
Chapter 2 Solutions

Review Questions

1. b
2. c
3. b
4. c
5. b
6. d
7. a
8. a.
9. b and c
10. b
11. Variables are structures used to hold data values during the processing of a block.

12. A basic loop uses an EXIT WHEN statement to stop. A WHILE loop uses a condition

in the beginning of the loop to determine whether it should continue. A FOR loop uses a

range in the beginning of the loop to determine how many times the loop iterates.

13. IF/THEN and CASE statements

14. A flowchart is a tool developers can use to map out the logic sequence needed to
prepare for coding a block.

15. A CONSTANT option doesn’t allow changing an initialized variable’s value during

block execution.

Advanced Review Questions

1. b
2. a
3. d
4. d
5. c

Hands-On Assignments Part I

Assignment 2-1

DECLARE
 lv_test_date DATE := '10-DEC-2012';
 lv_test_num NUMBER(3) := 10;
 lv_test_txt VARCHAR2(10);
BEGIN
 lv_test_txt := '???????';
 DBMS_OUTPUT.PUT_LINE(lv_test_date);
 DBMS_OUTPUT.PUT_LINE(lv_test_num);
 DBMS_OUTPUT.PUT_LINE(lv_test_txt);
END;

Oracle 11G PL SQL Programming 2nd Edition Casteel Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/oracle-11g-pl-sql-programming-2nd-edition-casteel-solutions-manual/

Assignment 2-2

Assignment 2-3

DECLARE
 lv_total_num NUMBER(6,2) := 150;
BEGIN
 IF lv_total_num > 200 THEN
 DBMS_OUTPUT.PUT_LINE('HIGH');
 ELSIF lv_total_num > 100 THEN
 DBMS_OUTPUT.PUT_LINE('MID');
 ELSE
 DBMS_OUTPUT.PUT_LINE('LOW');
 END IF;
END;

Assignment 2-4

DECLARE
 lv_total_num NUMBER(6,2) := 150;

Retrieve
purchase total

value

Is total >

$200?
Display rating =

HIGH

Yes

No

Display rating =

MID

Is total >

$100?

Yes

No

Display rating =

LOW

BEGIN
 CASE
 WHEN lv_total_num > 200 THEN
 DBMS_OUTPUT.PUT_LINE('HIGH');
 WHEN lv_total_num > 100 THEN
 DBMS_OUTPUT.PUT_LINE('MID');
 ELSE
 DBMS_OUTPUT.PUT_LINE('LOW');
 END CASE;
END;

Assignment 2-5

DECLARE
 lv_bal_num NUMBER(8,2) := 150.50;
 lv_pay_num NUMBER(8,2) := 95.00;
 lv_due_bln BOOLEAN;
BEGIN
 IF (lv_bal_num - lv_pay_num) > 0 THEN
 lv_due_bln := TRUE;
 DBMS_OUTPUT.PUT_LINE('Balance Due');
 ELSE
 lv_due_bln := FALSE;
 DBMS_OUTPUT.PUT_LINE('Account Fully Paid');
 END IF;
END;

Assignment 2-6

DECLARE
 lv_total_num NUMBER(6,2) := 200;
 lv_price_num NUMBER(5,2) := 32;
 lv_spent_num NUMBER(6,2) := 0;
 lv_qty_num NUMBER(6) := 0;
BEGIN
 WHILE (lv_spent_num + lv_price_num) < lv_total_num LOOP
 lv_spent_num := lv_spent_num + lv_price_num;
 lv_qty_num := lv_qty_num + 1;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Total Spent = ' || lv_spent_num);
 DBMS_OUTPUT.PUT_LINE('# purchase = ' || lv_qty_num);
END;

Assignment 2-7

Assignment 2-8

DECLARE
 lv_mem_txt CHAR(1) := 'Y';
 lv_qty_num NUMBER(3) := 8;
 lv_ship_num NUMBER(6,2);
BEGIN
 IF lv_mem_txt = 'Y' THEN
 IF lv_qty_num > 10 THEN
 lv_ship_num := 9;
 ELSIF lv_qty_num >= 7 THEN
 lv_ship_num := 7;
 ELSIF lv_qty_num >= 4 THEN
 lv_ship_num := 5;

Member? Shipping
Cost =$9

HIGH

Yes No

Retrieve member
status and #

items ordered

items
> 10?

