2.1 Introduction to Variables

CHAPTER 2 UNDERSTANDING VARIABLES AND SOLVING EQUATIONS

2.1 Introduction to Variables

2.1 Margin Exercises

1. c + 15

The expression is c + 15.

The variable is \underline{c} . It represents the class limit.

The constant is 15.

2. (a) Evaluate the expression c + 3 when c is 25.

$$c+3$$
 Replace c with 25. $\underbrace{25+3}_{28}$

Order 28 books.

(b) Evaluate the expression c + 3 when c is 60.

$$c+3$$
 Replace c with 60. $\underbrace{60+3}_{63}$

Order 63 books.

3. (a) Evaluate the expression 4s when s is 3 feet.

The perimeter of the square table is 12 feet.

(b) Evaluate the expression 4s when s is 7 miles.

The perimeter of the square park is 28 miles.

4. Evaluate the expression $100 + \frac{a}{2}$ when a is 40.

$$100 + \frac{a}{2}$$
 Replace a with 40.
 $100 + \frac{40}{2}$ Divide.
 $100 + 20$ Add.

The approximate systolic blood pressure is 120.

5. (a) Evaluate the expression $\frac{t}{g}$ when t is 532 and g is 4.

$$\frac{t}{g}$$
 Replace t with $\underline{532}$ and g with $\underline{4}$. $\frac{532}{4}$ Divide. $\underline{133}$

Your average score is 133.

(b)	Value	Value	Expression
	of x	of y	x - y
	16	10	16 - 10 is 6
	100	5	100 - 5 is 95
	3	7	3 - 7 is -4
	8	0	8 - 0 is 8

6. (a) Multiplying any number *a* by 0 gives a product of 0.

Any number	times	zero		
\downarrow	\downarrow	\downarrow		
a	•	0	=	0

(b) Changing the grouping of addends (a, b, c) does not change the sum.

$$(a+b) + c = a + (b+c)$$

7. (a) x^5 can be written as $x \cdot \underline{x} \cdot \underline{x} \cdot \underline{x} \cdot \underline{x} \cdot \underline{x}$ \underline{x} is used as a factor 5 times.

(b) $4a^2b^2$ can be written as $4 \cdot \underline{a} \cdot \underline{a} \cdot \underline{b} \cdot \underline{b}$

(c) $-10xy^3$ can be written as $-10 \cdot x \cdot y \cdot y \cdot y$

(d) s^4tu^2 can be written as $s \cdot s \cdot s \cdot s \cdot t \cdot u \cdot u$

8. (a) y^3 means

$$y \cdot y \cdot y$$
 Replace y with -5 .
$$\underbrace{-5 \cdot (-5)}_{-125} \cdot (-5)$$
 Multiply left to right.

(b) r^2s^2 means

 $r \cdot r \cdot s \cdot s$ Replace r with 6 and s with 3. $6 \cdot 6 \cdot 3 \cdot 3$ Multiply left to right. $36 \cdot 3 \cdot 3$ $108 \cdot 3$ 324

(c) $10xy^2$ means

$$\begin{array}{ccc}
10 \cdot x \cdot y \cdot y & Replace x \text{ with } 4 \\
& and y \text{ with } -3. \\
\underline{10 \cdot 4} \cdot (-3) \cdot (-3) & Multiply \text{ left to right.} \\
\underline{40 \cdot (-3)} \cdot (-3) & \\
\underline{-120 \cdot (-3)} & \\
& 360
\end{array}$$

(d) $-3c^4$ means

$$\begin{array}{rcl}
-3 \cdot c \cdot c \cdot c \cdot c & Replace \ c \ with \ 2. \\
\underline{-3 \cdot 2} \cdot 2 \cdot 2 \cdot 2 & Multiply \ left \ to \ right. \\
\underline{-6 \cdot 2} \cdot 2 \cdot 2 & \\
\underline{-12 \cdot 2} \cdot 2 & \\
\underline{-24 \cdot 2} & \\
\underline{-48} & \end{array}$$

Copyright © 2014 Pearson Education, Inc.

2.1 Section Exercises

- 1. c+4 c is the variable; 4 is the <u>constant</u>.
- 2. d+6 \underline{d} is the variable; 6 is the constant.
- 3. -3+m m is the variable; -3 is the constant.
- 4. -4+n *n* is the variable; -4 is the constant.
- 5. 5h h is the variable; 5 is the coefficient.
- 6. 3s s is the variable; 3 is the coefficient.
- 7. 2c-10 c is the variable; 2 is the coefficient. 10 is the constant.
- 8. 6b-1 b is the variable; 6 is the coefficient. 1 is the constant.
- 9. x-y Both x and y are variables.
- **10.** xy Both x and y are variables.
- 11. -6g + 9 g is the variable; -6 is the coefficient; 9 is the constant.
- 12. -10k + 15 k is the variable; -10 is the coefficient; 15 is the constant.
- 13. Expression (rule) for ordering robes: q + 10
 - (a) Evaluate the expression when there are 654 graduates.

g+10 Replace g with 654. 654+10 Follow the rule and add. 664 robes must be ordered.

(b) Evaluate the expression when there are 208 graduates.

g+10 Replace g with 208. 208+10 Follow the rule and add. 218 robes must be ordered.

- (c) Evaluate the expression when there are 95 graduates.
 - g+10 Replace g with 95. 95+10 Follow the rule and add. 105 robes must be ordered.

- **14.** Expression (rule) for degrees: c + 37
 - (a) 45 + 37 is 82 degrees.
 - **(b)** 33 + 37 is 70 degrees.
 - (c) 58 + 37 is 95 degrees.
- **15.** Expression (rule) for finding perimeter of an equilateral triangle of side length s: 3s
 - (a) Evaluate the expression when s, the side length, is 11 inches.

3s Replace s with 11.

3•11 Follow the rule and multiply.

33 inches is the perimeter.

(b) Evaluate the expression when s, the side length, is 3 feet.

3s Replace s with 3. 3·3 Follow the rule and multiply. 9 feet is the perimeter.

- **16.** Expression (rule) for perimeter: 5s
 - (a) $5 \cdot 25$ meters is 125 meters.
 - **(b)** 5 8 inches is 40 inches.
- 17. Expression (rule) for ordering brushes: 3c 5
 - (a) Evaluate the expression when c, the class size, is 12.

3c-5 Replace c with 12. $3 \cdot 12 - 5$ Multiply before subtracting. 36-5

- 31 brushes must be ordered.
- **(b)** Evaluate the expression when c, the class size, is 16.

3c - 5 Replace c with 16. $3 \cdot 16 - 5$ Multiply before subtracting.

- 43 brushes must be ordered.
- **18.** Expression (rule) for ordering doughnuts: 2n-4
 - (a) $2 \cdot 13 4$ is 22 doughnuts must be ordered.
 - **(b)** $2 \cdot 18 4$ is 32 doughnuts must be ordered.
- 19. Expression (rule) for average test score, where p is the total points and t is the number of tests: p/t
 - (a) Evaluate the expression when p, the total points, is 332 and t, the number of tests, is 4.

 $\frac{p}{t}$ Replace p with 332 and t with 4. $\frac{332}{4}$ Follow the rule and divide. 83 points is the average test score.

(b) Evaluate the expression when p, the total points, is 637 and t, the number of tests, is 7.

 $\frac{p}{t}$ Replace p with 637 and t with 7. $\frac{637}{7}$ Follow the rule and divide. 91 points is the average test score.

- **20.** Expression (rule) for buses: $\frac{p}{b}$
 - (a) $\frac{176}{44}$ is 4 buses.
 - **(b)** $\frac{72}{36}$ is 2 buses.

21.	Value	Expression	Expression
	of x	x + x + x + x	4x
	12	12 + 12 + 12 + 12 is 48	4 • 12 is 48
	0	0 + 0 + 0 + 0 is 0	4 • 0 is 0
	-5	-5 + (-5) + (-5) + (-5) is -20	$4 \cdot (-5)$ is -20

22.	Value	Expression	Expression
	of y	3y	y + 2y
	10	3(10) is 30	10 + 2(10) is
	10		10 + 20, or 30
	-3	3(-3) is -9	-3 + 2(-3) is
			-3 + (-6), or -9
	0	3(0) is 0	0 + 2(0) is
	U		0 + 0, or 0

23.	Value	Value	Expression
	of x	of y	-2x+y
	-4	5	-2(-4) + 5 is $8 + 5$, or 13
	-6	-2	-2(-6) + (-2)
	O	2	is $12 + (-2)$, or 10
	0	-8	-2(0) + (-8) is
			0 + (-8), or -8

24.	Value	Value	Expression
	of x	of y	-2xy
	-4	5	$-2 \cdot (-4) \cdot 5 \text{ is } 40$
	-6	-2	$-2 \cdot (-6) \cdot (-2)$ is -24
	0	-8	$-2 \cdot 0 \cdot (-8) \text{ is } 0$

- **25.** A variable is a letter that represents the part of a rule that varies or changes depending on the situation. An expression expresses, or tells, the rule for doing something. For example, c+5 is an expression, and c is the variable.
- **26.** The number part in a multiplication expression is the coefficient. For example, 4 is the coefficient in 4s. A constant is a number that is added or subtracted in an expression. It does not vary. For example, 5 is the constant in c+5.

27. Multiplying a number by 1 leaves the number unchanged. Let *b* represent "a number."

$$b \cdot 1 = b$$
 or $1 \cdot b = b$

28. Adding 0 to any number leaves the number unchanged. Let *b* represent "any number."

$$b + 0 = b$$
 or $0 + b = b$

29. Any number divided by 0 is undefined. Let *b* represent "any number."

$$\frac{b}{0}$$
 is undefined or $b \div 0$ is undefined.

30. Multiplication distributes over addition. Let a, b, and c represent variables.

$$a(b+c) = a \cdot b + a \cdot c$$

31. c^6 written without exponents is

$$c \cdot c \cdot c \cdot c \cdot c \cdot c \cdot c$$

32. d^7 written without exponents is

$$d \cdot d \cdot d \cdot d \cdot d \cdot d \cdot d$$

33. x^4y^3 written without exponents is

$$x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y$$

34. c^2d^5 written without exponents is

$$c \cdot c \cdot d \cdot d \cdot d \cdot d \cdot d$$

35. $-3a^3b$ can be written as $-3 \cdot a \cdot a \cdot a \cdot b$. The exponent 3 applies only to the base a.

36. $-8m^2n$ can be written as $-8 \cdot m \cdot m \cdot n$. The exponent 2 applies only to the base m.

37. $9xy^2$ can be written as $9 \cdot x \cdot y \cdot y$. The exponent 2 applies only to the base y.

38. $5ab^4$ can be written as $5 \cdot a \cdot b \cdot b \cdot b \cdot b$. The exponent 4 applies only to the base b.

39. $-2c^5d$ can be written as $-2 \cdot c \cdot c \cdot c \cdot c \cdot c \cdot c \cdot d$. The exponent 5 applies only to the base c.

40. $-4x^3y$ can be written as $-4 \cdot x \cdot x \cdot x \cdot y$. The exponent 3 applies only to the base x.

41. a^3bc^2 can be written as $a \cdot a \cdot a \cdot b \cdot c \cdot c$. The exponent 3 applies only to the base a. The exponent 2 applies only to the base c.

42. x^2yz^6 can be written as $x \cdot x \cdot y \cdot z \cdot z \cdot z \cdot z \cdot z \cdot z \cdot z$. The exponent 2 applies only to the base x. The exponent 6 applies only to the base z.

43. Evaluate t^2 when t is -4.

$$t^2$$
 means
$$\underbrace{t \cdot t}_{16} \quad \begin{array}{c} Replace \ t \ with \ -4. \\ \underline{-4 \cdot (-4)}_{16} \end{array} \quad \begin{array}{c} Multiply. \end{array}$$

44.
$$r^2 = r \cdot r$$
 • Replace r with -3 . $-3 \cdot (-3) = 9$

45. Evaluate
$$rs^3$$
 when r is -3 and s is 2 .

$$rs^3$$
 means $r \cdot s \cdot s \cdot s$ Replace r with -3 and s with 2 .
$$-3 \cdot 2 \cdot 2 \cdot 2$$
 Multiply left to right.
$$-6 \cdot 2 \cdot 2$$

$$-12 \cdot 2$$

$$-24$$

46.
$$s^4t = s \cdot s \cdot s \cdot s \cdot t$$
 Replace s with 2 and t with -4 .

$$2 \cdot 2 \cdot 2 \cdot 2 \cdot (-4) = -64$$

47. Evaluate 3rs when r is -3 and s is 2.

3rs means $3 \cdot r \cdot s$ Replace r with -3 and s with 2. $3 \cdot (-3) \cdot 2$ Multiply left to right.

48. 6st • Replace s with 2 and t with -4.

$$6 \cdot 2 \cdot (-4) = -48$$

49. Evaluate $-2s^2t^2$ when s is 2 and t is -4.

$$-2s^2t^2 \text{ means}$$

$$-2 \cdot s \cdot s \cdot t \cdot t$$

$$-2 \cdot 2 \cdot (-4) \cdot (-4)$$

$$-4 \cdot 2 \cdot (-4) \cdot (-4)$$

$$-8 \cdot (-4) \cdot (-4)$$

$$32 \cdot (-4)$$

$$128$$

50. $-4rs^4 = -4 \cdot r \cdot s \cdot s \cdot s \cdot s$ Replace r with -3 and s with 2.

$$-4 \cdot (-3) \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 192$$

51. Evaluate $r^2 s^5 t^3$ when r is -3, s is 2, and t is -4, using a calculator.

$$r^2s^5t^3$$
 Replace r with -3 , s with 2 , and t with -4 .

 $(-3)^2(2)^5(-4)^3$ Use the y^x key.

 $(9)(32)(-64)$ Multiply left to right.

 $(288)(-64)$
 $-18,432$

52. $r^3 s^4 t^2$ • Use a calculator. Replace r with -3, s with 2, and t with -4.

$$(-3)^3(2)^4(-4)^2 = (-27)(16)(16) = -6912$$

53. Evaluate $-10r^5s^7$ when r is -3 and s is 2, using a calculator.

$$-10r^{5}s^{7}$$

$$-10\left(-3\right)^{5} \quad (2)^{7}$$

$$-10\left(-243\right)(128)$$

$$2430(128)$$

$$311.040$$
Replace r with -3 and s with 2 .

Use the y^{x} key.

Multiply left to right.

54. $-5s^6t^5$ • Use a calculator. Replace s with 2 and t with -4.

$$-5(2)^6(-4)^5 = -5(64)(-1024) = 327,680$$

55. Evaluate |xy| + |xyz| when x is 4, y is -2, and z is -6.

56.
$$x + |y^2| + |xz| = x + |y \cdot y| + |x \cdot z|$$

Replace x with 4, y with -2, and z with -6.

$$4 + |-2 \cdot (-2)| + |4 \cdot (-6)| = 4 + |4| + |-24|$$

= 4 + 4 + 24
= 32

57. Evaluate $\frac{z^2}{-3y+z}$ when z is -6 and y is -2.

$$\frac{z^2}{-3y+z}$$

$$\frac{(-6)^2}{-3(-2)+(-6)}$$
Replace z with -6
and y with -2 .
$$Follow the order of operations.$$
Numerator:
$$\frac{36}{0}$$

$$(-6)^2 = -6 \cdot (-6) = 36$$
Denominator:

-3(-2) + (-6) = 6 + (-6) = 0Undefined Division by 0 is undefined.

58. Evaluate
$$\frac{y^2}{x+2y}$$
 when x is 4 and y is -2 .

$$\frac{y^2}{x+2 \cdot y} \qquad \begin{array}{c} \textit{Replace x with 4} \\ \textit{and y with } -2. \end{array}$$

$$\frac{(-2)^2}{4+2 \cdot (-2)}$$
 Follow the order of operations.

$$\frac{4}{0} \qquad (-2)^2 = -2 \cdot (-2) = 4$$
Denominator:
$$4 + 2 \cdot (-2) = 4 + (-4) = 0$$

Undefined Division by 0 is undefined.

Relating Concepts (Exercises 59–60)

- 59. (a) Evaluate $\frac{s}{5}$ when s is 15 seconds. $\frac{s}{5} \qquad Replace \ s \ with \ 15.$ $\frac{15}{5} \qquad Divide.$ 3 miles
 - **(b)** Evaluate $\frac{s}{5}$ when s is 10 seconds. $\frac{\frac{s}{5}}{5} \quad Replace \ s \ with \ 10.$ $\frac{10}{5} \quad Divide.$ 2 miles
 - (c) Evaluate $\frac{s}{5}$ when s is 5 seconds. $\frac{s}{5}$ Replace s with s. $\frac{s}{5}$ Divide. 1 mile
- **60.** (a) Using part (c) of Exercise 59, the distance covered in $2\frac{1}{2}$ seconds is half of the distance covered in 5 seconds, or $\frac{1}{2}$ mile.
 - **(b)** Using part (a) of Exercise 59, the time to cover $1\frac{1}{2}$ miles is half the time to cover 3 miles, or $7\frac{1}{2}$ seconds. Or, using parts (b) and (c), find the number halfway between 5 seconds and 10 seconds
 - (c) Using parts (a) and (b) of Exercise 59, find the number halfway between 10 seconds and 15 seconds; that is $12\frac{1}{2}$ seconds.

2.2 Simplifying Expressions

2.2 Margin Exercises

1. **(a)** $3b^2 + (-3b) + 3 + b^3 + b$

The like terms are -3b and b since the variable parts match; both are b.

The coefficients are -3 and 1.

(b)
$$-4xy + 4x^2y + (-4xy^2) + (-4) + 4$$

The like terms are the constants, -4 and 4. There are no variable parts.

(c)
$$5r^2 + 2r + (-2r^2) + 5 + 5r^3$$

The like terms are $5r^2$ and $-2r^2$ since the variable parts match; both are r^2 .

The coefficients are 5 and -2.

(d)
$$-10 + (-x) + (-10x) + (-x^2) + (-10y)$$

The like terms are -x and -10x since the variable parts match; both are x.

The coefficients are -1 and -10.

