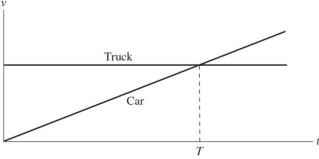
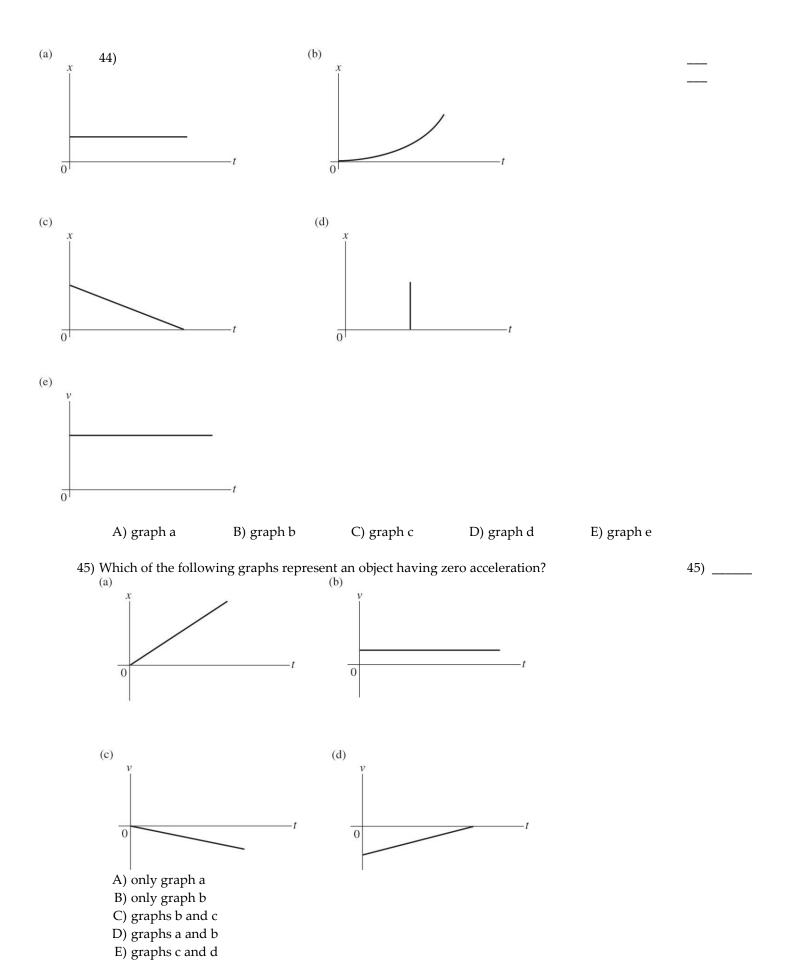
MULTIPLE CHOICE. Choose the one alternative that best compl	etes the statement or answers the questi	on.
1) Consider a deer that runs from point A to point B. The dis		1)
the magnitude of its displacement, but the magnitude of the	ne displacement can never be greater	
than the distance it runs.		
A) True B) Fa	ılse	
2) Which of the following quantities has units of a displacem	ent? (There could be more than one	2)
correct choice.)	•	,
A) 32 ft/s ² vertically downward		
B) 9.8 m/s^2		
C) 40 km southwest		
D) 186,000 mi		
E) -120 m/s		
3) Suppose that an object travels from one point in space to a	nother. Make a comparison between	3)
the magnitude of the displacement and the distance travel	-	/
A) The displacement is either greater than or equal to the	•	
B) The displacement is always equal to the distance trav		
C) The displacement can be either greater than, smaller	than, or equal to the distance traveled.	
D) The displacement is either less than or equal to the d	istance traveled.	
4) Consider a car that travels between points A and B. The ca	ır's average speed can be greater than	4)
the magnitude of its average velocity, but the magnitude of	of its average velocity can never be	
greater than its average speed.		
A) True B) Fa	ılse	
5) Which of the following quantities has units of a velocity? (There could be more than one correct	5)
choice.)	There could be more than one correct	5)
A) 40 km southwest		
B) 9.8 m/s downward		
C) 9.8 m/s ² downward		
D) 186,000 mi		
E) -120 m/s		
6) When is the average velocity of an object equal to the insta	untaneous velocity?	6)
A) when the velocity is constant	and the versery.	·)
B) only when the velocity is increasing at a constant rate	e	
C) never		
D) only when the velocity is decreasing at a constant rat	re	
E) always		
7) You drive 6.0 km at 50 km/h and then another 6.0 km at 90) km/h. Your average speed over the 12	7)
km drive will be		
A) greater than 70 km/h.		
B) less than 70 km/h.		
C) equal to 70 km/h.		
D) exactly 38 km/h.		
E) It cannot be determined from the information given	because we must also know directions	
traveled.		
8) If the velocity of an object is zero at some point, then its ac	celeration must also be zero at that	po int.

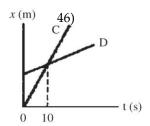

8)

acceleration must A) The accelera B) The accelera C) The accelera	,	ralue.	17)
(There could be n A) The accelera	an object is zero at one instant more than one correct choice. Intion could be positive. Intion must be zero.	at, what is true about the acceleration of that object? B) The acceleration could be negative. D) The acceleration could be zero.	18)
velocity? A) This can onl B) This can occ C) The accelera D) The accelera	y occur if there is no acceleratur only when the velocity is ation must be constantly increation is constant.	zero. easing.	19)
	istances along it from the sta	long a straight track. This track has markers art, as shown in the figure. The car reaches a speed speed = 140 km/h	20)
(<u>0_0</u>)			
Start	Marker 1	Marker 2	
	arker 1 and marker 2	raveling at half this speed, that is at 70 km/h?	
A) is downwarB) is upwardC) is zeroD) reverses from	~ _	resistance, the acceleration at its highest point	21)
resistance. Which A) Throughout same direct B) On the way point both i C) On the way point both i D) The accelera	one of the following statement the motion, the acceleration ion as the acceleration. up, its acceleration is downway to velocity and acceleration a down, both its velocity and a ts velocity and acceleration a	acceleration are downward, and at the highest are zero. Its in the motion except that is zero at the highest	22)