Yes

items
> 10?

Shipping
Cost = $12

HIGH

Yes

items
> = 7?

items
> = 7?

Shipping

Cost = $7

Shipping

Cost = $10

items
> = 4?

items
> = 4?

Yes Yes

No No

No No

Shipping

Cost = $7.50

Shipping

Cost = $5

Yes
Yes

Shipping

Cost = $5

Shipping

Cost = $3

 ELSE
 lv_ship_num := 3;
 END IF;
 ELSE
 IF lv_qty_num > 10 THEN
 lv_ship_num := 12;
 ELSIF lv_qty_num >= 7 THEN
 lv_ship_num := 10;
 ELSIF lv_qty_num >= 4 THEN
 lv_ship_num := 7.50;
 ELSE
 lv_ship_num := 5;
 END IF;
 END IF;
 DBMS_OUTPUT.PUT_LINE(lv_ship_num);
END;

Hands-On Assignments Part II

Assignment 2-9

DECLARE
 lv_start_date DATE := '01-OCT-2012';
 lv_payamt_num NUMBER(8,2) := 20;
 lv_paymths_num NUMBER(8,2) := 24;
 lv_bal_num NUMBER(8,2) := 0;
 lv_duedate_date DATE;
 lv_duedate_txt VARCHAR2(25);
BEGIN
 lv_bal_num := lv_payamt_num * lv_paymths_num;
 lv_duedate_date := lv_start_date;
 FOR i IN 1..lv_paymths_num LOOP
 lv_bal_num := lv_bal_num - lv_payamt_num;
 lv_duedate_txt := TO_CHAR(lv_duedate_date,'mm/dd/yyyy');
 DBMS_OUTPUT.PUT_LINE('Pay #: ' || i || ' Due: ' || lv_duedate_txt
 || ' Amt: ' || TO_CHAR(lv_payamt_num,'$999.99')
 || ' Bal: ' || TO_CHAR(lv_bal_num,'$9,999.99'));
 lv_duedate_date := ADD_MONTHS(lv_duedate_date,1);
 END LOOP;
END;

Assignment 2-10

DECLARE
 lv_start_date DATE := '01-OCT-2012';
 lv_payamt_num NUMBER(8,2) := 20;
 lv_paymths_num NUMBER(8,2) := 24;
 lv_bal_num NUMBER(8,2) := 0;
 lv_duedate_date DATE;
 lv_duedate_txt VARCHAR2(25);
 lv_cnt_num NUMBER(2) := 1;
BEGIN
 lv_bal_num := lv_payamt_num * lv_paymths_num;
 lv_duedate_date := lv_start_date;
 LOOP
 lv_bal_num := lv_bal_num - lv_payamt_num;

 lv_duedate_txt := TO_CHAR(lv_duedate_date,'mm/dd/yyyy');
 DBMS_OUTPUT.PUT_LINE('Pay #: ' || lv_cnt_num || ' Due: ' ||
lv_duedate_txt
 || ' Amt: ' || TO_CHAR(lv_payamt_num,'$999.99')
 || ' Bal: ' || TO_CHAR(lv_bal_num,'$9,999.99'));
 lv_duedate_date := ADD_MONTHS(lv_duedate_date,1);
 EXIT WHEN (lv_cnt_num = lv_paymths_num);
 lv_cnt_num := lv_cnt_num + 1;
 END LOOP;
END;