- 2. (a) 10b + 4b + 10b These are like terms. $\downarrow \qquad \downarrow \qquad \downarrow$ (10 + 4 + 10)b Add the coefficients. The variable part, b, stays the same.
 - (b) $y^3 + 8y^3$ These are like terms. $1y^3 + 8y^3$ Rewrite y^3 as $1y^3$. $(1+8)y^3$ Add the coefficients. $9y^3$ The variable part, y^3 , stays the same.
 - (c) -7n-n These are like terms. -7n-1n Rewrite n as 1n. -7n+(-1n) Change to addition. [-7+(-1)]n Add the coefficients. The variable part, n, stays the same.
 - (d) 3c 5c 4c These are like terms. 3c + (-5c) + (-4c) Change to addition. [3 + (-5) + (-4)]c Add the coefficients. The variable part, c, stays the same.
 - $\begin{array}{lll} \textbf{(e)} & -9xy + xy & \textit{These are like terms.} \\ & -9xy + 1xy & \textit{Rewrite xy as 1xy.} \\ & (-9+1)xy & \textit{Add the coefficients.} \\ & -8xy & \textit{stays the same.} \end{array}$
 - $\begin{array}{lll} \textbf{(f)} & -4p^2-3p^2+8p^2 & \textit{These are like terms.} \\ & -4p^2+(-3p^2)+8p^2 & \textit{Change to addition.} \\ & [-4+(-3)+8]p^2 & \textit{Add the coefficients.} \\ & 1p^2 & \text{or} & p^2 & \textit{stays the same.} \end{array}$
 - $\begin{array}{lll} \textbf{(g)} & ab-ab & These \ are \ like \ terms. \\ & 1ab-1ab & Rewrite \ ab \ as \ lab. \\ & 1ab+(-1ab) & Change \ to \ addition. \\ & [1+(-1)]ab & Add \ the \ coefficients. \\ & 0ab & Zero \ times \ anything \ is \ zero. \\ & 0 \end{array}$

- 3. (a) $3b^2 + 4d^2 + 7b^2$ $3b^2 + 7b^2 + 4d^2$ $(3+7)b^2 + 4d^2$ $10b^2 + 4d^2$ Rewrite using the commutative property.

 Add the coefficients.
 - (b) 4a+b-6a+b 4a+b+(-6a)+b Change to addition. 4a+(-6a)+b+b Rewrite using the commutative property. 4a+(-6a)+1b+1b Rewrite b as 1b. [4+(-6)]a+(1+1)b Add the coefficients of like terms.
 - (c) -6x+5+6x+2 -6x+6x+5+2 (-6+6)x+(5+2) 0x+7 0+7Rewrite using the commutative property.

 Add the coefficients of like terms.

 Zero times anything is zero.
 - (d) 2y 7 y + 7 2y + (-7) + (-y) + 7 Change to addition. 2y + (-7) + (-1y) + 7 Rewrite -y as -1y. 2y + (-1y) + (-7) + 7 Rewrite using the commutative prop. [2 + (-1)]y + (-7 + 7) Add the coefficients of like terms. 1y + 0
 - (e) -3x 5 + 12 + 10x -3x + (-5) + 12 + 10x Change to addition. -3x + 10x + (-5) + 12 Rewrite using the commutative prop. (-3 + 10)x + (-5 + 12) Add the coefficients of like terms.
- **4.** (a) 7(4c) means $7 \cdot (4 \cdot c)$. Using the associative property, it can be rewritten as

$$\underbrace{\begin{array}{c} (7 \cdot 4) \cdot c \\ \underline{28 \cdot c} \\ 28c \end{array}}$$

(b) $-3(5y^3)$ can be written as $\underbrace{(-3 \cdot 5) \cdot y^3}_{-15 \cdot y^3}$

 $[20 \cdot (-2)] \cdot c$

(c) 20(-2a) can be written as

$$\underbrace{\frac{[20 \cdot (-2)]}{-40 \cdot a}}_{-40a} \cdot a$$

- (d) -10(-x) Rewrite -x as -1x. -10(-1x) can be written as $\underbrace{[-10 \cdot (-1)]}_{10 \cdot x} \cdot x$ 10x
- 5. (a) 7(a+10) can be written as $\underbrace{7 \cdot a}_{7a} + \underbrace{7 \cdot 10}_{70}$
 - (b) 3(x-3) can be written as $\underbrace{3 \cdot x}_{3x} \underbrace{3 \cdot 3}_{9}$
 - (c) 4(2y+6) can be written as $4 \cdot 2y + \underbrace{4 \cdot 6}_{\underbrace{4 \cdot 2} \cdot y + 24}$ $\underbrace{8 \cdot y}_{\underbrace{8y} + 24}$
 - (d) -5(3b+2) $-5 \cdot 3b + (-5) \cdot 2$ -15b + (-10) Multiply. -15b - 10 Change addition to subtraction.
 - (e) -8(c+4) $-8 \cdot c + -8 \cdot 4$ -8c + (-32) Multiply. -8c - 32 Change addition to subtraction.
- 6. (a) -4+5(y+1) Distributive property $-4+5 \cdot y + 5 \cdot 1$ $-4+\underline{5y}+\underline{5}$ Rewrite using the commutative property. $\underline{-4+5}+5y \qquad \text{Combine constants.}$ $1+5y \quad \text{or} \quad \underline{5y+1}$
 - (b) 2(3w+4)-5 Distributive property $2 \cdot 3w + 2 \cdot 4 5$ Multiply. 6w + 8 - 5 Combine constants.

(c)
$$5(6x-2)+3x$$
 Distributive property $5 \cdot 6x - 5 \cdot 2 + 3x$ Multiply. $30x - 10 + 3x$ Change to addition.
 $30x + (-10) + 3x$ Rewrite using the commutative property.
 $30x + 3x + (-10)$

$$(30+3)x + (-10)$$
 Add the coefficients of like terms.
 $33x + (-10)$ or $33x - 10$

(d)
$$21 + 7(a^2 - 3)$$
 Distributive property $21 + 7 \cdot a^2 - 7 \cdot 3$ Multiply. $21 + 7a^2 - 21$ Change to addition. Rewrite using the commutative property. $21 + (-21) + 7a^2$ Combine constants. $0 + 7a^2$

$$-y+3(2y+5)-18 \qquad \text{Distributive property} \\ -y+\underbrace{3 \cdot 2y}_{} + \underbrace{3 \cdot 5}_{} -18 \qquad \text{Rewrite}_{} -y \text{ as}_{} -ly. \\ -1y+6y+15+(-18) \qquad \text{Change to addition.} \\ \underbrace{(-1+6)}_{} y+[15+(-18)] \qquad \text{Add the coefficients} \\ of \text{ like terms.} \\ \hline 5y+(-3) \quad \text{or}_{} \quad 5y-3$$

2.2 Section Exercises

- 1. $2b^2 + 2b + 2b^3 + b^2 + 6$ $2b^2$ and b^2 are the only like terms in the expression. The variable parts match; both are b^2 . The coefficients are $\underline{2}$ and $\underline{1}$.
- 2. $3x + x^3 + 3x^2 + 3 + 2x^3$ x^3 and $2x^3$ are like terms. The variable parts match; both are x^3 . The coefficients are 1 and 2.
- 3. $-x^2y + (-xy) + 2xy + (-2xy^2) xy$ and 2xy are the like terms in the expression. The variable parts match; both are xy. The coefficients are -1 and 2.
- **4.** $ab^2 + (-a^2b) + 2ab + (-3a^2b) a^2b$ and $-3a^2b$ are like terms. The variable parts match; both are a^2b . The coefficients are -1 and -3.
- 5. $7 + 7c + 3 + 7c^3 + (-4)$
 7, 3, and -4 are like terms. There are no variable parts; constants are considered like terms.
- **6.** $4d + (-5) + 1 + (-5d^2) + 4 5$, 1, and 4 are like terms. There are no variable parts; constants are considered like terms.

- 7. 6r + 6r These are like terms. $\downarrow \qquad \downarrow$ Add the coefficients. (6+6)rThe variable part, r, stays the same.
- 8. 4t + 10t These are like terms. $\downarrow \quad \downarrow$ Add the coefficients. (4+10)t The variable part, t,
- 9. $x^2 + 5x^2$ These are like terms. Rewrite x^2 as $1x^2$. $1x^2 + 5x^2$ Add the coefficients. $(1+5)x^2$

 $6x^2$ The variable part, x^2 , stays the same.

stays the same.

10.
$$9y^3 + y^3 = 9y^3 + 1y^3$$

= $(9+1)y^3$
= $10y^3$

- 11. p-5p These are like terms. Rewrite p as 1p. 1p-5p Change to addition. 1p+(-5p) Add the coefficients. [1+(-5)]p The variable part, p, stays the same.
- 12. n-3n = 1n + (-3n)= [1 + (-3)]n= -2n
- 13. $-2a^3 a^3$ These are like terms. Rewrite a^3 as $1a^3$. $-2a^3 - 1a^3$ Change to addition. $-2a^3 + (-1a^3)$ Add the coefficients. $[-2 + (-1)]a^3$ The variable part, a^3 , stays the same.
- 14. $-10x^2 x^2 = -10x^2 1x^2$ = $-10x^2 + (-1x^2)$ = $[-10 + (-1)]x^2$ = $-11x^2$
- 15. c c0 Any number minus itself is 0.
- 16. $b^2 b^2$ 0 Any number minus itself is 0.

17.
$$9xy + xy - 9xy$$
 These are like terms. Rewrite xy as 1xy. Change to addition.
$$9xy + 1xy + (-9xy)$$
 Add the coefficients.
$$[9+1+(-9)]xy$$

1xy or xy

The variable part, xy, stays the same.

18.
$$r^2s - 7r^2s + 7r^2s = 1r^2s + (-7r^2s) + 7r^2s$$

= $[1 + (-7) + 7]r^2s$
= $1r^2s$ or r^2s

19.
$$5t^4 + 7t^4 - 6t^4$$
 These are like terms. Change to addition. $5t^4 + 7t^4 + (-6t^4)$ Add the coefficients. $[5 + 7 + (-6)]t^4$ The variable part, t^4 , stays the same.

20.
$$10mn - 9mn + 3mn = 10mn + (-9mn) + 3mn$$

= $[10 + (-9) + 3]mn$
= $4mn$

21.
$$y^2 + y^2 + y^2 + y^2$$
 These are like terms. Write in the under-
$$1y^2 + 1y^2 + 1y^2 + 1y^2$$
 stood coefficients of 1.
$$(1+1+1+1)y^2$$
 Add the coefficients.
$$4y^2$$
 The variable part, y^2 , stays the same.

22.
$$a + a + a = 1a + 1a + 1a$$

= $(1 + 1 + 1)a$
= $3a$

These are like terms. Rewrite
$$-x$$
 as $-1x$ and x as $1x$.

$$-1x - 6x - 1x$$
 Change to addition.
$$-1x + (-6x) + (-1x)$$
 Add the coefficients.
$$[-1 + (-6) + (-1)]x$$

$$-8x$$
 The variable part, x , stays the same.

24.
$$-y - y - 3y = -1y - 1y - 3y$$

= $-1y + (-1y) + (-3y)$
= $[-1 + (-1) + (-3)]y$
= $-5y$

25.
$$8a + 4b + 4a$$
 Use the commutative property to rewrite the expression so that like terms are next to each other. $8a + 4a + 4b$ Add the coefficients of like terms. $(8+4)a + 4b$ The variable part, a, stays the same.

26.
$$6x + 5y + 4y = 6x + (5+4)y$$

= $6x + 9y$

27. 6+8+7rs Use the commutative property to put the constants at the end. 7rs+6+8 Add the coefficients of like terms. 7rs+14 The only like terms are constants.

28.
$$10 + 2c^2 + 15 = 2c^2 + 10 + 15$$

= $2c^2 + 25$

29.
$$a + ab^2 + ab^2$$
 Write in the understood coefficients of 1.
$$1a + 1ab^2 + 1ab^2$$
 Add the coefficients of like terms.
$$1a + (1+1)ab^2$$

$$1a + 2ab^2,$$
 The variable part, ab^2 , stays the same.
or $a + 2ab^2$

30.
$$n + mn + n = 1n + 1mn + 1n$$

= $1mn + 1n + 1n$
= $1mn + 2n$ or $mn + 2n$

Write in the understood coefficients of 1. Change to addition. Rewrite using the commutative property.
$$6x + (-8x) + 1y + 1y$$

$$6x + (-8x) + 1y + 1y$$

$$6x + (-8x) + 1y + 1y$$

$$[6 + (-8)]x + (1 + 1)y$$

$$-2x + 2y$$
Write in the understood coefficients of 1. Change to addition. Rewrite using the commutative property. Add the coefficients of like terms.

32.
$$d + 3c - 7c + 3d = 1d + 3c + (-7c) + 3d$$

= $3c + (-7c) + 1d + 3d$
= $[3 + (-7)]c + (1 + 3)d$
= $-4c + 4d$

33.
$$8b^2 - a^2 - b^2 + a^2$$
 Write in the understood coefficient of 1.
$$8b^2 - 1a^2 - 1b^2 + 1a^2$$
 Change to addition.
$$8b^2 + (-1a^2) + (-1b^2) + 1a^2$$
 Rewrite using the commutative property.
$$8b^2 + (-1b^2) + (-1a^2) + 1a^2$$
 Add the coefficients of like terms.
$$\underbrace{[8 + (-1)]b^2 + (-1 + 1)a^2}_{7b^2 + 0} + \underbrace{0 \cdot a^2}_{7b^2 + 0}$$

 $7h^2$

34.
$$5ab - ab + 3a^{2}b - 4ab$$

$$= 5ab + (-1ab) + 3a^{2}b + (-4ab)$$

$$= 5ab + (-1ab) + (-4ab) + 3a^{2}b$$

$$= [5 + (-1) + (-4)]ab + 3a^{2}b$$

$$= 0ab + 3a^{2}b$$

$$= 3a^{2}b$$

- **35.** $-x^3 + 3x 3x^2 + 2$ There are no like terms. The expression cannot be simplified.
- **36.** $a^2b 2ab ab^3 + 3a^3b$ There are no like terms. The expression cannot be simplified.
- 37. -9r+6t-s-5r+s+t-6t+5s-rWrite in the understood coefficients of 1. Change to addition. -9r+6t+(-1s)+(-5r)+1s+1t

$$-9r + 6t + (-1s) + (-5r) + 1s + 1t + (-6t) + 5s + (-1r)$$

Rewrite using the commutative property.

$$-9r + (-5r) + (-1r) + (-1s) + 1s + 5s + 6t + 1t + (-6t)$$

Add the coefficients of like terms.

$$\underbrace{[-9 + (-5) + (-1)]}_{-15r} r + \underbrace{(-1 + 1 + 5)}_{+} s + \underbrace{[6 + 1 + (-6)]}_{t} t$$

$$-15r + 5s + t$$

39. By using the associative property, we can write 3(10a) as

$$(3 \cdot 10) \cdot a = 30 \cdot a = 30a$$
.

So, 3(10a) simplifies to 30a.

40.
$$8(4b) = (8 \cdot 4)b$$

= $32b$

41. By using the associative property, we can write $-4(2x^2)$ as

$$(-4 \cdot 2) \cdot x^2 = -8 \cdot x^2 = -8x^2.$$

So, $-4(2x^2)$ simplifies to $-8x^2$.

42.
$$-7(3b^3) = (-7 \cdot 3)b^3$$

= $-21b^3$

43. By using the associative property, we can write $5(-4y^3)$ as

$$[5 \cdot (-4)] \cdot y^3 = -20 \cdot y^3 = -20y^3.$$

So, $5(-4y^3)$ simplifies to $-20y^3$.

44.
$$2(-6x) = [2 \cdot (-6)]x$$

= $-12x$

45. By using the associative property, we can write -9(-2cd) as

$$[-9 \cdot (-2)] \cdot c \cdot d = 18 \cdot c \cdot d = 18cd.$$

So, -9(-2cd) simplifies to 18cd.

46.
$$-6(-4rs) = [-6 \cdot (-4)]rs$$

= $24rs$

47. By using the associative property, we can write $7(3a^2bc)$ as

$$(7 \cdot 3) \cdot a^2 \cdot b \cdot c = 21 \cdot a^2 \cdot b \cdot c = 21a^2bc$$
.

So, $7(3a^2bc)$ simplifies to $21a^2bc$.

48.
$$4(2xy^2z^2) = (4 \cdot 2)xy^2z^2$$

= $8xy^2z^2$

49. -12(-w) Write in the understood coefficient of -1. -12(-1w) Rewrite using the associative property. $[-12 \cdot (-1)]w$ $12 \cdot w$ 12w

50.
$$-10(-k) = -10(-1k)$$

= $[-10 \cdot (-1)]k$
= $10k$

- **51.** 6(b+6) Distributive property $6 \cdot b + 6 \cdot 6 = 6b + 36$
- 52. 5(a+3) Distributive property $5 \cdot a + 5 \cdot 3$ 5a + 15
- 53. 7(x-1) Distributive property $7 \cdot x 7 \cdot 1$ 7x 7

54.
$$4(y-4) = 4 \cdot y - 4 \cdot 4 = 4y - 16$$

55. 3(7t+1) Distributive property $3 \cdot 7t + 3 \cdot 1$ 21t+3

56.
$$8(2c+5) = 8 \cdot 2c + 8 \cdot 5$$

= $16c + 40$

57. -2(5r+3) Distributive property $-2 \cdot 5r + (-2) \cdot 3$ Change addition

$$-10r + (-6)$$
 to subtraction of the opposite.

$$-10r - 6$$

Distributive property

58.
$$-5(6z+2) = -5 \cdot 6z + (-5) \cdot 2$$

= $-30z + (-10)$
or $-30z - 10$

59.
$$-9(k+4)$$
 Distributive property $-9 \cdot k + (-9) \cdot 4$ Change addition $-9k + (-36)$ to subtraction of the opposite. $-9k - 36$

60.
$$-3(p+7) = -3 \cdot p + (-3) \cdot 7$$

= $-3p + (-21)$
or $-3p - 21$

61.
$$50(m-6)$$
 Distributive property $50 \cdot m - 50 \cdot 6$ $50m - 300$

62.
$$25(n-1) = 25 \cdot n - 25 \cdot 1$$

= $25n - 25$

10 + 2(4y + 3)

63.

$$10 + 2 \cdot 4 \cdot y + 2 \cdot 3$$

$$10 + 8y + 6$$

$$8y + 10 + 6$$

$$8y + 16$$
Rewrite using the commutative property.
Combine like terms.

64.
$$4 + 7(x^2 + 3) = 4 + 7 \cdot x^2 + 7 \cdot 3$$

= $4 + 7x^2 + 21$
= $7x^2 + 25$

65.
$$6(a^2-2)+15$$
 Distributive property $6 \cdot a^2 - 6 \cdot 2 + 15$ $6a^2-12+15$ Combine like terms. $6a^2+3$

66.
$$5(b-4) + 25 = 5 \cdot b - 5 \cdot 4 + 25$$

= $5b - 20 + 25$
= $5b + (-20) + 25$
= $5b + 5$

67.
$$2+9(m-4)$$
 Distributive property $2+9 \cdot m-9 \cdot 4$ $2+9m-36$ Change to addition.
 $2+9m+(-36)$ Rewrite using the commutative property.
 $9m+2+(-36)$ Add the coefficients of like terms.
 $9m+(-34)$ Change addition to subtraction of the opposite.
 $9m-34$

68.
$$6+3(n-8) = 6+3 \cdot n - 3 \cdot 8$$

= $6+3n-24$
= $6+3n+(-24)$
= $3n+(-18)$ or $3n-18$

69.
$$-5(k+5)+5k$$
 Distributive property $-5 \cdot k + (-5) \cdot 5 + 5k$
 $-5k + (-25) + 5k$ Rewrite using the commutative property.

