CHAPTER 2 UNDERSTANDING VARIABLES AND SOLVING EQUATIONS

2.1 Introduction to Variables

2.1 Margin Exercises

1. $c+\underline{15}$

The expression is $\underline{c+15}$.
The variable is \underline{c}. It represents the class limit.
The constant is $\underline{15}$.
2. (a) Evaluate the expression $c+3$ when c is 25 .

$$
\underbrace{\begin{array}{c}
c+3
\end{array}}_{28} \text { Replace } c \text { with } 25 \text {. }
$$

Order $\underline{28}$ books.
(b) Evaluate the expression $c+3$ when c is 60 .

$$
\underbrace{\begin{array}{r}
c+3 \\
60+3
\end{array}}_{63} \text { Replace } c \text { with } 60 .
$$

Order 63 books.
3. (a) Evaluate the expression $4 s$ when s is 3 feet.

$$
\begin{array}{ll}
4 s & \text { Replace } s \text { with } 3 \text { feet. } \\
4 \cdot \underline{3 \text { feet }} \\
\underline{12 \text { feet }} &
\end{array}
$$

The perimeter of the square table is 12 feet.
(b) Evaluate the expression $4 s$ when s is 7 miles.
$4 s \quad$ Replace s with 7 miles.
$4 \cdot 7$ miles
28 miles
The perimeter of the square park is 28 miles.
4. Evaluate the expression $100+\frac{a}{2}$ when a is 40 .

$$
\begin{array}{cl}
100+\frac{a}{2} & \text { Replace a with } 40 . \\
100+\frac{40}{2} & \text { Divide. } \\
100+20 & \text { Add. } \\
120 &
\end{array}
$$

The approximate systolic blood pressure is 120 .
5. (a) Evaluate the expression $\frac{t}{g}$ when t is 532 and g is 4 .

$\frac{t}{g}$	Replace t with $\underline{532}$ and g with $\underline{4 .}$.
$\frac{532}{4}$	Divide.
133	

Your average score is 133 .
(b)

Value of x	Value of y	Expression $x-y$
16	10	$16-10$ is 6
100	5	$100-5$ is 95
3	7	$3-7$ is -4
8	0	$8-0$ is 8

6. (a) Multiplying any number a by 0 gives a product of 0 .

Any	times	zero
number		
\downarrow	\downarrow	\downarrow
a	\cdot	$\underline{0}=\underline{0}$

(b) Changing the grouping of addends (a, b, c) does not change the sum.

$$
(a+b)+c=a+(b+c)
$$

7. (a) x^{5} can be written as $\underbrace{x \cdot \underline{x} \cdot \underline{x} \cdot \underline{x}}$
x is used as a factor 5 times.
(b) $4 a^{2} b^{2}$ can be written as $4 \cdot \underline{a} \cdot \underline{a} \cdot \underline{b} \cdot \underline{b}$
(c) $-10 x y^{3}$ can be written as $-10 \cdot x \cdot y \cdot y \cdot y$
(d) $s^{4} t u^{2}$ can be written as $s \cdot s \cdot s \cdot s \cdot t \cdot u \cdot u$
8. (a) y^{3} means
$y \cdot y \cdot y \quad$ Replace y with -5 .
$\underbrace{-5 \cdot(-5)} \cdot(-5) \quad$ Multiply left to right.
$\underbrace{25 \cdot(-5)}$
-125
(b) $r^{2} s^{2}$ means
$r \cdot r \cdot s \cdot s \quad$ Replace r with 6 and s with 3 .
$\underbrace{6 \cdot 6} \cdot 3 \cdot \underline{3} \quad$ Multiply left to right.

$$
\underbrace{36 \cdot 3 \cdot 3}_{\underbrace{108 \cdot 3}_{324}}
$$

(c) $10 x y^{2}$ means

$$
\begin{array}{ll}
10 \cdot x \cdot y \cdot y & \begin{array}{l}
\text { Replace } x \text { with } 4 \\
\text { and } y \text { with }-3 .
\end{array} \\
\underbrace{\underbrace{40 \cdot(-3)}_{\underbrace{-120 \cdot(} \cdot(-3)} \cdot(-3) \cdot(-3)}_{360} \quad \text { Multiply left to right. }
\end{array}
$$

(d) $-3 c^{4}$ means
$-3 \cdot c \cdot c \cdot c \cdot c \quad$ Replace c with 2.

$\underbrace{-6 \cdot 2} \cdot 2 \cdot 2$
$\underbrace{-12 \cdot 2} \cdot 2$
$\underbrace{-24 \cdot 2}_{-48}$

2.1 Section Exercises

1. $c+4 \quad c$ is the variable;

4 is the constant.
2. $d+6 \quad \underline{d}$ is the variable;

6 is the constant.
3. $-3+m \quad m$ is the variable;
-3 is the constant.
4. $-4+n \quad n$ is the variable;
-4 is the constant.
5. $5 h h$ is the variable;

5 is the coefficient.
6. $3 s \quad s$ is the variable;

3 is the coefficient.
7. $2 c-10 \quad c$ is the variable;

2 is the coefficient.
10 is the constant.
8. $6 b-1 \quad b$ is the variable; 6 is the coefficient. 1 is the constant.
9. $\quad x-y \quad$ - Both x and y are variables.
10. $x y$ - Both x and y are variables.
11. $-6 g+9 \quad g$ is the variable;
-6 is the coefficient;
9 is the constant.
12. $-10 k+15 k$ is the variable;
-10 is the coefficient; 15 is the constant.
13. Expression (rule) for ordering robes: $g+10$
(a) Evaluate the expression when there are 654 graduates.

$$
\underbrace{}_{\underline{664} \begin{aligned}
g+10 & \text { robes must be ordered. }
\end{aligned} \quad \begin{array}{l}
\text { Replace } g \text { with } 654 . \\
\text { Follow the rule and add. }
\end{array} .}
$$

(b) Evaluate the expression when there are 208 graduates.

$$
\begin{aligned}
& \begin{array}{r}
g+10
\end{array} \begin{array}{l}
\text { Replace } g \text { with } 208 . \\
208+10
\end{array} \\
& \underbrace{\text { Follow the rule and add. }}_{218 \text { robes must be ordered. }} .
\end{aligned}
$$

(c) Evaluate the expression when there are 95 graduates.

$$
\underbrace{\begin{array}{c}
g+10 \\
95+10
\end{array} \quad \begin{array}{l}
\text { Replace } g \text { with } 95 . \\
\text { Follow the rule and add. }
\end{array}}_{105 \text { robes must be ordered. }}
$$

14. Expression (rule) for degrees: $c+37$
(a) $45+37$ is 82 degrees.
(b) $33+37$ is 70 degrees.
(c) $58+37$ is 95 degrees.
15. Expression (rule) for finding perimeter of an equilateral triangle of side length s : $3 s$
(a) Evaluate the expression when s, the side length, is 11 inches.

3s Replaces with 11.
$\underbrace{3 \cdot 11}$ Follow the rule and multiply.
33 inches is the perimeter.
(b) Evaluate the expression when s, the side length, is 3 feet.

3s Replaces with 3.
$\underbrace{3 \cdot 3}$ Follow the rule and multiply.
9 feet is the perimeter.
16. Expression (rule) for perimeter: 5 s
(a) $5 \cdot 25$ meters is 125 meters.
(b) $5 \cdot 8$ inches is 40 inches.
17. Expression (rule) for ordering brushes: $3 c-5$
(a) Evaluate the expression when c, the class size, is 12 .

$$
\begin{aligned}
& \begin{array}{l}
3 c-5 \\
\underbrace{36-5}_{\underbrace{3 \cdot 12}_{31}-5} \text { brushes must be ordered. }
\end{array} . \text { Multiply before subtracting. }
\end{aligned}
$$

(b) Evaluate the expression when c, the class size, is 16 .

$$
\begin{array}{ll}
\begin{array}{ll}
3 c-5 & \text { Replace } c \text { with } 16 . \\
\underbrace{3 \cdot 16-5}-5 & \text { Multiply before subtracting. }
\end{array} .
\end{array}
$$

43 brushes must be ordered.
18. Expression (rule) for ordering doughnuts: $2 n-4$
(a) $2 \cdot 13-4$ is 22 doughnuts must be ordered.
(b) $2 \cdot 18-4$ is 32 doughnuts must be ordered.
19. Expression (rule) for average test score, where p is the total points and t is the number of tests: p / t
(a) Evaluate the expression when p, the total points, is 332 and t, the number of tests, is 4 .
$\frac{p}{t} \quad$ Replace p with 332 and t with 4.
$\frac{332}{4} \quad$ Follow the rule and divide.
83 points is the average test score.
(b) Evaluate the expression when p, the total points, is 637 and t, the number of tests, is 7 .
$\frac{p}{t} \quad$ Replace p with 637 and t with 7. $\frac{637}{7} \quad$ Follow the rule and divide. 91 points is the average test score.
20. Expression (rule) for buses: $\frac{p}{b}$
(a) $\frac{176}{44}$ is 4 buses.
(b) $\frac{72}{36}$ is 2 buses.
21.