Assignment 2-11

DECLARE
 lv_start_date DATE := '01-OCT-2012';
 lv_payamt_num NUMBER(8,2) := 20;
 lv_paymths_num NUMBER(8,2) := 24;
 lv_paid_num NUMBER(8,2) := 0;
 lv_duedate_date DATE;
 lv_duedate_txt VARCHAR2(25);
 lv_cnt_num NUMBER(2) := 1;
BEGIN
 lv_duedate_date := lv_start_date;
 WHILE lv_cnt_num <= lv_paymths_num LOOP
 lv_paid_num := lv_paid_num + lv_payamt_num;
 lv_duedate_txt := TO_CHAR(lv_duedate_date,'mm/dd/yyyy');
 DBMS_OUTPUT.PUT_LINE('Pay #: ' || lv_cnt_num || ' Due: ' ||
 lv_duedate_txt || ' Amt: ' || TO_CHAR(lv_payamt_num,'$999.99')
 || ' Total Paid: ' || TO_CHAR(lv_paid_num,'$9,999.99'));
 lv_duedate_date := ADD_MONTHS(lv_duedate_date,1);
 lv_cnt_num := lv_cnt_num + 1;
 END LOOP;
END;

Assignment 2-12

DECLARE
 lv_paycode_num NUMBER(1) := 1;
 lv_payamt_num NUMBER(6,2) := 100;
 lv_match_num NUMBER(8,2) := 0;
BEGIN
 lv_match_num := CASE lv_paycode_num
 WHEN 0 THEN lv_payamt_num * .25
 WHEN 1 THEN lv_payamt_num * .5
 WHEN 2 THEN lv_payamt_num * 1
 ELSE 0
 END;
 DBMS_OUTPUT.PUT_LINE(lv_match_num);
END;

Assignment 2-13

DECLARE
 lv_type_txt CHAR(1) := 'B';
 lv_amt_num NUMBER(8,2) := 600;
 lv_match_num NUMBER(8,2) := 0;
BEGIN

 IF lv_type_txt = 'I' THEN
 IF lv_amt_num >= 500 THEN
 lv_match_num := lv_amt_num * .20;
 ELSIF lv_amt_num >= 250 THEN
 lv_match_num := lv_amt_num * .30;
 ELSIF lv_amt_num >= 100 THEN
 lv_match_num := lv_amt_num * .50;
 ELSE
 lv_match_num := 0;
 END IF;
 ELSIF lv_type_txt = 'B' THEN
 IF lv_amt_num >= 1000 THEN
 lv_match_num := lv_amt_num * .05;
 ELSIF lv_amt_num >= 500 THEN
 lv_match_num := lv_amt_num * .10;
 ELSIF lv_amt_num >= 100 THEN
 lv_match_num := lv_amt_num * .20;
 ELSE
 lv_match_num := 0;
 END IF;
 ELSIF lv_type_txt = 'G' THEN
 IF lv_amt_num >= 100 THEN
 lv_match_num := lv_amt_num * .05;
 ELSE
 lv_match_num := 0;
 END IF;
 END IF;
 DBMS_OUTPUT.PUT_LINE(lv_match_num);
END;

Case Projects

Case 2-1

Answers will vary. Examples of sites students might use include the
following:

 www.nos.org/htm/basic2.htm

 www.smartdraw.com/tutorials/flowcharts/tutorial_01.htm

 http://users.evtek.fi/~jaanah/IntroC/DBeech/3gl_flow.htm

 www.rff.com/how_to_draw_a_flowchart.htm

Case 2-2

DECLARE
 lv_cnt_num NUMBER(3) := 18;
 lv_rating_txt VARCHAR2(4);
BEGIN
 IF lv_cnt_num > 35 THEN
 lv_rating_txt := 'High';
 ELSIF lv_cnt_num >= 21 THEN
 lv_rating_txt := 'Mid';

Is #

 > 35?
Set rating =

High

Yes

No

Set rating =

Mid

Is #

 > = 21?

Yes

No

Set rating =

Dump

Retrieve #

rentals

Is #

 > = 5?
Set rating =

Low

Yes

Display

rating value

 ELSIF lv_cnt_num >= 5 THEN
 lv_rating_txt := 'Low';
 ELSE
 lv_rating_txt := 'Dump';
 END IF;
 DBMS_OUTPUT.PUT_LINE('Rating = '||lv_rating_txt);
END;

 Instructor’s Manual – Chapter 2

 1

Chapter 2

Basic PL/SQL Block Structure

Content Listing

 Chapter Overview

 Chapter Objectives

 Chapter by Section

o Instructor Notes

o Troubleshooting Tips

o Quick Quizzes

 Classroom Activities

 Discussion Questions

 Projects to Assign

 Key Terms

 Instructor’s Manual – Chapter 2

 2

Chapter Overview

This chapter introduces basic PL/SQL block structure and logical processing. An initial

discussion of programming logic and flowcharts is included for those that are new to

programming. The first blocks created will introduce declaring and using scalar variables.

Then students will be exposed to logical processing focusing on two types of structures:

conditional processing with IF or CASE statements and using loops to repeat statements.

The Brewbean’s challenge of calculating tax costs based on the shipping state will assist

students in understanding the need for logical processing statements to perform decision-

making within an application.

Chapter Objectives

After completing this chapter, you should be able to understand:

 Programming fundamentals

 The PL/SQL block

 How to define and declare variables

 How to initialize and manage variable values

 The NOT NULL and CONSTANT variable options

 How to perform calculations with variables

 The use of SQL single-row functions in PL/SQL statements

 Decision structures: IF-THEN and CASE

 Looping actions: basic, FOR and WHILE

 CONTINUE statements

 Nested statements

Chapter by Section

 Programming Fundamentals

Instructor Notes:
All programs are written to accomplish a specific sequence of events. The logic and

sequence of events needed should be identified prior to coding using some type of

pseudocode or flowchart. The steps identified should include all data handling and

decision making necessary.

Troubleshooting Tips Identify a coding task and develop the flowchart in steps to

address required processing.

 Instructor’s Manual – Chapter 2

 3

Quick Quizzes 1. What type of structure do programmers use to repeat

actions?

Answer: Loops

2. What type of structure is used to determine what actions

occur at run time?

Answer: Decision structure

3. What method is used to graphically display the sequence

of actions in a program?

Answer: Flowcharting

 PL/SQL Block Structure

Instructor Notes:
A PL/SQL block consists of four main segments: DECLARE, BEGIN, EXCEPTION,

and END. All variables, cursors, and types used throughout the block must be declared in

the DECLARE section. The BEGIN section contains all the logical processing statements

and SQL statements to interact with the database. The EXCEPTION section contains

handlers that will control what the application will do if errors occur. In Chapters 2 and 3,

anonymous blocks (which are not named or stored) will be created and executed in

SQL*Plus to learn PL/SQL coding techniques.

Troubleshooting Tips Run a simple PL/SQL block such as the one listed below to

highlight that blocks executed in SQL*Plus must close with

a forward slash on the last line to instruct the system to

execute the block.

 DECLARE

 lv_day DATE;

 BEGIN

 Lv_day := SYSDATE;

 END;

Quick Quizzes 1. How will errors in a PL/SQL block be managed?

Answer: Exception handlers

2. What section of the PL/SQL block contains variable

declarations?

Answer: DECLARE section

3. What section of the PL/SQL block can contain SQL

statements?

Answer: BEGIN section

 Instructor’s Manual – Chapter 2

 4

 Working with Scalar Variables

Instructor Notes:
Scalar data types can only hold a single value. Value types of character, numeric, date,

and Boolean can be handled by scalar variables. A variable declaration requires a variable

name and data type. The keyword DEFAULT or the assignment symbol of := can be used

in a variable declaration to initialize a variable to a value. If a variable is not initialized,

then it contains a NULL value upon entrance into the BEGIN section of the block. The

NOT NULL option requires the variable to always contain a value and, therefore, the

variable must be initialized. The CONSTANT option protects a variable value from being

modified. Using the DBMS_OUTPUT.PUT_LINE procedure provides an easy method to

check variable values.

Troubleshooting Tips Attempt executing a PL/SQL block that contains a

DBMS_OUTPUT.PUT_LINE statement without first

enabling DBMS_OUTPUT to demonstrate that no error is

raised and nothing is displayed from the statement.

Quick Quizzes 1. How many values can a scalar variable contain?

Answer: One

2. What variable declaration option prevents a variable

value from being changed?

Answer: CONSTANT

3. What is required in a variable declaration?

Answer: A name and data type

4. What procedure enables a developer to check the values

of variables during execution?

 Answer: DBMS_OUTPUT.PUT_LINE

 Initializing Variables

Instructor Notes:
It may be desirable for a variable to contain a value as processing the block begins. The

keyword DEFAULT or the assignment symbol of := can be used in a variable declaration

to initialize a variable to a value. If a variable is not initialized, then it contains a NULL

value upon entrance into the BEGIN section of the block.

Troubleshooting Tips Attempt executing a PL/SQL block that contains one

variable initialized to a value and another that is not

initialized. Execute the block using

DBMS_OUTPUT.PUT_LINE statements to demonstrate the

initial values in the variables.

 Instructor’s Manual – Chapter 2

 5

Quick Quizzes 1. What is accomplished in variable initialization?

Answer: A variable is assigned a value when it is

declared

2. What is used in a variable declaration to accomplish

initialization?

Answer: Keyword of DEFAULT or the := symbol

3. Provide an example of why a variable may need to be

initialized.

Answer: (Answers will vary) To store the current date to

for a data calculation

 Variable Options

Instructor Notes:
Declared variables can use two options to control requirements on the initialized values.

The NOT NULL option forces a variable to contain a value and, therefore, it must be

initialized. The CONSTANT option will prevent an initialized variable from being

modified in the block.

Troubleshooting Tips Attempt executing a PL/SQL block that contains one

variable for each of the two options introduced. Execute the

block using DBMS_OUTPUT.PUT_LINE statements to

demonstrate the initial values in the variables. Also add a

statement in the block that attempts to modify the value of

the variable using the CONSTANT option to demonstrate an

error will be raised.

Quick Quizzes 1. What variable option will not allow a variable’s value to

be altered?

Answer: CONSTANT

2. What variable option requires that the variable always

contain a value?

Answer: NOT NULL

3. Does the variable CONSTANT option require the

variable to be initialized?

Answer: Yes

 Instructor’s Manual – Chapter 2

 6

 Performing Calculations

Instructor Notes:
A variable can hold the result of a mathematical operation such as multiplication. An

assignment statement is used to place a value in a variable. In this case, the value will be

a calculation. Basic manipulations introduced in SQL can be used, such as addition (+),

subtraction (-), multiplication, (*) and division (/).

Troubleshooting Tips Demonstrate a block containing a calculation emphasizing

the use of the := symbol for the assignment statement.

Quick Quizzes 1. What is an assignment statement?

Answer: A statement that places a value into a variable

2. Can variables be used as part of a calculation?

Answer: Yes

3. What symbol is used in an assignment statement?

Answer: :=

 Using SQL Functions with Variables

Instructor Notes:
SQL contains many single row functions that can perform a variety of data manipulation

tasks. PL/SQL variable values can be derived from a result of these functions.

Troubleshooting Tips Execute a PL/SQL block that contains one variable. Use the

MONTHS_BETWEEN function in an assignment statement

for this variable. Execute the block using

DBMS_OUTPUT.PUT_LINE statement to demonstrate the

resulting value.

Quick Quizzes 1. What type of SQL functions can be used in a PL/SQL

assignment statement to assign a value to a scalar

variable?

Answer: Single row functions

2. If an assignment statement uses the UPPER function,

what data type is the variable?

Answer: Character

3. What function would be required if a numeric value

needs to be manipulated to contain a dollar sign,

commas, and a decimal point?

Answer: TO_CHAR

 Instructor’s Manual – Chapter 2

 7

 Decision or Control Structures

Instructor Notes:
Conditional processing or the ability to check conditions and determine which statements

should be processed is available in PL/SQL via two features: If and CASE statements.

CASE statements were added to the PL/SQL language arsenal in Oracle9i based on user

input, as many programmers are familiar with CASE statements from other programming

languages. The choice between which construct to use is more a matter of preference.

The If statements expand beyond simple condition checks to more complex checks by

adding multiple conditions using the ELSIF clause. It is critical to recognize that If

clauses are evaluated from top down, and once a true condition is discovered, the

associated statements are processed and the If statement is ended. The CASE statement

also processes top down until a true condition is found and, in addition, has two special

formats named searched CASE and CASE expression.

Troubleshooting Tips The misspelling of ELSIF is one of the most common errors

of PL/SQL beginners. Everyone wants to add an ‘E’ and

spell it as ELSEIF.

Another common mistake is using a := operator in an If

clause. Remind students that the If clause is not an

assignment.

Quick Quizzes 1. Does an IF statement require at least one conditional

clause to execute?

Answer: No

2. What clause can be used in an If statement to ensure that

some processing always occurs?

Answer: ELSE

3. A case expression returns a value in a(n)

______________ statement.

Answer: Assignment

4. What is used to check multiple conditions in an If

clause?

Answer: Logical operators (AND, OR)

5. Are the capabilities provided by IF and CASE statements

are equivalent?

Answer: Yes

 Instructor’s Manual – Chapter 2

 8

 Looping Constructs

Instructor Notes:
Loop constructs allow developers to repeat a set of statements, which is particularly

important for processing groups of records. The Brewbean’s application requirement to

calculate different tax rates for equipment and coffee items that are in an order highlights

the need to repeat an operation for each record in a group of records, which represents a

shopping cart. Three forms of loops exist: Basic, While, and For. The main difference of

the forms is how the loop is ended.

Troubleshooting Tips The most critical portion of a loop is the determination of

when the loop processing ends. Providing an invalid

condition to end a loop can lead to the most dreaded of

errors: the infinite loop.

Quick Quizzes 1. What statement is used to end a Basic loop?

Answer: Exit

2. When does a While loop end processing?

Answer: When the condition in the While clause is false

3. When does a For loop end processing?

Answer: When the counter reaches the last number in the

range, the loop runs one more time and then ends

 Working with Nested Statements

Instructor Notes:
IF and Loop structures may be nested to branch decision making or looping steps. Using

nested IF statements can make decision making steps easier to designate rather than

combining logical operators in the IF statement. It is important to understand how the

processing flows when nested statements are used.

Troubleshooting Tips Identify the processing flow with nested IF and Loop

statements.

Quick Quizzes 1. How many times will a statement execute if it is

embedded in a nested loop which loops 5 times for each

time the outer loop executes?

Answer: Number of outer loop executions x 5

2. At what point will a nested IF statement return the

processing to the outer IF statement?

Answer: When a TRUE condition is reached or the

ELSE clause executes

 Instructor’s Manual – Chapter 2

 9

Classroom Activities

1. Chapter 1 instructed students to execute the initial Brewbean’s database creation

script that will prepare the database for this chapter. Be sure students have executed

the script properly.

2. Be sure students execute the More Movies database script as outlined in Chapter 1

before completing the More Movies case study.

Discussion Questions

1. Are variables, decision structures, and loops used in other programming languages?

2. How are the PL/SQL data types similar or different from variable types used in other

languages?

Projects to Assign

1. Describe a processing scenario/screen required by Brewbean’s. Require students to

create a flowchart outlining the processing steps needed.

2. Refer students to the PL/SQL reference provided on OTN to determine other data

types that are available for PL/SQL variables.

 Instructor’s Manual – Chapter 2

 10

Key Terms

anonymous blocks -- blocks of code that are not stored for reuse and,
as far as the Oracle server is concerned, no longer exist after

being executed

case expression -- evaluates conditions within an assignment statement

control structures -- perform conditional logic to determine which
statements are executed at run time

looping constructs -- allows the repeated processing of a desired
segment of code

scalar variables -- variables that can hold a single value. The common
data types used for scalar variables include character, numeric,

date, and Boolean.

searched case statement -- evaluates separate conditions fully
identified in WHEN clauses

Oracle 11G PL SQL Programming 2nd Edition Casteel Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/oracle-11g-pl-sql-programming-2nd-edition-casteel-solutions-manual/

	PLSQL_Solutions_Ch02.pdf (p.1-9)
	9781133947363_ch02_IM.pdf (p.10-19)