		-	appreciable air resistance	e. What is its	23)
,	pefore it reaches its	0 1			
A) slightly less C) exactly g	tnan g	•	zero slightly greater than <i>g</i>		
-, , 8		,	3		
	ements about the c	_	t, then falls to its initial heicity and acceleration of the	~	24)
0 0 ,		ration points downv	vard.		
		and its acceleration _l	•		
	-	l its acceleration poi			
D) Both its velo	ocity and its acceler	ration point upward			
-			nce. After it has been relea re could be more than one		25)
A) Its accelerati					
·	ion is constantly in	creasing.			
C) Its accelerati	ion is constant. ion is constantly de	ecreasing			
	on is greater than	•			
26) A 10-kg rock and	a 20-kg rock are th	rown upward with	the same initial speed v_0	and experience	26)
no significant air height will the 20			maximum height <i>h,</i> what r	naximum	
A) h/2	B) 2 <i>h</i>	C) h/4	D) 4h	E) <i>h</i>	
_	kes the 20-kg rock a		e height and experience no ground, what time will it	-	27)
A) T	B) T/2	C) 2T	D) 4T	E) T/4	
·	·	·	·	·	
_	-		time and experience no sig	•	28)
resistance. If the 1 A) $a/2$.0-kg rock falls wit B) 4a	th acceleration a , wh C) $a/4$	at is the acceleration of the D) 2 <i>a</i>	E) a	
29) Two objects are d	ropped from a brid	dge, an interval of 1.	0 s apart. Air resistance is	negligible.	29)
	* *	ntinue to fall, their s	•		,
	first, but then stay				
	first, but then stays	s constant.			
D) stays consta E) increases.	nt.				
30) From the edge of	a roof top you toss	s a green ball upwar	ds with initial speed v_0 ar	nd a blue ball	30)
		-	s negligible. When they re		
	ll will be moving f	aster than the blue b	oall.		
B) the two balls	s will have the sam	ne speed.			
C) the blue ball	will be moving fa	ster than the green l	oall.		
	•	0	nd later, ball B is dropped e difference in their speed		31)


A) decreases.		
B) remains constant.		
C) increases.		
D) cannot be determined from the inform	nation given.	
	all building. One is thrown up, and the other is	32)
-	peed. What are their speeds when they hit the street?	
Neglect air resistance.		
A) The one thrown down is traveling fas		
B) They are traveling at the same speed.		
C) The one thrown up is traveling faster		
D) It is impossible to tell because the hei	ght of the building is not given.	
	ing. Brick B is thrown straight down from the same	33)
building, and neither one experiences appraced accelerations is correct?	reciable air resistance. Which statement about their	
A) The acceleration of A is greater than t	the acceleration of B.	
B) The acceleration of B is greater than t	he acceleration of A.	
C) Neither brick has any acceleration on	ce it is released.	
D) The two bricks have exactly the same	acceleration.	
	o velocity in the $+x$ direction. The position versus	34)
time graph of this object is		
A) a horizontal straight line.		
B) a vertical straight line.		
C) a straight line making an angle with	the time axis.	
D) a parabolic curve.		
	to acceleration in the $+x$ direction. The position	35)
versus time graph of this object is		
A) a horizontal straight line.		
B) a vertical straight line.		
C) a straight line making an angle with	the time axis.	
D) a parabolic curve.		
_	to velocity in the $+x$ direction. The velocity versus	36)
time graph of this object is		
A) a horizontal straight line.		
B) a vertical straight line.	a v	
C) a straight line making an angle with	the time axis.	
D) a parabolic curve.		
,	to acceleration in the $+x$ direction. The velocity versus	37)
time graph of this object is		
A) a horizontal straight line.		
B) a vertical straight line.	des des esta	
C) a straight line making an angle withD) a parabolic curve.	ine time axis.	
-		
38) The slope of a position versus time graph §		38)
A) displacement.	B) velocity.	
C) the distance traveled.	D) acceleration.	

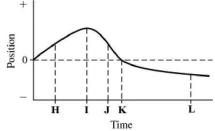
39) The slope of a velocity versus time graph gives		39)
A) displacement.	B) the distance traveled.	
C) acceleration.	D) velocity.	
40) If the position versus time graph of an object is a ho	orizontal line, the object is	40)
A) moving with constant non-zero speed.	•	,
B) moving with constant non-zero acceleration.		
C) at rest.		
D) moving with increasing speed.		
41) If the velocity versus time graph of an object is a ho	orizontal line, the object is	41)
A) moving with zero acceleration.	,	,
B) moving with constant non-zero acceleration.		
C) at rest.		
D) moving with increasing speed.		
42) If the velocity versus time graph of an object is a str	raight line making an angle of +30° (counter	42)
clockwise) with the time axis, the object is		
A) moving with constant non-zero speed.		
B) moving with constant non-zero acceleration.		
C) at rest.		
D) moving with increasing acceleration.		
43) The motions of a car and a truck along a straight ro	ad are represented by the velocity-time	43)
graphs in the figure. The two vehicles are initially a	1 3	
U	-	



At time T, what is true of the *distances* traveled by the vehicles since time t = 0?

- A) The truck will not have moved.
- B) They will have traveled the same distance.
- C) The car will have travelled further than the truck.
- D) The truck will have travelled further than the car.
- 44) Which of the following graphs represent an object at rest? (There could be more than one correct choice.)

46) The figure shows a graph of the position x of two cars, C and D, as a function of time t.

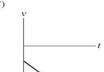

Accordin g to this graph, which statemen ts about these cars must be true? (There could be more than one correct choice.)

- A) The magnitude of the acceleration of car C is greater than the magnitude of the acceleration of car D.
- B) The magnitude of the acceleration of car C is less than the magnitude of the acceleration of car D.
- C) At time t = 10 s, both cars have the same velocity.
- D) The cars meet at time t = 10 s.
- E) Both cars have the same acceleration.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

47) The graph in the figure shows the position of an object as a function of time. The letters

H-L represent particular moments of time.



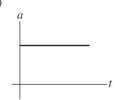
- (a) At which moment in time is the speed of the object the greatest?
- (b) At which moment in time is the speed of the object equal to zero?
- 48) A child standing on a bridge throws a rock straight down. The rock leaves the child's hand at time t = 0 s. If we take upward as the positive direction, which of the graphs shown below best represents the velocity of the stone as a function of time?

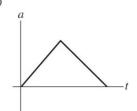
B)

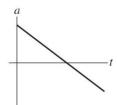
C)

D)

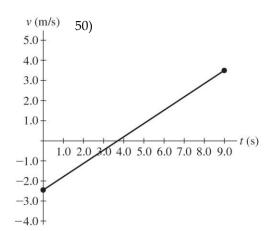
E)


49) A child standing on a bridge throws a rock straight down. The rock leaves the child's hand at time t = 0 s. If we take upward as the positive direction, which of the graphs shown below best represents the acceleration of the stone as a function of time?

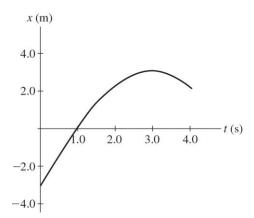

B)


D)

C)



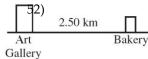
E)


MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

50) The motion of a particle is described in the velocity vs. time graph shown in the figure.

Over the nine-seco nd interval shown, we can say that the *speed* of the particle

- A) only decreases.
- B) decreases and then increases.
- C) remains constant.
- D) increases and then decreases.
- E) only increases.
- 51) The graph in the figure shows the position of a particle as it travels along the x-axis.



At what value of t is the speed of the particle equal to 0 m/s?

- A) 2 s
- B) 3 s
- C) 1 s
- D) 0 s
- E) 4 s

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 52) If, in the figure, you start from the Bakery, travel to the Cafe, and then to the Art Gallery
 - (a) what distance you have traveled?
 - (b) what is your displacement?

51) ____

the magnitude of its dis	splacement.			
A) 26.0 m, 4.0 m	B) 4.0 m, 26.0 m	C) 4.0 m, 4.0 m	D) 26.0 m, 26.0 m	
54) What must be your ave	rage speed in order to tra	avel 350 km in 5.15 h?		54)
A) 67.0 km/h	B) 66.0 km/h	C) 69.0 km/h	D) 68.0 km/h	
55) A runner ran the marat average speed of the ru		km) in 2 hours and 57 mi	in. What was the	55)
A) 14.2 m/s	B) 124 m/s	C) 14,200 m/s	D) 3.95 m/s	
56) A light-year is the dista How many miles are th	S	one year. The speed of ligmi = 1609 m, 1 y = 365 d)	ght is 3.00×10^8 m/s.	56)
A) 5.88×10^{12} mi	B) $9.46 \times 10^{15} \text{ mi}$	C) 9.46 × 10 ¹² mi	D) 5.88×10^{15} mi	
57) If you are driving 72 k you travel during this i	0 0	d and you look to the side	e for 4.0 s, how far do	57)
A) 20 m	B) 80 m	C) 40 m	D) 18 m	
(a) average velocity and IPLE CHOICE. Choose to 59) A polar bear starts at the	l (b) average speed. he one alternative that be ne North Pole. It travels	pest completes the statem 1.0 km south, then 1.0 km	nent or answers the queson east, and then 1.0 km	tion. 59)
TIPLE CHOICE. Choose to the control of the choice to the control of the control o	l (b) average speed. he one alternative that be ne North Pole. It travels	est completes the statem	nent or answers the queson east, and then 1.0 km	
(a) average velocity and TIPLE CHOICE. Choose to 59) A polar bear starts at the north to return to its starts.	l (b) average speed. he one alternative that be ne North Pole. It travels	pest completes the statem 1.0 km south, then 1.0 km lkes 45 min. What was th	nent or answers the queson east, and then 1.0 km	
(a) average velocity and TIPLE CHOICE. Choose to 59) A polar bear starts at the north to return to its starts appeed? A) 0.00 km/h 60) A polar bear starts at the north to return to its starts at the north to return to its starts.	the one alternative that be the North Pole. It travels arting point. This trip tath B) 0.067 km/h	pest completes the statem 1.0 km south, then 1.0 km lkes 45 min. What was th C) 5.3 km/h	nent or answers the quest in east, and then 1.0 km the bear's average D) 4.0 km/h in east, and then 1.0 km	
(a) average velocity and TPLE CHOICE. Choose to 59) A polar bear starts at the north to return to its starts aspeed? A) 0.00 km/h 60) A polar bear starts at the	the one alternative that be the North Pole. It travels arting point. This trip tath B) 0.067 km/h	pest completes the statem 1.0 km south, then 1.0 km lkes 45 min. What was tl C) 5.3 km/h 1.0 km south, then 1.0 km	nent or answers the quest in east, and then 1.0 km the bear's average D) 4.0 km/h in east, and then 1.0 km	59)
(a) average velocity and TPLE CHOICE. Choose to 59) A polar bear starts at the north to return to its starts aspeed? A) 0.00 km/h 60) A polar bear starts at the north to return to its starts at	he one alternative that be the North Pole. It travels arting point. This trip tate B) 0.067 km/h the North Pole. It travels arting point. This trip tate B) 5.3 km/h on a weekend from school. You arrive home after	Dest completes the statem 1.0 km south, then 1.0 km lkes 45 min. What was the C) 5.3 km/h 1.0 km south, then 1.0 km lkes 45 min. What was the C) 0.067 km/h	nent or answers the quest in east, and then 1.0 km the bear's average D) 4.0 km/h In east, and then 1.0 km the bear's average D) 4.0 km/h It then starts to snow	59)
(a) average velocity and TPLE CHOICE. Choose to 59) A polar bear starts at the north to return to its starspeed? A) 0.00 km/h 60) A polar bear starts at the north to return to its stars velocity? A) 0.00 km/h	he one alternative that be the North Pole. It travels arting point. This trip tate B) 0.067 km/h the North Pole. It travels arting point. This trip tate B) 5.3 km/h on a weekend from school. You arrive home after	Dest completes the statem 1.0 km south, then 1.0 km 1.0 km south, What was the C) 5.3 km/h 1.0 km south, then 1.0 km 1.0 km	nent or answers the quest in east, and then 1.0 km the bear's average D) 4.0 km/h In east, and then 1.0 km the bear's average D) 4.0 km/h It then starts to snow	59)60)
(a) average velocity and TPLE CHOICE. Choose to 59) A polar bear starts at the north to return to its starts speed? A) 0.00 km/h 60) A polar bear starts at the north to return to its starts at the north to return to its starts velocity? A) 0.00 km/h 61) You are driving home come and you slow to 35 mi/h your hometown from see	he one alternative that be the North Pole. It travels arting point. This trip tate B) 0.067 km/h the North Pole. It travels arting point. This trip tate B) 5.3 km/h on a weekend from school and weekend from after the chool? B) 210 mi	Dest completes the statem 1.0 km south, then 1.0 km skes 45 min. What was the completes the statem C) 5.3 km/h 1.0 km south, then 1.0 km skes 45 min. What was the complete	nent or answers the quest and then 1.0 km the bear's average D) 4.0 km/h n east, and then 1.0 km the bear's average D) 4.0 km/h It then starts to snow minutes. How far is D) 200 mi	59)60)
(a) average velocity and TPLE CHOICE. Choose to 59) A polar bear starts at the north to return to its starts as peed? A) 0.00 km/h 60) A polar bear starts at the north to return to its starts at	he one alternative that be the North Pole. It travels arting point. This trip tate B) 0.067 km/h the North Pole. It travels arting point. This trip tate B) 5.3 km/h on a weekend from school and weekend from after the chool? B) 210 mi	Dest completes the statem 1.0 km south, then 1.0 km skes 45 min. What was the completes the statem C) 5.3 km/h 1.0 km south, then 1.0 km skes 45 min. What was the complete	nent or answers the quest and then 1.0 km the bear's average D) 4.0 km/h n east, and then 1.0 km the bear's average D) 4.0 km/h It then starts to snow minutes. How far is D) 200 mi	59)60)61)
(a) average velocity and TPLE CHOICE. Choose to 59) A polar bear starts at the north to return to its starts speed? A) 0.00 km/h 60) A polar bear starts at the north to return to its starts at the north to return to its starts velocity? A) 0.00 km/h 61) You are driving home of and you slow to 35 mi/h your hometown from so A) 180 mi 62) A motorist travels 160 k motorist for this trip?	he one alternative that be the North Pole. It travels arting point. This trip tate B) 0.067 km/h the North Pole. It travels arting point. This trip tate B) 5.3 km/h It is a weekend from school and weekend from after chool? B) 210 mi This was a school and the school arting point. This trip tate chool? B) 210 mi	Dest completes the statem 1.0 km south, then 1.0 km likes 45 min. What was the completes was the complete with the complete was the complete with the complete was the complete	nent or answers the quest a east, and then 1.0 km he bear's average D) 4.0 km/h n east, and then 1.0 km he bear's average D) 4.0 km/h It then starts to snow minutes. How far is D) 200 mi the average speed of the D) 89 km/h	59)60)61)

