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CHAPTER  3    Motion in Two and Three Dimensions

Answers to Understanding the Concepts Questions

1. In the absence of gravity, the boy would simply aim directly at the coconut in order to make a direct
hit.  Since gravity pulls the rock down while it is in flight, the boy needs to aim higher than the
coconut.

2. If the athlete behaved like a projectile once he or she has left the ground, then we know from our
thinking about projectiles that there are two factors: the initial speed and the initial angle. The
athlete approaches the take-off spot with a short sprint, just long enough so that his or her speed is at
its maximum value. At this point the athlete has to translate the motion so that it has a vertical
component, and some of the initial horizontal velocity is translated into vertical motion, with a net
loss in speed. There is a trade-off here, and the human body is such that too much initial speed is lost if
the athlete tries to take off at a 45° angle, even though this angle maximizes the range for a given
initial speed. Thus a long jump champion leaves the take-off spot at an angle smaller than 45°, trading
the reduced range associated with a smaller angle for a higher initial speed. A second factor that
certainly plays a role, albeit a somewhat smaller one, is wind resistance. A following wind can add
inches to the jump, and if the following wind is too strong a jump cannot qualify as a record. As our
discussion shows, the most important contribution to the length of the jump is the ability to convert the
highest possible initial speed to a vertical motion that gets as close as possible to a takeoff at 45°. It is
known that good sprinters generally make good long-jumpers, but not all sprinters hold long-jump
records.

3. A strong wind blowing in the direction of motion of the athlete can increase the speed of the athlete
relative to the ground.  Such increase, which may result in an improvement of, say, an extra inch in the
long jump or 1/10   of a second shorter in the 100-m dash, provides an unfair advantage and renders the
world-record meaningless.

4. If the motion is entirely linear, any nonzero acceleration leads to a changing speed. In fact any
component of the acceleration parallel to the velocity will change the velocity’s magnitude. Only if
the acceleration is entirely perpendicular to the motion does the speed remain unchanged, although
the direction of the velocity must change. We studied a version of this case in some detail: uniform
circular motion.

5. No. In order to reach the point directly across from the river, your boast must have no velocity
component along the flow of the river current. Since the river flows at 2 mi/h you must row the boat in
such a way that its velocity component along the riverbank is 2 mi/h upstream, relative to the water,
so as to cancel the velocity of the river flow. But since 2 mi/h is how fast you can row the boat relative
to the water, that would mean that you do not have any velocity component that is perpendicular to
the river bank. Your boat would just end up motionless in water, relative to the bank. To be able to cross
the river you must land somewhere downstream and walk to the destination.

6. The upper trajectory is more subject to effects due to wind, both because it is higher and because the
flight time is longer for that trajectory. The lower trajectory has a shorter flight time, and this may
allow the pass to reach the receiver before defenders can react properly. This trajectory is superior
when the receiver is between the passer and a defender. However, the higher trajectory may be better
in that the ball may be beyond the reach of intermediate defenders. The upper trajectory is superior
when the receiver is beyond the defender, so that this is the trajectory normally chosen for long passes.

Physics For Scientists And Engineers 3rd Edition Fishbane Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/physics-for-scientists-and-engineers-3rd-edition-fishbane-solutions-manual/


Chapter 3:  Motion in Two and Three Dimensions

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 3-2

θ

    
r 
v 

      
r 
v 1  

      −
r 
v 2  

7. The range, R = v0
2 sin(2θ0)/g, is proportional to v0

2. So as v0
 doubles R increases by a factor of 4.

8. To an observer in the moving elevator, the velocity of the ball is zero at the instant it reaches the top of
its path. This means that the ball and the elevator must have the same velocity relative to the
ground,  i.e.,  ball moves at the same upward velocity as the elevator at that instant, relative to the
ground.

9. The released ball has the horizontal component of the car’s velocity at the moment the ball is
released. The ball retains that horizontal component. When the car moves with a constant velocity, it
“tracks” the ball, so that the ball comes back down into the car. If the car slows down, it will fall
behind the horizontal position of the ball, and the ball will land ahead of the car.

10.  a = v2/R = (2πR/v)2/R = 4π 2R/T2.  The ratio in question is then
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= 2.23.

11. No. As the phonograph turns, the stylus picks up the sound signal by making contact with the grooves,
which form spirals. As the stylus rides along the spiraling grooves its distance to the center of the
record continuously changes, so essentially the motion of the contact point between the record and the
stylus is a near-circular one with a slowly varying radius (r). Even though the time T it takes for the
record to complete each spin is the same, the liner speed v at which the contact point moves, v ≈ 2πr/T,
is not a constant, as r changes.

12. There are an infinite number of velocities that give the same maximum height. The relation h =
v 0

2 sin2 (θ0)/2g  can be satisfied for a whole range of values of v0 provided the angle is adjusted properly
in the range 0° to 90°. The same argument applies to the time of flight.

13. Suppose that the rain falls at a speed v1 and you run at a speed v2, both relative to the ground.
Then the   velocity     

r 
v  of the rain with respect to you,     

r 
v  =     

r 
v 1 –     

r 
v 2, is at an angle θ from the

vertical, such that tan θ = v2/ v1. For the most protection, then, you need to tilt your
umbrella forward at that angle θ relative to the ground.  See the diagram to the right.

14. Let’s say you toss the ball at the moment that you are moving due west. You throw it straight up in your
own frame, so the ball has a component of horizontal motion to the west equal to your own at the
moment you toss it. The ball continues to move due west in a frame of reference fixed to Earth, and this
motion takes it obliquely away from the center of the merry-go-round. However, you are moving in a
circle, and so change your direction continuously. To you, the ball will appear to move in part away
from the center of the merry-go-round and in part to fall behind you. This makes for a rather
complicated curving motion that you describe as accelerating. To an observer fixed to Earth it is evident
that this “acceleration” is just a manifestation of the fact that you are in an accelerating frame.

15. As the ball leaves your hand it has both an upward initial velocity and a horizontal initial velocity
(measured relative to the ground) that is equal to the tangential velocity of the merry-go-round where
you stand. If you throw the ball very high it is going to stay in the air for an extended period of time,
and with its horizontal velocity it will land outside the edge of the merry-go-round. If you throw the
ball just above your head it will land quickly, and during its short flight your tangential velocity has
not changed by much, meaning that both you and the ball have about the same horizontal velocity –– so
the ball will land on yourself, or just next to you.
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16. The projectile is fired from the North Pole so it has no initial motion due to Earth’s rotation. As it is
airborne, Earth turns from east to west, so to a person on Earth the projectile is moving both southward
and westward. In general, the projectile will not land on the particular spot on the equator, unless it so
happens that its time of flight is a multiple of 24 hours, as Earth turns around every 24 hours.

17. In Question 16, the projectile is fired from the North Pole and so has no initial motion associated with
Earth’s rotation. Here there is an initial motion that is provided by the motion of a point in
Washington, D.C.

18. No. The platform is turning from the perspective of a bystander outside the platform, and to that
bystander the motorcycle is not moving in a circle. Rather, it is moving outward from the center of the
platform while at the same time turning together with the platform. So it appears to be moving in a
spiral trajectory.

19. (a) This evidence supports the claim. While the two bullets have different horizontal velocities their
vertical motions are still identical (as they are dropped from the same height with the same zero
initial vertical velocity), so they hit the ground at the same time.
(b) and (c) These two statements tell us how the angle of launch  affects the subsequent motion of the
projectile. But since the value of this angle affects the horizontal and vertical motions simultaneously,
neither statement offer any direct support for the independence of the motions in these two directions.

20. True. As a vector quantity the velocity is specified by both its magnitude and its direction. Any change
in either its magnitude or direction constitutes a change in the velocity, and that requires an
acceleration. For example, as you step on the accelerator of your car, which is moving in a straight line,
you are changing the magnitude of its velocity. As your car make a turn in a circular path while its
speed remains unchanged, only the direction of motion of the car is changing but  not its speed. In either
case, the car is undergoing acceleration.

21. No. An ideal projectile with a parabolic path requires that the acceleration be uniform  (usually equal
to     

r 
g , downward). In the case of a missile traveling over a long range, the curvature of the earth as well

as the altitude of the missile at various segments of its flight would have to be considered and g is no
longer uniform over the entire range of the flight. Also, the high speed of the missile causes a
significant air resistance, which is absent in an ideal projectile motion. And, most importantly, the
missile is powered by its own rocket engine that provides it with its own acceleration, which can be
variable and totally different from 

r 
g .

22. As the platform turns, you are turning with it together, so if you simply aim at the center of the
platform (where the center of the table is) the ball would veer off its intended course  –– if you are
moving to the right relative to the ground due to the rotation, for example, the ball would fly to the
right relative to the center of the platform (which is not moving relative to the ground).  So you need to
compensate for this by projecting the ball not only inward (i.e., toward the center of the platform), but
also sidewise, in the opposite direction of the rotation of the platform.
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Solutions to Problems

1. The position of the first turn is     
r 
r 1 = [(21 cos 45°)    ̂  i   +  (21 sin 45°)   

ˆ j ] km =       (15ˆ i + 15ˆ j )  km .

The position of the second turn is 
r 
r 2 = 

r 
r 1 + 15 ˆ i  km =       (30ˆ i + 15ˆ j )  km .

The final position is     
r 
r  =     

r 
r 2  +  28    

ˆ j  km =   (30    ̂  i   +  43   
ˆ j  ) km.

The magnitude of the total displacement is r = [(30 km)2 + (43 km)2]1/2  =  52 km;
the angle is found from tan θ = 43 km/30 km; thus  θ = 55°,   or      

r 
r = 52 km, 55° N of E.

2. Given   
r 
r  = (c1 – c2t) ˆ i   +  (d1 + d2t + d3t2) ˆ j 

  = [11 m – (1.5m/s)t]     ̂  i  +
[– 12 m  + (– 2.0 m/s)t + (0.85 m/s2)t2]    

ˆ j .
To find the times to pass through x = 0, we solve

x = 0 = 11 m – (1.5 m/s)t to get    t = 7.3 s.
Setting  x = y  gives us

11 m – (1.5 m/s)t = (– 12 m) – (2.0 m/s)t + (0.85 m/s2)t2,
from which we get    t1 = 5.5 s  and t2 = 4.9 s.
To find the locations, we substitute these values into the
expression for     

r 
r :

t = 5.5 s: 
r 
r  =     (2.8ˆ i + 2.7ˆ j )  m ;    t = – 4.9 s: 

r 
r  =     (18ˆ i + 18ˆ j )  m .

3.
r 
r A = 0; 

r 
r B =     (25 m )ˆ i ; 

r 
r C =     (25ˆ i + 35ˆ j )  m ; 

r 
r D =     (35 m) ˆ j .

4. The speed is v = (27.0  km/h)(103 m/km)(1 h/3600 s)
     = 7.50 m/s  (direction CCW)

The circumference is 2πR = 2π(172 m) = 1080 m.
The time for a complete lap is

T = 2πR/v = 1080 m/(7.50 m/s) = 144 s.
To find the angle from the initial position:

θ = (360°/T)t = (360°/144 s)t.
Thus θ2 0 = 50°; θ4 0 = 100°; θ6 0 = 150°; θ120 = 300°.

5. For the first line:
y1 = (4.0 km/2.0 km)x1 + 0 = 2.0 x1;

for the second line:
y2 = [(–8 km – 0)/(6.0 km – 2.5 km)]x2  +

[(–8 km – 0)/(6.0 km – 2.5 km)](0 – 2.5 km)
= – 2.3 x2 + 5.7 km.

The intersection of the two lines occurs when x1 = x2 = xI  and  y1 = y2 = yI :
2.0 xI = – 2.3xI + 5.7 km,

which gives xI = 1.3 km  and   yI = 2.7 km  or

    
r 
r I =     (1.3ˆ i + 2.7 ˆ j )  km .

Given that 
r 
r C = (1.2 km) ˆ i  – (2.2 km)    

ˆ j  , then

    
r 
r I –     

r 
r C =     (0.1ˆ i + 4.9ˆ j )  km .
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6. Given     
r 
r   = [(– 6 + 4t2)    ̂  i  + (– 4 + 3t)    

ˆ j  ] m, the particle will cross the y-axis when
x = – 6 + 4t2 = 0, which gives  t = 1.2 s .

The particle will cross the x-axis when y = – 4 + 3t = 0, which gives    t = 1.3 s .
To relate y to x, we must eliminate t between the two components: x = 5 – 2t2, y = – 4 + 3t.

Thus  t = (y + 4)/3  and  x = –6 +4[(y + 4)/3]2,  so  9(x + 6) + 4(y + 4)2 = 0.
To have the particle at the origin at t = 0, move the x-axis 6 m to the left and the y-axis 4 m up,

then      
r 
r  = (4t2)    ̂  i  + 3t    

ˆ j .

7. The speed is v = (25.2  km/h)(103 m/km)(1 h/3600 s) = 7.00 m/s.
We find the orientation of the first segment from

tan θ = y1/x1 = (250 m)/(150 m) = 1.67;   θ  = 59°.
For the first segment, the velocity components are

vx1 = v cos θ  = (7.00 m/s) cos 59° = 3.60 m/s.
vy1 = v sin θ  = (7.00 m/s) sin 59° = 6.00 m/s.

The time when the turning point is reached is
t1 = x1/vx1 = (150 m)/(3.60 m/s) = 41.6 s.

For the second segment, the velocity components are
vx2 = v  = 7.00 m/s;  vy2 = 0.

The elapsed time  for the second segment is
∆ t  = ∆x/vx2 = (400 m – 150 m)/(7.00 m/s) = 35.7 s, so t2 =

41.6 s + 35.7 s = 77.3 s.
The position vector is

    
r 
r  = (3.60 m/s )tˆ i + (6.00 m/s )tˆ j ,    0 ≤ t ≤ 41.6 s ;
r 
r  = [150 m + (7.00 m/s)(t – 41.6 s)] ˆ i  + (250 m) ˆ j 

    =     [−141m + (7.00 m/s )t]ˆ i + (250 m )ˆ j ,    41.6 s ≤ t ≤ 77.3 s .

8. (a )

     

y

x
30 m 60 m0

60 m

30 m t = 0

(b) The lot is a square with sides L = 30√2 m. The area is A = L2 = (30√2 m)2 = 1800 m2 .

9. Given     
r 
r  = (4 m) cos(πt/T)   ̂  i   –  (4 m) sin(πt/T)    

ˆ j  ;

    
r 
r T/3  = (4 m) cos(πT/3T)    ̂  i   –  (4 m) sin(πT/3T) ˆ j  =     (2.0ˆ i − 3.5ˆ j )  m ;

d = [(2.0 m)2 + (3.5 m)2]1/2 =  4.0 m.

    
r 
r T/2  =      − (4.0 m) ˆ j ;   d = 4.0 m.

    
r 
r 2T  =        (4.0  m)ˆ i ;   d = 4.0 m.

The angle is found from tan θ = y/x = – 4 sin(πt/T)/[4 cos(πt/T)] = – tan(πt/T),  so      θ(t) = –πt/T .
The particle is traveling CW around a circle.

y(m)

x (m
150 400

250

0



Chapter 3:  Motion in Two and Three Dimensions

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 3-6

10. Given     
r 
r c = (h0 – !gt2)    

ˆ j    and      
r 
r p = (– L + ut)    ̂  i   +  (h0 ut/L –  !gt2)    

ˆ j , the collision must occur if     
r 
r p =   

r 
r c at

some time.  Because xc = 0 always, the time when the projectile has xp = 0 is t = L/u.  At this time the y
positions are 

yc = h0 – !g(L/u)2 and  yp = h0[u(L/u)/L] – !g(L/u)2 = h0 – !g(L/u)2 = yc.    A collision occurs.
r 
r cp = 

r 
r c – 

r 
r p = (L – ut) ˆ i  + [h0(1 – ut/L)]   

ˆ j   =     (L − ut)[ˆ i + (h0 /L)ˆ j ] ,  which is 0 when t = L/u.

11. We assume the velocities are horizontal and in the same direction. From the definition of acceleration,
we have

a av = |∆
r 
v |/∆t  = |37 m/s  –  45 m/s|/2.0  s = 4.0 m/s2 .

The direction of the acceleration will be opposite to the direction of the velocities.

12. We can combine x(t) and y(t) as     
r 
r  = [(1.5 m/s)t + (– 0.5 m/s2) t2]    ̂  i   +  [6 m  – (3 m/s)t + (1.5 m/s2) t2]    

ˆ j .
The velocity is the time rate of change of   

r 
r :

    
r 
v  = d    

r 
r /dt = [1.5 m/s   – (1.0 m/s2)t]    ̂  i   +  [– 3 m/s  +  (3.0 m/s2)t]    

ˆ j .

The acceleration is the time rate of change of 
r 
v :   

r 
a  = d

r 
v /dt =  (–1.0 m/s2) ˆ i  + (3.0 m/s2) ˆ j .

For the velocity components to be equal,
vx = vy ,   or  1.5 m/s   – (1.0 m/s2)t = – 3 m/s  +  (3 m/s2)t,  which gives  t = 1.1 s .

13. From the definition of acceleration, we have
r 
a  = d

r 
v /dt  = d{(2.2 m/s) ˆ i  + (3.7 m/s2)t ˆ j   +  [3.3 m/s   – (1.2 m/s3)t2] ˆ k }/dt

    =      (3.7  m/s 2 )ˆ j − (2.4  m/s 2 )tˆ k .

14. From the definition of velocity, we have
vx = dx/dt  = d[A cos(ωt)]/dt = – Aω sin(ωt) ;
vy = dy/dt  = d[A sin(ωt)]/dt = + Aω cos(ωt) .

From the definition of acceleration, we have
a x = dvx/dt  = d[– Aω sin(ωt)]/dt = – Aω2 cos(ωt) ;
a y = dvy/dt  = d[+ Aω cos(ωt)]/dt =  – Aω2 sin(ωt) .

15. With the origin at Malibu and the x-axis east and the y-axis north,
the position of the whale is

    
r 
r W = [– (5.0 km) cos 45° – (7.0 km/h)(cos 45°)t]   ̂  i  +

[(5.0 km) sin 45° – (7.0 km/h)(sin 45°)t]   
ˆ j 

= [– (3.5 km) – (4.9 km/h)t]    ̂  i  + [(3.5 km ) – (4.9 km/h)t] ˆ j 
and the position of the boat is

    
r 
r B = – [(30 km/h)(cos θ)t]   ̂  i  + [(30 km/h)(sin θ)t]   

ˆ j ,
where θ is the angle north of west that the boat is heading.
At the interception,     

r 
r W =   

r 
r B ,  or

        [– 3.5 km  – (4.9 km/h)t]    ̂  i  + [(3.5 km ) – (4.9 km/h)t]    
ˆ j   = – [(30 km/h)(cos θ)t]    ̂  i  + [(30 km/h)(sin θ)t]   

ˆ j .
From this we get two equations relating  θ and t:

– 3.5 km  – (4.9 km/h)t = – (30 km/h)(cos θ)t     and    3.5 km  – (4.9 km/h)t = (30 km/h)(sin θ)t.
When these are solved, we get θ = 31.6°;  t = 0.17 h = 10 min.
The velocity of the boat is 

r 
v B = (– 25.5 ˆ i  +15.7    

ˆ j ) km/h = 30 km/h,   31.6° north of west,

and the interception position is 
r 
r  =     (−4.3ˆ i + 2.7 ˆ j )  km .

θ

North

East

      
r 
v B 

      
r 
v W 
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16. If we let x be the horizontal distance of the swimmer from tower of height h (= 3 m), then
the length s of the rope from the swimmer to the lifeguard satisfies s2 = x2 + h2. Take the time
derivative of both sides:
        2s ds/dt = 2x dx/dt + 2h dh/dt = 2x dx/dt, as h does not change. But vrope = ds/dt is the speed of the
rope being pulled and v = dx/dt is the speed of the swimmer, so

v = (s/x) vrope = vrope (x2 + h2)1/2/x = (1 m/s) (x2 + h2)1/2/x.
Therefore:
(a) when x = 4 m,  v = 1.25 m/s;
(b)   when x = 3 m,  v = 1.41 m/s.

17. We choose the coordinate system shown in the diagram, with the
origin directly below the joint midway between the tips.  From the
symmetry of the motion, we need to consider only the motion of the right
hand tip.
(a ) The position of the tip is

x = x0 – v0t = L sin θ – v0t = 0.5L – v0t .
Because the length of the arm is constant, the location of the
joint is

y = (L2 – x 2)1/2 = [L2 – (0.5L – v0t)2]1/2.
For the joint x = 0 , so its velocity is

    
r 
v  = (dy/dt)    

ˆ j  = ! (0.5L – v0t)2v0    
ˆ j /[L2 – (0.5L – v0t)2]1/2

    = [0.5(0.015 m) – (0.030 m/s)t](0.03 m/s)     
ˆ j  /{(0.015 m)2 –

[0.5(0.015 m) – (0.030 m/s)t]2}1/2

    = [(0.000225 m/s 2) − (0.00090 m 2/s 2 )t]ˆ j /[(0.0169 m 2 ) + (0.00045 m 2/s )t − (0.00090 m 2/s 2 )t2]1/ 2 .
(b) When t = 0, x = 0.5L, so we have

    
r 
v  = [(0.00225 m2/s) – 0]   

ˆ j  /[(0.0169 m2) – 0 – 0]1/2  =  (0.017 m/s ) ˆ j .
When x = 0,  0.5L – v0t  = 0,  so we have

    
r 
v  =  0.

Note that, if the tips could keep moving, this is where the motion of the joint would reverse.

18. By differentiating the position vectors     
r 
r c = (h0 – !gt2)    

ˆ j   and     
r 
r p = (– L + ut)   ̂  i   +  (h0ut/L – !gt2)    

ˆ j   with
respect to time, we get

    
r 
v c= – gt    

ˆ j  ;       
r 
v p = u    ̂  i  + (h0u/L – gt)    

ˆ j .

The relative velocity is     
r 
v p –     

r 
v c =   u

ˆ i + (h0u/L)ˆ j  with a magnitude of |   
r 
v p –   

r 
v c| = u[1 + (h0/L)2]1/2 .

The angle with respect to the x-axis is found from tan θ = vy/vx = (h0u/L)/u = h0/L.
The angle θ = tan–1 (h 0/L)  is constant and is the original aim of the projectile.

19. By differentiating the position vector   
r 
r  = [4 cos(πt/T)    ̂  i   – 4 sin(πt/T)    

ˆ j  ] m with respect to time, we get

    
r 
v  =     [(4π /T)sin(πt/T)ˆ i − (4π /T) cos(πt/ T)ˆ j ] m/s .

The angle with respect to the x-axis is found from
tan φ = vy/vx = [– (4π/T) cos(πt/T)]/[– (4π/T) sin(πt/T)] = cot(πt/T) = tan (π/2 – πt/T),  so
φ = π/2 – πt/T   and  φ – θ = π/2 – πt/T – (– πt/T) = π/2; 

r 
r  and 

r 
v  are perpendicular.

y

x

θ

0

L

v0

L

v0

θ

v
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20. We are given     
r 
v 0 = (30 m/s)    

ˆ j   and     
r 
a  = [3.5 m/s2 + (0.7 m/s5)t3]    ̂  i   + [2 m/s2 – (0.3 m/s4)t2]   

ˆ j .  To find the

velocity we must integrate: 
      

    d
r 
v r 

v 0

r 
v 

∫ =   
r 
a  dt

0

t

∫ .  This gives

r 
v  – 

r 
v 0 = [(3.5 m/s2)t + #(0.7 m/s5)t4] ˆ i  + [(2 m/s2)t – @(0.3 m/s4)t3]   

ˆ j  ,   or

    
r 
v  =  [(3.5 m/s2)t + (0.18 m/s5)t4]    ̂  i   +  [30 m/s + (2 m/s2)t – (0.1 m/s4)t3]   

ˆ j .

To find the position we must integrate:     d
r 
r 

0

r 
r 

∫ =   
r 
v  dt

0

t

∫ .  This gives

    
r 
r  = [(1.8 m/s2)t2 + (0.036 m/s5)t5]    ̂  i  + [(30 m/s)t + (1.0 m/s2)t2 – (0.025 m/s4)t4]   

ˆ j .
At t  = 30 s,

    
r 
r  = (8.8 × 105  m/s )ˆ i − (1.8 × 10−4  m/s )ˆ j ;

    
r 
v  = (1.5× 105  m/s )ˆ i − (2.6× 103  m/s )ˆ j .

21. Because     
r 
v  = d    

r 
r /dt, by differentiating the given position vectors,

    
r 
r 1 = R cos(2πft)    ̂  i  + R sin(2πft)    

ˆ j   and

    
r 
r 2 = 4R cos(πft/4)    ̂  i  + 4R sin(πft/4)   

ˆ j , we get
r 
v 1 = – R(2πf ) sin(2πft) ˆ i  + R(2πf ) cos(2πft) ˆ j       and
r 
v 2 = – 4R(πf/4) sin(πft/4) ˆ i  + 4R(πf/4) cos(πft/4)   

ˆ j .   
From |

r 
r 1| = [R2 cos2(2πft) + R2 sin2(2πft)]1/2 = R, the first planet is

always on the circle of radius R.
Similarly |    

r 
r 2| = [(4R)2 cos2(πft/4) + (4R)2 sin2(πft/4)]1/2 = 4R, the

second planet is always on the circle of radius 4R.
We get the speed from

|
r 
v 1| = R(2πf ) [sin2(2πft) + cos2(2πft)]1/2 = R(2πf) = a constant.

Similarly |    
r 
v 2| = 4R(πf/4)[sin2(πft/4) + cos2(πft/4)]1/2

=  Rπf = a constant.

The relative position is  
r 
r 2 – 

r 
r 1 =     [4R cos(πf t/4)− Rcos(2πf t)]̂  i + [4Rsin(πf t/4)− R sin(2πf t)]ˆ j .

22. From the solution to Problem 21,     
r 
v 1 = – R(2πf ) sin(2πft)    ̂  i  + R(2πf ) cos(2πft)    

ˆ j .
We differentiate with respect to time to get

r 
a 1 =       −4R(π f)2[cos(2πft)ˆ i + sin(2πf t) ˆ j ] = −4π 2 f 2 r 

r 1 .

From     
r 
v 2 = – R(πf ) sin(πft/4)    ̂  i  + R(πf) cos(πft/4)    

ˆ j  we differentiate to get

    
r 
a 2 =       −R[(π f)2 /4][cos(πf t/4)ˆ i + sin(π f t/4)ˆ j ] = −(π 2 f 2 /16)

r 
r 2 .

    
r 
a 2 –     

r 
a 1 =     −R(π f)2 {[cos(πf t/4)/ 4 − 4cos(2πf t)]̂  i + [sin(πf t/4)/ 4 − 4 sin(2πf t)]ˆ j }.

23. We are given h = H – ut – (u/B) e–Bt.
Because the exponent –Bt must be dimensionless, [B] = [t]– 1 = [T– 1].
We get the velocity from v = dh/dt = – u – (u/B) e–Bt(– B) = u[– 1 + e–Bt].

At t = 0, v = v0 = 0 ;      as t → ∞,      v → – u.
We get the acceleration from a = dv/dt = u[e–Bt(– B)] = – Bu e–Bt.

At t = 0, a = a0 = – Bu  ;      as t → ∞,      a → 0.

x

y

O
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24. The two vehicles start at point O. After a time t they reach points A and B, respectively, with A and B
separated by a distance L. In the triangle OAB the cosine theorem gives

L2 = (v1 t)2 + (v2 t)2 – 2(v1 t) (v2 t) cos θ,
where L = 50 km, v1 = 30 km/h, v2 = 40 km/h, and t = 1 h. Solve for cos
θ  to yield

cos θ = [ (v1 t)2 +  (v2 t)2 – L2]/(2v1v2 t2) = 0, so
θ  = 90°.

25. We find the launch velocity from
v L = v0 + aLt  = 0 + (24 m/s2)(0.5 s) = 12 m/s     (horizontal) .

At the highest point, the velocity will be zero:
v2 = v L2 + 2ah;
0 = (12 m/s)2 + 2(– 9.8 m/s2)h,  which gives
h = 7.4 m.

26. If we select a coordinate system with the origin at the hospital, x south and y up, the given data are
          

r 
v 0 = 600    ̂  i km/h = [(600 km/h)(103 m/km)/(3.6 × 103 s/h)]   ̂  i = (166.7 m/s)    ̂  i ;     

r 
a  = – (4.00 m/s2)    

ˆ j ;  t = 15 s.
(a ) After 15 s, the displacement of the airplane is

x = v0t = (166.7 m/s)(15 s) = 2500 m    and
y – y0 = v0yt + !ayt2 =  0 + !(– 4.00 m/s2)(15 s)2 = – 450 m.

∆
r 
r  = (2500ˆ i − 450ˆ j )  m = 2540 m, 10.2° below the horizontal.

(b) The velocity of the airplane is vx = 166.7 m/s;  vy = v0y + ayt = 0 + (– 4.00 m/s2)(15 s) = – 60 m/s.

    
r 
v  =     (167ˆ i − 60ˆ j )  m/s = 177 m/s, 19.8o below the horizontal.

(c) Because y0 = 7.50 × 103 m, the airplane position with respect to the hospital is

    
r 
r  =      (2500ˆ i + 7.05 × 103 ˆ j )  m .

27. For the first rock, y1 = y0 1 + v0 1t1 + !a1t1
2 = 0 + (21 m/s)t1 + !(– 9.8 m/s2)t1

2.
For the second rock, y2 = y0 2 + v0 2t2 + !a2t2

2 = 0 + (21 m/s)(t1 – 3 s) + !(– 9.8 m/s2)(t1 – 3 s)2.
(a ) The rocks will meet when y1 = y2;

21t1 – 4.9t1
2 = 21t1 – 63 – 4.9t1

2 + 29.4t1 – 44.2, which gives t1 = 3.64 s .
(b) The height at which they meet is y1 = (21 m/s)(3.64 s) + !(– 9.8 m/s2)(3.64 s)2 =  11.5 m   = y2.
(c) The velocities are v1 = v0 1 + at1 = 21 m/s + (– 9.8 m/s2)(3.64 s) =   – 14.7 m/s   (down)     and

v2 = v0 2 + a(t1 – 3 s) = 21 m/s + (– 9.8 m/s2)(3.64 s – 3.00 s) =  + 14.7 m/s    (up).

28. We choose a coordinate system with the origin at the floor directly below the initial position of the
gymnast, with x horizontal and y vertical.  The horizontal motion will have constant velocity:

x = x0 + v0xt = 0 + (3.0 m/s)t ;       x = (3.0 m/s)t .
The vertical motion is

y = y0 + v0yt + !ayt2 = 2.3 m + (7.8 m/s)t  + !(– 9.8 m/s2)t2.
At the highest point, the vertical velocity will be zero:

vy
2 = v0y

2 + 2ay(h – y0) ;
0  = (7.8m/s)2 + 2(– 9.8 m/s2)(h – 2.3 m),  which gives  h = 5.4 m  above the floor.

θ
B

A

O

L

      
r 
v 2 t

      
r 
v 1 t
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29.  (a) v = 65 mph = (65 mi/h)(5280 ft/mi)(1 h/3600 s) = 95.3 ft/s. The time t it takes to cover a distance of
41 ft with this speed is t = 41 ft/(95.3 ft/s) = 0.43 s .

(b) x = !at2; a = 2x/t2 = 2(6 in)(1 ft/ 12 in.)/(0.43 s)2 = 5.4 ft/s2,  to the left .

30. (a ) Because the ball is released on the ship, the man will see the ball fall vertically and land at the
foot of the mast.  From the shore, the initial horizontal speed of the cannonball is the same as
the speed of the ship, v0x = v0 = (8 km/h)(103 m/km)/(3600 s/h) = 2.22 m/s;
both the ship and the cannonball will travel the same horizontal distance and the cannonball
will land at the foot of the mast .

(b) For the vertical motion, y = y0 + v0yt + !ayt2:
0 = 6.5 m + 0 + !(– 9.8 m/s2)t2, which gives t = 1.2 s .

(c) With respect to the shore the horizontal movement is  x = v0xt = (2.22 m/s)(1.15 s) =  2.6 m.
The vertical fall is  6.5 m.

31. We choose a coordinate system with the origin at the takeoff point, with x horizontal and y vertical.
The horizontal motion will have constant velocity.  We find the time required for the jump from

x = x0 + v0xt ;
9.5 m = 0 + (9.0 m/s)t, which gives t = 1.06 s.

Because this is the time to return to the ground, the vertical motion is
y = y0 + v0yt + !ayt2;
0 = 0 + v0y(1.06 s) + ! (– 9.8 m/s2)(1.06 s)2, which gives  v0y = 5.2 m/s.

32. We will use a coordinate system with the origin at the base of the building, x horizontal and y up.
(a ) The time of fall can be found from the vertical motion: y = y0 + v0yt + !ayt2.  From its release at

y0 = 10 m, the ball hits the ground when y = 0:
0 = 10 m + 0 + !(– 9.8 m/s2)t2, which gives t = 1.43 s.

For the horizontal motion, x = v0xt:   8.0 m = v0x(1.43 s), which gives v0x = v0 =  5.6 m/s.
(b) If the ball is thrown up at an angle, the initial velocity terms will change.

Thus  y = y0 + v0yt + !ayt2  becomes    0 = 10 m + v0 sin 29° t + !(– 9.8 m/s2)t2   and
x = v0xt  becomes    8.0 m = v0 (cos 29°)t.

Solving these equations simultaneously, we get  v0 =  5.4 m/s      and
(c) t = 1.7 s .

33. We choose a coordinate system with the origin at the release point, with x horizontal and y vertical.
The horizontal motion will have constant velocity:

v0x = v0 cos θ = (225 m/s) cos 34° =  187 m/s.
At the highest point, the vertical velocity will be zero, so the speed is

v = v0x = 187 m/s.

34. The magnitude of the velocity is v = (vx
2 + vy

2)1/2.  Because vx is constant, v will be maximum  when vy

is maximum, which occurs at the initial release and just as the projectile hits the ground.

Thus vy = ± v0 sin θ0;  vx = v0 cos θ0 ,    or     
r 
v max =   v0(cosθ0 ˆ i ± sinθ0 ˆ j )  with magnitude v0.

The speed will be minimum when |vy| = 0, which occurs  at the highest point:     
r 
v min =   v0 cos θ0 ˆ i .

35. The horizontal motion will have constant velocity, v0x.
We find the vertical velocity from

vy
2 = v0y

2 + 2ay(y – y0) = v0y
2 + 0 = v0y

2, so vy = – v0y .
Because the angle is determined by the direction of the velocity, tan θ = vy/v0x , the projectile will
make an angle 25° below the horizontal  when it lands.
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36. With the origin at the release point, x horizontal and y  up, the time of flight is found from
y = y0 + v0yt + !ayt2 with y = 0.
So 0 = 0 + v0 sin θ0 t + !(– g)t2,  which gives t1 = 0 (start) and t2 = (2v0 sin θ0)/g.

The range is then R = v0xt2 = (2v0
2 sin θ0 cos θ0)/g = v0

2 sin(2θ0)/g.
The maximum height occurs when vy = 0 = v0 sin θ0 + (– g)t2, which gives t3 = (v0 sin θ0)/g   (= !t2) .
The maximum height is found from y = y0 + v0yt + !ayt2:

h = 0 + v0 sin θ0 t3 + !(– g)t3
2 = (v0 sin θ0)2/g – !(v0 sin θ0)2/g = !v0

2 sin2 θ0/g.
If R = 2h: (2v0

2 sin θ0 cos θ0)/g = 2(v0
2 sin2 θ0)/2g, which gives tan θ0 = 2;  θ0 =  63°.

37. (a ) R = v0
2 sin(2θ0)/g; h = !(v0

2 sin2 θ0)/g.  Thus
R/h = 2 sin(2θ0)/sin2 θ0 = 2(2 sin θ0 cos θ0)/sin2 θ0 =  4 cot θ0.

(b) The angle at which the range is maximum is found from dR/dθ0 = 0:
dR/dθ0 = (v0

2/g) cos(2θ0) (2) = 0;    cos(2θ0) = 0;     2θ0 = !π;    θ0 = #π = 45°.
Thus R = 4h cot 45° = 4h;  h = #R.

38. Let’s assume that the grasshopper takes off at the optimum angle of θ0 = 45°. For each jump  R = v0 cos θ0

 T and T = 2 v0 sin θ0  / g, which gives
T = (2R tan θ0/g)1/2 = [2(0.65 m) tan 45° /9.8 m/s2 ]1/2 = 0.364 s.

The total number of jumps   it can make in 1 h is N = 3600 s/0.364  s = 9884, and the total distance covered
is NR = 9884 (0.65 m) = 6400 m = 6.4 km.

39. Set R = 2v0
2 sin θ0 cos θ0 /g = h = !v0

2 sin θ0/g  to obtain  tan θ0 = 4, so  θ0 = 76° .
R is proportional to

sin (2θ0) = sin (2 × 76°) = sin 152° = sin (180° – 152°) = sin 28° = sin (2 × 14°) = sin (2θ0‘), so
θ0‘ = 14°   will yield the same range.

40. Set the origin of an xy coordinate system at the release point of the stone. The coordinates of the coconut
are (x1, y1) = (4 m, 3 m). To get the coconut  (x1, y1) must be on the trajectory of the projectile, so
 y1 = (tan θ0)x1 – (!g/v0

2 cos2 θ0)x1
2. Use the identity 1/ cos2 θ0 = 1 + tan2 θ0 to rewrite this as

(!gx1
2/v0

2)tan2θ0 – x1 tanθ0 + !gx1
2/v0

2 + y1 = 0.
Plug in g = 9.8 m/s2,  x1 = 4 m,  y1= 3 m, and v0

 = 20 m/s:      0.196 tan2θ0 – 4 tan θ0 + 3.196 = 0, which gives
tan θ0 = 9.37 or 0.833. Thus  θ0 = 87°  or  40° .

41. (a ) Assume that the potato is launched at the optimum angle of 45°. Set R = 2v0
2 sin θ0 cos θ0 /g  to

obtain

    
v0 =

Rg
2sinθ0 cos θ0

=
(120m) (9.8m/s 2)
2 sin45o cos 45o = 34 m/s .

(b)

h =
v0

2 sin2 θ0

2g
=

(34.3 m/s) 2 sin2 45o

2(9.8m/s 2 )
= 30 m.

(c) To reach maximum height set θ0 = 90°, so

    
hmax =

v0
2 sin2 θ0

2g
=

(34.3 m/s) 2 sin2 90o

2(9.8m/s 2 )
= 60 m.
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42. We will use a coordinate system with the origin at the base of the tower, x horizontal and y up, so
y0 = H, the height of the tower.

(a ) For the horizontal motion: x = v0xt = v0 cos 60° t;
15 m = v0(0.50)(6.5 s),  which gives  v0 = 4.6 m/s.

(b) For the vertical motion: y = y0 + v0yt + !ayt2;
0 = H + (4.6 m/s) (sin 60°)(6.5 s) + !(– 9.8 m/s2)(6.5  s)2,   which gives  H = 181 m  ≈ 0.18 km.

(c) To find the velocity components:
vx = v0x = (4.6 m/s) cos 60° = 2.3 m/s    and
vy = v0y + ayt = (4.6 m/s) sin 60° + (– 9.8 m/s2)(6.5 s) = – 60 m/s.

The speed is v = (vx
2 + vy

2)1/2 =  [(2.3 m/s)2 + (– 60 m/s)2]1/2 = 60 m/s.

43. The initial speed of the arrows can be found from the maximum range, which occurs when θ0 = 45°:
R = v0

2 sin(2θ0)/g;  Rmax = v0
2/g = 350 m;  v0

2 = (9.80 m/s2)(350 m),  which gives   v0 = 58.6 m/s.
At the launch angle of 55°, the range is

R = (v0
2/g) sin[2(55°)]  = (350 m)(0.939)  =  329 m.

44. (a ) At the highest point, the vertical velocity vy = 0.
The speed will be vx = v0x = (28 m/s) cos  50° = 18 m/s.

(b) At the highest point: vy = v0y + ayt1;  0 = (28 m/s) sin 50° + (– 9.8 m/s2)t1 , which gives  t1 = 2.2 s.
The height is h = y0 + v0yt1 + !ayt1

2 = 0 + (28 m/s) sin 50° (2.2 s) + !(– 9.8 m/s2)(2.2 s)2 = 24 m.
(c) Because the time to fall 24 m is the same as the time to rise 24 m:  t2 = t1 = 2.2 s.  The speed will be

|vy| = |v0y + ayt2| = |[0 + (– 9.8 m/s2)(2.2 s)]| = 21 m/s,     which is (28 m/s) sin 50°.

45. (a ) The ball passes the goal posts when it has traveled the horizontal distance of 35 m:
x = v0xt;  35 m = (30 m/s) cos 32° t, which gives  t = 1.4 s .

(b) To see if the kick is successful, we must find the height of the ball at this time:
y = y0 + v0yt + !ayt2 = 0 + (30 m/s) sin 32° (1.38 s) + !(– 9.8 m/s2)(1.38 s)2 = 12.6 m.

So yes, the kick is successful and clears the bar by 12.6 m – 4.0 m = 8.6 m.

46. The horizontal range on earth is given by R = v0
2 sin(2θ0)/g, whereas on a planet X it is

Rx = v0
2 sin(2θ0)/gx.

Because we assume the same v0 and θ0 , Rx/R = g/gx ,  or    Rx = (g/gx)R .
On the Moon  RMoon = [g/(g/6)]R = 6(210 yd) = 1260 yd.

47. The horizontal range is given by R = v0
2 sin(2θ0)/g.  Because the maximum range occurs for θ0 = 45°,

Rmax = v0
2 sin[2(45°)]/g = v0

2/g.
With the same v0 at some other launch angle θ0 , R/Rmax = sin(2θ0) .
When R/Rmax = !, we get 2θ0 = 30° and 150°,   or

θ0 = 15° and 75°.
The two angles for the same range arise because the horizontal range is the product of the horizontal
speed and the time of flight.  For the smaller angle, the horizontal speed is greater but the time of
flight is less.  For the larger angle, the horizontal speed is less but the time of flight is greater.
For R = 0,  sin(2θ0) = 0, which gives 2θ0 = 0 and 180°,   or

θ0 =  0° and 90°.
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48. (a ) The time to fall is found from y = y0 + v0yt + !ayt2;
0 = 20 m + 0 + !(– 9.8 m/s2)t1

2, which gives t1 = 2.02 s.
Because it travels 50 m horizontally: x = v0xt;  50 m = v0(2.02 s), which gives  v0 = 24.7 m/s.

(b) If the ball is thrown at an angle, the same analysis, with the components of v0 , gives:
y = y0 + v0yt + !ayt2;     0 = 20 m + v0 sin 45° t2 + !(– 9.8 m/s2)t2

2 and
x = v0xt;    50 m = v0 cos 45° t2 .

When these equations are solved simultaneously, we get  t2 = 3.8 s  and  v0 = 18.7 m/s   at 45°.
(c) The horizontal component   vx = v0x = v0 cos 45° = 13.2 m/s.

Note that this is not the horizontal speed needed in part (a) because the time of flight is longer.

49. The radius of the circular path is R = RE + h = 6.37 × 103 km + 220 km = 6.59 × 103 km.

(a) The speed is v = 2πR/T = 2π(6.59 × 106 m)/[(89 min)(60 s/min)] =  7.8 × 103 m/s  = 26 × 103 km/h.
(b) The acceleration is a = v2/R = (7.75 × 103 m/s)2/(6.59 × 106 m) =  9.1 m/s2   toward Earth’s center.

50. a = Rω2 = (3.84 × 108 m){2π/[(28 d)(24 h/d)(3600 s/h)]}2 = 2.59 × 10– 3 m/s2 = 2.6 × 10– 4 g.

51. The speed is v = d/t = (200 m)/25.5 s = 7.84 m/s.
The centripetal acceleration while she is running the curve is

a = v2/r = (7.84 m/s)2/25 m = 2.5 m/s2 .

52. (a ) Because the period is the time to rotate 2π rad, a = rω2 = (1.2 m)[2π/(1.8 s)]2 = 15 m/s2 .
(b) Because a = v2/r,  v2 = ar = (56 m/s2)(1.2 m), which gives v = 8.2 m/s.

53. Because a = rω2, ω2 = a/r = (3.3 m/s2)/(7.5 m), which gives ω = 0.66 rad/s.
Because ω = 2π/T,  T = 2π/ω = (2π rad)/(0.66 rad/s) = 9.5 s .

54. The angular speed of the flywheel is
ω = (4000 rev/min)(2π rad/rev)/(60 s/min) = 419 rad/s.

The centripetal acceleration of a point on the rim is
a = rω2 = (0.10 m)(419 rad/s)2 = 1.75 × 104 m/s2  =  1790g .

55. The speed is v = (65 mi/h)(1.61 × 103 m/mi)(1 h/3600 s) = 29.1 m/s.
The restriction is

a = v2/R ≤ 0.1g,  so  R ≥ v2/0.1g = (29.1 m/s)2/[0.1(9.8 m/s2)] = 0.86 km.

56. We write a = kTαRβ.  Then [a] = [T]α[R]β;  [LT– 2] = [T]α[L]β, which gives  β = 1, α = – 2.
Thus  a = kR/T2 .   From the detailed analysis

a = Rω2 = R(2π)2/T2 = (2π)2R/T2.

57. The angular speed can be found from  ω = v/r = (18 m/s)/0.35 m = 51.4 rad/s.
(a) The angle of rotation is

θ = ωt = (51.4 rad/s)(0.1) s = 5.14 rad = 295°.
Then (x, y) = (r cos θ, r sin θ) = [(0.35 m) cos 295°, (0.35 m) sin 295°] =  (0.15 m,  – 0.32 m).

(b) The magnitude of the acceleration is
v 2/r = (18 m/s)2/(0.35 m) = 9.3 × 102  m/s2

and its direction is centripetal.  At t = 0 s, the acceleration is
r 
a 0 =  − (9.3 × 102m/s 2 )ˆ i .

(c) At θ = 90°, the acceleration is

    
r 
a  =      − (9.3 × 102m/s 2 )ˆ j .
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58. Because v = rω,  r = v/ω = (7.8 km/s)/[2π/(87 min)(60 s/min)] =  6.6 × 103 km.
The centripetal acceleration is ar = v2/r = (7.8 × 103 m/s)2/(6.6 × 106 m) = 9.4 m/s2.
If we ignore the small change in orbital speed, so that the magnitude of the centripetal acceleration
does not change significantly, then

a = (ar
2 + ad

2)1/2 = [(9.4 m/s2 )2 + (6 m/s2)2]1/2 =  11 m/s2.
The direction is found from tan θ = ad/ar = (6 m/s2)/(9.4 m/s2) = 0.64, which gives  θ  = 33°.
Thus      a = 11 m/s2, 33° back from the radial direction toward Earth.

59. The initial (and constant) magnitude of the acceleration is a = v0
2/R.  The speed after 10 kicks is

v = v0 + 10(v0/100) = 1.10 v0.
Because a = v2/R2 ,  R2 = v2/a = v2/(v0

2/R) = (v/v0)2R = (1.10)2R = 1.21R .

60. The tangential acceleration is the rate of change of the tangential speed of the automobile.  Because it
is constant, we can relate the speed to the distance traveled around the circle: v2 = v0

2 + 2ats.
For the first lap: (30.0 m/s)2 = 0 + 2at[2π(1.00 × 103 m)], which gives  at = 7.16 × 10– 2 m/s2.
One-eighth of a lap means an angle of 360°/8 = 45° and a distance of 2π(1.00 × 103 m)/8 = 0.785 × 103 m.
The speed at this point is found from

v2 = 0 + 2ats = 2(7.16 × 10– 2 m/s2)(0.785 × 103 m),
which gives a velocity of 10.6 m/s tangent to the circle.

The position is     
r 
r  = (1.00 km) cos 45°     ̂  i  + (1.00 km) sin 45°    

ˆ j  =  (0.707ˆ i + 0.707)ˆ j   km .

The velocity is 
r 
v  = – (10.6 m/s) sin 45° ˆ i  + (10.6 m/s) cos 45°   

ˆ j  =  (−7.49ˆ i + 7.49)ˆ j   m/s .

61. If we use a coordinate system with x east and y north, the velocity of the boat with respect to the
water is     

r 
v B =     

r 
v A –     

r 
u , where

r 
v A = 15 ˆ i  km/h is the velocity of the boat with respect to the land  and

    
r 
u  = 5    

ˆ j  km/h is the velocity of the Gulf Stream with respect to the land. Thus
r 
v B = (15 ˆ i  – 5 ˆ j  ) km/h =  15.8 km/h, 18° south of east.

62. (a ) Because the speeds are with respect to the ground, we have
    
r 
v leader =     

r 
v cyclist +     

r 
u , where     

r 
u   is  the velocity of the leader with respect to the cyclist.

Because all velocities are up the hill, we have
v leader= vcyclist + u ;
24 km/h = 21 km/h + u, which gives  u = 3 km/h.

(b) Because the elapsed time is with respect to the ground, the leader had been traveling at 24 km/h
for 30 s before the cyclist reached the message board:

x = vleadert = (24 km/h)(30/3600 h) = 0.20 km.

63. If we use a coordinate system with x in the direction of travel and y up, the velocity of the rain with
respect to the car is     

r 
v B =   

r 
v A –     

r 
u , where    

r 
v A = – vA

ˆ j �is the velocity of the rain with respect to the ground

and     
r 
u   = 80    ̂  i  km/h is the velocity of the car with respect to the ground.

If θ is the angle on the window with respect to the vertical, then
– vB cos θ     ̂  i  – vB sin θ     

ˆ j  = (– vA    
ˆ j   –  80   ̂  i ) km/h.

Equating the two components, we get vA =  vB cos θ    and    80 km/h = vB sin θ.  Dividing the two
equations, we get

vA/(80 km/h) = cot θ  = cot 58°,  or  vA =  50 km/h.



Fishbane, Gasiorowicz, and Thornton

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 3-15

64. (a ) With no wind, the speed in each direction will be v, so the time is  t0 =  2L/v.
(b) With a north wind, her speed while cycling north will be v – vw and returning will be v + vw.

Thus her total time will be

  

   
t1 =

L

v – vw

+
L

v + vw

=
L(v + vw + v – vw)

(v2 – vw
2)

=
2Lv

(v
2 – vw

2 )
=

t0

1 – (vw/v)2
.

(c) If vw << v, then

    t1 =
2Lv

v2 1 – (vw/v)2
∼

2L
v

[1 + (vw/v)2] = t0[1 + (vw/v)2].

(d) At vw = v, the time becomes infinite because the cyclist will have
zero velocity with respect to the ground on the first part of her trip
and will never move.

65. (a ) h max = !v0
2/g,

v0 = 2g hmax = 2(32.2 ft/s2) (40 in.)(1 ft/12 in.) =  15 ft/s . 
(b)

h =
v0

2 sin2 θ0

2g
= hmaxsin2 θ0 = (40 in.)sin2 45o = 20 in.

    
R =

2v0
2 sinθ0 cosθ0

g
=

2(14.65 ft/s)2 sin 45o cos 45o

32.2 ft/s2 = 6.7 ft. 

66. Refer to the diagram in the solution to Problem 24. To be specific, choose the direction of motion of the
truck (2) to be along the positive x-axis and that of the car (1) to be along the positive y-axis. Then 

r 
v 1 =

v 1
ˆ j  and 

r 
v 2 = v2

ˆ i . The velocity of the truck relative to the car is then
r 
v 21 = 

r 
v 2 – 

r 
v 1 = v2

ˆ i  – v1
ˆ j  =     (40ˆ i − 30ˆ j )  km/h .

The magnitude of the relative velocity is

    v2 1 = (40 km/h)2 + (30 km/h)2 = 50 km/h ,
and     

r 
v 21 makes an angle of θ  clockwise from the positive x-axis, where

  
θ = tan-1 30 km/h

40 km/h
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 37o

.

0
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67. During the first leg, in order to fly due south, the airplane must head southwest, as in the diagram.
If  

r 
v p is the velocity of the airplane with respect to the air, 

r 
v 1 is the velocity of the airplane with

respect to the ground,  and     
r 
v w the velocity

of the wind with respect to the ground, then
    
r 
v 1 =     

r 
v p +     

r 
v w.

Because vp = 900 km/h and vw = 120 km/h, from the diagram we get
sin θ1 = (120 km/h)/(900 km/h),  or   θ1 = 7.7°.

Then v1 = (900 km/h) cos 7.7° = 892 km/h.
The distance traveled in the first leg is d1 = (892 km/h)(2.0 h) = 1784 km.
During the second leg, the airplane must turn more toward the west, as
shown.
If     

r 
v 2 is the new velocity of the airplane with respect to the ground, then

    
r 
v 2 =     

r 
v p +     

r 
v w.

The two component equations can be obtained from the diagram:
(900 km/h) sin θ2 – 120 km/h = v2 sin 45°   and
(900 km/h) cos θ2 = v2 cos 45°.

Because sin 45° = cos 45°, we can write this as
(900 km/h) sin θ2 – 120 km/h = (900 km/h) cos θ2 , which reduces to sin θ2 = cos θ2 + 0.133.

By squaring both sides, we get 1 – cos2 θ2 = cos2 θ2 + 0.266 cos θ2 + (0.133)2, which has the solution
cos θ2 = 0.637  or  θ2 = 50.4°.  Then v2 = (900  km/h) (cos 50.4°)/0.707 = 811 km/h.

The distance traveled during the second leg is d2 = (811 km/h)(3.0 h) = 2433 km.
(a) The average speed is (total distance)/(total time) = (1784 m + 2433 m)/(5.0 h) =  843 km/h.
(b) To find the average velocity, we must first find the displacement:

r 
r  = – (2433 m)(0.707) ˆ i   + [(– 2433 m)(0.707) – 1784] ˆ j  =  – (1720 km) ˆ i  – (3505 km) ˆ j .

The average velocity is     
r 
v  =     

r 
r /(5 h) =      (−344ˆ i − 701)ˆ j   km/h     or      781 km/h, 26° W of S.

(c) From part (b) the final position is

    
r 
r  =  (−1720ˆ i − 3505)ˆ j   km ,      or   3900 km, 26° W of S.

68. (a ) In order to fly due north, the airplane must head northwest, as in the diagram.
If      

r 
v p is the velocity of the airplane with respect to the air,     

r 
v 1 the velocity of

the airplane with respect to the ground, and   
r 
v w the velocity of the wind with

respect to the ground, then  
r 
v 1 = 

r 
v p + 

r 
v w.

From the diagram we see that sin q = vw/vp = (85 mi/h)/(320 mi/h), which
gives

θ = 15.4° W of N.    Because the diagram is a velocity diagram, the
calculation would  not  change if the distance were greater.

(b) From the diagram we also get v1 = vp cos θ = (320 mi/h) cos 15.4° = 309 mi/h.
The time of the flight is t1 = d/v1 = 673 mi/(309 mi/h) = 2.18 h.

(c) If the airplane heads north, its velocity with respect to the ground will be
toward the northeast, as shown.  From this diagram we see that

tan φ = vw/vp = (85 mi/h)/(320 mi/h), which gives φ = 14.9°.
The time until the plane turns west can be found from

t2 = (north component of distance)/vp = 673 mi/(320 mi/h)  = 2.10 h.
The distance traveled toward the east is dE = vwt2 = (85 mi/h)(2.10 h) = 179 mi,
which is the distance the airplane must fly due west to get to St. Louis. Its speed with respect to
the ground will be v3 = vp – vw = 320 mi/h  –  85 mi/h = 235 mi/h.  The time it will take is t3 = dE/v3

= 179 mi/(235 mi/h) = 0.761 h. Then the total time for the trip is
t2 + t3 = 2.10 h + 0.76 h = 2.86 h.

45°
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69. We can express the data as re = 6.4 × 103 km and ro = 1.5 × 108 km.  Because we
know the periods of the two motions, we can find the corresponding speeds from v = rω = r(2π/T):

v rot = re(2π/Te) = (6.4 × 103 km)[2π/(24 h)(3600 s/h)] = 0.465 km/s,
vorb =  ro(2π/To) = (1.5 × 108 km)[2π/(365 d)(24 h)(3600 s/h)] = 30.0 km/s.

(a ) At the nearest point, the velocities are in opposite directions, so
v1 = vorb – vrot = 30.0 km/s  – 0.465 km/s  =  29.5 km/s.

(b) At the farthest point, the velocities are in the same direction, so
v2 = vorb + vrot = 30.0 km/s  + 0.465 km/s =  30.5 km/s.

(c) At the midway point, the velocities are perpendicular, so
v3 = (vorb

2 + vrot
2)1/2 = [(30.0 km/s)2 + (0.465 km/s)2]1/2  =  30.0 km/s.

70. From the period we can find the angular speed: ω = 2π/T =  2π/26 s =  π/13  rad/s.
The velocity is v = rω = (40 × 103 m)(π/13 rad/s) =  9.7 × 103 m/s, tangential .
The acceleration is a = rω2 = (40 × 103 m)(π/13 rad/s)2 =  2.3 × 103 m/s2  ≈  230g centripetal.

71. We choose a coordinate system with the origin at the tee, x horizontal and y up.
The horizontal motion is x = v0xt1 = 155  m = v0 cos 65° t1 ,   or   v0t1 = 367 m.
The vertical motion is y = y0 + v0y + !ayt1

2;   4.0 m = 0 + v0 sin 65° t1 + !(– 9.8 m/s2)t1
2.

(a) When these two equations are solved simultaneously, we get t1 = 8.2 s  and v0 =  45 m/s   at  65°.
(b) Because vy = 0 at the maximum height, we can find the time to reach this height from

vy = v0y + ayt2;  0 = (44.8 m/s) sin 65° + (– 9.8 m/s2)t2, which gives t2 = 4.14 s.
(Note that this is less than !t1 because of the slope of the ground.) The height above the green is

ymax = 0 + (44.8 m/s) (sin 65°)(4.14 s) – ! (9.8 m/s2)(4.14 s)2 = 84 m.

72. We choose a coordinate system with the origin at home plate, x horizontal and y up.
The horizontal motion is x = v0xt;

65 m = v0 cos 30° t, which gives  v0t = 75.1 m.
The vertical motion is y = y0 + v0y + !ayt1

2;
1.8 = 0.9 + v0 sin 30° t + !(– 9.8 m/s2)t2.

When these two equations are solved simultaneously, we get   t = 2.7 s   and   v0 = 27 m/s.

73. The coordinate system is shown on the diagram.  If vB = 10 km/h is the
speed of the boat with respect to the water, then its velocity with
respect to the shore is

    
r 
v s = (vB cos θ + vW)    ̂  i  + vB sin θ    

ˆ j .
The position vector from its starting point is

    
r 
r  =     

r 
v st =  (vB cos θ + vW)t    ̂  i  + (vB sin θ)t   

ˆ j ,     or

    
r 
r  =      (10cos θ + 6)t ˆ i + (10sinθ)t ˆ j ,  with r in km and t in hr.

To land at the point D, x = 0    or
vB cos θ + vW = 0;
cos θ = – (6 km/h)/(10 km/h), which gives
θ = 127°.

The trip time is found from y = vB sin θ t;
150 m = [(10 × 103 m/h)/(3600 s/h)] sin 127° t, which gives
 t = 68 s .

x

y

D

θ

    
r 
v w

    
r 
v b
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74. We choose a coordinate system with the origin at the base of the table, x horizontal and y up.
(a ) The time is found from the horizontal motion:

x = v0xt;  1.08 m = (2.50 m/s)t, which gives  t = 0.432 s.
(b) To find g we use the vertical motion:

y = y0 + v0yt + !at2;  0 = 0.86 m + 0 + !(– g)(0.432 s)2, which gives  g = 9.22 m/s2 .
(c) When the mass hits the floor, the horizontal velocity is still 2.50 m/s and the vertical velocity is

vy = v0y + ayt = 0 + (– 9.80 m/s2)(0.432) =  – 4.23 m/s.
The speed is v = (vx

2 + vy
2)1/2 = [(2.50 m/s)2 + (4.23 m/s)2]1/2 =  4.91 m/s.

75. We choose a coordinate system with the origin at the base of the mast, x horizontal and y up.  At
release the hammer is at x = 0, y = 26 m and will have the horizontal velocity of the top of the mast.
The time of fall is found from

y = y0 + v0yt + !ayt2;
0 = 26 m + 0 + !(– 9.8 m/s2)t2, which gives t =  2.3 s.

The horizontal motion is
x = v0xt = (3.6 m/s)(2.3 s) = 8.3 m.

Because this is less than half the width of the ship, the hammer will hit the deck, which is assumed
to be horizontal at impact.

76. Set up an xy coordinate system originated at the position where the ball is thrown out, with the x-axis
horizontal and the y-axis pointing vertically upward. Suppose that the ball hits the incline at (x1, y1) ,
then x1 and y1 must satisfy the trajectory equation:

y 1=x1tanθ0 – gx1
2/2v0

2cosθ0
2.

Also, y1/x1 = – tanα, with α = 30°. (Note the negative sign here, which is because y1 < 0). Eliminate y1

and solve for x1:

    
x1 =

2(tanα + tanθ 0)v0
2 cos 2 θ0

g
=

2(tan30o + tan0)(10 m/s) 2(cos 0)2

9.8 m/s 2 = 11.8 m,

so the distance between the launch point and the landing point along the inclined plane is
L = x1/cosα = 11.8 m/cos 30° = 14 m.

77. Because there are four balls with 0.3 s between balls, the time for a complete cycle is 1.2 s, 0.3 s of which
the ball is in the hands.  The time in the air for each ball is 1.2 s – 0.3 s = 0.9 s, which means that it
takes 0.45 s to reach the maximum height.
(a ) Because the speed is zero at the maximum height, we can use

vy = v0y + ayt;
0 = v0 + (– 9.8 m/s2)(0.45 s), which gives
v0 = 4.4 m/s.

(b) A ball has just been caught: y = 0.
A ball is at y = y0 + v0yt + !ayt2

     = 0 + (4.41 m/s)(0.3 s) + !(– 9.8 m/s2)(0.3 s)2

     = 0.88 m going up.
A ball is at y = y0 + v0yt + !ayt2

     = 0 + (4.41 m/s)(0.6 s) + !(– 9.8 m/s2)(0.6 s)2

              = 0.88 m coming down.
A ball has just been thrown: y = 0.

(c) For 5 balls the cycle time is 1.5 s and the time in the air is 1.2 s.
Using the analysis from part (a), the initial speed must be

v0 = g(0.6 s) = 5.9 m/s.
The maximum height is reached in half the time in the air:

y = 0 + (5.9 m/s)(0.6 s) – !( 9.8 m/s2)(0.6 s)2 = 1.8 m.
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78. Using the coordinate system shown in the diagram, we can write the
equations of motion as

x = v0 cos θ t    and
y = y0 + v0yt + !ayt2,   or
0 = h0 + v0 sin θ t + !(– g)t2.

The y-equation yields a quadratic equation for the time to reach the ground,
t:

t2 – [(2v0 sin θ)/g] t –  2h0/g = 0.
The solutions are

t =  + (2v0 sin θ/2g) ± ![(2v0 sin θ/g)2 + (8h0/g)]1/2.
Because the cannonball starts at t = 0, the physical answer is the positive
result:

t =  + (v0/g) [sin θ + (sin2 θ + 2h0g/v0
2)1/2].

The horizontal range R is
     

R = v0
cos θ

v0

g
sin θ + sin2 θ +

2h0g

v0
2

1/2

.

To find the angle θ at which R is a maximum, we take the derivative dR/dθ
and set it equal to zero:

          

     
dR
dθ

= –
v0

2

g
(sin θ) sin θ + sin2 θ +

2h0g

v0
2

1/2

+
v0

2

g
(cos θ) cos θ + 1

2
sin2 θ +

2h 0g

v0
2

–1/2

2 sin θ cos θ = 0.

This reduces to
     

– sin2 θ + cos2 θ +
– sin3 θ – 2h0g/v0

2 sin θ + sin θ cos2 θ

sin2 θ + 2h0g/v0
2

= 0.

If we let 2h0g/v0
2 = D, use cos2 θ = 1 – sin2 θ and let z = sin θ, we can get an equation in z:

1 – 2z2 + (– z3 – Dz + z – z3)/(z2 + D)1/2 = 0.
After some algebraic manipulation, including squaring, this reduces to

z2 = 1/(D + 2),  or   sin2 θ  = !v0
2/(gh0 + v0

2) .

x

θ
y

O R

      
r 
v 0

      
r 
h 0
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79. We will use a coordinate system with the origin at the point A on the ground that was in contact at t = 0
with the point B on the rim, as shown in the diagram.  Let the radius be R and the speed of the center be

V = (18 km/h)(103 m/km)(1 h/3600 s) = 5.0 m/s.
Because the wheel is rolling, the length of arc from the current contact
point to point B must equal the horizontal distance the center traveled:

θ = r1/R      and
ω = dθ/dt = (dr1/dt)/R = V/R = (5.0 m/s)/(0.36 m) = 14 rad/s.

Thus the angle turned through is θ = ωt  ,   and    V = Rω.
The position of B can be treated as the sum of three displacements:

    
r 
r 1 = Vt    ̂  i ;     

r 
r 2 = R    

ˆ j ;     
r 
r 3 = – R cos θ   ̂  i  – R sin θ   

ˆ j .  Thus

    
r 
r =     

r 
r 1 +     

r 
r 2 +     

r 
r 3 = (Vt – R sin θ)    ̂  i   + (R – R cos θ)    

ˆ j .

The velocity is 
r 
v  = d

r 
r /dt = [V – R cos θ (dθ/dt)] ˆ i  + R sin θ (dθ/dt) ˆ j  =

(V – Rω cos θ)    ̂  i  + Rω sin θ     
ˆ j      or

    
r 
v  = V[(1 – cos θ)    ̂  i  + sin θ   

ˆ j ];  velocity of the center + tangential velocity of the point on the rim.
The acceleration is

r 
a  = d

r 
v /dt = V[sin θ (dθ/dt) ˆ i  + cos θ (dθ/dt) ˆ j ] = (V2/R)[sin θ ˆ i   + cos θ ˆ j ];  the centripetal

acceleration.
When the numerical values are substituted, with θ = (14 rad/s)t,

    
r 
r  =     [(5.0  m/s )t − (0.36 m )sinθ ]ˆ i + [(0.36 m) (1− cos θ)]ˆ j ,

    
r 
v  =     (5.0 m/s )[(1− cos θ)]ˆ i + sinθ)ˆ j ] ,

    
r 
a  = (69 m/s 2)(sinθ  ˆ i + cos θ ˆ j ) .

x

y

A

B θ

    
r 
v 

      
r 
r 1

      
r 
r 2

      
r 
r 3
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