Value of x	Expression $x+x+x+x$	Expression $4 x$
12	$12+12+12+12$ is 48	$4 \cdot 12$ is 48
0	$0+0+0+0$ is 0	$4 \cdot 0$ is 0
-5	$-5+(-5)+(-5)$ $+(-5)$ is -20	$4 \cdot(-5)$ is -20

22.

Value of y	Expression $3 y$	Expression $y+2 y$
10	$3(10)$ is 30	$10+2(10)$ is $10+20$, or 30
-3	$3(-3)$ is -9	$-3+2(-3)$ is $-3+(-6)$, or -9
0	$3(0)$ is 0	$0+2(0)$ is $0+0$, or 0

23.

Value of x	Value of y	Expression $-2 x+y$
-4	5	$-2(-4)+5$ is $8+5$, or 13
-6	-2	$-2(-6)+(-2)$ is $12+(-2)$, or 10
0	-8	$-2(0)+(-8)$ is $0+(-8)$, or -8

24.

Value of x	Value of y	Expression $-2 x y$
-4	5	$-2 \cdot(-4) \cdot 5$ is 40
-6	-2	$-2 \cdot(-6) \cdot(-2)$ is -24
0	-8	$-2 \cdot 0 \cdot(-8)$ is 0

25. A variable is a letter that represents the part of a rule that varies or changes depending on the situation. An expression expresses, or tells, the rule for doing something. For example, $c+5$ is an expression, and c is the variable.
26. The number part in a multiplication expression is the coefficient. For example, 4 is the coefficient in $4 s$. A constant is a number that is added or subtracted in an expression. It does not vary. For example, 5 is the constant in $c+5$.
27. Multiplying a number by 1 leaves the number unchanged. Let b represent "a number."

$$
b \cdot 1=b \quad \text { or } \quad 1 \cdot b=b
$$

28. Adding 0 to any number leaves the number unchanged. Let b represent "any number."

$$
b+0=b \quad \text { or } \quad 0+b=b
$$

29. Any number divided by 0 is undefined. Let b represent "any number."

$$
\frac{b}{0} \text { is undefined } \text { or } b \div 0 \text { is undefined. }
$$

30. Multiplication distributes over addition. Let a, b, and c represent variables.

$$
a(b+c)=a \cdot b+a \cdot c
$$

31. c^{6} written without exponents is

$$
c \cdot c \cdot c \cdot c \cdot c \cdot c
$$

32. d^{7} written without exponents is

$$
d \cdot d \cdot d \cdot d \cdot d \cdot d \cdot d
$$

33. $x^{4} y^{3}$ written without exponents is

$$
x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y
$$

34. $c^{2} d^{5}$ written without exponents is

$$
c \cdot c \cdot d \cdot d \cdot d \cdot d \cdot d
$$

35. $-3 a^{3} b$ can be written as $-3 \cdot a \cdot a \cdot a \cdot b$.

The exponent 3 applies only to the base a.
36. $-8 m^{2} n$ can be written as $-8 \cdot m \cdot m \cdot n$.

The exponent 2 applies only to the base m.
37. $9 x y^{2}$ can be written as $9 \cdot x \cdot y \cdot y$.

The exponent 2 applies only to the base y.
38. $5 a b^{4}$ can be written as $5 \cdot a \cdot b \cdot b \cdot b \cdot b$.

The exponent 4 applies only to the base b.
39. $-2 c^{5} d$ can be written as $-2 \cdot c \cdot c \cdot c \cdot c \cdot c \cdot d$. The exponent 5 applies only to the base c.
40. $-4 x^{3} y$ can be written as $-4 \cdot x \cdot x \cdot x \cdot y$.

The exponent 3 applies only to the base x.
41. $a^{3} b c^{2}$ can be written as $a \cdot a \cdot a \cdot b \cdot c \cdot c$.

The exponent 3 applies only to the base a.
The exponent 2 applies only to the base c.
42. $x^{2} y z^{6}$ can be written as $x \cdot x \cdot y \cdot z \cdot z \cdot z \cdot z \cdot z \cdot z$.

The exponent 2 applies only to the base x.
The exponent 6 applies only to the base z.
43. Evaluate t^{2} when t is -4 .

Copyright © 2014 Pearson Education, Inc.

46 Chapter 2 Understanding Variables and Solving Equations
44. $\quad r^{2}=r \bullet r \quad$ - Replace r with -3 .

$$
-3 \cdot(-3)=9
$$

45. Evaluate $r s^{3}$ when r is -3 and s is 2 .
$r s^{3}$ means
$r \cdot s \cdot s \cdot s \quad$ Replace r with -3 and s with 2.
$\underbrace{-3 \cdot 2} \cdot 2 \cdot 2$ Multiply left to right.
$\underbrace{-6 \cdot 2} \cdot 2$
$\underbrace{-12 \cdot 2}_{-24}$
46. $s^{4} t=s \cdot s \cdot s \cdot s \cdot t \quad$ - Replace s with 2 and t
with -4 .

$$
2 \cdot 2 \cdot 2 \cdot 2 \cdot(-4)=-64
$$

47. Evaluate $3 r s$ when r is -3 and s is 2 .

3 rs means
$3 \cdot r \cdot s \quad$ Replace r with -3 and s with 2 .
$\underbrace{3 \cdot(-3)}_{\underbrace{-9 \cdot 2}} \cdot 2$ Multiply left to right.
-18
48. $6 s t$ - Replace s with 2 and t with -4 .

$$
6 \cdot 2 \cdot(-4)=-48
$$

49. Evaluate $-2 s^{2} t^{2}$ when s is 2 and t is -4 .
$-2 s^{2} t^{2}$ means
$-2 \cdot s \cdot s \cdot t \cdot t \quad$ Replace s with 2 and t with -4 .
$\underbrace{-2 \cdot 2} \cdot 2 \cdot(-4) \cdot(-4)$ Multiply left to right.
$\underbrace{-4 \cdot 2} \cdot(-4) \cdot(-4)$
$\underbrace{-8 \cdot(-4)}_{-128} \cdot(-4)$
50. $-4 r s^{4}=-4 \cdot r \cdot s \cdot s \cdot s \cdot s$ - Replace r with -3 and s with 2 .

$$
-4 \cdot(-3) \cdot 2 \cdot 2 \cdot 2 \cdot 2=192
$$

51. Evaluate $r^{2} s^{5} t^{3}$ when r is $-3, s$ is 2 , and t is -4 , using a calculator.

$\underbrace{\underbrace{(288)(-64)}}_{\underbrace{2}_{-18,432} s^{5} t^{3}}$	Replace r with -3, s with 2, and t with -4.
$(-3)^{2}(2)^{5}(-4)^{3}$	Use the y^{x} key.. Multiply left to right.

52. $r^{3} s^{4} t^{2}$ - Use a calculator. Replace r with $-3, s$ with 2 , and t with -4 .
$(-3)^{3}(2)^{4}(-4)^{2}=(-27)(16)(16)=-6912$
53. Evaluate $-10 r^{5} s^{7}$ when r is -3 and s is 2 , using a calculator.
$-10 r^{5} s^{7} \quad$ Replace r with -3
$-10 \underbrace{(-3)^{5}} \underbrace{(2)^{7}}$ Use the y^{x} key.
$\underbrace{-10(-243)}_{2430(128)}(128) \quad$ Multiply left to right.
$\underbrace{2430(128)}_{311,040}$
54. $-5 s^{6} t^{5}$ - Use a calculator. Replace s with 2 and t with -4 .
$-5(2)^{6}(-4)^{5}=-5(64)(-1024)=327,680$
55. Evaluate $|x y|+|x y z|$ when x is $4, y$ is -2 , and z is -6 .

> Replace x with 4 , y with -2 , and z with -6 .
$|x y|+|x y z| \quad y$ with -2 , and
$\underbrace{|4 \cdot(-2)|}+|\underbrace{4 \cdot(-2)} \cdot(-6)| \begin{aligned} & \text { Multiply left to } \\ & \text { right within the } \\ & \text { abs. value bars. }\end{aligned}$

$$
\begin{array}{r|}
|-8|+ \\
|-8|+|48|
\end{array}|\underbrace{\mid-8 \cdot(-6)}| \quad \begin{aligned}
& \text { Evaluate the } \\
& \text { absolute values. }
\end{aligned}
$$

56. $x+\left|y^{2}\right|+|x z|=x+|y \cdot y|+|x \cdot z|$

Replace x with $4, y$ with -2 , and z with -6 .

$$
\begin{aligned}
4+|-2 \cdot(-2)|+|4 \cdot(-6)| & =4+|4|+|-24| \\
& =4+4+24 \\
& =32
\end{aligned}
$$

57. Evaluate $\frac{z^{2}}{-3 y+z}$ when z is -6 and y is -2 .

$\frac{z^{2}}{-3 y+z}$	Replace z with -6 and y with -2.
$\frac{(-6)^{2}}{-3(-2)+(-6)}$	Follow the order of operations.
$\frac{36}{0}$	$(-6)^{2}=-6 \cdot(-6)=36$ Nenominator: Undefined$-3(-2)+(-6)=6+(-6)=0$ Division by 0 is undefined.

Copyright © 2014 Pearson Education, Inc.
58. Evaluate $\frac{y^{2}}{x+2 y}$ when x is 4 and y is -2 .
$\frac{y^{2}}{x+2 \cdot y} \quad \begin{aligned} & \text { Replace } x \text { with 4 } \\ & \text { and } y \text { with }-2 .\end{aligned}$
$\frac{(-2)^{2}}{4+2 \cdot(-2)} \quad$ Follow the order of operations.
Numerator:
$\frac{4}{0} \quad(-2)^{2}=-2 \cdot(-2)=4$
$\overline{0} \quad$ Denominator:
$4+2 \cdot(-2)=4+(-4)=0$
Undefined Division by 0 is undefined.
Relating Concepts (Exercises 59-60)
59. (a) Evaluate $\frac{s}{5}$ when s is 15 seconds.
$\frac{s}{5} \quad$ Replace s with 15 .
$\frac{15}{5} \quad$ Divide.
3 miles
(b) Evaluate $\frac{s}{5}$ when s is 10 seconds.

$$
\begin{array}{ll}
\frac{s}{5} & \text { Replace s with } 10 \\
\frac{10}{5} & \text { Divide. }
\end{array}
$$

2 miles
(c) Evaluate $\frac{s}{5}$ when s is 5 seconds.
$\frac{s}{5} \quad$ Replace s with 5.
$\frac{5}{5} \quad$ Divide.
1 mile
60. (a) Using part (c) of Exercise 59, the distance covered in $2 \frac{1}{2}$ seconds is half of the distance covered in 5 seconds, or $\frac{1}{2}$ mile.
(b) Using part (a) of Exercise 59, the time to cover $1 \frac{1}{2}$ miles is half the time to cover 3 miles, or $7 \frac{1}{2}$ seconds. Or, using parts (b) and (c), find the number halfway between 5 seconds and 10 seconds
(c) Using parts (a) and (b) of Exercise 59, find the number halfway between 10 seconds and 15 seconds; that is $12 \frac{1}{2}$ seconds.

2.2 Simplifying Expressions

2.2 Margin Exercises

1. (a) $3 b^{2}+(-3 b)+3+b^{3}+b$

The like terms are $-3 b$ and b since the variable parts match; both are b.
The coefficients are -3 and $\underline{1}$.
(b) $-4 x y+4 x^{2} y+\left(-4 x y^{2}\right)+(-4)+4$

The like terms are the constants, -4 and 4 . There are no variable parts.
(c) $5 r^{2}+2 r+\left(-2 r^{2}\right)+5+5 r^{3}$

The like terms are $5 r^{2}$ and $-2 r^{2}$ since the variable parts match; both are r^{2}.
The coefficients are 5 and -2 .
(d) $-10+(-x)+(-10 x)+\left(-x^{2}\right)+(-10 y)$

The like terms are $-x$ and $-10 x$ since the variable parts match; both are x.
The coefficients are -1 and -10 .
2. (a) $10 b+4 b+10 b$ These are like terms.
$\downarrow \quad \downarrow \quad \downarrow$
$(10+4+10) b \quad$ Add the coefficients.
$\underline{24} b$
The variable part, b, stays the same.
(b) $y^{3}+8 y^{3} \quad$ These are like terms.
$1 y^{3}+8 y^{3} \quad$ Rewrite y^{3} as $l y^{3}$.
$(1+8) y^{3} \quad$ Add the coefficients.
The variable part, y^{3},
stays the same.
(c) $-7 n-n \quad$ These are like terms.
$-7 n-1 n \quad$ Rewrite n as $1 n$.
$-7 n+(-1 n) \quad$ Change to addition.
$[-7+(-1)] n \quad$ Add the coefficients.
$-8 n \quad$ The variable part, n,
stays the same.
(d) $3 c-5 c-4 c \quad$ These are like terms.
$3 c+(-5 c)+(-4 c) \quad$ Change to addition.
$[3+(-5)+(-4)] c \quad$ Add the coefficients. The variable part, c, stays the same.
(e) $-9 x y+x y \quad$ These are like terms.
$-9 x y+1 x y \quad$ Rewrite xy as $1 x y$.
$(-9+1) x y \quad$ Add the coefficients.
The variable part, xy,
stays the same.
(f) $-4 p^{2}-3 p^{2}+8 p^{2} \quad$ These are like terms.
$-4 p^{2}+\left(-3 p^{2}\right)+8 p^{2} \quad$ Change to addition.
$[-4+(-3)+8] p^{2} \quad$ Add the coefficients.
$1 p^{2}$ or p^{2}
The variable part, p^{2}, stays the same.
(g) $a b-a b \quad$ These are like terms.
$1 a b-1 a b \quad$ Rewrite $a b$ as $1 a b$.
$1 a b+(-1 a b) \quad$ Change to addition.
$[1+(-1)] a b \quad$ Add the coefficients.
$0 a b \quad$ Zero times anything is zero.
3.

$$
\text { (a) } \begin{array}{cl}
3 b^{2}+4 d^{2}+7 b^{2} & \\
3 b^{2}+7 b^{2}+4 d^{2} & \text { Rewrite using the } \\
& \text { commutative property. } \\
(3+7) b^{2}+4 d^{2} & \text { Combine } 3 b^{2}+7 b^{2} . \\
\underline{10}^{2}+\underline{4 d^{2}} & \text { Add the coefficients. }
\end{array}
$$

(b) $4 a+b-6 a+b$
$4 a+b+(-6 a)+b$
$4 a+(-6 a)+b+b$
Change to addition. Rewrite using the commutative property.
$4 a+(-6 a)+1 b+1 b$
$[4+(-6)] a+(1+1) b$ Add the coefficients of like terms. $-2 a+2 b$
(c) $-6 x+5+6 x+2$
$-6 x+6 x+5+2$
Rewrite using the commutative property.

$$
(-6+6) x+(5+2) \begin{aligned}
& \text { Add the coefficients } \\
& \text { of like terms. }
\end{aligned}
$$

$0 x+7$
$0+7$
Zero times anything is zero.
7
(d) $2 y-7-y+7$
$2 y+(-7)+(-y)+7$
$2 y+(-7)+(-1 y)+7$
$2 y+(-1 y)+(-7)+7$
$[2+(-1)] y+(-7+7)$
$1 y+0$
$1 y$ or y
(e) $-3 x-5+12+10 x$
$-3 x+(-5)+12+10 x$
$-3 x+10 x+(-5)+12$
$(-3+10) x+(-5+12)$ $7 x+7$
4. (a) $7(4 c)$ means $7 \cdot(4 \cdot c)$. Using the associative property, it can be rewritten as

$$
\underbrace{\underbrace{28 \cdot c}}_{\underbrace{(7 \cdot 4)}_{\underline{28 c}} \cdot c}
$$

(b) $-3\left(5 y^{3}\right)$ can be written as

$$
\underbrace{(-3 \cdot 5)}_{\underbrace{-15 \cdot y^{3}}_{-15 y^{3}}} \cdot y^{3}
$$

(c) $20(-2 a)$ can be written as

$$
\underbrace{[20 \cdot(-2)]}_{\underbrace{-40 \cdot a}_{-40 a}} \cdot a
$$

(d) $-10(-x) \quad$ Rewrite $-x$ as $-1 x$.
$-10(-1 x) \quad$ can be written as
$\underbrace{[-10 \cdot(-1)]}_{\underbrace{10 \cdot x}_{10 x}} \cdot x$
5. (a) $7(a+10)$ can be written as

$$
\underbrace{7 \cdot a}+\underbrace{7 \cdot 10}
$$

$\underline{7 a}+\underline{70}$
(b) $3(x-3)$ can be written as
$\underbrace{3 \cdot x}-\underbrace{3 \cdot 3}$
$\underline{3 x}-\underline{9}$
(c) $4(2 y+6)$ can be written as
$4 \cdot 2 y+\underbrace{4 \cdot 6}$
$\underbrace{4 \cdot 2 \cdot y+24}$
$\underbrace{8 \cdot y}+24$
$8 y+24$
(d) $-5(3 b+2)$
$\underbrace{-5 \cdot 3 b}_{-15 b}+\underbrace{(-5) \cdot 2}_{-10}$
$-15 b+(-10) \quad$ Multiply.
$-15 b-10$
Change addition to subtraction.
(e) $-8(c+4)$
$\underbrace{-8 \cdot}_{-8 \cdot c}+\underbrace{-8 \cdot 4}_{-32}$
$-8 c+(-32) \quad$ Multiply.
$-8 c-32$ Change addition to subtraction.
6. (a) $-4+5(y+1)$ Distributive property
$-4+5 \cdot y+5 \cdot 1$
$-4+5 y+5 \quad$ Rewrite using the

- \quad commutative property.
$\underbrace{-4+5}_{1+5 y}+5 y \quad$ or $\quad \begin{gathered}5 y+1\end{gathered}$
(b) $2(3 w+4)-5$ Distributive property

$$
\underbrace{2 \cdot 3 w}_{6 w}+\underbrace{2 \cdot 4}_{6 w+3}-5 \text { Multiply. } \quad \text { Combine constants. }
$$

(c) $5(6 x-2)+3 x \quad$ Distributive property $\begin{array}{ll}\underbrace{5 \cdot 6 x}_{30 x}-\underbrace{5 \cdot 2}_{10}+3 x & \text { Multiply. } \\ \text { Change to addition. }\end{array}$

$$
30 x+(-10)+3 x
$$

$$
30 x+3 x+(-10)
$$

$$
(30+3) x+(-10)
$$

Add the coefficients of like terms.
$33 x+(-10)$ or $33 x-10$
(d) $21+7\left(a^{2}-3\right) \quad$ Distributive property $21+7 \cdot a^{2}-\underbrace{7 \cdot 3} \quad$ Multiply.
$21+7 a^{2}-21 \quad$ Change to addition.
$21+7 a^{2}+(-21)$ Rewrite using the commutative property.

$$
\underbrace{21 a^{2}}_{\underbrace{21+(-21)}_{7 a^{2}}}+7 a^{2}
$$

(e)

$$
\begin{array}{ll}
-y+3(2 y+5)-18 & \begin{array}{l}
\text { Distributive property } \\
-y+\underbrace{3 \cdot 2 y}+\underbrace{3 \cdot 5}-18
\end{array} \\
-1 y+6 y+15+(-18) & \begin{array}{l}
\text { Rewrite }-y \text { as }-1 y \\
\text { Change to addition. } \\
\text { Add the coefficients } \\
\text { of like terms. }
\end{array} \\
\underbrace{-(-3) \text { or } 5 y-3}_{5 y+(-1+6)} &
\end{array}
$$

2.2 Section Exercises

1. $2 b^{2}+2 b+2 b^{3}+b^{2}+6$ - $2 b^{2}$ and b^{2} are the only like terms in the expression. The variable parts match; both are b^{2}. The coefficients are $\underline{2}$ and 1 .
2. $3 x+x^{3}+3 x^{2}+3+2 x^{3} \quad x^{3}$ and $2 x^{3}$ are like terms. The variable parts match; both are x^{3}. The coefficients are 1 and 2.
3. $-x^{2} y+(-x y)+2 x y+\left(-2 x y^{2}\right) \quad$ - $-x y$ and $2 x y$ are the like terms in the expression. The variable parts match; both are $x y$. The coefficients are -1 and 2 .
4. $a b^{2}+\left(-a^{2} b\right)+2 a b+\left(-3 a^{2} b\right) \quad-\quad-a^{2} b$ and $-3 a^{2} b$ are like terms. The variable parts match; both are $a^{2} b$. The coefficients are -1 and -3 .
5. $7+7 c+3+7 c^{3}+(-4) \quad 7,3$, and -4 are like terms. There are no variable parts; constants are considered like terms.
6. $4 d+(-5)+1+\left(-5 d^{2}\right)+4 \quad-5,1$, and 4 are like terms. There are no variable parts; constants are considered like terms.
7. $6 r+6 r \quad$ These are like terms.
$\downarrow \quad \downarrow \quad$ Add the coefficients. $\underbrace{(6+6)} r$
$\underline{12} r$
The variable part, r, stays the same.
8. $4 t+10 t \quad$ These are like terms.
$\downarrow \quad \downarrow \quad$ Add the coefficients.
$\underbrace{(4+10)} t$
$14 t$
The variable part, t, stays the same.
9. $x^{2}+5 x^{2} \quad$ These are like terms. Rewrite x^{2} as $1 x^{2}$.
$1 x^{2}+5 x^{2} \quad$ Add the coefficients.
$(1+5) x^{2}$
$6 x^{2} \quad \begin{aligned} & \text { The variable part, } x^{2}, \\ & \text { stays the same. }\end{aligned}$
10. $9 y^{3}+y^{3}=9 y^{3}+1 y^{3}$

$$
\begin{aligned}
& =(9+1) y^{3} \\
& =10 y^{3}
\end{aligned}
$$

11. $p-5 p \quad$ These are like terms. Rewrite p as $1 p$.
$1 p-5 p \quad$ Change to addition. $1 p+(-5 p) \quad$ Add the coefficients. $[1+(-5)] p$
$-4 p \quad \begin{aligned} & \text { The variable part, } p, \\ & \text { stays the same. }\end{aligned}$
12. $n-3 n=1 n+(-3 n)$

$$
\begin{aligned}
& =[1+(-3)] n \\
& =-2 n
\end{aligned}
$$

13. $-2 a^{3}-a^{3} \quad$ These are like terms. Rewrite a^{3} as $1 a^{3}$.
$-2 a^{3}-1 a^{3} \quad$ Change to addition.
$-2 a^{3}+\left(-1 a^{3}\right) \quad$ Add the coefficients.
$[-2+(-1)] a^{3}$
$-3 a^{3} \quad$ The variable part, a^{3},
stays the same.
14. $-10 x^{2}-x^{2}=-10 x^{2}-1 x^{2}$

$$
\begin{aligned}
& =-10 x^{2}+\left(-1 x^{2}\right) \\
& =[-10+(-1)] x^{2} \\
& =-11 x^{2}
\end{aligned}
$$

15. $\underbrace{c-c}$

0 Any number minus itself is 0 .
16. $\underbrace{b^{2}-b^{2}}_{0 \text { Any number minus itself is } 0 \text {. }}$

50 Chapter 2 Understanding Variables and Solving Equations

17. $9 x y+x y-9 x y$
$9 x y+1 x y-9 x y$
$9 x y+1 x y+(-9 x y)$
$[9+1+(-9)] x y$

$$
1 x y \text { or } x y
$$

These are like terms.
Rewrite xy as lxy.
Change to addition.
Add the coefficients.

The variable part, $x y$, stays the same.
18. $r^{2} s-7 r^{2} s+7 r^{2} s=1 r^{2} s+\left(-7 r^{2} s\right)+7 r^{2} s$

$$
\begin{aligned}
& =[1+(-7)+7] r^{2} s \\
& =1 r^{2} s \quad \text { or } \quad r^{2} s
\end{aligned}
$$

19. $5 t^{4}+7 t^{4}-6 t^{4} \quad$ These are like terms.

Change to addition.
$5 t^{4}+7 t^{4}+\left(-6 t^{4}\right) \quad$ Add the coefficients.
$[5+7+(-6)] t^{4}$
$6 t^{4} \quad \begin{aligned} & \text { The variable part, } t^{4}, \\ & \text { stays the same. }\end{aligned}$ stays the same.
20. $10 m n-9 m n+3 m n=10 m n+(-9 m n)+3 m n$

$$
\begin{aligned}
& =[10+(-9)+3] m n \\
& =4 m n
\end{aligned}
$$

21. $y^{2}+y^{2}+y^{2}+y^{2}$

These are like terms.
Write in the under-
$1 y^{2}+1 y^{2}+1 y^{2}+1 y^{2} \quad$ stood coefficients of 1 .

$$
\begin{array}{cl}
(1+1+1+1) y^{2} & \begin{array}{l}
\text { Add the coefficients. } \\
4 y^{2}
\end{array} \\
\begin{array}{l}
\text { The variable part, } y^{2} \\
\text { stays the same. }
\end{array}
\end{array}
$$

22. $a+a+a=1 a+1 a+1 a$

$$
\begin{aligned}
& =(1+1+1) a \\
& =3 a
\end{aligned}
$$

23

$$
\begin{array}{cl}
-x-6 x-x & \begin{array}{l}
\text { Rewrite }-x \text { as }-1 x \\
\text { and } x \text { as } 1 x .
\end{array} \\
-1 x-6 x-1 x & \begin{array}{l}
\text { Change to addition. } \\
-1 x+(-6 x)+(-1 x)
\end{array} \\
\text { Add the coefficients. } \\
{[-1+(-6)+(-1)] x} & \begin{array}{l}
\text { The variable part, } x \\
\text { stays the same. }
\end{array}
\end{array}
$$

These are like terms.
24. $-y-y-3 y=-1 y-1 y-3 y$

$$
\begin{aligned}
& =-1 y+(-1 y)+(-3 y) \\
& =[-1+(-1)+(-3)] y \\
& =-5 y
\end{aligned}
$$

25. $8 a+4 b+4 a \quad$ Use the commutative property to rewrite the expression so that like terms are next to each other.

$$
8 a+4 a+4 b \quad \text { Add the coefficients of like terms. }
$$

$$
(8+4) a+4 b
$$

$12 a+4 b$

The variable part, a, stays the same.
26. $6 x+5 y+4 y=6 x+(5+4) y$
$=6 x+9 y$
27. $6+8+7 r s \quad$ Use the commutative property to put the constants at the end.
$7 r s+6+8 \quad$ Add the coefficients of like terms.
$7 r s+14$ The only like terms are constants.
28. $10+2 c^{2}+15=2 c^{2}+10+15$

$$
=2 c^{2}+25
$$

29. $a+a b^{2}+a b^{2}$

$$
1 a+1 a b^{2}+1 a b^{2}
$$

Write in the understood coefficients of 1 .
Add the coefficients of like terms.

$$
1 a+(1+1) a b^{2}
$$

$$
1 a+2 a b^{2}
$$

The variable part, $a b^{2}$, stays the same.
or $a+2 a b^{2}$
30. $n+m n+n=1 n+1 m n+1 n$

$$
\begin{aligned}
& =1 m n+1 n+1 n \\
& =1 m n+2 n \text { or } m n+2 n
\end{aligned}
$$

31. $6 x+y-8 x+y$

$$
6 x+1 y+(-8 x)+1 y
$$

Write in the understood coefficients of 1 . Change to addition. Rewrite using the commutative property.

$$
6 x+(-8 x)+1 y+1 y
$$ Add the coefficients of like terms.

$$
\underbrace{[6+(-8)]}_{-2 x} x+\underbrace{(1+1)}_{2 y} y
$$

$$
-2 x+2 y
$$

32. $d+3 c-7 c+3 d=1 d+3 c+(-7 c)+3 d$ $=3 c+(-7 c)+1 d+3 d$ $=[3+(-7)] c+(1+3) d$ $=-4 c+4 d$

3

$$
\begin{array}{cl}
8 b^{2}-a^{2}-b^{2}+a^{2} & \begin{array}{l}
\text { Write in the under- } \\
\text { stood coefficient of } 1 .
\end{array} \\
8 b^{2}-1 a^{2}-1 b^{2}+1 a^{2} & \begin{array}{l}
\text { Change to addition. } \\
\text { Rewrite using the }
\end{array} \\
8 b^{2}+\left(-1 a^{2}\right)+\left(-1 b^{2}\right)+1 a^{2} \begin{array}{l}
\text { commutative property. } \\
\text { com }
\end{array} \\
\underbrace{8 b^{2}+\left(-1 b^{2}\right)+\left(-1 a^{2}\right)+1 a^{2}}_{7 b^{2}} \begin{array}{l}
\text { Add the coefficients } \\
\text { of like terms. }
\end{array} \\
7 b^{2}+0 \\
7 b^{2}
\end{array}
$$

34. $5 a b-a b+3 a^{2} b-4 a b$

$$
\begin{aligned}
& =5 a b+(-1 a b)+3 a^{2} b+(-4 a b) \\
& =5 a b+(-1 a b)+(-4 a b)+3 a^{2} b \\
& =[5+(-1)+(-4)] a b+3 a^{2} b \\
& =0 a b+3 a^{2} b \\
& =3 a^{2} b
\end{aligned}
$$

35. $-x^{3}+3 x-3 x^{2}+2 \quad$ - There are no like terms. The expression cannot be simplified.
36. $a^{2} b-2 a b-a b^{3}+3 a^{3} b \quad$ - There are no like terms. The expression cannot be simplified.
37. $-9 r+6 t-s-5 r+s+t-6 t+5 s-r$

Write in the understood coefficients of 1 .
Change to addition.

$$
\begin{aligned}
& -9 r+6 t+(-1 s)+(-5 r)+1 s+1 t \\
& \quad+(-6 t)+5 s+(-1 r)
\end{aligned}
$$

Rewrite using the commutative property.

$$
\begin{aligned}
& -9 r+(-5 r)+(-1 r)+(-1 s)+1 s+5 s \\
& \quad+6 t+1 t+(-6 t)
\end{aligned}
$$

Add the coefficients of like terms.
$\underbrace{}_{-15 r \quad+\underbrace{[-9+(-5)+(-1)]}_{+} r} r+\underbrace{[-1+1+1+5)}_{+1 t} s$
$+5 r+5 s+t$
38. $-x-3 y+4 z+x-z+5 y-8 x-y$

$$
\begin{aligned}
= & -1 x+(-3 y)+4 z+1 x+(-1 z)+5 y \\
& +(-8 x)+(-1 y) \\
= & -1 x+1 x+(-8 x)+(-3 y)+5 y+(-1 y) \\
& +4 z+(-1 z) \\
= & {[-1+1+(-8)] x+[-3+5+(-1)] y } \\
& +[4+(-1)] z \\
= & -8 x+1 y+3 z \quad \text { or } \quad-8 x+y+3 z
\end{aligned}
$$

39. By using the associative property, we can write $3(10 a)$ as

$$
(3 \cdot 10) \cdot a=30 \cdot a=30 a
$$

So, $3(10 a)$ simplifies to $30 a$.
40. $8(4 b)=(8 \cdot 4) b$

$$
=32 b
$$

41. By using the associative property, we can write $-4\left(2 x^{2}\right)$ as

$$
(-4 \cdot 2) \cdot x^{2}=-8 \cdot x^{2}=-8 x^{2}
$$

So, $-4\left(2 x^{2}\right)$ simplifies to $-8 x^{2}$.
42. $-7\left(3 b^{3}\right)=(-7 \cdot 3) b^{3}$

$$
=-21 b^{3}
$$

43. By using the associative property, we can write $5\left(-4 y^{3}\right)$ as
$[5 \cdot(-4)] \cdot y^{3}=-20 \cdot y^{3}=-20 y^{3}$.
So, $5\left(-4 y^{3}\right)$ simplifies to $-20 y^{3}$.
44. $2(-6 x)=[2 \cdot(-6)] x$

$$
=-12 x
$$

45. By using the associative property, we can write $-9(-2 c d)$ as

$$
[-9 \cdot(-2)] \cdot c \cdot d=18 \cdot c \cdot d=18 c d
$$

So, $-9(-2 c d)$ simplifies to $18 c d$.
46. $-6(-4 r s)=[-6 \cdot(-4)] r s$

$$
=24 r s
$$

47. By using the associative property, we can write $7\left(3 a^{2} b c\right)$ as

$$
(7 \cdot 3) \cdot a^{2} \cdot b \cdot c=21 \cdot a^{2} \cdot b \cdot c=21 a^{2} b c
$$

So, $7\left(3 a^{2} b c\right)$ simplifies to $21 a^{2} b c$.
48. $4\left(2 x y^{2} z^{2}\right)=(4 \cdot 2) x y^{2} z^{2}$

$$
=8 x y^{2} z^{2}
$$

49. $-12(-w)$ Write in the understood coefficient of -1 .

$$
\begin{gathered}
-12(-1 w) \\
{[-12 \cdot(-1)] w} \\
12 \cdot w \\
12 w
\end{gathered}
$$ Rewrite using the associative property.

50. $-10(-k)=-10(-1 k)$

$$
\begin{aligned}
& =[-10 \cdot(-1)] k \\
& =10 k
\end{aligned}
$$

51. $6(b+6)$ Distributive property

$$
\underbrace{6 \cdot b}+\underbrace{6 \cdot 6}
$$

$\underline{6 b}+\underline{36}$
52. $5(a+3) \quad$ Distributive property

$$
\underbrace{5 \cdot a}+\underbrace{5 \cdot 3}
$$

$$
\underline{5 a}+\underline{15}
$$

53. $7(x-1)$ Distributive property $7 \cdot x-7 \cdot 1$
$7 x-7$
54. $4(y-4)=4 \cdot y-4 \cdot 4$ $=4 y-16$
55. $3(7 t+1)$ Distributive property

$$
3 \cdot 7 t+3 \cdot 1
$$

$$
21 t+3
$$

56. $8(2 c+5)=8 \cdot 2 c+8 \cdot 5$ $=16 c+40$
57. $-2(5 r+3) \quad$ Distributive property
$-2 \cdot 5 r+(-2) \cdot 3$
Change addition
$-10 r+(-6) \quad$ to subtraction of the opposite.

$$
-10 r-6
$$

58. $-5(6 z+2)=-5 \cdot 6 z+(-5) \cdot 2$

$$
=-30 z+(-10)
$$

$$
\text { or } \quad-30 z-10
$$

59. $-9(k+4) \quad$ Distributive property

$$
-9 \cdot k+(-9) \cdot 4
$$

$$
\begin{array}{cl}
-9 k+(-36) & \text { to subtraction } \\
& \text { of the opposite. } \\
-9 k-36 &
\end{array}
$$

60. $-3(p+7)=-3 \cdot p+(-3) \cdot 7$

$$
=-3 p+(-21)
$$

$$
\text { or } \quad-3 p-21
$$

61. $50(m-6)$ Distributive property

$$
\begin{gathered}
50 \cdot m-50 \cdot 6 \\
50 m-300
\end{gathered}
$$

62. $25(n-1)=25 \cdot n-25 \cdot 1$

$$
=25 n-25
$$

63. $10+2(4 y+3)$ Distributive property

$$
10+\underbrace{2 \cdot 4} \cdot y+\underbrace{2 \cdot 3}
$$

$$
\begin{gathered}
10+8 y+6 \\
8 y+10+6 \\
8 y+16
\end{gathered}
$$

64. $4+7\left(x^{2}+3\right)=4+7 \cdot x^{2}+\underbrace{7 \cdot 3}$

$$
\begin{aligned}
& =4+7 x^{2}+21 \\
& =7 x^{2}+25
\end{aligned}
$$

65. $6\left(a^{2}-2\right)+15 \quad$ Distributive property
$6 \cdot a^{2}-6 \cdot 2+15$

$$
\begin{gathered}
6 a^{2}-12+15 \quad \text { Combine like terms. } \\
6 a^{2}+3
\end{gathered}
$$

66. $5(b-4)+25=5 \cdot b-5 \cdot 4+25$

$$
\begin{aligned}
& =5 b-20+25 \\
& =5 b+(-20)+25 \\
& =5 b+5
\end{aligned}
$$

67. $2+9(m-4)$ Distributive property
$2+9 \cdot m-9 \cdot 4$
$2+9 m-36 \quad$ Change to addition.
$2+9 m+(-36)$ Rewrite using the commutative property.
$9 m+2+(-36)$ Add the coefficients of like terms.

$$
9 m+(-34)
$$

Change addition to subtraction of the opposite.

$$
9 m-34
$$

68. $6+3(n-8)=6+3 \cdot n-3 \cdot 8$

$$
\begin{aligned}
& =6+3 n-24 \\
& =6+3 n+(-24) \\
& =3 n+(-18) \quad \text { or } \quad 3 n-18
\end{aligned}
$$

69. $-5(k+5)+5 k \quad$ Distributive property
$-5 \cdot k+(-5) \cdot 5+5 k$
$-5 k+(-25)+5 k$
$-5 k+5 k+(-25)$
$\underbrace{(-5+5)} k+(-25)$
$0 k+(-25)$
$\underbrace{0+(-25)}_{-25}$
Rewrite using the commutative property. Add the coefficients of like terms.

Zero times any number is 0 . Zero added to any number is the number
70. $-7(p+2)+7 p=-7 \cdot p+(-7) \cdot 2+7 p$

$$
=-7 p+(-14)+7 p
$$

$$
=0 p+(-14)
$$

$$
=0+(-14)
$$

$$
=-14
$$

71. $4(6 x-3)+12 \quad$ Distributive property
$4 \cdot 6 x-4 \cdot 3+12$
$24 x-12+12 \quad$ Change to addition.
Combine like terms.
$24 x+(-12)+12$ Any number plus its opposite is 0 .
$24 x+0$
$24 x$
72. $6(3 y-3)+18=6 \cdot 3 y-6 \cdot 3+18$
$=18 y-18+18$
$=18 y+(-18)+18$
$=18 y$
73. $5+2(3 n+4)-n \quad$ Distributive property
$5+2 \cdot 3 n+2 \cdot 4-n \quad$ Rewrite n as $1 n$.
$5+6 n+8-1 n \quad$ Change to addition.
$5+6 n+8+(-1 n) \quad$ Rewrite using the commutative property.
$5+8+6 n+(-1 n)$
Add the coefficients of like terms.
$(5+8)+[6+(-1)] n$
$13+5 n$ or $5 n+13$
74. $8+8(4 z+5)-z=8+8 \cdot 4 z+8 \cdot 5-1 z$

$$
=8+32 z+40+(-1 z)
$$

$$
=31 z+48
$$

75. $-p+6(2 p-1)+5 \quad$ Distributive property

$$
-p+6 \cdot 2 p-6 \cdot 1+5
$$

$$
-p+12 p-6+5
$$

Rewrite $-p$ as $-1 p$.
Change to addition.
Add the coefficients of like terms.
$(-1+12) p+(-6+5)$

$$
\begin{array}{cl}
11 p+(-1) & \begin{array}{l}
\text { Change addition to } \\
11 p-1
\end{array} \\
\text { subt. of the opposite. }
\end{array}
$$

76. $-k+3(4 k-1)+2$
$=-1 k+3 \cdot 4 k-3 \cdot 1+2$
$=-1 k+12 k-3+2$
$=-1 k+12 k+(-3)+2$
$=11 k+(-1)$ or $11 k-1$
77. A simplified expression usually still has variables, but it is written in a simpler way. When evaluating an expression, the variables are all replaced by specific numbers and the final result is a numerical answer.
78. $5(3 x+2)$

$$
=15 x+10
$$

$$
\begin{aligned}
& 5(2+3 x) \\
& \quad=5 \cdot 2+5 \\
& \quad=10+15 x
\end{aligned}
$$

$$
=5 \cdot 3 x+5 \cdot 2=5 \cdot 2+5 \cdot 3 x
$$

The answers are equivalent because of the commutative property of addition.
79. Like terms have matching variable parts, that is, matching letters and exponents. The coefficients do not have to match. Examples will vary. Possible examples: In $-6 x+9+x$, the terms $-6 x$ and x are like terms. In $4 k+3-8 k^{2}+10$, the terms 3 and 10 are like terms.
80. Add the coefficients of like terms. If no coefficient is shown, it is assumed to be 1. Keep the variable part the same. Examples will vary.
81. $\underbrace{-2 x+7 x}_{5 x+8}+8$

Keep the variable part unchanged when combining like terms. As shown above, the correct answer is $5 x+8$.
82. In the last step, do not change the sign of the first term. The correct answer is $-4 a-5$.
83.

$$
\begin{array}{cl}
-4(3 y)-5+2(5 y+7) & \text { Distributive prop. } \\
-4 \cdot 3 y-5+2 \cdot 5 y+2 \cdot 7 & \begin{array}{l}
\text { Change subtrac- } \\
-12 y-5+10 y+14 \\
\text { tion to adding } \\
\text { the opposite. } \\
\text { Group like terms } \\
\text { and add the } \\
\text { coefficients. }
\end{array} \\
\underbrace{-12 y+10 y}_{-2 y+(-5)+10 y+14}+\underbrace{(-5)+14}_{9} & \\
-2 y+9 &
\end{array}
$$

84. $6(-3 x)-9+3(-2 x+6)$

$$
\begin{aligned}
& =-18 x-9+3 \cdot(-2 x)+3 \cdot 6 \\
& =-18 x+(-9)+(-6 x)+18 \\
& =-24 x+9
\end{aligned}
$$

85. $-10+4(-3 b+3)+2(6 b-1)$

Distributive property
$-10+4 \cdot(-3 b)+4 \cdot 3+2 \cdot 6 b-2 \cdot 1$
$-10+(-12 b)+12+12 b-2$
Change to addition.
$-10+(-12 b)+12+12 b+(-2)$
Group like terms and add the coefficients.
$\underbrace{-12 b+12 b}_{0 b}+\underbrace{-10+12+(-2)}_{0}$
86. $12+2(4 a-4)+4(-2 a-1)$
$=12+2 \cdot 4 a-2 \cdot 4+4 \cdot(-2 a)-4 \cdot 1$
$=12+8 a-8+(-8 a)-4$
$=12+8 a+(-8)+(-8 a)+(-4)$
$=8 a+(-8 a)+12+(-8)+(-4)$
$=0$
87. $-5(-x+2)+8(-x)+3(-2 x-2)+16$

Distributive property
$-5 \cdot(-x)+(-5) \cdot 2+8 \cdot(-x)+3 \cdot(-2 x)$
$-3 \cdot 2+16$
$5 x+(-10)+(-8 x)+(-6 x)-6+16$
Change to addition.
$5 x+(-10)+(-8 x)+(-6 x)+(-6)+16$
Group like terms and add the coefficients.

$$
\underbrace{5 x+(-8 x)+(-6 x)}_{-9 x}+\underbrace{-9 x}_{0}
$$

88. $-7(-y)+6(y-1)+3(-2 y)+6-y$
$=7 y+6 y-6+(-6 y)+6-y$
$=7 y+6 y+(-6)+(-6 y)+6+(-1 y)$
$=7 y+6 y+(-6 y)+(-1 y)+(-6)+6$
$=6 y$

Summary Exercises
 Variables and Expressions

1. $-10-m \quad m$ is the variable;
or $-10-1 m \quad-1$ is the coefficient;
-10 is the constant.
2. $\quad-8 c d \quad c$ and d are the variables; -8 is the coefficient.
3. $6+4 x \quad x$ is the variable; 4 is the coefficient; 6 is the constant.

54 Chapter 2 Understanding Variables and Solving Equations

4. Expression (rule) for finding the perimeter of an octagon of side length s : $8 s$
(a) Evaluate the expression when s, the side length, is 4 yards.
$8 s \quad$ Replace s with 4.
$\underbrace{8 \cdot 4}$ Follow the rule and multiply.
32 yards is the perimeter.
(b) Evaluate the expression when s, the side length, is 15 inches.
$8 s \quad$ Replace s with 15.
$\underbrace{8 \cdot 15}$ Follow the rule and multiply.
120 inches is the perimeter.
5. Expression (rule) for finding the total cost of a car with down payment d, monthly payment m, and number of payments $t: d+m t$
(a) Evaluate the expression when the down payment is $\$ 3000$, the monthly payment is $\$ 280$, and the number of payments is 36 .
$d+m t$
Replace d with \$3000, m with $\$ 280$, and t with 36 .
$\underbrace{\$ 3000+\$ 280 \cdot 36}$ Multiply before adding.
$\underbrace{\$ 3000+\$ 10,080}$
$\$ 13,080$ is the total cost of the car.
(b) Evaluate the expression when the down payment is $\$ 1750$, the monthly payment is $\$ 429$, and the number of payments is 48 .

$$
\begin{array}{ll}
d+m t & \begin{array}{l}
\text { Replace d with \$1750, } m \\
\text { with \$429, and t with 48. }
\end{array} \\
\underbrace{\$ 1750+\$ 429 \cdot 48} & \begin{array}{l}
\text { Multiply before adding. }
\end{array} \\
\hline
\end{array}
$$

$\$ 22,342$ is the total cost of the car.
6. $a d^{4}$ written without exponents is

$$
a \cdot d \cdot d \cdot d \cdot d
$$

7. $b^{3} c d$ written without exponents is

$$
b \cdot b \cdot b \cdot c \cdot d
$$

8. $-7 a b^{5} c^{2}$ written without exponents is

$$
-7 \cdot a \cdot b \cdot b \cdot b \cdot b \cdot b \cdot c \cdot c
$$

9. $\quad w^{4}=w \cdot w \cdot w \cdot w \quad$ Replace w with 5 .
$\underbrace{5 \cdot 5 \cdot 5 \cdot 5}$ Multiply left to right.
$\underbrace{25 \cdot 5} \cdot 5$
$\underbrace{125 \cdot 5}_{625}$
10. $5 x z$ - Replace x with -2 and z with 0 . If 0 is multiplied by any number, the result is 0 . Thus, there is no need to make any calculations since the result is 0 .
11. $y z^{2}$ - Replace y with -6 and z with 0 . If 0 is multiplied by any number, the result is 0 . Thus, there is no need to make any calculations since the result is 0 .
12. wxy - Replace w with $5, x$ with -2 , and y with -6 .

$$
\underbrace{\underbrace{-10 \cdot(-6)}}_{60} \cdot(-6) \quad \text { Multiply left to right. }
$$

13. $x^{3}=x \cdot x \cdot x \quad$ - Replace x with -2 .

$$
\underbrace{-2 \cdot(-2)}_{-8} \cdot(-2) \quad \text { Multiply left to right. }
$$

14. $-4 w y$ - Replace w with 5 and y with -6 .

$$
\underbrace{\underbrace{-4 \cdot 5}_{-20 \cdot(-6)} \cdot(-6)}_{120} \text { Multiply left to right. }
$$

15. $\quad 3 x y^{2}=3 \cdot x \cdot y \cdot y \quad$ - Replace x with -2 and y with -6 .

$$
\underbrace{-6 \cdot(-6)}_{\underbrace{\underbrace{3 \cdot(-2)}_{\underbrace{3} \cdot(-6)} \cdot(-6) \cdot(-6)}_{-216} \quad \text { Multiply left to right. }}
$$

16. $w^{2} x^{5}=w \cdot w \cdot x \cdot x \cdot x \cdot x \cdot x \quad$ - Replace w with 5 and x with -2 . Multiply left to right.

$$
\begin{gathered}
\underbrace{\underbrace{50 \cdot(-2) \cdot(-2) \cdot(-2)}_{\underbrace{100 \cdot(-2)}_{-2)} \cdot(-2) \cdot(-2)}}_{\underbrace{25 \cdot(-2)}_{\underbrace{-5} \cdot(-2) \cdot(-2) \cdot(-2) \cdot(-2) \cdot(-2)} \cdot(-2) \cdot(-2) \cdot(-2) \cdot(-2)} \begin{array}{l}
\underbrace{-200 \cdot(-2)}_{-800} \cdot(-2)
\end{array} \\
\text { 17. }-7 w x^{4} y^{3} \quad \text { Use a calculator. Replace } w \text { with } \\
5, x \text { with }-2, \text { and } y \text { with }-6 . \\
-7(5)(-2)^{4}(-6)^{3}=-35(16)(-216)=120,960
\end{gathered}
$$

18. $10 b+4 b+10 b=(10+4+10) b$

$$
=24 b
$$

19. $-3 x-5+12+10 x$
$=-3 x+10 x+(-5)+12$
$=(-3+10) x+(-5+12)$
$=7 x+7$
20. $-8(c+4)=-8 \cdot c+(-8) \cdot 4$

$$
=-8 c+(-32)
$$

$$
\text { or }-8 c-32
$$

21. $-9 x y+9 x y=(-9+9) x y$

$$
\begin{aligned}
& =0 x y \\
& =0
\end{aligned}
$$

22. $-4\left(-3 c^{2} d\right)=[-4 \cdot(-3)] \cdot c^{2} d$

$$
=12 c^{2} d
$$

23. $3 f-5 f-4 f=3 f+(-5 f)+(-4 f)$

$$
\begin{aligned}
& =[3+(-5)+(-4)] f \\
& =-6 f
\end{aligned}
$$

24. $2(3 w+4)=2 \cdot 3 w+2 \cdot 4$

$$
\begin{aligned}
& =(2 \cdot 3) w+2 \cdot 4 \\
& =6 w+8
\end{aligned}
$$

25. $-a-6 b-a=-a+(-6 b)+(-a)$

$$
\begin{aligned}
& =-a+(-a)+(-6 b) \\
& =-1 a+(-1 a)+(-6 b) \\
& =[-1+(-1)] \cdot a+(-6 b) \\
& =-2 a+(-6 b) \\
& \text { or }-2 a-6 b
\end{aligned}
$$

26. $-10\left(-5 x^{3} y^{2}\right)=[-10 \cdot(-5)] \cdot x^{3} y^{2}$

$$
=50 x^{3} y^{2}
$$

27. $5 r^{3}+2 r^{2}-2 r^{2}+5 r^{3}$

$$
\begin{aligned}
& =\underbrace{5 r^{3}+5 r^{3}}_{10 r^{3}}+\underbrace{2 r^{2}+\left(-2 r^{2}\right)}_{0} \\
& =10 r^{3}
\end{aligned}
$$

28. $21+7\left(h^{2}-3\right)=21+7 \cdot h^{2}-7 \cdot 3$

$$
\begin{aligned}
& =21+7 h^{2}-21 \\
& =7 h^{2}
\end{aligned}
$$

29. $-3(m+3)+3 m=-3 \cdot m+(-3) \cdot 3+3 m$

$$
\begin{aligned}
& =-3 m+3 m+(-9) \\
& =(-3+3) \cdot m+(-9) \\
& =0 m+(-9) \\
& =0+(-9) \\
& =-9
\end{aligned}
$$

30. $-4(8 y-5)+5=-4 \cdot 8 y-(-4) \cdot 5+5$

$$
\begin{aligned}
& =(-4 \cdot 8) \cdot y-(-20)+5 \\
& =-32 y+20+5 \\
& =-32 y+25
\end{aligned}
$$

31. $2+12(3 x-1)=2+12 \cdot 3 x-12 \cdot 1$

$$
\begin{aligned}
& =2+(12 \cdot 3) \cdot x-12 \\
& =2+(-12)+36 x \\
& =-10+36 x \\
& \text { or } 36 x-10
\end{aligned}
$$

32. $-n+5(4 n-2)+11$

$$
\begin{aligned}
& =-n+5 \cdot 4 n-5 \cdot 2+11 \\
& =-n+(5 \cdot 4) \cdot n-10+11
\end{aligned}
$$

$$
\begin{aligned}
& =-n+20 n+(-10)+11 \\
& =(-1+20) \cdot n+1 \\
& =19 n+1
\end{aligned}
$$

33. (a) Simplifying the expression correctly:

$$
\begin{aligned}
6(n+2) & =6 \cdot n+6 \cdot 2 \\
& =6 n+12
\end{aligned}
$$

The student forgot to multiply $6 \cdot 2$.
(b) Simplifying the expression correctly:

$$
\begin{aligned}
-5(-4 a) & =[-5 \cdot(-4)] \cdot a \\
& =20 a
\end{aligned}
$$

Two negative factors give a positive product.
(c) Simplifying the expression correctly:

$$
\begin{aligned}
3 y+2 y-10 & =(3+2) y-10 \\
& =5 y-10
\end{aligned}
$$

Keep the variable part unchanged; that is, adding y 's to y 's gives an answer with y 's, not y^{2} 's.
34. In the last step, do not change the sign of the first term; keep $-7 x$ as $-7 x$. The correct answer is $-7 x-9$.

2.3 Solving Equations Using Addition

2.3 Margin Exercises

1.

(a) $c+15=80$
Given equation
$95+15 \stackrel{?}{=} 80 \quad$ Replace c with 95 .
$110 \neq 80 \quad 110$ is more than 80.

No, 95 is not the solution.

$$
\begin{aligned}
65+15 & \stackrel{?}{=} 80 \\
& \text { Replace } c \text { with } 65 \\
80 & =80
\end{aligned} \text { Balances }
$$

Yes, 65 is the solution.
(No need to check 80 and 70.)
(b) $28=c-4 \quad$ Given equation
$28 \stackrel{?}{=} 28-4 \quad$ Replace c with 28.
$28 \neq 24$
No, 28 is not the solution.
$28 \stackrel{?}{=} 20-4 \quad$ Replace c with 20 .
$28 \neq 16$
No, 20 is not the solution.
$28 \stackrel{?}{=} 24-4 \quad$ Replace c with 24 .
$28 \neq 20$
No, 24 is not the solution.
$28 \stackrel{?}{=} 32-4 \quad$ Replace c with 32 .
$28=28 \quad$ Balances
Yes, 32 is the solution.
2. (a) Solve $12=y+5$ for y.

To get y by itself, add the opposite of 5 , which is -5 . To keep the balance, add -5 to both sides.

$$
\begin{aligned}
12 & =y+5 \\
\frac{-5}{7} & =\frac{-5}{y+\underline{0}} \\
7 & =\underline{y} \quad \text { The solution is } 7
\end{aligned}
$$

Check $12=y+5 \quad$ Original equation
$12=\underbrace{7+5}$ Replace y with 7 .
$12=\underline{12} \quad$ Balances, so solution is 7.
(b) Solve $b-2=-6$ for b.

Change to addition.

$$
b+(-2)=-6
$$

To get b by itself add the opposite of -2 , which is 2 , to both sides.

$$
\begin{aligned}
b+(-2) & =-6 \\
\frac{2}{b+\quad 0} & =\frac{2}{-4} \\
b & =-4 \text { The solution is }-4 .
\end{aligned}
$$

$$
\text { Check } \begin{aligned}
b-2 & =-6 & & \text { Original equation } \\
-4-2 & =-6 & & \text { Replace } b \text { with }-4 . \\
-4+(-2) & =-6 & & \\
-6 & =-6 & & \text { Balances }
\end{aligned}
$$

3. (a) $2-8=k-2 \quad$ - Rewrite both sides by changing subtraction to addition. Combine like terms.

$$
\begin{aligned}
2+(-8) & =k+(-2) \\
-6 & =k+(-2)
\end{aligned}
$$

To get k by itself add the opposite of -2 , which is 2 , to both sides.

$$
\begin{aligned}
-6 & =k+(-2) \\
\frac{2}{-4} & =\underbrace{\frac{2}{k+0}} \\
\underline{-4} & =\underline{k} \quad \text { The solution is }-4 .
\end{aligned}
$$

Check

$$
\begin{aligned}
2-8 & =k-2 \quad \begin{aligned}
& 2-8=-4-2 \\
& \underbrace{2+(-8)}=\underbrace{-6} \quad \begin{array}{l}
\text { Original equation } \\
\text { Replace } k \text { with }-4 .
\end{array} \\
&=\text { Balances } \\
& \text { (b) } 4 r+1-3 r=-8+11 \quad \text { a } \quad \text { Change to } \\
& \text { addition. }
\end{aligned} \\
& \\
4 r & +1+(-3 r)=-8+11
\end{aligned}
$$

Rewrite the left side by using the commutative property.

$$
\begin{array}{rlrl}
4 r+(-3 r)+1 & =-8+11 & \text { Combine like terms. } \\
1 r+1 & =3 & & \text { To get } r \text { by itself, } \\
-1 & & -1 & \text { add }-1 \text { to both sides. } \\
1 r+0 & =2 & \\
1 r & =2 & & \\
\text { or } r & =2 & \text { The solution is } 2 .
\end{array}
$$

Check

$$
\begin{aligned}
4 r+1-3 r & =-8+11 & & \\
4 \cdot 2+1-3 \cdot 2 & =-8+11 & & \text { Replace } r \text { with } 2 . \\
8+1-6 & =3 & & \\
9-6 & =3 & & \\
3 & =3 & & \text { Balances }
\end{aligned}
$$

2.3 Section Exercises

1. $n-50=8$ - Replace n with $58,42,60$, and 8 .

$$
\begin{aligned}
n-50 & =8 & \text { Given equation } \\
58-50 & \stackrel{?}{=} 8 & \text { Replace } n \text { with } 58 . \\
58+(-50) & \stackrel{?}{=} 8 & \\
8 & =8 &
\end{aligned}
$$

Yes, 58 is the solution.
(No need to check 42,60 , and 8.)
2. $\quad r-20=5 \quad$ - Replace r with $5,15,30$, and 25 .

$$
\begin{aligned}
& 5-20 \stackrel{?}{=} 5 \\
& 5+(-20) \stackrel{?}{=} 5 \\
& -15 \neq 5 \\
& 15-20 \stackrel{?}{=} 5 \\
& 15+(-20) \stackrel{?}{=} 5 \\
& -5 \neq 5 \\
& \mathbf{3 0}-20 \stackrel{?}{=} 5 \\
& 30+(-20) \stackrel{?}{=} 5 \\
& 10 \neq 5 \\
& \mathbf{2 5}-20 \stackrel{?}{=} 5 \\
& 25+(-20) \stackrel{?}{=} 5 \\
& 5=5
\end{aligned}
$$

The check for 25 balances, so 25 is the solution.
3. $-6=y+10$ • Replace y with $-4,-16,16$, and -6 .

$$
\begin{array}{ll}
-6=y+10 & \text { Given equation } \\
-6 \stackrel{?}{=}-\mathbf{4}+10 & \text { Replace } y \text { with }-4 \\
-6 \neq 6 & \\
\text { No, }-4 \text { is not the solution. } \\
-6 \stackrel{?}{=}-\mathbf{1 6}+10 & \text { Replace } y \text { with }-16 \\
-6=-6 &
\end{array}
$$

Yes, -16 is the solution.
(No need to check 16 and -6.)
4. $-4=x+13 \quad$ - Replace x with $-4,17,-17$, and -9 .

$$
\begin{array}{ll}
-4 \stackrel{?}{=}-\mathbf{4}+13 & -4 \stackrel{?}{=} \mathbf{1 7}+13 \\
-4 \neq 9 & -4 \neq 30 \\
-4 \stackrel{?}{=}-\mathbf{1 7}+13 & \\
-4=-4 & \\
-17 \text { is the solution. (No need to check }-9 .)
\end{array}
$$

5. (a) $m-8=1 \quad$ - Add 8 to both sides because $-8+8$ gives $m+0$ on the left side.
(b) $-7=w+5 \quad$ - