Physics An Algebra Based Approach 1st Edition Mcfarland Test Bank

Name:	_Class:	Date:
Chapter 3 - VECTORS AND TRIGONOMETRY	ζ.	

1. What happens when you multiply a vector by a positive scalar?

- a. Only the size of the vector will change accordingly.
- b. Only the direction of the vector will change accordingly.
- c. Both size and direction of the vector will change accordingly.
- d. Neither size nor direction of the vector will change.

```
ANSWER: a
```

2. What happens when you multiply a vector by a negative scalar?

- a. Only the size of the vector will change accordingly.
- b. Only the direction of the vector will change accordingly.
- c. Both the size and the direction of the vector will change accordingly.
- d. Neither the size nor the direction of the vector will change.

ANSWER: c

3. The acceleration of gravity \vec{g} is 9.81 m/s² downward. What is $-2\vec{g}$?

a. -19.6 m/s^2 downward b. -19.6 m/s^2 upward c. $+19.6 \text{ m/s}^2$ downward

d. $+19.6 \text{ m/s}^2 \text{ upward}$

ANSWER: d

4. Consider two vectors: \vec{A} = 5.00 m 30° north of east and \vec{B} = 7.00 m 30° south of west. Which of the following statements correctly describes these vectors?

a. $7\vec{A} = 5\vec{B}$ b. $7\vec{A} = -5\vec{B}$ c. $5\vec{A} = 7\vec{B}$ d. $5\vec{A} = -7\vec{B}$

ANSWER: b

Figure 3-1

Answer the following questions based on your observations of this figure:

Copyright Cengage Learning. Powered by Cognero.

5. In the figure above, how can vector \vec{c} be expressed in terms of vectors \vec{A} and \vec{B} ?

a. $\vec{A} - \vec{B}$ b. $\vec{B} - \vec{A}$ c. $\vec{A} + \vec{B}$ d. $\vec{B} + \vec{A}$ ANSWER: b

6. In the figure above, how can vector \vec{R} be expressed in terms of vectors \vec{A} and \vec{B} ?

a. $\vec{A} - \vec{B}$ b. $\vec{B} - \vec{A}$ c. $\vec{A} + \vec{B}$ d. $\vec{B} + 2\vec{A}$ ANSWER: c

7. In the figure above, how can vector \vec{A} be expressed in terms of vectors \vec{R} and \vec{C} ?

a. $\vec{R} - \vec{C}$ b. $\vec{R} + \vec{C}$ c. $0.5\vec{R} - 0.5\vec{C}$ d. $2\vec{R} + 2\vec{C}$ ANSWER: c

Vectors A, B, R

Consider two vectors: $\vec{A} = 15.0 \text{ m } 30^{\circ} \text{ north of east and } \vec{B} = 4.00 \text{ m } 30^{\circ} \text{ south of west.}$

8. Calculate the resultant $\vec{R} = \vec{A} + \vec{B}$.

a. $\vec{R} = 11.0 \text{ m } 30^{\circ} \text{ north of east}$

b. $\vec{R} = 11.00 \text{ m } 30^{\circ} \text{ south of west}$

c. $\vec{R} = 19.0 \text{ m } 30^{\circ} \text{ north of east}$

d. $\vec{R} = 19.00 \text{ m} 30^{\circ} \text{ south of west}$ ANSWER: a

9. Calculate the vector $\vec{c} = \vec{A} - \vec{B}$.

a. $\vec{c} = 11.0 \text{ m } 30^{\circ} \text{ north of east}$

b. $\vec{c} = 11.00 \text{ m } 30^{\circ} \text{ south of west}$

c. $\vec{c} = 19.0 \text{ m } 30^{\circ} \text{ north of east}$

d. $\vec{c} = 19.00 \text{ m } 30^{\circ} \text{ south of west}$

ANSWER: c

- 10. Calculate the vector $\vec{D} = -2\vec{A} + \vec{B}$.
 - a. $\vec{D} = -26.0 \text{ m } 30^{\circ} \text{ north of east}$
 - b. $\vec{\boldsymbol{D}} = -26.00 \text{ m } 30^{\circ} \text{ south of west}$
 - c. $\vec{D} = 34.0 \text{ m} 30^{\circ} \text{ north of east}$
 - d. $\vec{D} = 34.00 \text{ m} 30^{\circ} \text{ south of west}$

ANSWER: d

Name:

Obtuse Triangle A, B, C

Answer the following questions based on your observations of this figure:

11. Referring to the figure above, if $A = 23.5^\circ$, $B = 35.2^\circ$, and b = 15.2 cm, find the length of a.

- a. 9.12 cm
- b. 10.5 cm
- c. 11.7 cm
- d. 12.3 cm

ANSWER: b

12. Referring to the figure above, if $A = 23.5^{\circ}$, $B = 35.2^{\circ}$, and b = 15.2 cm, find the length of *c*.

- a. 10.3 cm
- b. 17.9 cm
- c. 19.6 cm
- d. 22.5 cm

ANSWER: d

13. Referring to the figure above, if $C = 105^{\circ}$, a = 9.50 cm, and b = 14.2 cm, find the length of c.

- a. 15.1 cm
- b. 16.6 cm
- c. 19.0 cm
- d. 23.5 cm
- ANSWER: c

14. Referring to the figure above, if $B = 38.5^{\circ}$, a = 7.50 cm, and c = 19.8 cm, find the length of b.

- a. 13.4 cm
- b. 14.7 cm
- c. 16.3 cm
- d. 17.6 cm
- ANSWER: b

15. Referring to the figure above, if $B = 43.2^{\circ}$, a = 8.50 cm, and b = 13.8 cm, find the length of *c*.

- a. 14.9 cm
- b. 16.5 cm
- c. 18.7 cm
- d. 21.3 cm
- ANSWER: c

16. Referring to the figure above, if $A = 23.6^\circ$, a = 6.60 cm, and b = 12.5 cm, find the length of *c*.

- a. 14.5 cm
- b. 15.8 cm
- c. 17.7 cm
- d. 18.3 cm
- ANSWER: b

Vector Example #2

Consider two vectors: $\vec{A} = 15.0 \text{ m} 30^{\circ} \text{ north of east and } \vec{B} = 8.00 \text{ m} 75^{\circ} \text{ north of east}$.

- 17. Calculate the resultant $\vec{R} = \vec{A} + \vec{B}$.
 - a. $\vec{R} = 21.3 \text{ m } 30^{\circ} \text{ north of east}$
 - b. $\vec{R} = 21.4 \text{ m } 45.3^{\circ} \text{ north of east}$
 - c. $\vec{R} = 23.0 \text{ m} 30^{\circ} \text{ north of east}$

d. $\vec{R} = 23.0 \text{ m } 45.3^{\circ} \text{ north of east}$

ANSWER: b

- 18. Calculate the vector $\vec{c} = \vec{A} \vec{B}$.
 - a. $\vec{c} = 7.00 \text{ m } 30^{\circ} \text{ north of east}$
 - b. $\vec{c} = 7.00 \text{ m } 45.3^{\circ} \text{ north of west}$
 - c. $\vec{c} = 10.9 \text{ m} 13.9^{\circ} \text{ south of east}$
 - d. $\vec{c} = 10.9 \text{ m } 23.9^{\circ} \text{ south of west}$

ANSWER: c

19. Vector \vec{A} has a magnitude of 25.0 m at angle 35° to the horizontal (x-axis). Calculate its respective x- and y-

components.

a. 14.3 m and 20.5 m b. 18.2 m and 23.6 m c. 20.5 m and 14.3 m d. 23.6 m and 18.6 m *ANSWER:* c

20. The x- and y-components of vector \vec{A} are 34.3 m and 61.6 m respectively. Calculate the magnitude of vector \vec{A} .

- a. 35.2 m b. 61.9 m
- c. 70.5 m
- d. 95.9 m
- ANSWER: c

Vector Example #3

The *x*- and *y*-components of vector \vec{A} are -17.4 m and 21.5 m respectively.

21. Calculate its angle with respect to the positive *x*-axis.

- a. -51.0° b. 39.0°
- c. 51.0°
- d. 129°
- ANSWER: c
- 22. Calculate its angle with respect to the positive y-axis.
 - a. -51.0°
 - b. 39.0°
 - c. 51.0°
 - d. 129°

ANSWER: b

- 23. Consider two vectors: $\vec{A} = 15.0 \text{ m} 30.0^{\circ}$ north of east and $\vec{B} = 8.00 \text{ m} 75.0^{\circ}$ north of east. Calculate the *x*-component of the resultant $\vec{R} = \vec{A} + \vec{B}$.
- a. 11.6 m b. 13.2 m c. 15.1 m d. 17.3 m *ANSWER*: c

24. Three men are pulling on ropes attached to a small ring. $\vec{F} = 15.0 \text{ N} 30^{\circ}$ north of east and $\vec{P} = 23.0 \text{ N} 63.0^{\circ}$ north of west, as shown in the figure below. \vec{T} is unknown. Using the component technique, calculate the magnitude and direction

Physics An Algebra Based Approach 1st Edition Mcfarland Test Bank

a. 8.40 m b. 13.2 m c. 15.1 m d. 17.3 m *ANSWER:* a

26. Consider two vectors: $\vec{A} = 15.0 \text{ m } 30^{\circ}$ north of east and $\vec{B} = 8.00 \text{ m } 125^{\circ}$ north of east. Using the component technique, calculate the vector $\vec{R} = \vec{A} + \vec{B}$.

a. 11.7 m, 30.1° north of east
b. 11.7 m, 30.1° north of west
c. 16.4 m, 59.1° north of east
d. 16.4 m, 59.1° north of west

Copyright Cengage Learning. Powered by Cognero.