 $-5k + 5k + (-25)$ Add the coefficients of like terms.

 $(-5+5)k + (-25)$ Zero times any number is 0.

 $0k + (-25)$ Zero added to any number is the number

70.
$$-7(p+2) + 7p = -7 \cdot p + (-7) \cdot 2 + 7p$$

= $-7p + (-14) + 7p$
= $0p + (-14)$
= $0 + (-14)$
= -14

71.
$$4(6x-3)+12$$
 Distributive property $4 \cdot 6x - 4 \cdot 3 + 12$ $24x-12+12$ Change to addition. Combine like terms. $24x+(-12)+12$ Any number plus its opposite is 0. $24x+0$ $24x$

72.
$$6(3y-3) + 18 = 6 \cdot 3y - 6 \cdot 3 + 18$$

= $18y - 18 + 18$
= $18y + (-18) + 18$
= $18y$

73.
$$5+2(3n+4)-n$$
 Distributive property $5+2\cdot 3n+2\cdot 4-n$ Rewrite n as $1n$. $5+6n+8-1n$ Change to addition. $5+6n+8+(-1n)$ Rewrite using the commutative property. $5+8+6n+(-1n)$ Add the coefficients of like terms. $(5+8)+[6+(-1)]n$ $13+5n$ or $5n+13$

74.
$$8 + 8(4z + 5) - z = 8 + 8 \cdot 4z + 8 \cdot 5 - 1z$$

= $8 + 32z + 40 + (-1z)$
= $31z + 48$

75.
$$-p+6(2p-1)+5 \qquad \text{Distributive property} \\ -p+6 \cdot 2p-6 \cdot 1+5 \qquad \qquad \\ -p+12p-6+5 \qquad \begin{array}{c} \text{Rewrite}-p \text{ as }-lp. \\ \text{Change to addition.} \\ \text{Add the coefficients} \\ \text{of like terms.} \\ (-1+12)p+(-6+5) \qquad \qquad \\ 11p+(-1) \qquad \qquad \\ \text{Change addition to} \\ \text{subt. of the opposite.} \\ \end{array}$$

76.
$$-k + 3(4k - 1) + 2$$

 $= -1k + 3 \cdot 4k - 3 \cdot 1 + 2$
 $= -1k + 12k - 3 + 2$
 $= -1k + 12k + (-3) + 2$
 $= 11k + (-1)$ or $11k - 1$

77. A simplified expression usually still has variables, but it is written in a simpler way. When evaluating an expression, the variables are all replaced by specific numbers and the final result is a numerical answer.

78.
$$5(3x+2)$$
 $5(2+3x)$ $= 5 \cdot 3x + 5 \cdot 2$ $= 5 \cdot 2 + 5 \cdot 3x$ $= 15x + 10$ $= 10 + 15x$

The answers are equivalent because of the commutative property of addition.

- 79. Like terms have matching variable parts, that is, matching letters and exponents. The coefficients do not have to match. Examples will vary. Possible examples: $\ln -6x + 9 + x$, the terms -6x and x are like terms. $\ln 4k + 3 8k^2 + 10$, the terms 3 and 10 are like terms.
- **80.** Add the coefficients of like terms. If no coefficient is shown, it is assumed to be 1. Keep the variable part the same. Examples will vary.

81.
$$\underbrace{-2x + 7x}_{5x + 8} + 8$$

Keep the variable part unchanged when combining like terms. As shown above, the correct answer is 5x + 8.

82. In the last step, do not change the sign of the first term. The correct answer is -4a - 5.

83.
$$-4(3y) - 5 + 2(5y + 7)$$
 Distributive prop. $-4 \cdot 3y - 5 + 2 \cdot 5y + 2 \cdot 7$ Change subtraction to adding the opposite. Group like terms $-12y + (-5) + 10y + 14$ and add the coefficients.

$$\underbrace{-12y + 10y}_{-2y} + \underbrace{(-5) + 14}_{9}$$
$$-2y + 9$$

84.
$$6(-3x) - 9 + 3(-2x + 6)$$

= $-18x - 9 + 3 \cdot (-2x) + 3 \cdot 6$
= $-18x + (-9) + (-6x) + 18$
= $-24x + 9$

85.
$$-10 + 4(-3b + 3) + 2(6b - 1)$$

Distributive property
 $-10 + 4 \cdot (-3b) + 4 \cdot 3 + 2 \cdot 6b - 2 \cdot 1$
 $-10 + (-12b) + 12 + 12b - 2$

Change to addition.
 $-10 + (-12b) + 12 + 12b + (-2)$

Group like terms and add the coefficients.
 $-12b + 12b + -10 + 12 + (-2)$
 $0b + 0$

86.
$$12 + 2(4a - 4) + 4(-2a - 1)$$

$$= 12 + 2 \cdot 4a - 2 \cdot 4 + 4 \cdot (-2a) - 4 \cdot 1$$

$$= 12 + 8a - 8 + (-8a) - 4$$

$$= 12 + 8a + (-8) + (-8a) + (-4)$$

$$= 8a + (-8a) + 12 + (-8) + (-4)$$

$$= 0$$

87.
$$-5(-x+2) + 8(-x) + 3(-2x-2) + 16$$
Distributive property
 $-5 \cdot (-x) + (-5) \cdot 2 + 8 \cdot (-x) + 3 \cdot (-2x)$
 $-3 \cdot 2 + 16$
 $5x + (-10) + (-8x) + (-6x) - 6 + 16$
Change to addition.
 $5x + (-10) + (-8x) + (-6x) + (-6) + 16$
Group like terms and add the coefficients.
 $5x + (-8x) + (-6x) + (-6x) + (-6) + 16$
 $-9x + 0$

88.
$$-7(-y) + 6(y-1) + 3(-2y) + 6 - y$$

 $= 7y + 6y - 6 + (-6y) + 6 - y$
 $= 7y + 6y + (-6) + (-6y) + 6 + (-1y)$
 $= 7y + 6y + (-6y) + (-1y) + (-6) + 6$
 $= 6y$

Summary Exercises Variables and Expressions

1.
$$-10-m$$
 m is the variable;
or $-10-1m$ -1 is the coefficient;
 -10 is the constant.

2. -8cd c and d are the variables; -8 is the coefficient.

3. 6+4x x is the variable; 4 is the coefficient; 6 is the constant.

Copyright © 2014 Pearson Education, Inc.

- **4.** Expression (rule) for finding the perimeter of an octagon of side length s: 8s
 - (a) Evaluate the expression when s, the side length, is 4 yards.

8s Replace s with 4.

<u>8.4</u> *Follow the rule and multiply.*

32 yards is the perimeter.

(b) Evaluate the expression when s, the side length, is 15 inches.

8s Replace s with 15.

8.15, Follow the rule and multiply.

120 inches is the perimeter.

- **5.** Expression (rule) for finding the total cost of a car with down payment d, monthly payment m, and number of payments t: d + mt
 - (a) Evaluate the expression when the down payment is \$3000, the monthly payment is \$280, and the number of payments is 36.

d + mt

Replace d with \$3000, m with \$280, and t with 36.

 $\$3000 + \$280 \cdot 36$

Multiply before adding.

\$3000 + \$10,080

\$13,080 is the total cost of the car.

(b) Evaluate the expression when the down payment is \$1750, the monthly payment is \$429, and the number of payments is 48.

d + mt

Replace d with \$1750, m with \$429, and t with 48.

 $$1750 + $429 \cdot 48$

Multiply before adding.

$$$1750 + $20,592$$

\$22,342 is the total cost of the car.

6. ad^4 written without exponents is

$$a \cdot d \cdot d \cdot d \cdot d$$

7. b^3cd written without exponents is

$$b \cdot b \cdot b \cdot c \cdot d$$

8. $-7ab^5c^2$ written without exponents is

$$-7 \cdot a \cdot b \cdot b \cdot b \cdot b \cdot b \cdot c \cdot c$$

9. $w^4 = w \cdot w \cdot w \cdot w$ Replace w with 5.

 $5 \cdot 5 \cdot 5 \cdot 5$ Multiply left to right.

$$25 \cdot 5 \cdot 5$$

$$125 \cdot 5$$

625

10. 5xz Replace x with -2 and z with 0. If 0 is multiplied by any number, the result is 0. Thus, there is no need to make any calculations since the result is 0.

- 11. yz^2 Replace y with -6 and z with 0. If 0 is multiplied by any number, the result is 0. Thus, there is no need to make any calculations since the result is 0.
- 12. wxy Replace w with 5, x with -2, and y with -6

$$\underbrace{\frac{5 \cdot (-2) \cdot (-6)}{-10 \cdot (-6)}}_{60}$$
 Multiply left to right.

- 13. $x^3 = x \cdot x \cdot x$ Replace x with -2. $\underbrace{-2 \cdot (-2)}_{-8} \cdot (-2)$ Multiply left to right.
- 14. -4wy Replace w with 5 and y with -6. $\underbrace{-4 \cdot 5 \cdot (-6)}_{120} \cdot \underbrace{Multiply \ left \ to \ right}.$
- 15. $3xy^2 = 3 \cdot x \cdot y \cdot y$ Replace x with -2 and y with -6. $3 \cdot (-2) \cdot (-6) \cdot (-6)$ Multiply left to right. $-6 \cdot (-6) \cdot (-6)$ $36 \cdot (-6)$
- **16.** $w^2x^5 = w \cdot w \cdot x \cdot x \cdot x \cdot x \cdot x$ Replace w with 5 and x with -2. Multiply left to right.

$$\underbrace{\frac{5 \cdot 5 \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)}{25 \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)}_{-50 \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)}_{(-2) \cdot (-2) \cdot (-2) \cdot (-2)}_{(-200 \cdot (-2) \cdot (-2)$$

17. $-7wx^4y^3$ • Use a calculator. Replace w with 5, x with -2, and y with -6.

$$-7(5)(-2)^4(-6)^3 = -35(16)(-216) = 120,960$$

18. 10b + 4b + 10b = (10 + 4 + 10)b= 24b

19.
$$-3x - 5 + 12 + 10x$$

= $-3x + 10x + (-5) + 12$
= $(-3 + 10)x + (-5 + 12)$
= $7x + 7$

20.
$$-8(c+4) = -8 \cdot c + (-8) \cdot 4$$

= $-8c + (-32)$
or $-8c - 32$

21.
$$-9xy + 9xy = (-9+9)xy$$

= $0xy$
= 0

22.
$$-4(-3c^2d) = [-4 \cdot (-3)] \cdot c^2d$$

= $12c^2d$

23.
$$3f - 5f - 4f = 3f + (-5f) + (-4f)$$

= $[3 + (-5) + (-4)]f$
= $-6f$

24.
$$2(3w+4) = 2 \cdot 3w + 2 \cdot 4$$

= $(2 \cdot 3)w + 2 \cdot 4$
= $6w + 8$

25.
$$-a - 6b - a = -a + (-6b) + (-a)$$

$$= -a + (-a) + (-6b)$$

$$= -1a + (-1a) + (-6b)$$

$$= [-1 + (-1)] \cdot a + (-6b)$$

$$= -2a + (-6b)$$
or $-2a - 6b$

26.
$$-10(-5x^3y^2) = [-10 \cdot (-5)] \cdot x^3y^2$$

= $50x^3y^2$

27.
$$5r^3 + 2r^2 - 2r^2 + 5r^3$$

= $5r^3 + 5r^3 + 2r^2 + (-2r^2)$
= $10r^3 + 0$
= $10r^3$

28.
$$21 + 7(h^2 - 3) = 21 + 7 \cdot h^2 - 7 \cdot 3$$

= $21 + 7h^2 - 21$
= $7h^2$

29.
$$-3(m+3) + 3m = -3 \cdot m + (-3) \cdot 3 + 3m$$

 $= -3m + 3m + (-9)$
 $= (-3+3) \cdot m + (-9)$
 $= 0m + (-9)$
 $= 0 + (-9)$
 $= -9$

30.
$$-4(8y-5) + 5 = -4 \cdot 8y - (-4) \cdot 5 + 5$$

= $(-4 \cdot 8) \cdot y - (-20) + 5$
= $-32y + 20 + 5$
= $-32y + 25$

31.
$$2 + 12(3x - 1) = 2 + 12 \cdot 3x - 12 \cdot 1$$

= $2 + (12 \cdot 3) \cdot x - 12$
= $2 + (-12) + 36x$
= $-10 + 36x$
or $36x - 10$

32.
$$-n + 5(4n - 2) + 11$$

= $-n + 5 \cdot 4n - 5 \cdot 2 + 11$
= $-n + (5 \cdot 4) \cdot n - 10 + 11$

$$= -n + 20n + (-10) + 11$$

= $(-1 + 20) \cdot n + 1$
= $19n + 1$

33. (a) Simplifying the expression correctly:

$$6(n+2) = 6 \cdot n + 6 \cdot 2$$

= $6n + 12$

The student forgot to multiply $6 \cdot 2$.

(b) Simplifying the expression correctly:

$$-5(-4a) = [-5 \cdot (-4)] \cdot a$$
$$= 20a$$

Two negative factors give a *positive* product.

(c) Simplifying the expression correctly:

$$3y + 2y - 10 = (3+2)y - 10$$
$$= 5y - 10$$

Keep the variable part unchanged; that is, adding y's to y's gives an answer with y's, not y²'s.

34. In the last step, do not change the sign of the first term; keep -7x as -7x. The correct answer is -7x - 9.

2.3 Solving Equations Using Addition

2.3 Margin Exercises

1. (a) c+15=80 Given equation $95+15\stackrel{?}{=}80$ Replace c with 95. $110 \neq 80$ 110 is more than 80. No, 95 is not the solution. $65+15\stackrel{?}{=}80$ Replace c with 65. 80=80 Balances Yes, 65 is the solution. (No need to check 80 and 70.)

(b)
$$28 = c - 4$$
 Given equation $28 \stackrel{?}{=} 28 - 4$ Replace c with 28. $28 \neq 24$ No, 28 is not the solution. $28 \stackrel{?}{=} 20 - 4$ Replace c with 20. $28 \neq 16$ No, 20 is not the solution. $28 \stackrel{?}{=} 24 - 4$ Replace c with 24. $28 \neq 20$ No, 24 is not the solution.

$$28 \stackrel{?}{=} 32 - 4$$
 Replace c with 32.
 $28 = 28$ Balances
Yes, 32 is the solution.

2. (a) Solve 12 = y + 5 for y.

To get y by itself, add the opposite of 5, which is -5. To keep the balance, add -5 to both sides.

$$12 = y + 5$$

$$\frac{-5}{7} = \frac{-5}{y + 0}$$

$$7 = y$$
 The solution is 7.

Check
$$12 = y + 5$$
 Original equation $12 = 7 + 5$ Replace y with 7. $12 = 12$ Balances, so solution is 7.

(b) Solve b - 2 = -6 for b.

Change to addition.

$$b + (-2) = -6$$

To get b by itself add the opposite of -2, which is 2, to both sides.

$$b + (-2) = -6$$

$$\frac{2}{b + 0} = \frac{2}{-4}$$

$$b = -4 \text{ The solution is } -4.$$

Check
$$b-2=-6$$
 Original equation $-4-2=-6$ Replace b with -4 . $-4+(-2)=-6$ Balances

(a) 2 - 8 = k - 2 Rewrite both sides by 3. changing subtraction to addition. Combine like terms.

$$2 + (-8) = k + (-2)$$
$$-6 = k + (-2)$$

To get k by itself add the opposite of -2, which is 2, to both sides.

$$-6 = k + (-2)$$

$$\frac{2}{-4} = \underbrace{k + 0}_{-4}$$

$$-4 = k$$
 The solution is -4 .

Check

$$2-8 = k-2$$

$$2-8 = -4-2$$

$$2+(-8) = -4+(-2)$$

$$-6 = -6$$
Balances

(b) 4r + 1 - 3r = -8 + 11 • Change to addition.

$$4r + 1 + (-3r) = -8 + 11$$

Rewrite the left side by using the commutative property.

$$4r + (-3r) + 1 = -8 + 11$$
 Combine like terms.
 $1r + 1 = 3$ To get r by itself,
 -1 add -1 to both sides.
 $1r + 0 = 2$
 $1r = 2$
or $r = 2$ The solution is 2.

Check

$$4r + 1 - 3r = -8 + 11$$

 $4 \cdot 2 + 1 - 3 \cdot 2 = -8 + 11$ Replace r with 2.
 $8 + 1 - 6 = 3$
 $9 - 6 = 3$
 $3 = 3$ Balances

2.3 Section Exercises

n - 50 = 8 • Replace n with 58, 42, 60, and 8.

$$n-50=8$$
 Given equation
 $58-50\stackrel{?}{=}8$ Replace n with 58.

$$58 + (-50) \stackrel{?}{=} 8$$

 $8 = 8$

Yes, 58 is the solution.

(No need to check 42, 60, and 8.)

r - 20 = 5 • Replace r with 5, 15, 30, and 25.

$$5 - 20 \stackrel{?}{=} 5$$

$$5 + (-20) \stackrel{?}{=} 5$$

$$-15 \neq 5$$

$$30 - 20 \stackrel{?}{=} 5$$

$$30 + (-20) \stackrel{?}{=} 5$$

$$25 - 20 \stackrel{?}{=} 5$$

$$25 + (-20) \stackrel{?}{=} 5$$

$$30 + (-20) \stackrel{?}{=} 5$$
 $25 + (-20) \stackrel{?}{=} 5$ $5 = 5$

The check for 25 balances, so 25 is the solution.

-6 = y + 10 • Replace y with -4, -16, 16,and -6.

$$-6 = y + 10$$
 Given equation $-6 \stackrel{?}{=} -4 + 10$ Replace y with -4 . $-6 \neq 6$

No, -4 is not the solution.

$$-6 \stackrel{?}{=} -16 + 10$$
 Replace y with -16.
-6 = -6

Yes, -16 is the solution.

(No need to check 16 and -6.)

-4 = x + 13 • Replace x with -4, 17, -17,and -9.

$$-4 \stackrel{?}{=} -4 + 13 \qquad -4 \stackrel{?}{=} 17 + 13$$

$$-4 \neq 9 \qquad -4 \neq 30$$

$$-4 \stackrel{?}{=} -17 + 13$$

$$-4 = -4$$

$$-4 \stackrel{?}{=} -17 + 13$$

-17 is the solution. (No need to check -9.)

- 5. (a) m-8=1 Add 8 to both sides because -8+8 gives m+0 on the left side.
 - **(b)** -7 = w + 5 Add -5 to both sides because 5 + (-5) gives w + 0 on the right side.
- **6.** (a) n+2=-9 Add -2 to both sides because 2+(-2) gives n+0 on the left side.
 - **(b)** 10 = b 6 Add 6 to both sides because -6 + 6 gives b + 0 on the right side.
- - Check p+5=9 4+5=9 Replace p with 4. 9=9 Balances
- - $\begin{array}{lll} \textbf{Check} & a+3=12 \\ & 9+3=12 & \textit{Replace a with 9}. \\ & 12=12 & \text{Balances} \end{array}$
- 9. 8 = r 2 8 = r + (-2) +2 10 = r + 0 10 = rThe solution is 10.
 - Check 8 = r 2 8 = 10 - 2 Replace r with 10. 8 = 8 Balances
- 10. 3 = b 5 3 = b + (-5) Change to addition. +5 +5 Add 5 to both sides. 8 = b The solution is 8.
 - Check 3 = b 5 3 = 8 - 5 Replace b with 8. 3 = 3 Balances
- 11. -5 = n+3 -3 -3 Add the opposite of 3, -3, to both sides. -8 = n The solution is -8.
 - $\begin{array}{ll} \textbf{Check} & -5 = n+3 \\ -5 = -8+3 & \textit{Replace n with } -8. \\ -5 = -5 & \text{Balances} \end{array}$

- - Check -1 = a + 8 -1 = -9 + 8 Replace a with -9. -1 = -1 Balances
- 13. -4+k = 14 $4 \qquad 4 \qquad Add \text{ the opposite of } \\ \hline 0+k = \overline{18}$ k = 18 The solution is 18.
 - Check -4 + k = 14 -4 + 18 = 14 Replace k with 18. 14 = 14 Balances
- 14. $\begin{array}{rrr}
 -9 + y &= 7 \\
 \underline{9} & \underline{9} & Add \ 9 \ to \ both \ sides. \\
 \hline
 0 + y &= 16 & \text{The solution is } 16.
 \end{array}$
 - Check -9 + y = 7 -9 + 16 = 7 Replace y with 16. 7 = 7 Balances
- 15. y-6=0 y+(-6)=0 Change to addition. 6 6 Add the opposite of-6, 6, to both sides. $y+0=\overline{6}$ y=6 The solution is 6.
 - Check y-6=0 6-6=0 Replace y with 6. 0=0 Balances
- 16. k-15 = 0 Change to addition. k+(-15) = 0 Add 15 to both sides. $\frac{15}{k+0} = \frac{15}{15}$ k = 15 The solution is 15.
 - Check k-15=0 15-15=0 Replace k with 15. 0=0 Balances
- 17. 7 = r + 13 $-13 \qquad -13 \qquad Add \text{ the opposite of}$ $-6 = r \qquad The solution is -6.$
 - Check 7 = r + 13 7 = -6 + 13 Replace r with -6. 7 = 7 Balances

18.
$$12 = z + 19$$

 -19 -19 Add -19 to both sides.
 $-7 = z + 0$
 $-7 = z$ The solution is -7.

$$\begin{array}{lll} \textbf{Check} & 12=z+19 \\ & 12=-7+19 & \textit{Replace z with } -7. \\ & 12=12 & \text{Balances} \end{array}$$

19.
$$x - 12 = -12$$

$$x + (-12) = -12$$
 Change to addition.
$$12 \qquad 12 \qquad Add \text{ the opposite of } -12, 12, \text{ to both sides.}$$

$$x + 0 = 0 \qquad \text{The solution is } 0.$$

Check
$$x-12=-12$$

 $0-12=-12$ Replace x with 0 .
 $0+(-12)=-12$ Change to addition.
 $-12=-12$ Balances

20.
$$-3 = m - 3$$

 $-3 = m + (-3)$ Change to addition.

$$\frac{3}{0} = \frac{3}{m + 0}$$
 Add 3 to both sides.

$$0 = m$$
 The solution is 0.

Check
$$-3 = m - 3$$

 $-3 = 0 - 3$ Replace m with 0.
 $-3 = 0 + (-3)$
 $-3 = -3$ Balances

21.
$$-5 = -2 + t$$

$$\begin{array}{ccc}
2 & 2 & Add & the & opposite & of \\
-3 & = & 0 + t & \\
-3 & = & t & The & solution & is -3.
\end{array}$$

$$\begin{array}{ll} \textbf{Check} & -5 = -2 + t \\ -5 = -2 + (-3) & \textit{Replace t with } -3. \\ -5 = -5 & \text{Balances} \end{array}$$

22.
$$-1 = -10 + w$$

$$10 \quad 10 \quad Add \ 10 \ to \ both \ sides.$$

$$9 = w \quad The solution is 9.$$

Check
$$-1 = -10 + w$$

 $-1 = -10 + 9$ Replace w with 9.
 $-1 = -1$ Balances

23.
$$z-5=3$$
 • The given solution is -2 .

Check
$$z-5=3$$

 $-2-5=3$ Replace z with -2 .
 $-2+(-5)=3$ Change to addition.
 $-7 \neq 3$ Does not balance

Correct solution:

$$z-5=3$$

 $z+(-5)=3$ Change to addition.

$$5 5 Add the opposite of
-5, 5, to both sides.$$

$$z+0=8$$
 The solution is 8.

Check
$$z-5=3$$

 $8-5=3$ Replace z with 8.
 $8+(-5)=3$ Change to addition.
 $3=3$ Balances

24.
$$x-9=4$$
 • The given solution is 13.

Check
$$x-9=4$$

 $13-9=4$ Replace x with 13.
 $4=4$ Balances

13 is the correct solution.

25.
$$7 + x = -11$$
 • The given solution is -18 .

Check
$$7 + x = -11$$

 $7 + (-18) = -11$ Replace x with -18.
 $-11 = -11$ Balances

-18 is the correct solution.

26.
$$2 + k = -7$$
 • The given solution is -5 .

Check
$$2+k=-7$$

 $2+(-5)=-7$ Replace k with -5 .
 $-3 \neq -7$ Does not balance

Correct solution:

$$2 + k = -7$$

$$-2$$

$$0 + k = -9$$

$$-2$$

$$0 + k = -9$$
Add the opposite of 2, -2, to both sides.
$$-9$$
The correct solution is -9.

$$\begin{array}{ll} \textbf{Check} & 2+k=-7 \\ 2+(-9)=-7 & \textit{Replace k with } -9. \\ -7=-7 & \textit{Balances} \end{array}$$

27.
$$-10 = -10 + b$$
 • The given solution is 10.

Check
$$-10 = -10 + b$$

 $-10 = -10 + 10$ Replace b with 10.
 $-10 \neq 0$ Does not balance

Correct solution:

59

28. 0 = -14 + a The given solution is 0.

Check 0 = -14 + a 0 = -14 + 0 Replace a with 0. $0 \neq -14$ Does not balance

Correct solution:

Check 0 = -14 + a 0 = -14 + 14 Replace a with 14. 0 = 0 Balances

29. c-4 = -8 + 10 c-4 = 2 c+(-4) = 2 c+0 = 6 c = 6Simplify the right side.
Change to addition. $Add \ 4 \text{ to both sides.}$ The solution is 6.

Check c-4 = -8 + 10 6-4 = -8 + 10 Replace c with 6. 2 = 2 Balances

30. b-8 = 10-6 b-8 = 4 $\frac{8}{b+0} = \frac{8}{12}$ b = 12 The solution is 12.

> Check b-8 = 10-6 12-8 = 10-6 Replace b with 12. 4 = 4 Balances

31. -1+4=y-2 3=y-2 Simplify the left side. 3=y+(-2) Change to addition. $\frac{2}{5}=\frac{2}{y+0}$ Add 2 to both sides. 5=y The solution is 5.

Check

$$-1 + 4 = y - 2$$

 $-1 + 4 = 5 - 2$ Replace y with 5.
 $-1 + 4 = 5 + (-2)$ Change to addition.
 $3 = 3$ Balances

32. 2+3 = k-4 5 = k-4 $\frac{4}{9} = \frac{4}{k+0}$ Add 4 to both sides. 9 = k The solution is 9.

Check 2+3 = k-4 2+3 = 9-45 = 5 Balances

33. 10 + b = -14 - 6 10 + b = -14 + (-6) Change to addition. 10 + b = -20 Add. $\frac{-10}{0 + b} = \frac{-10}{-30}$ Add -10. b = -30 The solution is -30.

Check

$$10 + b = -14 - 6$$

 $10 + (-30) = -14 + (-6)$ Replace b with -30.
 $-20 = -20$ Balances

34. 1 + w = -8 - 8 1 + w = -8 + (-8) 1 + w = -16 -1 0 + w = -17 w = -17Add -1 to both sides.

The solution is -17.

Check

$$1 + w = -8 - 8$$

 $1 + (-17) = -8 + (-8)$ Replace w with -17.
 $-16 = -16$ Balances

35. t-2 = 3-5 t+(-2) = 3+(-5) Change to addition. t+(-2) = -2 Simplify the right side. $\frac{2}{t+0} = \frac{2}{0}$ Add 2 to both sides. t=0 The solution is 0.

Check

t-2=3-5

$$0-2=3-5$$
 Replace t with 0.
 $0+(-2)=3+(-5)$ Change to addition.
 $-2=-2$ Balances

36. p-8 = -10+2 p-8 = -8 p+(-8) = -8 p+0 = 0Add 8 to both sides. p = 0 The solution is 0.

Check p-8 = -10 + 2 0-8 = -10 + 2 Replace p with 0. -8 = -8 Balances

37.
$$10z - 9z = -15 + 8$$

$$10z + (-9z) = -15 + 8$$
 Change to addition.
$$1z = -7$$
 Combine like terms.
$$z = -7$$
 Iz is the same as z.
The solution is -7 .

Check

$$10z - 9z = -15 + 8$$

 $10 \cdot (-7) - 9 \cdot (-7) = -15 + 8$ Replace z with -7.
 $-70 - (-63) = -7$
 $-70 + 63 = -7$ Change to add.
 $-7 = -7$ Balances

38.
$$2r - r = 5 - 10$$

 $2r + (-1r) = 5 + (-10)$
 $1r = -5$
 $r = -5$ The solution is -5 .

Check

$$2r - r = 5 - 10$$

 $2 \cdot (-5) - (-5) = 5 - 10$ Replace r with -5 .
 $-10 + 5 = 5 + (-10)$
 $-5 = -5$ Balances

39.
$$-5w + 2 + 6w = -4 + 9$$
 Rearrange and combine like terms.

Check

$$-5w + 2 + 6w = -4 + 9$$

 $-5 \cdot 3 + 2 + 6 \cdot 3 = -4 + 9$ Replace w with 3.
 $-15 + 2 + 18 = -4 + 9$
 $5 = 5$ Balances

40.
$$-2t + 4 + 3t = 6 - 7$$

 $1t + 4 = 6 + (-7)$
 $t + 4 = -1$
 -4 -4 Add -4 to both sides.
 $t + 0 = -5$ The solution is -5.

Check

$$-2t + 4 + 3t = 6 - 7$$

$$-2(-5) + 4 + 3(-5) = 6 - 7$$

$$10 + 4 + (-15) = 6 + (-7)$$

$$14 + (-15) = -1$$

$$-1 = -1$$
Balances

42.
$$-5-5 = -2-6b+7b \\
-5+(-5) = -2+(-6b)+7b \\
-10 = -2+1b \\
-10 = -2+b \\
\underline{2} \quad 2 \quad Add 2.$$

$$-8 = 0$$

The solution is -8.

43.
$$-3+7-4=-2a+3a$$

 $-3+7+(-4)=-2a+3a$ Change to addition.
 $0=1a$ Combine like terms.
 $0=a$ The solution is 0.

44.
$$6-11+5=-8c+9c$$

 $6+(-11)+5=-8c+9c$ Change to addition.
 $0=1c$ Combine like terms.
 $0=c$ The solution is 0.

45.
$$y-75 = -100$$

$$y+(-75) = -100$$
 Change to addition.
$$\frac{75}{y+0} = \frac{75}{-25}$$
 Add 75 to both sides.
$$y = -25$$
 The solution is -25 .

46.
$$a-200 = -100$$

 $a+(-200) = -100$ Change to addition.
 $200 = 200$ Add 200 to both sides.
 $a+0 = 100$ The solution is 100.

47.
$$-x+3+2x = 18$$

$$\begin{array}{r}
Rearrange \ and \\
combine \ like \ terms.
\end{array}$$

$$\begin{array}{r}
1x+3 = 18 \\
-3 \quad -3 \quad Add - 3 \text{ to both sides.} \\
\hline
1x+0 = 15 \quad \text{The solution is 15.}
\end{array}$$

48.
$$-s + 2s - 4 = 13$$

 $-1s + 2s + (-4) = 13$
 $1s + (-4) = 13$
 $4 = 4$ Add 4 to both sides.
 $1s + 0 = 17$
 $s = 17$ The solution is 17.

49.
$$82 = -31 + k$$

$$31 \quad 31 \quad Add 31 \text{ to both sides.}$$

$$113 = 0 + k$$

$$113 = k \quad \text{The solution is } 113.$$

50.
$$-5 = 72 + w$$
 $-72 = -72 = 0 + w$
 $-77 = w$ The solution is -77 .

51.
$$-2+11 = 2b-9-b$$

$$-2+11 = 2b+(-9)+(-1b)$$
 Change to addition.
$$9 = 1b+(-9)$$
 Rearrange and combine like terms.
$$9 = 9$$
 Add 9 to both sides.
$$18 = 1b+0$$

$$18 = b$$
 The solution is 18.

52.
$$-6+7 = 2h-1-h$$

$$-6+7 = 2h+(-1)+(-1h)$$

$$1 = 1h+(-1)$$

$$\frac{1}{2} = \frac{1}{1h+0}$$

$$2 = h$$
Add 1.

The solution is 2.

53.
$$r-6 = 7-10-8$$

 $r+(-6) = 7+(-10)+(-8)$ Change to addition.
 $r+(-6) = -11$ Combine like terms.

$$\frac{6}{r+0} = \frac{6}{-5}$$
 Add 6 to both sides.
 $r=-5$ The solution is -5 .

54.
$$m-5 = 2-9+1$$

$$m+(-5) = 2+(-9)+1$$
 Change to addition.
$$m+(-5) = -6$$
 Combine like terms.
$$\frac{5}{m+0} = \frac{5}{-1}$$
 Add 5 to both sides.
$$m+0 = -1$$
 The solution is -1 .

55.
$$-14 = n + 91$$

 -91 -91 Add -91 to both sides.
 $-105 = n$ The solution is -105.

56.
$$66 = x - 28$$

 $66 = x + (-28)$ Change to addition.
 $28 = 28$ Add 28 to both sides.
 $94 = x = 3$ The solution is 94.

57.
$$-9+9 = 5+h$$

$$0 = 5+h Combine like terms.$$

$$-5 -5 = 0+h$$

$$-5 = h$$
 The solution is -5.

58.
$$18-18 = 6+p$$

 $0 = 6+p$
 -6 $-6 = 0+p$
 $-6 = p$ The solution is -6 .

59. No, the solution is -14, the number used to replace x in the original equation.

$$\underbrace{-3-6=n-5}_{-3+(-6)} = \underbrace{-2+(-5)}_{-7}$$
 Does not balance

To correct the errors, change -3-6 to -3+(-6). Then, add 5 to both sides, not -5. The correct solution is -4.

61.
$$g+10 = 305$$

$$\begin{array}{rcl}
-10 & -10 & Add & the & opposite & of \\
\hline
g+0 & = 295 & \\
g & = 295 & \\
\end{array}$$
 $g = 295$

There were 295 graduates this year.

62.
$$g + 10 = 278$$

$$\begin{array}{rcl}
-10 & -10 & Add & the opposite of \\
\hline
g + 0 & = 268 & \\
g & = 268 & \\
\end{array}$$

$$q = 268$$

There were 268 graduates last year.

63.
$$92 = c + 37$$

$$-37 = -37 Add -37 to both sides.$$

$$55 = c$$

$$55 = c$$

When the temperature is 92 degrees, a field cricket chirps 55 times (in 15 seconds).

64.
$$77 = c + 37$$

$$-37 = -37 \text{ Add } -37 \text{ to both sides.}$$

$$40 = c + 0$$

$$40 = c$$

When the temperature is 77 degrees, a field cricket chirps 40 times (in 15 seconds).

Ernesto's parking fees average \$110 per month in winter.

66.
$$p-56 = 98$$

 $p+(-56) = 98$ Change to addition.
 56 56 Add 56 to both sides.
 $p+0 = 154$
 $p = 154$

Aimee's parking fees average \$154 per month in winter.

67.
$$-17 - 1 + 26 - 38$$

= $-3 - m - 8 + 2m$
 $-17 + (-1) + 26 + (-38)$
= $-3 + (-1m) + (-8) + 2m$

Change all subtractions to additions.

-19 = m The solution is -19.

68.
$$19 - 38 - 9 + 11 = -t - 6 + 2t - 6$$

$$19 + (-38) + (-9) + 11 = -1t + (-6) + 2t + (-6)$$

$$-17 = 1t + (-12)$$

$$12$$

$$-5 = 1t + 0$$

$$-5 = t$$
 The solution is -5 .

69.
$$-6x + 2x + 6 + 5x = |0 - 9| - |-6 + 5|$$

 $-6x + 2x + 5x + 6 = |0 + (-9)| - |-6 + 5|$
Change subtraction within absolute value to

Change subtraction within absolute value to addition and rearrange the terms.

$$1x + 6 = |-9| - |-1|$$

Simplify inside absolute value bars. Collect like terms.

$$1x + 6 = 9 - 1$$
 Evaluate absolute values.
 $1x + 6 = 9 + (-1)$ Change to addition.
 $1x + 6 = 8$ -6 -6 Add -6 to both sides.
 $1x + 0 = 2$

x = 2 The solution is 2.

The solution is 1.

Relating Concepts (Exercises 71–72)

71. (a) Equations will vary. Some possibilities are:

$$n-1 = -3$$

 $n+(-1) = -3$ Change to addition.

$$\frac{1}{n+0} = \frac{1}{-2}$$
 Add 1 to both sides.
 $n = -2$ The solution is -2 .

$$8 = x + 10$$

$$-10 \qquad -10 \qquad Add \text{ the opposite of}$$

$$-2 = x + 0$$

$$-2 = x \qquad The solution is -2.$$

(b) Equations will vary. Some possibilities are:

$$y+6 = 6$$

$$-6 -6 -6 -6 -6, to both sides.$$

$$y+0 = 0$$

$$y = 0$$
The solution is 0.
$$-5 = -5 + b$$

$$5 -5 -5, to both sides.$$

$$0 = 0 + b$$

$$0 = b$$
The solution is 0.

72. (a) $x + 1 = 1\frac{1}{2}$ $\frac{-1}{x + 0} = \frac{-1}{\frac{1}{2}}$ Add the opposite of I, -I, to both sides. $x = \frac{1}{2}$ The solution is $\frac{1}{2}$.

(b)
$$\frac{1}{4} = y - 1$$

 $\frac{1}{4} = y + (-1)$ Change to addition.
1 1 Add the opposite of -1 , 1 , to both sides.
 $1\frac{1}{4} = y + 0$
 $1\frac{1}{4} = y$ or $y = \frac{5}{4}$ The solution is $\frac{5}{4}$.

(c)
$$\$2.50 + n = \$3.35$$

Add the opposite
 $-\$2.50$ $-\$2.50$ of $\$2.50$, $-\$2.50$,
to both sides.
 $80 + n = \$0.85$
 $n = \$0.85$

The solution is \$0.85.

(d) Equations will vary. Some possibilities are: a - \$7.32 = \$9.16 The solution is \$16.48. 5c - \$11.20 = 4c - \$2.00 The solution is \$9.20.

2.4 Solving Equations Using Division

2.4 Margin Exercises

1. (a) Solve 4s = 44.

Use division to undo multiplication. Divide *both* sides by the coefficient of the variable, which is 4.

$$\frac{4s}{4} = \frac{44}{4}$$
$$s = 11$$

The solution is 11.

Check
$$4s = 44$$
 Original equation $\underbrace{4 \cdot 11}_{44} = 44$ Replace s with $\underbrace{11}_{11}$.

(b)
$$27 = -9p$$

$$\frac{27}{-9} = \frac{-9p}{-9}$$
 Divide both

$$-3 = p$$

The solution is -3.

Check
$$27 = -9p$$

 $27 = -9 \cdot (-3)$ Replace p with -3 .
 $27 = 27$ Balances

(c)
$$-40 = -5x$$

 $\frac{-40}{-5} = \frac{-5x}{-5}$ Divide both sides by -5 .
 $8 = x$

The solution is 8.

Check
$$-40 = -5x$$

 $-40 = -5 \cdot 8$ Replace x with 8.
 $-40 = -40$ Balances

(d)
$$7t = -70$$

$$\frac{7t}{7} = \frac{-70}{7}$$
 Divide both sides by 7.
 $t = -10$

The solution is -10.

Check
$$7t = -70$$

 $7 \cdot (-10) = -70$ Replace t with -10 .
 $-70 = -70$ Balances

2. (a)
$$-28 = -6n + 10n$$

 $-28 = 4n$ Combine like terms.
 $\frac{-28}{4} = \frac{4n}{4}$ Divide both sides by 4.
 $-7 = n$ The solution is -7 .

Check
$$-28 = -6n + 10n$$

 $-28 = -6 \cdot (-7) + 10 \cdot (-7)$
Replace n with -7.
 $-28 = 42 + (-70)$
 $-28 = -28$ Balances

(b)
$$p-14p=-2+18-3$$

$$1p+(-14p)=-2+18+(-3)$$
 Change to addition. Rewrite p as 1p.
$$-13p=13$$
 Combine like terms.
$$\frac{-13p}{-13}=\frac{13}{-13}$$
 Divide both sides by -13 .
$$p=-1$$

The solution is -1.

Check
$$p-14p=-2+18-3$$

 $-1-14(-1)=16-3$
 $Replace\ p\ with\ -1.$
 $-1-(-14)=13$
 $-1+(+14)=13$
 $13=13$ Balances

3. (a)
$$-k = -12$$

$$-1k = -12$$

$$-1k = -12$$

$$\frac{-1k}{-1} = \frac{-12}{-1}$$

$$k = 12$$
Write in the understood
$$-1 \text{ as the coefficient of } k.$$

$$\frac{-1k}{-1} = \frac{-12}{-1}$$
Divide both
$$sides \text{ by } -1.$$

$$k = 12$$
The solution is 12.

Check
$$-k = -12$$

 $-1k = -12$
 $-1 \cdot 12 = -12$ Replace k with 12.
 $-12 = -12$ Balances

(b)
$$7 = -t$$

 $7 = -1t$ Write $-t$ as $-1t$.

$$\frac{7}{-1} = \frac{-1t}{-1}$$
 Divide both sides by -1 .
 $-7 = t$ The solution is -7 .

Check
$$7 = -t$$

 $7 = -1t$
 $7 = -1 \cdot (-7)$ Replace t with -7 .
 $7 = 7$ Balances

(c)
$$-m = -20$$

 $-1m = -20$ Write $-m$ as $-1m$.

$$\frac{-1m}{-1} = \frac{-20}{-1}$$
 Divide both
sides by -1 .
 $m = 20$ The solution is 20.

Check
$$-m = -20$$

 $-1m = -20$
 $-1 \cdot 20 = -20$ Replace m with 20.
 $-20 = -20$ Balances

2.4 Section Exercises

1.
$$6z = 12$$

$$\frac{6z}{6} = \frac{12}{6}$$
Divide both
sides by $\underline{6}$.
$$z = \underline{2}$$
The solution is 2.

Check
$$6z = 12$$

 $\underline{6 \cdot 2} = 12$ Replace z with 2.
 $12 = 12$ Balances

2.
$$8k = 24$$
 Check $8k = 24$ $\frac{8k}{8} = \frac{24}{8}$ $\frac{8 \cdot 3}{k} = 24$ $\frac{8 \cdot 3}{24} = 24$ Balances

The solution is 3.

3.
$$48 = 12r$$

$$\frac{48}{12} = \frac{12r}{12}$$

$$\frac{3}{12} = \frac{12r}{12}$$

$$4 = r$$
The solution is 4.

Check
$$48 = 12r$$

 $48 = 12 \cdot 4$ Replace r with 4.
 $48 = 48$ Balances

The solution is 9.

5.
$$3y = 0$$

 $\frac{3y}{3} = \frac{0}{3}$ Divide both
 $3y = 0$ Sides by 3.
 $3y = 0$ The solution is 0.

Check
$$3y = 0$$

 $3 \cdot 0 = 0$ Replace y with 0.
 $0 = 0$ Balances

6.
$$5a = 0$$
 Check $5a = 0$ $5 \cdot 0 = 0$ $0 = 0$ Balances

The solution is 0.

7.
$$-7k = 70$$

$$\frac{-7k}{-7} = \frac{70}{-7}$$
 Divide both sides by -7.
$$k = -10$$
 The solution is -10.

Check
$$-7k = 70$$

 $-7 \cdot (-10) = 70$ Replace k with -10.
 $70 = 70$ Balances

8.
$$-6y = 36$$
 Check $-6y = 36$ $-6 \cdot (-6) = 36$ $y = -6$ Balances

The solution is -6.

9.
$$-54 = -9r$$

$$\frac{-54}{-9} = \frac{-9r}{-9}$$
 Divide both sides by -9.
$$6 = r$$
 The solution is 6.

Check
$$-54 = -9r$$

 $-54 = -9 \cdot 6$ Replace r with 6.
 $-54 = -54$ Balances

10.
$$-36 = -4p$$
 Check $-36 = -4p$ $-36 = -4 \cdot 9$ $-36 = -36$ $-36 = -36$ Balances

The solution is 9.

11.
$$-25 = 5b$$

$$\frac{-25}{5} = \frac{5b}{5}$$
 Divide both
$$\frac{-35}{5} = \frac{5b}{5}$$
 Sides by 5.
$$-5 = b$$
 The solution is -5.

$$\begin{array}{ll} \textbf{Check} & -25 = 5b \\ & -25 = 5 \bullet (-5) & \textit{Replace b with } -5. \\ & -25 = -25 & \text{Balances} \end{array}$$

12.
$$-70 = 10x$$
 Check $-70 = 10x$ $-70 = 10x$ $-70 = 10 \cdot (-7)$ $-70 = -70$ Balances

The solution is -7.

13.
$$2r = -7 + 13$$

 $2r = 6$ Combine like terms.
 $\frac{2r}{2} = \frac{6}{2}$ Divide both sides by 2.
 $r = 3$ The solution is 3.

Check
$$2r = -7 + 13$$

 $2 \cdot 3 = -7 + 13$ Replace r with 3.
 $6 = 6$ Balances

14.
$$6y = 28 - 4$$
 Check $6y = 28 - 4$ $6y = 24$ $6 \cdot 4 = 28 - 4$ $\frac{6y}{6} = \frac{24}{6}$ Balances $y = 4$

The solution is 4.

15.
$$-12 = 5p - p$$

$$-12 = 5p + (-p)$$
 Change to addition.
$$-12 = 5p + (-1p)$$
 Rewrite $-p$ as $-1p$.
$$-12 = 4p$$
 Combine like terms.
$$\frac{-12}{4} = \frac{4p}{4}$$
 Divide both sides by 4.
$$-3 = p$$
 The solution is -3 .

Check

$$-12 = 5p - p$$

 $-12 = 5 \cdot (-3) - (-3)$ Replace p with -3.
 $-12 = -15 - (-3)$
 $-12 = -15 + 3$ Change to addition.
 $-12 = -12$ Balances

16.
$$20 = z - 11z$$

$$20 = 1z + (-11z)$$
 Change to addition.
$$20 = -10z$$
 Combine like terms.
$$\frac{20}{-10} = \frac{-10z}{-10}$$
 Divide both sides by -10 .
$$-2 = z$$
 The solution is -2 .

Check

$$20 = z - 11z$$

$$20 = -2 - 11 \cdot (-2)$$
 Replace z with -2 .

$$20 = -2 - (-22)$$

$$20 = -2 + 22$$
 Change to addition.

$$20 = 20$$
 Balances

17.
$$3-28=5a$$
 Original equation

$$3 + (-28) = 5a$$
 Change to addition.

$$-25 = 5a$$
 Combine like terms.

$$\frac{-25}{5} = \frac{5a}{5}$$
 Divide both sides by 5.

$$-5 = a$$
 The solution is -5 .

18.
$$-55+7=8n$$
 Original equation

$$-48 = 8n$$
 Combine like terms.

$$\frac{-48}{8} = \frac{8n}{8}$$
 Divide both sides by 8.

$$-6 = n$$
 The solution is -6 .

19.
$$x - 9x = 80$$
 Original equation

$$x + (-9x) = 80$$
 Change to addition.

$$1x + (-9x) = 80$$
 Rewrite x as 1x.

$$-8x = 80$$
 Combine like terms.

$$\frac{-8x}{-8} = \frac{80}{-8}$$
 Divide both sides by -8 .

$$x = -10$$
 The solution is -10 .

4c - c = -2720. Original equation

$$4c + (-c) = -27$$
 Change to addition.

$$4c + (-1c) = -27$$
 Rewrite $-c$ as $-1c$.

$$3c = -27$$
 Combine like terms.

$$\frac{3c}{3} = \frac{-27}{3}$$
 Divide both sides by 3.

$$c = -9$$
 The solution is -9 .

21. 13 - 13 = 2w - w

$$13 + (-13) = 2w + (-w)$$
 Change to addition.

$$13 + (-13) = 2w + (-1w)$$
 Rewrite $-w$ as $-lw$.

$$0 = 1w$$
 Combine like terms.

Original equation

Original equation

The solution is 3.

$$0 = w$$
 The solution is 0.

22.
$$-11 + 11 = 8t - 7t$$
 Original equation $-11 + 11 = 8t + (-7t)$ Change to addition.

Combine like terms. 0 = 1t

It is the same as t.

0 = tThe solution is 0.

3t + 9t = 20 - 10 + 2623.

t = 3

$$3t + 9t = 20 + (-10) + 26$$
 Change to addition.

$$+9t = 20 + (-10) + 26$$
 Change to additi

$$12t = 36$$
 Combine like terms.

$$\frac{12t}{2} = \frac{36}{2}$$
 Divide both

$$\frac{1}{12} = \frac{3}{12}$$
 sides by 12.

•
$$6m + 6m = 40 + 20 - 12$$
 Original equation

$$6m + 6m = 60 + (-12)$$
 Change to addition.
 $12m = 48$ Combine like terms.

$$\frac{12m}{12} = \frac{48}{12}$$
 Divide both sides by 12.

$$m = 4$$
 The solution is 4.

25.
$$0 = -9t$$
 Original equation

$$\frac{0}{1} = \frac{-9t}{1}$$
 Divide both

$$\frac{-9}{-9} = \frac{-9}{-9}$$
 sides by -9 .
 $0 = t$ The solution is 0.

26.
$$-10 = 10b$$
 Original equation

$$\frac{-10}{10} = \frac{10b}{10}$$
 Divide both sides by 10.

$$\overline{10} = \overline{10}$$
 sides by 10.

$$-1 = b$$
 The solution is -1 .

27.
$$-14m + 8m = 6 - 60$$
 Original equation

$$-14m + 8m = 6 + (-60)$$
 Change to addition.
 $-6m = -54$ Combine like terms.

$$\begin{array}{ll}
-6m = -54 & Combine like terms. \\
\frac{-6m}{-6} = \frac{-54}{-6} & Divide both \\
sides by -6.
\end{array}$$

$$6 - 6$$
 sides by -6 .
 $m = 9$ The solution is 9.

28.
$$7w - 14w = 1 - 50 + 49$$
 Original eq.

$$7w + (-14w) = 1 + (-50) + 49$$
$$-7w = 0$$

$$y = 0$$
 Combine.
0 Divide both

$$\frac{-7w}{-7} = \frac{0}{-7}$$

sides by -7.

$$w = 0$$

The solution is 0.

29.
$$100 - 96 = 31y - 35y$$
 Original equation

$$100 + (-96) = 31y + (-35y)$$
 Change to addition.
 $4 = -4y$ Combine like terms.

$$\frac{4}{-4} = \frac{-4y}{-4}$$
 Div side

Divide both sides by -4.

$$-1 = y$$

The solution is -1.

30.
$$150 - 139 = 20x - 9x$$

Original equation

$$150 + (-139) = 20x + (-9x)$$
$$11 = 11x$$

Change to addition. Combine like terms.

$$\frac{11}{11} = \frac{11x}{11}$$

Divide both sides by 11.

$$1 = x$$

The solution is 1.

31.
$$3(2z) = -30$$
 Original equation

$$(3 \cdot 2) \cdot z = -30$$
 To multiply on the left, use the associative property.

$$6z = -30$$

$$z = \frac{-30}{2}$$
 Divide both

$$\frac{6z}{6} = \frac{-30}{6}$$
 Divide both sides by 6.

$$z = -5$$
 The solution is -5 .

The solution is -5.

- 32. 2(4k) = 16 Original equation $(2 \cdot 4) \cdot k = 16 To multiply on the left, use the associative property.$ 8k = 16 $\frac{8k}{8} = \frac{16}{8} Divide both sides by 8.$ k = 2 The solution is 2.
- 33. 50 = -5(5p) Original equation $50 = (-5 \cdot 5) \cdot p$ To multiply on the right, use the associative prop. $\frac{50 = -25p}{-25} = \frac{-25p}{-25}$ Divide both sides by -25. -2 = p The solution is -2.
- 34. 60 = 4(-3a) Original equation $60 = [4 \cdot (-3)] \cdot a$ To multiply on the right, use the associative prop. 60 = -12a Divide both sides by -12.
- 35. -2(-4k) = 56 Original equation $[-2 \cdot (-4)] \cdot k = 56 Associative property$ 8k = 56 $\frac{8k}{8} = \frac{56}{8} Divide both$ sides by 8. k = 7 The solution is 7.

-5 = a

- 36. -5(4r) = -80 Original equation $(-5 \cdot 4) \cdot r = -80 Associative property$ -20r = -80 $\frac{-20r}{-20} = \frac{-80}{-20} Divide both$ sides by -20. r = 4 The solution is 4.
- 37. -90 = -10(-3b) Original equation $-90 = [-10 \cdot (-3)] \cdot b$ Associative property -90 = 30b $\frac{-90}{30} = \frac{30b}{30}$ Divide both sides by 30. -3 = b The solution is -3.
- 38. -90 = -5(-2y) Original equation $-90 = [-5 \cdot (-2)] \cdot y$ Associative property -90 = 10y Divide both $\frac{-90}{10} = \frac{10y}{10}$ Divide by 10. -9 = y The solution is -9.
- 39. -x = 32 Original equation -1x = 32 Write in the understood -1. $\frac{-1x}{-1} = \frac{32}{-1}$ Divide both sides by -1. x = -32 The solution is -32.

- **40.** -c = 23 Original equation -1c = 23 Write in the understood -1. $\frac{-1c}{-1} = \frac{23}{-1}$ Divide both c = -23 The solution is -23.
- 41. -2 = -w Original equation -2 = -1w Write in the understood -1. $\frac{-2}{-1} = \frac{-1w}{-1}$ Divide both sides by -1. 2 = w The solution is 2.
- 42. -75 = -t Original equation -75 = -1t Write in the understood -1. $\frac{-75}{-1} = \frac{-1t}{-1}$ Divide both sides by -1. -75 = t The solution is -75 = t
- 43. -n = -50 Original equation -1n = -50 Write in the understood -1. $\frac{-1n}{-1} = \frac{-50}{-1}$ Divide both sides by -1. n = 50 The solution is 50.
- 44. -x = -1 Original equation -1x = -1 Write in the understood -1. $\frac{-1x}{-1} = \frac{-1}{-1}$ Divide both $sides \ by -1$. x = 1 The solution is 1.
- 45. 10 = -p Original equation 10 = -1p Write in the understood -1. $\frac{10}{-1} = \frac{-1p}{-1} Divide both$ sides by -1. -10 = p The solution is -10.
- 46. 100 = -k Original equation 100 = -1k Write in the understood -1. $\frac{100}{-1} = \frac{-1k}{-1} Divide both$ sides by -1. -100 = k The solution is -100.
- 47. Each solution is the opposite of the number in the equation. So the rule is: When you change the sign of the variable from negative to positive, then change the number in the equation to its opposite. In -x = 5, the opposite of 5 is -5, so x = -5.
- **48.** Equations will vary. Some possibilities are (i) -5x = 20 and (ii) 12 20 = 2x.
 - (i) -5x = 20 $\frac{-5x}{-5} = \frac{20}{-5}$ Divide both x = -4 The solution is -4.

(ii)
$$12-20=2x$$

$$12+(-20)=2x Change to addition.$$

$$-8=2x Combine like terms.$$

$$\frac{-8}{2}=\frac{2x}{2} Divide both$$

$$sides by 2.$$

$$-4=x The solution is -4.$$

49. Divide by the coefficient of x, which is 3, *not* by the opposite of 3.

$$3x = \underbrace{16 - 1}_{3x}$$

$$3x = 15$$

$$\frac{3x}{3} = \frac{15}{3}$$

$$x = 5$$
The correct solution is 5.

- **50.** You can divide both sides of an equation by the same nonzero number and keep the equation balanced.
- 51. 3s = 45 $\frac{3s}{3} = \frac{45}{3}$ Divide both sides by 3. s = 15

The length of one side is 15 feet.

52.
$$3s = 63$$

$$\frac{3s}{3} = \frac{63}{3}$$
Divide both sides by 3.
$$s = 21$$

The length of one side is 21 inches.

53.
$$120 = 5s$$

$$\frac{120}{5} = \frac{5s}{5}$$
 Divide both sides by 5.

The length of one side is 24 meters.

54.
$$335 = 5s$$

$$\frac{335}{5} = \frac{5s}{5}$$
 Divide both sides by 5.

The length of one side is 67 yards.

55.
$$89 - 116 = -4(-4y) - 9(2y) + y$$

$$89 - 116 = [-4 \cdot (-4)] \cdot y - (9 \cdot 2) \cdot y + y$$
Associative property
$$89 + (-116) = 16y + (-18y) + 1y$$
Change to addition.
$$-27 = -1y$$
Combine like terms.
$$\frac{-27}{-1} = \frac{-1y}{-1}$$
Divide both
$$sides \ by - 1.$$

$$27 = y$$

The solution is 27.

56.
$$58 - 208 = -b + 8(-3b) + 5(-5b)$$

$$58 - 208 = -b + [8 \cdot (-3)] \cdot b + [5 \cdot (-5)] \cdot b$$
Associative property
$$58 + (-208) = -1b + (-24b) + (-25b)$$
Change to addition.
$$-150 = -50b \qquad \text{Combine like terms.}$$

$$\frac{-150}{-50} = \frac{-50b}{-50} \qquad \text{Divide both}$$

$$sides by -50.$$

The solution is 3.

57.
$$-37(14x) + 28(21x) = |72 - 72| + |-166 + 96|$$
 $(-37 \cdot 14) \cdot x + (28 \cdot 21) \cdot x$
 $= |0| + |-70|$

Assoc. prop. Simplify within the absolute values.
 $-518x + 588x = 0 + 70$
Simplify the absolute values.
 $70x = 70$ Combine like terms.
 $\frac{70x}{70} = \frac{70}{70}$ Divide both sides by 70.
 $x = 1$

The solution is 1.

58.
$$6a - 10a - 3(2a) = |-25 - 25| - 5(8)$$

$$6a + (-10a) - 6a = |-25 + (-25)| - 40$$
Simplify within the absolute value.
$$6a + (-10a) + (-6a) = |-50| - 40$$

$$-10a = 50 - 40$$
Simplify the absolute value.
$$-10a = 10 \quad Combine \ like \ terms.$$

$$\frac{-10a}{-10} = \frac{10}{-10} \quad Divide \ both$$

$$a = -1$$

The solution is -1.

2.5 Solving Equations with Several Steps

2.5 Margin Exercises

1. (a)
$$2r + 7 = 13$$
 To get $2r$ by itself,

$$\frac{-7}{2r + 0} = \frac{-7}{6}$$

$$2r = 6$$

$$\frac{2r}{2} = \frac{6}{2}$$
To solve for r ,
divide both sides by the coefficient, 2 .
$$r = \underline{3}$$
The solution is 3 .

Check $2r + 7 = 13$

$$2 \cdot 3 + 7 = 13$$
Replace r with 3 .
$$\underline{6 + 7} = 13$$

13 = 13 Balances

(b)
$$-10z - 9 = 11$$

$$-10z + (-9) = 11$$

$$0 - 10z + 0 = 11$$

$$-10z + 0 = 20$$

$$-10z = 20$$

$$0 - 10z = 20$$

$$0 - 1$$

Check

$$-10z - 9 = 11$$

$$-10 \cdot (-2) - 9 = 11$$
 Replace r with -2.
$$20 - 9 = 11$$

$$11 = 11$$
 Balances

2. (a) Solve, keeping the variable on *left* side.

Solve, keeping the variable on the *right* side.

(b) Solve, keeping the variable on *left* side.

Solve, keeping the variable on the *right* side.

$$3p-2 = p-6
3p-2 = 1p-6 Rewrite p as 1p.
-3p Add -3p.
0-2 = -2p-6
-2 = -2p + (-6)
6 Add 6.
4 = -2p Add 6.
4 = -2p Divide both sides by -2.
-2 = p The solution is -2.$$

3. (a)
$$-12 = 4(y-1)$$
 $-12 = \underbrace{4 \cdot y} - \underbrace{4 \cdot 1}_{-1}$ Distribute on the right.

 $-12 = 4y - 4$
 $-12 = 4y + (-4)$ Change to addition.

 $\underbrace{4}_{-8} = 4y + 0$
 $-8 = 4y$
 $\underbrace{-8}_{4} = \underbrace{4y}_{4}$ Divide both sides by $\underbrace{4}_{-2}$.

 $-2 = y$ The solution is -2 .

Check
$$-12 = 4(y-1)$$

 $-12 = 4(-2-1)$ Replace y with -2 .
 $-12 = 4(-3)$
 $-12 = -12$ Balances

(b)
$$5(m+4) = 20$$

 $5 \cdot m + 5 \cdot 4 = 20$ Distribute on the left.
 $5m + 20 = 20$
 -20 -20 Add -20 to both sides.
 $5m + 0 = 0$
 $5m = 0$
 $\frac{5m}{5} = \frac{0}{5}$ Divide both sides by 5.
 $m = 0$ The solution is 0.

Check
$$5(m+4) = 20$$

 $5(0+4) = 20$ Replace m with 0.
 $5(4) = 20$
 $20 = 20$ Balances

(c)
$$6(t-2) = 18$$

 $6 \cdot t - 6 \cdot 2 = 18$ Distribute on the left.
 $6t - 12 = 18$
 $6t + (-12) = 18$ Change to addition.

$$\frac{12}{6t+0} = \frac{12}{30}$$
 Add 12 to both sides.

$$\frac{6t}{6} = \frac{30}{6}$$
 Divide both sides by 6.

$$t = 5$$
 The solution is 5.

Check
$$6(t-2) = 18$$
 $6(5-2) = 18$ Replace t with 5. $6(3) = 18$ $18 = 18$ Balances

4. (a)
$$3(b+7) = 2b-1$$
 Distribute.
 $3 \cdot b + 3 \cdot 7 = 2b-1$
 $3b+21 = 2b+(-1)$ Variables left
 $-2b$ $-2b$ Add $-2b$.
 $1b+21 = 0+(-1)$
 $1b+21 = -1$
 -21 -21 Add -21 .
 $1b+0 = -22$
or $b = -22$

The solution is -22.

Check
$$3(b+7) = 2b-1$$
 $3(-22+7) = 2 \cdot (-22) - 1$ $3(-15) = -44-1$ $-45 = -45$ Balances

(b)
$$6-2n = 14 + 4(n-5)$$
 Distribute.
 $6-2n = 14 + 4 \cdot n - 4 \cdot 5$
 $6-2n = 14 + 4n - 20$ Add the opposite.
 $6+(-2n) = 14 + 4n + (-20)$ Combine like terms.

$$6 + (-2n) = -6 + 4n$$

$$\frac{2n}{6+0} = \frac{2n}{-6+6n}$$

$$6 = -6+6n$$

$$\frac{6}{6} = \frac{6}{0+6n}$$

$$12 = 6n$$

$$\frac{12}{6} = \frac{6n}{6}$$
Divide both sides by 6.

The solution is 2.

Check
$$6-2n=14+4(n-5)$$

 $6-2 \cdot 2=14+4(2-5)$ Let $n=2$.
 $6-4=14+4(-3)$
 $2=14+(-12)$
 $2=2$ Balances

2 = n

2.5 Section Exercises

1.
$$7p+5 = 12$$
 To get 7p by itself,
 $-5 = -5$ add -5 to both sides.
 $7p+0 = 7$
 $7p = 7$
 $7p = 7$
 $7p = 7$
 $7p = 7$
Divide both sides by 7.
 $p = 1$ The solution is 1.

Check
$$7p + 5 = 12$$

 $7(1) + 5 = 12$ Let $p = 1$.
 $7 + 5 = 12$
 $12 = 12$ Balances

2.
$$6k + 3 = 15$$
 Check $6k + 3 = 15$ $6(2) + 3 = 15$ $6(2) + 3 = 15$ $12 + 3 = 15$ $15 = 15$ Balances $\frac{6k}{6} = \frac{12}{6}$ $k = 2$

The solution is 2.

3.
$$2 = 8y - 6$$

 $2 = 8y + (-6)$ Change to addition.
 $\frac{6}{8} = 8y$ Add 6 to both sides.
 $\frac{8}{8} = 8y$ Divide both sides by 8.
 $1 = y$ The solution is 1.
Check $2 = 8y - 6$
 $2 = 8(1) - 6$ Replace y with 1.

2 = 8 - 6

$$2 = 2$$
 Balances
$$10 = 11p - 12$$
 Check
$$10 = 11p - 12$$

$$10 = 11p + (-12)$$

$$10 = 11(2) - 12$$

$$\frac{12}{22} = \frac{12}{11p + 0}$$

$$10 = 10$$

$$\frac{22}{11} = \frac{11p}{11}$$
 Balances

The solution is 2.

2 = p

5.
$$28 = -9a + 10 \quad To \ get - 9a \ by \ itself,$$

$$-10 \qquad \qquad -10 \qquad add - 10 \ to \ both \ sides.$$

$$18 = -9a + 0$$

$$18 = -9a$$

$$\frac{18}{-9} = \frac{-9a}{-9} \qquad Divide \ both$$

$$sides \ by - 9.$$

$$-2 = a \qquad The solution is -2.$$

Check
$$28 = -9a + 10$$

 $28 = -9(-2) + 10$ Replace a with -2 .
 $28 = 18 + 10$

$$28 = 28$$
Balances
$$-4k + 5 = 5$$
Check
$$-4k + 5 = 5$$

$$-4(0) + 5 = 5$$

$$-4(0) + 5 = 5$$

$$-4k + 0 = 0$$

$$0 + 5 = 5$$

$$-4k = 0$$
Balances
$$5 = 5$$
Balances

The solution is 0.

7.
$$-3m+1 = 1 To get -3m by itself,$$

$$-1 -1 add -1 to both sides.$$

$$-3m+0 = 0$$

$$-3m = 0$$

$$\frac{-3m}{-3} = \frac{0}{-3} Divide both$$

$$m = 0 The solution is 0.$$

Check
$$-3m + 1 = 1$$

 $-3(0) + 1 = 1$ Replace m with 0.
 $0 + 1 = 1$
 $1 = 1$ Balances

8.
$$75 = -10w + 25$$
$$-25$$
$$50 = -10w + 0$$
$$\frac{50}{-10} = \frac{-10w}{-10}$$
$$-5 = w$$

The solution is -5.

Check
$$75 = -10w + 25$$

 $75 = -10(-5) + 25$
 $75 = 50 + 25$
 $75 = 75$ Balances

9.
$$-5x - 4 = 16 \quad Change to addition.$$

$$-5x + (-4) = 16 \quad To \ get - 5x \ by \ itself,$$

$$\frac{4}{-5x + 0} = \frac{4}{20}$$

$$-5x = 20$$

$$\frac{-5x}{-5} = \frac{20}{-5} \quad Divide \ both$$

$$x = -4 \quad The solution is -4.$$

Check
$$-5x - 4 = 16$$

 $-5(-4) - 4 = 16$ Replace x with -4.
 $20 - 4 = 16$
 $16 = 16$ Balances

10.
$$-12b - 3 = 21$$

$$-12b + (-3) = 21$$

$$\frac{3}{-12b + 0} = \frac{3}{24}$$

$$\frac{-12b}{-12} = \frac{24}{-12}$$

$$b = -2$$

The solution is -2.

Check
$$-12b - 3 = 21$$

 $-12(-2) - 3 = 21$
 $24 - 3 = 21$
 $21 = 21$
Balances

11. Solve, keeping the variable on the *left* side.

$$6p-2 = 4p+6$$

$$6p+(-2) = 4p+6 Change to addition.$$

$$-4p -4p Add -4p to both sides.$$

$$2p+(-2) = 6$$

$$2p+(-2) = 6$$

$$2p+0 = 8$$

$$2p=8$$

$$2p=8$$

$$2p=8$$

$$2p=8$$

$$2p=8$$

$$p=4 Divide both sides.$$

$$p=4 The solution is 4.$$

Solve, keeping the variable on the *right* side.

$$6p-2 = 4p+6$$

$$6p+(-2) = 4p+6 Change to addition.$$

$$-6p -6p Add -6p to both sides.$$

$$0+(-2) = -2p+6$$

$$-2 = -2p+6$$

$$-6 -6 Add -6 to both sides.$$

$$-8 = -2p+0$$

$$-8 = -2p$$

$$-9 Divide both sides by -2.$$

$$4 = p The solution is 4.$$

Check
$$6p-2=4p+6$$

 $6(4)-2=4(4)+6$
 $24-2=16+6$
 $22=22$ Balances

12. Left side: Right side:

The solution is 5.

Check
$$5y - 5 = 2y + 10$$

 $5(5) - 5 = 2(5) + 10$
 $25 - 5 = 10 + 10$
 $20 = 20$ Balances

13. Solve, keeping the variable on the *left* side.

$$-2k - 6 = 6k + 10$$

$$-2k + (-6) = 6k + 10 Change to addition.$$

$$-6k -6k Add - 6k to both sides.$$

$$-8k + (-6) = 0 + 10$$

$$-8k + (-6) = 10$$

$$6 6 Add 6 to both sides.$$

$$-8k + 0 = 16$$

$$-8k + 0 = 16$$

$$\frac{-8k}{-8} = \frac{16}{-8} Divide both sides by -8.$$

$$k = -2 The solution is -2.$$

Solve, keeping the variable on the *right* side.

$$\begin{array}{rcl}
-2k - 6 &=& 6k + 10 \\
-2k + (-6) &=& 6k + 10
\end{array}$$

$$\begin{array}{rcl}
2k & & & & & & & & & & & \\
2k & & & & & & & & & \\
\hline
0 + (-6) &=& 8k + 10 & & & & & \\
-6 &=& 8k + 10 & & & & & \\
\hline
-10 & & & & & & & & \\
\hline
-10 & & & & & & & & \\
\hline
-16 &=& 8k + 0 & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
8 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & \\
\hline
-16 &=& 8k & & & \\
\hline
-16 &=& 8k & & & & \\
\hline
-16 &=& 8k & & & \\
\hline
-17 &=& 8k & & & \\
\hline
-18 &=& 8k & & \\
\hline
-18 &=& 8k & & & \\
-18 &=& 8k & & \\
\hline
-18 &=& 8k & & & \\
\hline
-18 &=& 8k & & \\
\hline
-18 &=$$

Check

$$-2k - 6 = 6k + 10$$

 $-2(-2) - 6 = 6(-2) + 10$ Replace k with -2 .
 $4 + (-6) = -12 + 10$
 $-2 = -2$ Balances

14. Left side: Right side:

$$5x + 4 = -3x - 4
3x
8x + 4 = 0 - 4
8x + 4 = -4
-4
8x + 0 = -8
8x + 0 = -$$

The solution is -1.

Check
$$5x + 4 = -3x - 4$$

 $5(-1) + 4 = -3(-1) - 4$
 $-5 + 4 = 3 + (-4)$
 $-1 = -1$

Balances

15.
$$-18 + 7a = 2a + 3 + 4$$
 simplifies to $-18 + 7a = 2a + 7$.

 $-18 + 7a = 2a + 7$.

 $-18 + 7a = 2a + 7$
 $-2a = -2a = 0$
 $-18 + 5a = 0 + 7$
 $-18 + 5a = 7$
 $-18 + 5a = 7$
 $-18 + 5a = 25$
 $-18 + 5a = 25$

The solution is 5.

Check
$$-18 + 7a = 2a + 3 + 4$$

 $-18 + 7(5) = 2(5) + 7$
 $-18 + 35 = 10 + 7$
 $17 = 17$ Balances

16.
$$-10 + 5r = -7 - 12 - 1$$
 simplifies to $-10 + 5r = -20$.

 $-10 + 5r = -20$
 10
 10
 $Add \ 10 \ to$
both sides.

 $10 + 5r = -10$
 $10 +$

The solution is -2.

Check
$$-10 + 5r = -7 - 12 - 1$$

 $-10 + 5(-2) = -19 - 1$
 $-10 - 10 = -20$
 $-20 = -20$ Balances

17. Neither side can be simplified, so solve the equation.

Check
$$-3t = 8t$$

 $-3(0) = 8(0)$ Replace t with 0.
 $0 = 0$ Balances

Check
$$15z = -9z$$

 $15(0) = -9(0)$ Replace z with 0.
 $0 = 0$ Balances

19. 4+16-2=2-2b simplifies to 18=2-2b.

$$\begin{array}{rcl}
18 & = & 2-2b \\
-2 & & -2 & Add-2 \text{ to} \\
both \text{ sides.} \\
\hline
18-2 & = & 0-2b \\
16 & = & -2b \\
\hline
\frac{16}{-2} & = & \frac{-2b}{-2} & Divide \text{ both} \\
-8 & = & b
\end{array}$$

The solution is 5.

Check
$$4+16-2=2-2b$$

 $20-2=2-2(-8)$
 $20+(-2)=2+16$
 $18=18$ Balances

20. -9 + 2z = 9z - 1 + 13 simplifies to -9 + 2z = 9z + 12.

The solution is -3.

Check
$$-9 + 2z = 9z - 1 + 13$$

 $-9 + 2(-3) = 9(-3) + 12$
 $-9 - 6 = -27 + 12$
 $-15 = -15$ Balances

21. 8(w-2)32 8w - 1632 Distribute. =8w + (-16)32 = Change to addition. Add 16 to both sides. 16 16 8w + 048 8w48 8w48 Divide both 8 8 sides by 8. The solution is 6. 6 w

22. 9(b-4)27 9b - 3627 Distribute. 9b + (-36)27 Change to addition. Add 36 to both sides. 36 9b + 063 Divide both 9b63 9 9 sides by 9. The solution is 7.

23. $\begin{array}{rcl}
-10 & = & 2(y+4) \\
-10 & = & 2y+8 & Distribute. \\
-8 & & -8 & Add -8 \text{ to both sides.} \\
\hline
-18 & = & 2y+0 \\
-18 & = & 2y & Divide both \\
\hline
2 & = & \frac{2y}{2} & Divide both \\
sides by 2. & -9 & = & y & The solution is -9.
\end{array}$

25.
$$-4(t+2) = 12$$

 $-4t + (-8) = 12$ Distribute.
 $8 = 8$ Add 8 to both sides.
 $-4t + 0 = 20$
 $-4t = 20$
 $-4t = 20$
 $-4t = 20$ Divide both
 $-4t = -5$ The solution is -5 .

26.
$$\begin{array}{rcl}
-5(k+3) & = & 25 \\
-5k+(-15) & = & 25 \\
\hline
 & 15 \\
\hline
 & -5k+0 \\
\hline
 & -5k \\
\hline
 & -5 \\
\hline
 & -5$$

27.
$$6(x-5) = -30$$

$$6x-30 = -30$$

$$6x + (-30) = -30$$

$$6x + 0 = 0$$

$$6x + 0 = 0$$

$$6x = 0$$

$$\frac{6x}{6} = \frac{0}{6}$$

$$x = 0$$

$$6x = 0$$

$$6x$$

28.
$$7(r-7) = -49$$

$$7r-49 = -49$$

$$7r+(-49) = -49$$
Change to addition.
$$\frac{49}{7r+0} = 0$$

$$\frac{7r}{7} = 0$$

$$r = 0$$
Divide both sides by 7.
$$r = 0$$
The solution is 0.

29.
$$-12 = 12(h-2)$$

 $-12 = 12h - 24$ Distribute.
 $-12 = 12h + (-24)$ Change to addition.
 $\frac{24}{12} = \frac{24}{12h + 0}$ Add 24 to both sides.
 $\frac{12}{12} = \frac{12h}{12}$ Divide both sides by 12.
 $1 = h$ The solution is 1.

30.
$$-11 = 11(c-3)$$

 $-11 = 11c-33$ Distribute.
 $-11 = 11c+(-33)$ Change to addition.
 $33 = 33$ Add 33 to both sides.
 $22 = 11c+0$
 $\frac{22}{11} = \frac{11c}{11}$ Divide both
 $3ides by 11$.
 $2 = c$ The solution is 2.

31.
$$0 = -2(y+2)$$

$$0 = -2y - 4 Distribute.$$

$$0 = -2y + (-4) Change to addition.$$

$$\frac{4}{4} = \frac{4}{-2y+0} Add 4 to both sides.$$

$$\frac{4}{4} = -2y Divide both$$

$$\frac{4}{-2} = \frac{-2y}{-2} Divide both$$

$$sides by -2.$$

$$-2 = y The solution is -2.$$

32.
$$0 = -9(b+1)$$

 $0 = -9b-9$ Distribute.
 $0 = -9b+(-9)$ Change to addition.
 $\frac{9}{9} = -9b+0$

$$\frac{9}{-9} = \frac{-9b}{-9}$$
 Divide both sides by -9.
$$-1 = b$$
 The solution is -1.

35.
$$6 = 9w - 12$$

$$6 = 9w + (-12)$$
 Change to addition.
$$\frac{12}{18} = \frac{12}{9w + 0}$$

$$18 = 9w$$

$$\frac{18}{9} = \frac{9w}{9}$$
 Divide both sides by 9.
$$2 = w$$
 The solution is 2.

37.
$$5x = 3x + 10$$

$$-3x - 3x Add - 3x to both sides.$$

$$2x = 0 + 10$$

$$2x = 10$$

$$\frac{2x}{2} = \frac{10}{2} Divide both sides by 2.$$

$$x = 5 The solution is 5.$$

38.
$$7n = -2n - 36$$

$$7n = -2n + (-36)$$

$$2n$$

$$9n = 0 + (-36)$$

$$\frac{9n}{9} = \frac{-36}{9}$$

$$n = -4$$
Change to addition.
Add 2n to both sides.
Divide both sides by 9.

39.
$$2a + 11 = 8a - 7$$

$$2a + 11 = 8a + (-7)$$
 Change to addition.
$$-2a = -2a = 6a + (-7)$$

$$11 = 6a + (-7)$$

$$18 = 6a + (-7)$$

$$18 = 6a$$

$$\frac{18}{6} = \frac{6a}{6} = \frac{Divide\ both\ sides\ by\ 6.}{sides\ by\ 6.}$$

$$3 = a = 6a$$
The solution is 3.

41.
$$7-5b = 28+2b$$

 $7+(-5b) = 28+2b$ Change to addition.
 $\frac{5b}{7+0} = \frac{5b}{28+7b}$ Add 5b to both sides.
 $7+0 = 28+7b$
 $-28 = -28$ Add -28 to both sides.
 $-21 = 0+7b$
 $-21 = 7b$
 $\frac{-21}{7} = \frac{7b}{7}$ Divide both sides by 7.
 $-3 = b$ The solution is -3 .

43.
$$-20 + 2k = k - 4k$$

 $-20 + 2k = k + (-4k)$ Change to addition.
 $-20 + 2k = -3k$ Combine like terms.
 $-2k$ $-2k$ Add $-2k$.
 $-20 + 0 = -5k$
 $-20 = -5k$

$$\frac{-20}{-5} = \frac{-5k}{-5} \frac{Divide both}{sides by -5}.$$

$$4 = k \quad \text{The solution is 4.}$$

$$44. \quad 6y - y = -16 + y$$

$$6y + (-1y) = -16 + 1y \quad Change to add$$

$$6y + (-1y) = -16 + 1y \ \text{Change to addition.}$$

$$5y = -16 + 1y \ \text{Combine like terms.}$$

$$-1y \qquad \qquad -1y \quad \text{Add - 1y.}$$

$$4y = -16 + 0$$

$$\frac{4y}{4} = \frac{-16}{4} \qquad \text{Divide both sides by 4.}$$

$$y = -4 \qquad \text{The solution is } -4.$$

45.
$$10(c-6) + 4 = 2 + c - 58$$

$$10c - 60 + 4 = 2 + c - 58$$

$$10c + (-60) + 4 = 2 + c + (-58)$$

$$10c + (-60) + 4 = 2 + (-58)$$

$$10c + (-56) + 4 = 2 + (-58) + c$$

$$10c + (-56) = -56 + c$$

$$-c$$

$$9c + (-56) = -56$$

$$9c + (-56) = -56$$

$$9c + (-56) = -56$$

$$9c + 0 = 0$$

$$\frac{9c}{9} = \frac{0}{9}$$
Divide both sides by 9.

The solution is 0.

46.
$$8(z+7) - 6 = z + 60 - 10$$

$$8z + 56 - 6 = z + 60 - 10$$

$$8z + 56 + (-6) = z + 60 + (-10)$$

$$8z + 50 = 1z + 50$$

$$-1z$$

$$7z + 50 = 0$$

$$7z + 50 = 50$$

$$-50$$

$$7z + 0 = 0$$

$$\frac{7z}{7} = \frac{0}{7}$$

The solution is 0.

47.
$$-18 + 13y + 3 = 3(5y - 1) - 2$$

$$-18 + 13y + 3 = 15y - 3 - 2$$

$$-18 + 13y + 3 = 15y + (-3) + (-2)$$

$$-18 + 13y + 3 = 15y + (-3) + (-2)$$

$$-13y + (-18) + 3 = 15y + (-3) + (-2)$$

$$-13y + (-15) = 15y + (-5)$$

$$-13y - (-15) = 2y + (-5)$$

$$-15 = 2y + (-5)$$

$$-10 = 2y + 0$$
Add 5.

$$-10 = 2y$$

$$\frac{-10}{2} = \frac{2y}{2}$$
 Divide
$$by 2.$$

$$-5 = y$$

The solution is -5.

48.
$$3 + 5h - 9 = 4(3h + 4) - 1$$

$$3 + 5h + (-9) = 12h + 16 + (-1)$$

$$5h + (-6) = 12h + 15$$

$$-5h$$

$$0 + (-6) = 7h + 15$$

$$-6 = 7h + 15$$

$$-15$$

$$-21 = 7h + 0$$

$$\frac{-21}{7} = \frac{7h}{7}$$

$$-3 = h$$

The solution is -3.

49.
$$6 - 4n + 3n = 20 - 35$$

$$6 + (-4n) + 3n = 20 + (-35)$$
 Change to add.
$$6 + (-1n) = -15$$
 Combine terms.
$$-6 \qquad -6 \qquad Add - 6.$$

$$0 + (-1n) = -21$$

$$\frac{-1n}{-1} = \frac{-21}{-1}$$
 Divide both sides by -1 .
$$n = 21$$

The solution is 21.

50.
$$-19+8 = 6p-7p-5$$

 $-19+8 = 6p+(-7p)+(-5)$ Change to add.
 $-11 = -1p+(-5)$ Combine terms.

$$\frac{5}{-6} = \frac{5}{-1p+0}$$
 Add 5.

$$\frac{-6}{-1} = \frac{-1p}{-1}$$
 Divide both sides by -1 .
 $6 = p$

The solution is 6.

51.
$$6(c-2) = 7(c-6)$$

$$6c-12 = 7c-42 Distribute.$$

$$6c+(-12) = 7c+(-42) Change to add.$$

$$-6c -6c Add -6c.$$

$$0+(-12) = 1c+(-42)$$

$$-12 = 1c+(-42)$$

$$42 42 Add 42.$$

$$30 = 1c+0$$

$$30 = c$$

The solution is 30.

53.
$$-5(2p+2) - 7 = 3(2p+5)$$

$$-10p + (-10) - 7 = 6p + 15$$

$$-10p + (-10) + (-7) = 6p + 15$$

$$-10p + (-17) = 6p + 15$$

$$-6p \qquad \qquad -6p \qquad \qquad -6p \qquad \qquad Add - 6p.$$

$$-16p + (-17) = 15$$

$$-16p + (-17) = 15$$

$$\frac{17}{-16p + 0} = \frac{17}{32} \qquad Add 17.$$

$$-16p + 0 = \frac{32}{-16} \qquad by - 16.$$

$$p = -2$$

The solution is -2.

54.
$$4(3m-6) = 72 + 3(m-8)$$

$$12m-24 = 72 + 3m - 24$$

$$12m + (-24) = 72 + 3m + (-24)$$

$$12m + (-24) = 3m + 48$$

$$-3m \qquad \qquad -3m$$

$$9m + (-24) = 0 + 48$$

$$9m + (-24) = 48$$

$$\frac{24}{9m+0} = \frac{24}{72}$$

$$\frac{9m}{9} = \frac{72}{9}$$

$$m = 8 \text{ The solution is } 8.$$

55.
$$2(3b-2) - 5b = 4(b-1) + 8b$$

$$6b - 4 - 5b = 4b - 4 + 8b$$

$$b - 4 = 12b - 4$$

$$\frac{4}{b} = 12b$$

$$-b = \frac{-b}{11b}$$

$$\frac{0}{11} = \frac{11b}{11}$$

$$0 = b$$

The solution is 0.

56.
$$-3(w+3) + 10 = -1(w+14) + w$$

$$-3w - 9 + 10 = -w - 14 + w$$

$$-3w + 1 = -14$$

$$-1 \qquad -1 \qquad Add - I.$$

$$-3w = -15$$

$$-3w = -15$$

$$-3 = \frac{-15}{-3}$$

$$w = 5$$

The solution is 5.

57. The series of steps may vary. One possibility is:

The solution is -3.

58. Multiplication distributes over both addition and subtraction. Examples will vary. Some possibilities are 3(2y+6) is 6y+18 and 5(x-3) is 5x-15.

59. Check
$$-8 + 4a = 2a + 2$$

 $-8 + 4(3) = 2(3) + 2$
 $-8 + 12 = 6 + 2$
 $4 \neq 8$

The check does not balance, so 3 is not the correct solution. The student added -2a to -8 on the left side, instead of adding -2a to 4a. The correct solution, obtained using -8 + 2a = 2, 2a = 10, is a = 5.

60. Check
$$2(x+4) = -16$$

 $2(-10+4) = -16$
 $2(-6) = -16$
 $-12 \neq -16$

The check does not balance, so -10 is not the correct solution.

$$2(x+4) = -16 Student did not$$

$$2x+8 = -16 distribute the 2$$

$$-8 -8 over the 4.$$

$$2x+0 = -24$$

$$\frac{2x}{2} = \frac{-24}{2}$$

$$x = -12$$

The correct solution is -12.

Relating Concepts (Exercises 61-64)

61. (a) It must be negative, because the sum of two positive numbers is always positive.

(b) The sum of x and a positive number is negative, so x must be negative.

62. (a) It must be positive, because the sum of two negative numbers is always negative.

(b) The sum of d and a negative number is positive, so d must be positive.

63. (a) It must be positive. When the signs are the same, the product is positive, and when the signs are different, the product is negative.

(b) The product of n and a negative number is negative, so n must be positive.

64. (a) It must be negative also. When the signs are different, the product is negative, and when the signs match, the product is positive.

(b) The product of y and a negative number is positive, so y must be negative.

Chapter 2 Review Exercises

1. (a) In the expression -3 + 4k, k is the variable, 4 is the coefficient, and -3 is the constant term.

(b) The term that has 20 as the constant term and -9 as the coefficient is -9y + 20.

2. (a) Evaluate 4c + 10 when c is 15.

$$4c + 10$$
 $\underbrace{4 \cdot 15}_{60 + 10} + 10$ Replace c with 15.

Order 70 test tubes

(b) Evaluate 4c + 10 when c is 24.

$$4c + 10$$

$$\underbrace{4 \cdot 24 + 10}_{96 + 10}$$
Replace c with 24.
$$\underbrace{96 + 10}_{106}$$
Order 106 test tubes.

3. (a) x^2y^4 means $x \cdot x \cdot y \cdot y \cdot y \cdot y$

(b) $5ab^3$ means $5 \cdot a \cdot b \cdot b \cdot b$

4. (a) n^2 means

$$\underbrace{-3 \cdot (-3)}_{Q} \quad Replace \ n \ with \ -3.$$

(b) n^3 means

$$\underbrace{-3 \cdot (-3) \cdot (-3)}_{-27} \cdot (-3) \quad Replace \ n \ with \ -3$$

(c)
$$-4mp^2$$
 means
$$-4 \cdot m \cdot p \cdot p$$

$$-4 \cdot 2 \cdot 4 \cdot 4$$

$$-8 \cdot 4 \cdot 4$$

$$-32 \cdot 4$$

$$-128$$
Replace m with 2
and p with 4.

(d) $5m^4n^2$ means

$$5 \cdot m \cdot m \cdot m \cdot m \cdot n \cdot n$$
Renlace

$$\underbrace{5 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot (-3) \cdot (-3)}_{20 \cdot 2 \cdot 2 \cdot 2 \cdot (-3) \cdot (-3)}$$

$$\underbrace{10 \cdot 2 \cdot 2 \cdot 2 \cdot (-3) \cdot (-3)}_{20 \cdot 2 \cdot 2 \cdot (-3) \cdot (-3)}$$

$$\underbrace{40 \cdot 2 \cdot (-3) \cdot (-3)}_{720} \cdot (-3)$$

- 5. $ab + ab^2 + 2ab$ $\underline{1ab} + ab^2 + \underline{2ab}$ Combine like terms. $3ab + ab^2$ or $ab^2 + 3ab$
- **6.** -3x + 2y x 7 -3x + 2y - 1x - 7 Rewrite x as 1x. -3x + 2y + (-1x) + (-7) Change to addition. -4x + 2y - 7 Combine like terms.
- 7. $-8(-2g^3)$ Associative property $[-8 \cdot (-2)] \cdot g^3$ $16 \cdot g^3$ $16q^3$
- 8. $4(3r^2t)$ Associative property $(4 \cdot 3) \cdot r^2t$ $12 \cdot r^2t$ $12r^2t$
- 9. 5(k+2) Distribute. $5 \cdot k + 5 \cdot 2$ 5k + 10
- 10. -2(3b+4) Distribute. $-2 \cdot 3b + (-2) \cdot 4$ -6b + (-8) or -6b - 8

11.
$$3(2y-4)+12$$
 Distribute.
 $3 \cdot 2y - 3 \cdot 4 + 12$
 $6y - 12 + 12$
 $6y + (-12) + 12$
 $6y + 0$
 $6y$

12.
$$-4+6(4x+1)-4x$$
 Distribute.
 $-4+24x+6-4x$
 $-4+24x+6+(-4x)$
 $2+20x$ or $20x+2$

- 13. Expressions will vary. One possibility is $6a^3 + a^2 + 3a 6$.
- 14. 16 + n = 5 Add -16 to both sides. $\frac{-16}{0+n} = \frac{-16}{-11}$ n = -11 The solution is -11.

Check
$$16+n=5$$

$$16+(-11)=5 \quad \textit{Replace n with } -11.$$

$$5=5 \quad \text{Balances}$$

15.
$$-4+2 = 2a-6-a$$

 $-4+2 = 2a+(-6)+(-1a)$
 $-2 = 1a+(-6)$
 $\frac{6}{4} = 1a+0$

The solution is 4.

Check
$$-4+2=2a-6-a$$

 $-4+2=2(4)-6-4$
 $-2=8+(-6)+(-4)$
 $-2=2+(-4)$
 $-2=-2$ Balances

16.
$$48 = -6m$$

$$\frac{48}{-6} = \frac{-6m}{-6}$$
Divide both sides by -6.
$$-8 = m$$
The solution is -8.

17.
$$k-5k = -40$$

$$1k-5k = -40$$

$$1k+(-5k) = -40$$

$$-4k = -40 Combine like terms.$$

$$\frac{-4k}{-4} = \frac{-40}{-4} Divide both$$

$$k = 10 The solution is 10.$$

18.
$$\underbrace{-17 + 11 + 6}_{0} = 7t$$

$$= 7t$$

$$\frac{0}{7} = \frac{7t}{7}$$
Divide both sides by 7.
$$0 = t$$
The solution is 0.

19.
$$-2p + 5p = 3 - 21$$

 $-2p + 5p = 3 + (-21)$
 $3p = -18$
 $\frac{3p}{3} = \frac{-18}{3}$ Divide both sides by 3.
 $p = -6$ The solution is -6 .

20.
$$-30 = 3(-5r)$$

 $-30 = -15r$
 $\frac{-30}{-15} = \frac{-15r}{-15}$ Divide both
 $3ides\ by\ -15$.
 $2 = r$ The solution is 2.

21.
$$12 = -h$$

$$12 = -1h$$

$$\frac{12}{-1} = \frac{-1h}{-1}$$

$$\frac{12}{-1} = \frac{-1h}{-1}$$

$$\frac{12}{-1} = h$$
Divide both sides by -1 .
The solution is -12 .

22.

$$12w - 4 = 8w + 12$$

$$12w + (-4) = 8w + 12$$

$$-8w - 8w - 12$$

$$4w + (-4) = 0 + 12$$

$$4w + (-4) = 12$$

$$4 - 4w - 16$$

$$4w + 0 = 16$$

$$4w - 16$$

The solution is 4.

-2 = c

The solution is -2.

24.
$$34 = 2n + 4$$

$$-4 \qquad -4 \qquad both \ sides.$$

$$30 = 2n + 0$$

$$30 = 2n$$

$$\frac{30}{2} = \frac{2n}{2} \qquad bivide \ both$$

$$3ides \ by \ 2.$$

$$15 = n$$

The number of employees is 15.

$$\frac{3a}{3} = \frac{-15}{3} \frac{\text{Divide both}}{\text{sides by 3.}}$$

$$a = -5 \quad \text{The solution is } -5.$$
26. [2.5] $-2(p-3) = -14$

$$-2p+6 = -14 \quad \text{Distribute.}$$

$$-6 \quad -6 \quad \text{both sides.}$$

$$-2p+0 = -20$$

$$\frac{-2p}{-2} = \frac{-20}{-2} \frac{\text{Divide both}}{\text{sides by } -2.}$$

$$p = 10 \quad \text{The solution is } 10.$$
27. [2.5] $10y = 6y + 20$

$$\frac{-6y}{4y} = \frac{-6y}{0+20} \frac{\text{Add } -6y \text{ to both sides.}}{\text{both sides.}}$$

$$\frac{4y}{4} = \frac{20}{4}$$
 Divide both sides by 4.
$$y = 5$$
 The solution is 5.
$$2m - 7m = 5 - 20$$

$$2m + (-7m) = 5 + (-20)$$
 Add the opposites.
$$-5m = -15$$
 Combine like terms.
$$\frac{-5m}{-5} = \frac{-15}{-5}$$
 Divide both sides by -5 .

m = 3

The solution is 3.

29. [2.5]
$$20 = 3x - 7$$

$$20 = 3x + (-7)$$

$$7 \qquad 7 \qquad both sides.$$

$$27 = 3x + 0$$

$$\frac{27}{3} = \frac{3x}{3} \qquad Divide both sides by 3.$$

$$9 = x \qquad The solution is 9.$$

30. [2.5]
$$b+6 = 3b-8$$

$$\begin{array}{rrrr}
-3b & -3b & Add -3b \text{ to} \\
both sides.
\end{array}$$

$$\begin{array}{rrrrr}
-2b+6 & = -8 \\
-6 & -6 & Add -6 \text{ to} \\
both sides.
\end{array}$$

$$\begin{array}{rrrrr}
-2b+0 & = -14 \\
-2 & -2 & Add -6 \text{ to} \\
both sides.
\end{array}$$

$$\begin{array}{rrrrr}
-2b & -14 & Divide both \\
sides by -2. \\
b & = 7 & The solution is 7.$$

$$b = 7$$
 The solution is 7.

31. [2.3] $z + 3 = 0$

$$-3 \quad -3 \quad both \ sides.$$

$$\overline{z + 0} = \overline{-3}$$

$$z = -3$$
 The solution is -3 .

32. [2.5]
$$3(2n-1) = 3(n+3)$$

 $6n-3 = 3n+9$ Distribute.
 $-3n$ $-3n$ $an + 9$ Distribute.
 $-3n$ $an + 9$ Distribute.
 $3n-3 = 0+9$ $an + 9$ Distribute.
 $3n-3 = 9$ $an + 9$ Distribute.
 $3n-3 = 9$ $an + 9$ $an + 9$ Distribute.
 $3n-3 = 9$ $an + 9$ $an + 9$ Distribute.
 $3n-3 = 12$ Distribute.

33. [2.5]
$$-4 + 46 = 7(-3t + 6)$$
 $-4 + 46 = -21t + 42$ Distribute.
$$42 = -21t + 42$$

$$-42 \qquad -42 \qquad both sides.$$

$$0 = -21t + 0$$

$$\frac{0}{-21} = \frac{-21t}{-21} \qquad bivide both sides by -21.$$

$$0 = t \qquad The solution is 0.$$

34. [2.5]

The solution is 5.

35. [2.5]

The solution is -2.

Chapter 2 Test

- In the expression -7w + 6, -7 is the coefficient, w is the variable, and 6 is the constant term.
- 2. Evaluate the expression 3a + 2c when a is 45 and c is 21.

$$3a + 2c$$

$$\underbrace{3 \cdot 45}_{135} + \underbrace{2 \cdot 21}_{42}$$

$$177$$

Buy 177 hot dogs.

- x^5y^3 means $x \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y$
- $4ab^4$ means $4 \cdot a \cdot b \cdot b \cdot b \cdot b$

 $-2s^2t$ means

 $\underbrace{-2 \cdot (-5) \cdot (-5) \cdot 4}_{\underbrace{10 \cdot (-5) \cdot 4}_{\underbrace{-50 \cdot 4}}$ Replace s with -5 and t with 4.

$$\underbrace{10 \cdot (-5)}_{-50 \cdot 4} \cdot 4$$

$$-200$$

- $3w^3 8w^3 + w^3$ 6. $3w^3 - 8w^3 + 1w^3$ $3w^3 + (-8w^3) + 1w^3$ $\underbrace{-5w^3 + 1w^3}_{-4w^3}$
- 7. xy - xy1xy - 1xy(1-1)xy0xy
- 8. -6c - 5 + 7c + 5-6c + (-5) + 7c + 51c or c
- $3m^2 3m + 3mn$ There are no like terms. The expression cannot be simplified.
- $-10(4b^2)$ 10. $(-10 \cdot 4) \cdot b^2$ Associative property of multiplication

11.
$$-5(-3k)$$

$$[-5 \cdot (-3)] \cdot k \qquad \begin{array}{c} Associative \ property \\ of \ multiplication \end{array}$$

12.
$$7(3t+4)$$

 $7(3t) + 7(4)$ Distributive property
 $21t + 28$

13.
$$-4(a+6)$$

 $-4 \cdot a + (-4) \cdot 6$ Distributive property
 $-4a + (-24)$
 $-4a - 24$

14.
$$-8+6(x-2)+5$$

 $-8+6x-12+5$ Distributive property
 $-8+6x+(-12)+5$
 $6x+(-15)$ Combine like terms.
or $6x-15$

15.
$$-9b - c - 3 + 9 + 2c$$

$$-9b - 1c - 3 + 9 + 2c$$

$$-9b + (-1c) + (-3) + 9 + 2c$$

$$-9b + c + 6$$
Combine like terms.

16.
$$\begin{array}{ccc}
-4 & = & x-9 \\
9 & & 9 \\
\hline
5 & = & x+0 \\
5 & - & x
\end{array}$$
Add 9 to both sides.

The solution is 5.

Check
$$-4 = x - 9$$

 $-4 = 5 - 9$ Replace x with 5.
 $-4 = -4$ Balances

17.
$$-7w = 77$$

$$\frac{-7w}{-7} = \frac{77}{-7}$$
 Divide both sides by -7.
$$w = -11$$

The solution is -11.

Check
$$-7w = 77$$

 $-7 \cdot (-11) = 77$ Replace w with -11.
 $77 = 77$ Balances

18.
$$-p = 14$$

$$-1p = 14$$

$$\frac{-1p}{-1} = \frac{14}{-1}$$
 Divide both sides by -1.
$$p = -14$$

The solution is -14.

Check
$$-p=14$$

$$-1p=14$$

$$-1\cdot (-14)=14 \quad \textit{Replace p with } -14.$$

$$14=14 \quad \text{Balances}$$

19.
$$-15 = -3(a+2)$$

$$-15 = -3a - 6$$

$$\underline{6} \qquad \underline{6} \qquad Add 6 \text{ to both sides.}$$

$$\underline{-9} = -3a$$

$$\underline{-9} = \frac{-3a}{-3} \qquad Divide \text{ both sides by } -3.$$

The solution is 3.

Check
$$-15 = -3(a+2)$$

 $-15 = -3(3+2)$ Replace a with 3.
 $-15 = -3(5)$
 $-15 = -15$ Balances

20.
$$6n + 8 - 5n = -4 + 4$$

 $6n + 8 + (-5n) = 0$
 $n + 8 = 0$
 -8
 $n = -8$
 -8
 $Add - 8$.

The solution is -8.

21.
$$5-20 = 2m - 3m$$

$$5 + (-20) = 2m + (-3m)$$

$$-15 = -1m$$

$$\frac{-15}{-1} = \frac{-1m}{-1}$$

$$15 = m$$
Divide both sides by -1.

The solution is 15.

The solution is -1.

23.
$$3m - 5 = 7m - 13$$

$$-3m \qquad -3m \qquad both sides.$$

$$0 - 5 = 4m - 13$$

$$-5 = 4m - 13$$

$$13 \qquad 13 \qquad both sides.$$

$$\frac{8}{4} = \frac{4m}{4} \qquad bivide both sides by 4.$$

$$2 = m$$

The solution is 2.

24.
$$2 + 7b - 44 = -3b + 12 + 9b$$

 $7b - 42 = 6b + 12$
 $-6b$ $-6b$ Add -6b to both sides.
 $1b - 42 = 12$ Add 42 to both sides.
 $1b = 54$ b = 54

The solution is 54.

25.
$$3c - 24 = 6(c - 4)$$

$$3c - 24 = 6c - 24 \text{ Distribute.}$$

$$-3c \qquad -3c \qquad -3c \qquad -24$$

$$-24 \qquad 24 \qquad \text{Add 24 to both sides.}$$

$$0 = 3c \qquad 0$$

$$\frac{0}{3} = \frac{3c}{3} \qquad \text{Divide both sides by 3.}$$

$$0 = c$$

The solution is 0.

26. Addition property of equality: Start with a possible solution, for example, x = -4. Now add an abitrary number, say -5, to both sides, to give us the equation x - 5 = -9.

Division property of equality: Start with a possible solution, for example, -4 = y. Now multiply both sides by an abitrary number, say 6, to give us the equation -24 = 6y.

Thus, equations will vary. Two possibilities are

$$x - 5 = -9$$
 and $-24 = 6y$.

Solving:

Cumulative Review Exercises (Chapters 1–2)

- 1. 306,000,004,210 in words is three hundred six billion, four thousand, two hundred ten.
- **2.** Eight hundred million, sixty-six thousand: 800,066,000
- 3. (a) -3 lies to the *right* of -10 on the number line, so -3 > -10.

- **(b)** -1 lies to the *left* of 0 on the number line, so -1 < 0.
- **4.** (a) -6+2=2+(-6) Commutative property of addition: Changing the order of the addends does not change the sum.
 - **(b)** $0 \cdot 25 = 0$ Multiplication property of zero: Multiplying any number by 0 gives a product of 0.
 - (c) $5(-6+4) = 5 \cdot (-6) + 5 \cdot 4$ Distributive property: Multiplication distributes over addition.
- 5. (a) $9047 \approx 9000$

Underline the hundreds place: 9047

The next digit is 4 or less, so leave 0 as 0. Change 4 and 7 to 0.

(b) $289,610 \approx 290,000$

Underline the thousands place: 289,610

The next digit is 5 or more, so add 1 to 9, write the 0 and add 1 to the ten-thousands place. Change 6 and 1 to 0.

- 6. 0-8= 0+(-8) Change to addition. = -8
- 7. |-6| + |4|= 6 + 4 -6 is 6 units from 0. 4 is 4 units from 0. = 10
- 8. -3(-10)= 30 Same sign, positive product
- 9. $(-5)^2$ = $-5 \cdot (-5)$ = 25 Same sign, positive product
- 10. $\frac{-42}{-6}$ = 7 Same sign, positive quotient
- 11. -19 + 19 = 0Addition of a number and its opposite is zero.
- 12. $(-4)^3$ $\underbrace{-4 \cdot (-4) \cdot (-4)}_{-64} \quad Exponent$ $\underbrace{16 \cdot (-4)}_{-64} \quad Multiply \ left \ to \ right.$
- 13. $\frac{-14}{0}$ is *undefined*. Division by 0 is undefined.
- 14. $-5 \cdot 12$ = -60 Different signs, negative product

Copyright © 2014 Pearson Education, Inc.

16. $\frac{45}{-5} = -9$ Different signs, negative quotient

17. -50 + 25 = -25

18. -10 + 6(4 - 7) -10 + 6[4 + (-7)] Change to addition. -10 + 6(-3) -10 + (-18) Multiply. -18 Add.

19. $\frac{-20-3(-5)+16}{(-4)^2-3^3}$

Numerator:

$$-20 - 3(-5) + 16$$

 $-20 - (-15) + 16$ Multiply.
 $-20 + 15 + 16$ Change to addition.
 $-5 + 16$ Add left to right.

Denominator:

$$\underbrace{(-4)^2 - 3^3}_{(-4)(-4)} - \underbrace{3 \cdot 3 \cdot 3}_{(-27)} \quad Exponents$$

$$\underbrace{16 - 27}_{-11}$$

Last step is division: $\frac{11}{-11} = -1$

20. 22 days rounds to 20.616 miles rounds to 600.Average distance "per" day implies division.

Estimate: $\frac{600 \text{ miles}}{20 \text{ days}} = 30 \text{ miles per day}$

Exact: $\frac{616 \text{ miles}}{22 \text{ days}} = 28 \text{ miles per day}$

The average distance the tiger traveled each day was 28 miles.

21. -48 degrees rounds to -50. "Rise" of 23 degrees rounds to 20.

A start temperature of -48 degrees followed by a rise of 23 degrees implies addition.

Estimate: -50 + 20 = -30 degrees Exact: -48 + 23 = -25 degrees

The daytime temperature was -25 degrees.

52 shares rounds to 50.\$2132 rounds to \$2000.\$8 stays \$8 (it's a single digit number).

Each stock dropped in value by \$8 and Doug owned 52 shares. Multiply to find out how much money he lost. Then, subtract this amount from the original total value.

Estimate: $$2000 - (50 \cdot 8) = 1600 Exact: $$2132 - (52 \cdot 8) = 1716

His shares are now worth \$1716.

23. \$758 rounds to \$800.\$45 rounds to \$50.12 months (in one year) rounds to 10.

Estimate: 10(\$800 + \$50)= 10(\$850) = \$8500

Exact: 12(\$758 + \$45) = 12(\$803) = \$9636

She will spend \$9636 for rent and parking in one year.

24. $-4ab^3c^2$ means $-4 \cdot a \cdot b \cdot b \cdot b \cdot c \cdot c$

25. $3xy^3$ means

$$\underbrace{3 \cdot x \cdot y \cdot y \cdot y}_{3 \cdot (-5) \cdot (-2) \cdot (-2) \cdot (-2)} \quad \begin{array}{c} \text{Replace x with } -5 \\ \text{and y with } -2. \\ \underline{-15 \cdot (-2) \cdot (-2) \cdot (-2)} \\ \underline{30 \cdot (-2) \cdot (-2)} \\ \underline{-60 \cdot (-2)} \\ 120 \end{array}$$

26. 3h - 7h + 5h 3h + (-7h) + 5h Change to addition. -4h + 5h Combine like terms. 1h or h

27. $c^2d - c^2d$ $= 1c^2d - 1c^2d$ Write the understood coefficients of 1. $= 1c^2d + (-1c^2d)$ Change to addition. $= [1 + (-1)]c^2d$ Combine like terms. $= 0 \cdot c^2d$ = 0

28. $4n^{2} - 4n + 6 - 8 + n^{2}$ $4n^{2} + (-4n) + 6 + (-8) + n^{2}$ $4n^{2} + n^{2} + (-4n) + 6 + (-8)$ $5n^{2} + (-4n) + (-2)$ or $5n^{2} - 4n - 2$

29.
$$(-10(3b^2))$$

$$(-10 \cdot 3) b^2$$
 Associative property
$$-30b^2$$

30.
$$7(4p-4)$$

$$\underbrace{7 \cdot 4p - 7 \cdot 4}_{28p-28}$$
 Distribute.

31.
$$3 + 5(-2w^2 - 3) + w^2$$
$$3 + (-10w^2) - 15 + w^2$$
$$3 + (-10w^2) + (-15) + w^2$$
$$-9w^2 + (-12) \quad \text{or} \quad -9w^2 - 12$$

32.
$$3x = x - 8$$

$$-x - x = 0 - 8$$

$$2x = 0 - 8$$

$$2x = -8$$

$$\frac{2x}{2} = \frac{-8}{2}$$
Divide both sides by 2.
$$x = -4$$

The solution is -4.

Check
$$3x = x - 8$$

 $3(-4) = -4 - 8$ Replace x with -4.
 $-12 = -4 + (-8)$
 $-12 = -12$ Balances

33.
$$-44 = -2 + 7y$$

$$\frac{2}{-42} = \frac{2}{0 + 7y}$$

$$-42 = 7y$$

$$\frac{-42}{7} = \frac{7y}{7}$$
Divide both sides by 7.
$$-6 = y$$

The solution is -6.

Check
$$-44 = -2 + 7y$$

 $-44 = -2 + 7(-6)$ Replace y with -6 .
 $-44 = -2 + (-42)$
 $-44 = -44$ Balances

34.
$$2k - 5k = -21$$

 $2k + (-5k) = -21$
 $-3k = -21$
 $\frac{-3k}{-3} = \frac{-21}{-3}$ Divide both sides by -3 .
 $k = 7$

The solution is 7.

Check
$$2k - 5k = -21$$

 $2(7) - 5(7) = -21$ Replace k with 7.
 $14 - 35 = -21$
 $14 + (-35) = -21$
 $-21 = -21$ Balances

35.
$$m-6 = -2m+6$$

$$2m \qquad 2m \qquad Add \ 2m \ to \ both \ sides.$$

$$3m-6 = 6$$

$$3m-6 = 6$$

$$6 \qquad 6 \qquad Add \ 6 \ to \ both \ sides.$$

$$3m+0 = 12$$

$$\frac{3m}{3} = \frac{12}{3} \qquad Divide \ both \ sides \ by \ 3.$$

$$m = 4$$

The solution is 4.

Check
$$m-6 = -2m+6$$
 $4-6 = -2(4)+6$ Replace m with 4. $4+(-6) = -8+6$ $-2 = -2$ Balances

37.
$$18 = -r$$

$$18 = -1r$$

$$\frac{18}{-1} = \frac{-1r}{-1}$$

$$\frac{18}{-18} = r$$
Divide both sides by -1.
$$-18 = r$$
The solution is -18.

The solution is -5.

The solution is 1.

$$40. \qquad 5 + 6y - 23 = 5(2y + 8) - 10$$

$$5 + 6y + (-23) = 10y + 40 + (-10)$$

$$6y + (-18) = 10y + 30$$

$$18 \qquad 18 \qquad Add 18.$$

$$6y + 0 = 10y + 48$$

$$6y = 10y + 48$$

$$-10y \qquad -10y \qquad Add -10y.$$

$$-4y = 0 + 48$$

$$\frac{-4y}{-4} = \frac{48}{-4} \qquad Divide$$

$$y = -12$$

The solution is -12.