A) 275 mi/h	B) 280 mi/ł	n C) 2	60 mi/h	D) 270 mi/h	
ORT ANSWER. Write t	he word or phrase t	hat best completes	each statement or	answers the questic	on.
65) A race car circles 10	-	-		-	
(a) what is its avera	nge speed for the ter	ı laps?	_		
	age velocity for the t	-			
66) A bat, flying towar	d the east at 2.0 m/s	, emits a shriek tha	t is reflected back to	o it from a 66) _	
wall that is 20.0 m	in front of the bat at	the instant the shri	ek is emitted. Sour	ıd travels at	
340 m/s in the air. I	How many milliseco	onds after emitting	the shriek does the	bat hear the	
reflected echo from	the wall?				
67) If, in the figure, you	u start from the Bake	ery, travel to the Ca	afe, and then to the	Art Gallery 67) _	
in 2.00 hours, what	is your				
(a) average speed?					
(b) average velocity	<i>y</i> ?				
	_	North			
2.50 km	4.00 km				
Art Gallery	Bakery	Cafe			
				.4	
JLTIPLE CHOICE. Choo 68) A runner runs arou		-		-	stion. 68)
		-	_	What is her average	, –
velocity?	in a radias of 17 mi.	one completes one	ap in 100 seconds.	villat is her average	
A) 5.0 m/s	B) 0 m/s	C) 2.5 m/s	D) 1.3 m/s	E) 10 m/s	
11) 0.0 1140	2) 0 111/0	C) 2.8 1148	2) 1.3 11,3	2) 10 111,0	
69) A runner runs arou	ınd a track consistin	g of two parallel li	nes 96 m long conn	ected at the ends by	69) _
			_	What is her average	, –
speed?		•	•	O	
A) 2.5 m/s	B) 1.3 m/s	C) 10 m/s	D) 0 m/s	E) 5.0 m/s	
70) You leave on a 549)-mi trip in order to	attend a meeting f	hat will start 10.81	¹ after you begin	70)
	e way you plan to s	-			
, ,	ongest time you can	•	•	•	
meeting?	rigest time you can	spena over uniner	and still arrive just	in time for the	
A) 2.6 h		B) 1	9 h		
C) 2.4 h		,	ou can't stop at all.		
G) 2 .111		2) 1	ou cuit t stop ut uii.		
71) A motorist makes a	-			-	71) _
-	-	drive the remaining	ng distance if her av	verage speed for the	
total trip is to be 40	•				
A) 45 mph	B) 52.5 mph	C) 50 mph	D) 55 mph	E) 60 mph	
ORT ANSWER. Write t	-	-		-	
72) Human reaction tir	•				
	travel before he hits				
•	aveling at 50.0 mi/h				
_	that the sober drive		the brakes in a cri	sis, while	
the drunk driver ta	kes 1.0 s to do so. (5	280 tt = 1 mi)			
73) Arthur and Betty s	tart walking toward	each other when the	ney are 100 m apar	t. Arthur has me 7	3)
•	_		ong does it take for		,

	74) The position $x(t)$ of a particle as a function m/s) t - $(5.0 \text{ m/s}^2)t^2$. What is the average 0.40 s?	-	-		
	75) A water rocket can reach a speed of 75 a average acceleration?	m/s in 0.050 seconds	from launch. What	is its 75	
MUL	TIPLE CHOICE. Choose the one alternati	ve that best complet	es the statement or	answers the q	uestion.
	76) An airplane increases its speed at the avincrease its speed from 100 m/s to 160 m	verage rate of 15 m/s		_	
	A) 0.25 s B) 0.058 s	C) 17 s	Ι	O) 4.0 s	
SHOI	RT ANSWER. Write the word or phrase the	nat best completes ea	ach statement or an	swers the gues	tion.
	77) The captain orders his starship to accele How many days does it take the starship at 3.0×10^8 m/s.)	erate from rest at a ra	te of "1 g " (1 $g = 9.8$	m/s^2). 77	
MUL	TIPLE CHOICE. Choose the one alternati	ve that best complet	es the statement or	answers the q	uestion.
	78) A car is traveling north at ^{17.7} m/s. After the magnitude and direction of the car's			ne direction. Fir	nd 78)
	A) 2.7 m/s^2 , north		m/s ² , south		
	C) 0.30 m/s^2 , north	D) 0.30	m/s ² , south		
	79) A racquetball strikes a wall with a spee speed of 26 m/s. The collision takes 20 r collision with the wall?				
		C) 2800 m/s ²	D) _{1300 m/s} ²	E) 1500 m/s	_S 2
	80) The velocity $v(t)$ of a particle as a function m/s^3) t^2 . What is the average acceleration				80)
	A) $_{13 \text{ m/s}^2}$ B) $_{0 \text{ m/s}^2}$	C) -15 m/s ²		E) 15 m/s ²	
SHOI	RT ANSWER. Write the word or phrase th	nat best completes ea	ach statement or an	swers the ques	stion.
	81) If a car accelerates at a uniform 4.0 m/s ² km/hr, starting from rest?				
	82) A car that is initially moving at 7.50 m/s m/s ² .	s begins to accelerate	forward uniformly	at 0.550 82)	
	(a) How long after beginning to accelerate (b) How fast is the car moving just as it				
	83) An auto accelerates forward from 7.0 m 1.033 km while accelerating.	n/s at a uniform 0.71 ı	m/s ² . It travels a dis	tance of 83)
	(a) How fast is the auto moving just as it (b) How many seconds did it take to tra		3 km?		
	84) In a ballistics test, a bullet moving horizand penetrates a distance of 10.0 cm.	zontally with a speed	of 500 m/s strikes a	_	at is the n magnitude of

the average accelerati on of the bullet in the sandbag? (b) How many milliseco nds does it take the bullet to come to rest in				 -	
the					
sandbag?					
MULTIP	LE CHOICE. Choose the A certain test car can go fro that speed in 4.14 s. What i stopping acceleration?	om rest to 32.0 m/s in 3.88	s. The same car can come	e to a full stop from	on. 85)
	A) 1.14	B) 0.937	C) 1.07	D) 0.878	
86)	A car initially traveling at 6 required for the car to reac	h a speed of 90 km/h?			86)
	A) 4.2 s	B) 45 s	C) 30 s	D) 15 s	
87)	A cart starts from rest and velocity it has reached for the final speed of the car?	10 s. Then it slows down	at a steady rate of 2.0 m/s	² for 4.0 s. What is	87)
	A) 20 m/s	B) 10 m/s	C) 12 m/s	D) 16 m/s	
88)	A car travels at 15 m/s for 3 s. At the end of this time,	1 1	vith a constant acceleratio	n of 2.0 m/s ² for 15	88)
	A) 30 m/s	B) 45 m/s	C) 15 m/s	D) 375 m/s	
89)	A cart with an initial veloc m/s ² to the right. What is A) 66 m		-		89)
90)	A jet plane is launched from at the end of the catapult. those 2.0 s?	Assuming the acceleration	on is constant, how far di	d it travel during	90)
	A) 24 m	B) 42 m	C) 84 m	D) 16 m	
91)	A car starting from rest acc speed it has achieved for a of magnitude 2.0 m/s ² . H	nother 10 s. Then it finally	y slows to a stop with cor		91)
	A) 200 m	B) 500 m	C) 400 m	D) 300 m	

