bit rates of $\mathrm{R}=64 \mathrm{~kb} / \mathrm{s}, 5 \mathrm{Mb} / \mathrm{s}$, and 10 Gbps . The duration of a bit is $\mathrm{T}_{\mathrm{b}}=1 / \mathrm{R}=15.6 \mu \mathrm{~s}, 200 \mathrm{~ns}$, and 0.1 ns , respectively.
1.7 (a) Convert the following absolute power gains $\mathrm{P}_{2} / \mathrm{P}_{1}$ to decibel power gains: 10^{-3}, $0.3,1,4,10,100,500,2^{\mathrm{n}}$. Answer using Eq. (1.4): -30, $-5.2,0,6,10,20,27,3 n$ dB , respectively.
(b) Convert the following decibel power gains to absolute power gains: $-30 \mathrm{~dB}, 0$ $\mathrm{dB}, 13 \mathrm{~dB}, 30 \mathrm{~dB}, 10 \mathrm{n} \mathrm{dB}$. Answer: $10^{-3}, 1,20,1000,10^{\mathrm{n}}$, respectively.
1.8 (a) Convert the following absolute power levels to decibel levels referenced to 1 $\mathrm{mW}: 1 \mathrm{pW}, 1 \mathrm{nW}, 1 \mathrm{~mW}, 10 \mathrm{~mW}, 50 \mathrm{~mW}$. Answer using Eq. (1.5): -90 dBm, -60 $\mathrm{dBm},-30 \mathrm{dBm}, 10 \mathrm{dBm}$, and 17 dBm , respectively.
(b) Find the absolute power levels in units of mW of the following dBm values: $13 \mathrm{dBm},-6 \mathrm{dBm}, 6 \mathrm{dBm}, 17 \mathrm{dBm}$. Answer: $50 \mu \mathrm{~W}, 250 \mu \mathrm{~W}, 4 \mathrm{~mW}$, and 50 mW , respectively.
1.9 (a) $10 \log \mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{B}}=10 \log (0.125 / 1.0)=-9.0$. The attenuation is 9 dB .
(b) An attenuation of 15 dB means the power level drops by a factor of 31.6. Thus the power level at point B would be $32 \mu \mathrm{~W}$.
1.10 Since the gains given in decibels are additive, the total gain is 15 dB . The signal is amplified by a factor $10^{1.5}=31.6$.
1.11 A power level of $500 \mu \mathrm{~W}$ in dBm is $10 \log (0.5)=-3 \mathrm{dBm}$. Therefore the power level after 30 km is $-3 \mathrm{dBm}-24 \mathrm{~dB}=-27 \mathrm{dBm}$, which is equivalent to $2.0 \mu \mathrm{~W}$.
1.12 From the relationship $C=B \log _{2}(1+\mathrm{S} / \mathrm{N})=(2 \mathrm{Mb} / \mathrm{s}) \log _{2}(1+100)$

$$
=(2 \mathrm{Mb} / \mathrm{s})\left[\log _{10}(1+100)\right] /\left[\log _{10} 2\right]=13.3 \mathrm{Mb} / \mathrm{s}
$$

1.13 (a) 8000 bits of overhead are added.
(b) Four DS-1 or 96 DS-0 channels fit into a DS-2 channel. $136 \mathrm{~kb} / \mathrm{s}$ of overhead are added.
(c) A DS-3 channel can accommodate 7 DS-2 channels. The overhead is $192 \mathrm{~kb} / \mathrm{s}$.
(d) 672 DS-0 channels can be sent over a DS-3 line. The total overhead is 1.368 Mb / s or 3%.