92)		vard velocity uniformly eleration during this tin		hile traveling a distance of	92)
	A) 8.0 m/s ²	B) 9.6 m/s ²	C) _{24 m/s} 2	D) $_{12 \text{ m/s}}^2$	
93)	•	est and undergoes unifo travel during the third		g the first second it travels	93)
	A) 45 m	B) 15 m	C) 25 m	D) 5.0 m	
94)	,	a straight line with cons ater it is traveling at 10 B) 39 m		ally it is traveling at 16 move during this time? D) 57 m	94)
95)	A car starts from rest a	nd accelerates uniforml	y at 3.0 m/s ² toward the	north. A second car	95)
	starts from rest 6.0 s la north. How long after	ter at the same point and r the second car starts do	d accelerates uniformly a ces it overtake the first c	at 5.0 m/s ² toward the ar?	
	A) 24 s	B) 21 s	C) 12 s	D) 19 s	
	A car with good tires of 5.0 m/s^2 when braking	on a dry road can deceler . If a car is initially traves es it take the car to stop?	rate (slow down) at a ste veling at 55 mi/h	ent or answers the question ady rate of about 96) _	
97)) At the instant a traffic	light turns green, a car t	hat has been waiting at t	he intersection 97)	
	with a constant velocit (a) Calculate the time (b) Calculate the dista	ustant acceleration of 2.0 y of 15.0 m/s overtakes at necessary for the car to hance beyond the traffic liked of the car when it pass	and passes the car. reach the truck. ight that the car will pas	C	
MULTIP	LE CHOICE. Choose	the one alternative that	best completes the stat	ement or answers the ques	tion.
98)) Starting from rest, a dr	agster travels a straight s velocity when it crosse	1/4 mi racetrack in 6.70	-	98)
	A) 296 mi/h	B) 269 mi/h	C) 135 mi/h	D) 188 mi/h	
99)	•	ed race at ^{6.0} mi/h. In or rom the start, how fast n B) 24 mi/h		rage ^{21 mi/h.} Assuming ne end of the race? D) 42 mi/h	99)
100)	A car accelerates from while accelerating?	5.0 m/s to 21 m/s at a c	onstant rate of 3.0 m/s^2 .	How far does it travel	100)
	A) 69 m	B) 117 m	C) 41 m	D) 207 m	
101)				f. On a ²⁰⁰⁰ -m runway, ake flight if it starts from	101)
	A) 0.79 m/s^2	B) 1.0 m/s^2	C) 0.95 m/s^2	D) 0.87 m/s^2	
102)	O 1	of uniform acceleration i h to rest than from ²⁸ m		further would you travel	102)
	A) 3.2 times farther	-	B) 5.2 times farth	er	

103)	Acceleration is somet			$g = 9.8 \text{ m/s}^2$	a a a a lawati awa a f	103)
,	an object due to the e					,
	to 0 m/s in 0.15 s . H				y go nom	
	A) 24 g	B) $14 g$	C) 26	0 ,	D) 20 g	
	, 8	7 8	, ,	3	, 8	
104)	A baseball is hit with				•	104)
	doubled. If the actual			is the ratio of the ma	agnitude of the	
	average acceleration		-	1	2)	
	A) 2.2 s ⁻ 1	B) 4.4 s ⁻ 1	C) 6.7	S-1 L	O) 0.15 s ⁻ 1	
105)	A train starts from re	st and accelerates u	uniformly until it ha	s traveled 5.6 km a	and acquired a	105)
100)	forward velocity of ⁴		-		- T	100)
	train then slows dow					
	during the first 5.6 l	•		O .	acceleration	
				$^{\rm D)} 0.17 {\rm m/s^2}$	E) 0.14 m/s ²	
	, 0.20 III/	, 0.16 III/	, 0.19 III/	, 0.17 III/	, 0.14 III/	
106)	A train starts from re	st and accelerates u	ıniformly until it ha	s traveled 2.1 km a	and acquired a	106)
ŕ	forward velocity of ²					,
	train then slows dow					
	by the train while slo	•		100.610 00 0 10.10.	cistance traveled	
	A) 3.8 km.	B) 3.6 km.		D) 4.2 km.	E) 4.4 km.	
	ANSWER. Write the	-	-		-	
107)	A soccer ball is releas				· · · · · · · · · · · · · · · · · · ·	
	ball has rolled 91 m the incline.	with constant acce.	ieration, and 1.0 s i	ater it reaches the bo	ottom of	
	(a) What was the ball	's acceleration?				
	(b) How long was the					
	LE CHOICE. Choose					
108)	A car starts from rest	and accelerates at	a steady 6.00 m/s^2 .	How far does it trav	el in the first 3.00	108)
	s?	D) 0.00	C) 27 0 ···	D) 26 0 ···	E) 54.0 ···	
	A) 18.0 m	B) 9.00 m	C) 27.0 m	D) 36.0 m	E) 54.0 m	
109)	A car is moving with	a constant accelera	ation. At time $t = 5.0$	s its velocity is 8.0 i	m/s in the	109)
,	forward direction, an			•		
	traveled in that interv		•			
	A) 20 m	B) 10 m	C) 50 m	D) 40 m	E) 30 m	
110)				2		110)
110)	An airplane starts fro		ites at a constant 10	$.8 \text{ m/s}^2$. What is its	speed at the end	110)
	of a 400 m-long runw	•	C) 02 0 m/s	D) 196 m/s	E) 4220 m/a	
	A) 37.0 m/s	B) 65.7 m/s	C) 93.0 m/s	D) 186 m/s	E) 4320 m/s	
111)	A car is moving with	1 (22.0 /				
-,	11 car is moving with	a speed of 32.0 m/s	s. The driver sees ar	n accident ahead and	l slams on the	111)
		-		n accident ahead and ration of magnitude		111)
	brakes, causing the cafar does the car trave	ar to slow down wi	th a uniform accele	ration of magnitude	3.50 m/s^2 . How	111)

D) 4.8 times farther

C) 4 times farther

112)	112) A car is traveling with a constant speed when the driver suddenly applies the brakes, causing the car to slow down with a constant acceleration of magnitude 3.50 m/s ² . If the car comes to a stop in a distance of 30.0 m, what was the car's original speed?					112)
	stop in a distance of 3 A) 105 m/s	30.0 m, what was B) 210 m/s	the car's original spe C) 315 m/s	ed? D) 10.2 m/s	E) 14.5 m/s	
113)	A car is traveling wit causing the car to slo of 120 m. What was t A) 4.75 m/s ²	ow down with a co the acceleration of	onstant acceleration.	The car comes to a		113)
	11) 4.73 H/S=	2) 3.73 Hys=	C) 4.23 m/s=	2) 4.30 m/s=	2) 4.00 m/s²	
114)	A car is traveling at slow down with con- was the car moving v A) 18.4 m/s	stant acceleration.	The car comes to a s	stop in a distance of	120 m. How fast	114)
115)	Car A is traveling at	22.0 m/s and car	B at 29.0 m/s. Car	A is 300 m behind c	ar B when the	115)
	driver of car A accelerater car A begins to A) 12.6 s B) 19.0 s C) 316 s D) 5.50 s E) Car A never ov	accelerate does it) m/ ^{s2} . How long	
116)	A stone is thrown wi resistance. If we take s?		•	•	0 0	116)
	A) 0.00 m/s	B) 2.1 m/s	C) -4.9 m/s	D) -2.1 m/s	E) 4.9 m/s	
SHORT .	ANSWER. Write the	e word or phrase t	hat best completes	each statement or a	nswers the questic	on.
117)	An astronaut on a str to a maximum heigh magnitude of the acc	t of 27 m when he	r initial upward spe	ed is 6.0 m/s. Wha		
MULTIP	LE CHOICE. Choos	e the one alternat	ive that best comple	etes the statement o	r answers the que	stion.
118)	A laser is thrown up acceleration due to g height reached by the	ravity is 1.5 m/s ²		_		118)
	A) 48 m	B) 18 m	C) 8.0	m	D) 144 m	
119)	A laser is thrown up acceleration due to g the laser to reach the	ravity is 1.5 m/s ²	2 and there is no atm	_		119)
	A) 11 s	B) 16 s	C) 14	S	D) 8.0 s	
120)	An instrument is thro acceleration due to g the instrument to ret	ravity is 2.5 m/s ²	² and there is no atm	-		120)
	A) 10 s	B) 12 s	C) 6.0	s	D) 8.0 s	
121)) A hammer is thrown	upward with a sp	peed of 14 m/s on the	e surface of planet X	where the	accel eratio

n aue to	,					
gravity is						_
3.5 m/s^2						
and						
there is						
no						
atmosph						
ere.						
What is						
the						
speed of						
the						
hammer						
after 8.0						
s?	A) 14 m/s	B) 7.0 m/s	C) 64 m/s	D) 21 m/s		
122)	Human reaction time is us	• •	-	-		122)
	fingers and releases it with	_	you expect the ruler to f	all before you	catch	
	it, assuming negligible air		0.4.1	5) 4.1		
	A) At least 4.9 cm	B) At least 3.0 cm	C) At least 6.8 cm	D) At least 9	9.8 cm	
122\	A least in the second as	tlo -it of 10 (/o - 1	Atlantia ita mala mita aftan 1		_	100\
123)	A ball is thrown upward at	t a velocity of 19.6 m/s.	what is its velocity after s	3.0 s, assuming	3	123)
	negligible air resistance?		P) 0.9 m/s unward			
	A) 19.6 m/s downward C) 0 m/s		B) 9.8 m/s upward D) 9.8 m/s downward			
	C) 0 III/S		D) 9.6 m/s downward			
124)	A bullet shot straight up re	eturns to its starting point	in 10 s What is the init	ial speed of th	ie.	124)
124)	bullet, assuming negligible	~ -	iii 10 3. What is the line	iai speed of th	ic	124)
	A) 49 m/s	B) 25 m/s	C) 98 m/s	D) 9.8 m/s		
	11) 17 11(5	<i>b)</i> 2 0 H40	C) >0 III, 5	2) 5.0 1140		
125)	A ball is thrown straight up	p with a speed of 36 m/s.	How long does it take t	o return to its		125)
,	starting point, assuming ne		O			/
	A) 11 s		C) 7.3 s	D) 3.7 s		
	,	,	,	,		
126)	A ball is thrown downwar	d from the top of a buildi	ng with an initial speed o	of 25 m/s. It s	trikes	126)
•	the ground after 2.0 s. Ho	w high is the building, as	ssuming negligible air res	sistance?		·
	A) 50 m	B) 70 m	C) 20 m	D) 30 m		
SHORT A	ANSWER. Write the word	l or phrase that best com	pletes each statement or	answers the c	question	•
127)	A ball is thrown straight up	p with a speed of 30 m/s,	and air resistance is negli	igible.	127)	
	(a) How long does it take to		_			
	(b) What is the maximum h		?			
	(c) What is its speed after 4	4.2 s?				
4.50)					<i>(</i> 1)	
						iswers to
	negligible.					ırt (c).
	(a) Calculate the time requi		· ·	201203	ain	
	(b) Calculate the maximum	n neight reached by the ba	all above the point where	it hit the	why	
	bat.	andei de theo 1: -11 :-	sint OF my shares of the state	anda arra 10	ther	
	(c) Determine the times at	writch the ball passes a po	ome 25 m above the point	wnere it	e are	
	was hit by the bat.				two	

TIPLE CHOICE	. Choose the one alterna	tive that best comp	letes the statement o	r answers the quest	tion.
	ojected upward at time $t =$	-		-	129) _
The ball ris	es and then falls with insig	nificant air resistan	ce, missing the roof, a	and strikes the	·
	e initial velocity of the ball				
	rection. At time $t = 5.97 \mathrm{s}$,				
A) -12 m		C) +175 m/s.	D) +12 m/s.	E) 0 m/s.	
71) 12 11	5. b) 175 Hq5.	C) 175 Hys.	D) +12 111/3.	L) 0 H(3.	
130) A ball is pr	ojected upward at time $t =$	0 s, from a point on	a flat roof 90 m abo	ve the ground.	130) _
The ball ris	es and then falls with insig	nificant air resistan	ce, missing the roof, a	and strikes the	
ground. Th	e initial velocity of the ball	is 80.5 m/s. Consider	der all quantities as po	ositive in the	
upward dii	ection. The vertical velocit	v of the ball when i	t is $89 \mathrm{m}$ above the g	round is closest to	
A) -32 m		C) -64 m/s.	D) -48 m/s.	E) -97 m/s.	
,	-, -, -, -, -, -, -, -, -, -, -, -, -, -	J) 0 2 32401	_ /		
131) A test rocke	et at ground level is fired s	traight up from rest	with a net upward a	cceleration of 20	131)
m/s ² . After	4.0 s, the motor turns off b	out the rocket contin	ues to coast upward	with insignificant	
	ce. What maximum elevati			-	
A) 490 m	B) 330 m	C) 160 m	D) 410 m	E) 320 m	
					40-1
	et is launched vertically fro	· ·		· ·	132)
	onstant upward acceleratio				
	nas risen to 64 m and acqu				
	insignificant air resistance			•	
	ground. The time interval	during which the ro	ocket engine provided	l the upward	
	n, is closest to	O) 1.0	5)	T) • 1	
A) 2.3 s.	B) 1.5 s.	C) 1.9 s.	D) 1.7 s.	E) 2.1 s.	
133) A tov rocke	et is launched vertically fro	m ground level at ti	t = 0.00 s The roo	ket engine	133)
	onstant upward acceleration	_		_	100) _
	nas risen to 81 m and acqu				
	insignificant air resistance	•	•		
	ground. The upward accel			C .	
A) 9.9 m	-	$^{\rm C)}$ 8.7 m/ $^{\rm S}$ 2.			
9.9 m	9.6 m/s.	9,8.7 m/s.	2) 9.3 m/s.	² / 9.0 m/ ³ .	
134) A tov rocke	et is launched vertically fro	m ground level at ti	t = 0 s. The rocke	t engine provides	134)
	ward acceleration during	0			101)
	49.0 m and acquired an	•	Production of the Control of the Con		
	ificant air resistance in unp	1			
	. The maximum height rea		0	, and rans back to	
A) 209 m	-	C) 256 m.	D) 244 m.	E) 221 m.	
, ====	,	,	,	,	
135) A rock is projected upward from the surface of the Moon, at time $t = 0$ s, with an upward					
velocity of	30.0 m/s. The acceleration of	due to gravity at the	surface of the Moon	is 1.62 m/s^2 , and	
•	as no atmosphere. The hei				
m/s is close	-	-		-	
A) 115 m	. B) 154 m.	C) 135 m.	D) 145 m.	E) 125 m.	
136) A ball is the	own straight upward fron	n ground level with	a speed of 18 m/s. H	ow much time	136) _
	re the ball strikes the grou				

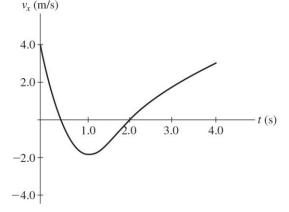
	ANSWER. Write the A rock is thrown dire meters tall. The rock is ground 4.00 seconds a magnitude 9.80 m/s ² rock thrown?	ctly upward from th misses the building of after being thrown.	ne edge of a flat roof on its way down, and Take the acceleration	of a building that is d is observed to strik n due to gravity to ha	56.3 137) ee the eve	
138)	A package is dropped 8.0 s before the package when it was released?	ge strikes the groun	d, how high above t	rd at ^{15 m/s.} If it tak he ground was the p	es 138) ackage	
139)	At the same moment, velocity of ²⁹ m/s fro the thrown rock strike	om the top of a build	ing that is $^{300\mathrm{m}}$ tal			
MULTIP	LE CHOICE. Choose	e the one alternative	that best completes	s the statement or an	swers the auesti	on.
	An object is dropped					140)
110)	reach the water 20 m Neglect air resistance	below at the same ir	•		•	
	A) 9.9 m/s	B) 21 m/s	C) 20 m/s	D) 15 m/s	E) 4.9 m/s	
141)	To determine the heigtime it takes for it to be resistance.	nit the water. If the ti	ime is 2.3 s, what is t	he height of the brid	ge? Neglect air	141)
	A) 32 m	B) 14 m	C) 10 m	D) 52 m	E) 26 m	
142)	To determine the heigtime it takes for it to his stone to hit the water. A) 2.6 s	nit the water. If the h	eight of the bridge i	•		142)
143)	An astronaut stands b	•			•	143)
	m/s^2 and there is no a					
	time it takes for it to h			-		
	A) 26 m	B) 32 m	C) 14 m	D) 38 m	E) 10 m	
144)	An astronaut stands by m/s ² and there is no at time it takes for it to be the rock to fall to the A) 32.1 s	nir. To determine the nit the bottom. If the	depth of the crater, depth of the crater i	she drops a rock and	d measures the	144)
		_			_	
145)	An object is thrown u of 7.0 m on the way	up? Neglect air resis	stance.			145)
	A) 3.1 s	B) 2.4 s	C) 1.2 s	D) 0.52 s	E) 4.2 s	
146)	An object is thrown u 4.0 m above the proje	-		-	ach a height of	146)
	A) 1.2 s	B) 4.2 s	C) 3.1 s	D) 0.42 s	E) 2.3 s	

C) 1.8 s

D) 1.1 s

A) 3.7 s

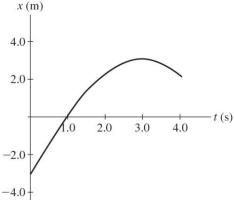
B) 0.6 s

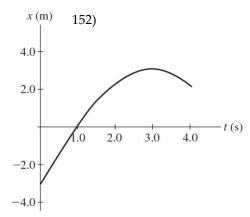

- 147) To determine the height of a flagpole, Abby throws a ball straight up and times it. She sees that the ball goes by the top of the pole after 0.50 s and then reaches the top of the pole again after a total elapsed time of 4.1 s. How high is the pole above the point where the ball was launched? Neglect air resistance.
- 147) _____

- A) 26 m
- B) 10 m
- C) 13 m
- D) 18 m
- E) 16 m
- 148) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.50 s and reaches the level of the top of the pole after a total elapsed time of 4.1 s. What was the speed of the ball at launch? Neglect air resistance.
- 148) _____

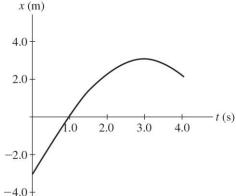
- A) 45 m/s
- B) 23 m/s
- C) 48 m/s
- D) 11 m/s
- E) 34 m/s
- 149) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.50 s and reaches the level of the top of the pole after a total elapsed time of 4.1 s. What was the speed of the ball at as it passed the top of the flagpole? Neglect air resistance.
- 149) _____

- A) 16 m/s
- B) 33 m/s
- C) 18 m/s
- D) 29 m/s
- E) 6.4 m/s
- SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
 - 150) The graph in the figure represents the velocity of a particle as it travels along the x-axis. What is the average acceleration of the particle between t = 2.0 s and t = 4.0 s?

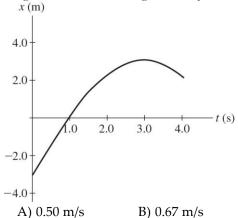



151) The graph in the figure shows the position of a particle as a function of time as it travels along the *x*-axis.

- (a) What is the average speed of the particle between t = 2.0 s and t = 4.0 s?
- (b) What is the average velocity of the particle between t = 2.0 s and t = 4.0 s?



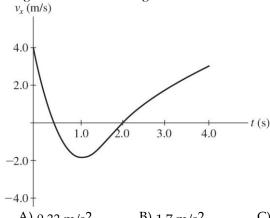
- 152) The graph in the figure shows the position of a particle as a function of time as it travels along the *x*-axis.
 - (a) What is the magnitude of the average velocity of the particle between t = 1.0 s and t = 4.0 s?
- (b) average speed Wha of the particle t is between t = 1.0 the s and t = 4.0 s?


153) The graph in the figure shows the position of a particle as it travels along the x-axis. What is the magnitude of the instantaneous velocity of the particle when t = 1.0 s?

153) _____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

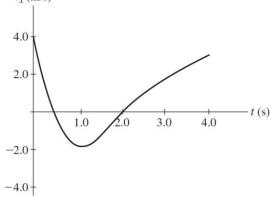
154) The graph in the figure shows the position of a particle as it travels along the x-axis. What is the magnitude of the average velocity of the particle between t = 1.0 s and t = 4.0 s?



- m/s C) 0.25 m/s
- D) 1.3 m/s
- E) 1.0 m/s
- 155) The graph in the figure shows the position of a particle as it travels along the x-axis. What is the magnitude of the average speed of the particle between t = 1.0 s and t = 4.0 s?

- A) 1.3 m/s
- B) 0.25 m/s
- C) 0.67 m/s
- D) 1.0 m/s
- E) 0.50 m/s

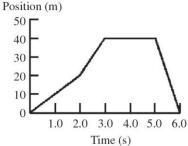
156)


156) The graph in the figure shows the velocity of a particle as it travels along the x-axis. What is the magnitude of the average acceleration of the particle between t = 1.0 s and t = 4.0 s?

- A) 0.33 m/s^2
- B) 1.7 m/s^2
- C) 3.0 m/s^2
- D) 2.5 m/s^2
- E) 2.0 m/s^2

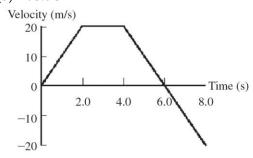
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 157) The graph in the figure shows the velocity of a particle as it travels along the x-axis. (a) 157) In what direction (+x or -x) is the acceleration at t = 0.5 s?
 - (b) In what direction (+x or -x) is the acceleration at t = 3.0 s?
 - (c) What is the average acceleration of the particle between t = 2.0 s and t = 4.0 s?
 - (d) At what value of t is the instantaneous acceleration equal to 0 m/s^2 ? v_x (m/s)

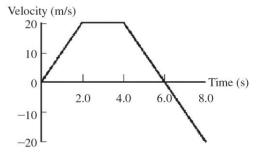

- 158) The figure shows a graph of the position of a moving object as a function of time. What is the velocity of the object at each of the following times?
 - (a) At t = 1.0 s
 - (b) At t = 2.5 s

- (c) (d) At t = 5.5 s
- At t = 4.0
- s

Time (s)


- 159) The figure shows a graph of the position of a moving object as a function of time.
- 159) _____

- (a) What is the average velocity of the object from t = 0 s to t = 4.0 s?
- (b) What is the average velocity of the object from t = 0 s to t = 6.0 s?


- 160) The figure shows a graph of the velocity of an object as a function of time. What is the acceleration of the object at the following times?
- 160) _____

- (a) At 1.0 s
- (b) At 3.0 s

- 161) The figure shows a graph of the velocity of an object as a function of time. What is the average acceleration of the object over the following time intervals?
- 161) _____

- (a) From t = 0 s to t = 5.0 s
- (b) From t = 0 s to t = 8.0 s

- 1) A
- 2) C, D
- 3) D
- 4) A
- 5) B, E
- 6) A
- 7) B
- 8) B
- 9) D
- 10) B
- 11) B
- 12) B
- 13) D
- 14) A
- 15) A
- 16) A
- 17) D
- 18) A, B, D
- 19) D
- 20) C
- 21) A
- 22) E
- 23) C
- 24) C
- 25) C
- 26) E
- 27) A
- 28) E
- 29) E
- 30) B
- 31) B
- 32) B
- 33) D
- 34) C
- 35) D
- 36) A
- 37) C
- 38) B
- 39) C
- 40) C
- 41) A
- 42) B
- 43) D
- 44) A 45) D
- 46) D, E
- 47) (a) J (b) I
- 48) C
- 49) B
- 50) B
- 51) B

```
52) (a) 10.5 km
                      (b) 2.50 km south
 53) A
 54) D
 55) D
 56) A
 57) B
 58) (a) 0 m/s
                    (b) 4 \text{ m/s}
 59) D
 60) A
 61) C
 62) D
 63) C
 64) D
 65) (a) 67 m/s
                     (b) 0 \text{ m/s}
 66) 117 ms
 67) (a) 5.25 km/h
                        (b) 1.25 km/h south
 68) B
 69) E
 70) C
 71) E
 72) 49 ft
 73) 20 seconds
 74) 0.00 m/s
 75) 1500 m/s<sup>2</sup>
 76) D
 77) 35 days
 78) D
 79) C
 80) C
 81) 5.6 s
82) (a) 1.00 \times 10^2 s
                          (b) 62.5 m/s
 83) (a) 39 m/s
                    (b) 45 s
84) (a) 1.25 \times 10^6 \text{ m/s}^2
                              (b) 0.400 ms
 85) C
 86) A
 87) C
 88) B
 89) A
 90) B
 91) C
 92) D
 93) C
 94) B
 95) B
 96) (a) 4.9 s
                   (b) 60 m
                    (b) 225 m
                                   (c) 30.0 m/s
 97) (a) 15.0 s
 98) B
 99) C
100) A
101) A
102) C
103) D
```

```
104) C
105) B
106) E
107) *a) 4.4 m/s^2
                        (b) 120 m
108) C
109) E
110) C
111) B
112) E
113) B
114) A
115) B
116) B
117) 0.67 m/s<sup>2</sup>
118) A
119) D
120) B
121) A
122) A
123) D
124) A
125) C
126) B
127) (a) 3.1 s (b) 46 m
                           (c) 11 m/s
128) (a) 3.1 s
                  (b) 46 m
                                (c) 1.0 s and 5.1 s
     (d) One value for the ball traveling upward; one value for the ball traveling downward.
129) E
130) B
131) A
132) E
133) A
134) B
135) B
136) A
137) 5.53 m/s
138) 190 m
139) 2.4 s
140) D
141) E
142) C
143) B
144) E
145) D
146) E
147) B
148) B
149) C
150) 1.5 m/s<sup>2</sup>
151) (a) 1.0 m/s
                     (b) 0 \text{ m/s}
152) (a) 0.67 m/s
                      (b) 1.3 m/s
153) 3.0 m/s
154) B
```

```
155) A

156) B

157) (a) -x (b) +x (c) 1.5 \text{ m/s}^2 (d) 1.0 \text{ s}

158) (a) 10 \text{ m/s} (b) 20 \text{ m/s} (c) 0 \text{ m/s} (d) -40 \text{ m/s}

159) (a) 10 \text{ m/s} (b) 0 \text{ m/s}

160) (a) 10 \text{ m/s}^2 (b) 0 \text{ m/s}^2

161) (a) 2.0 \text{ m/s}^2 (b) -2.5 \text{ m/s}^2
```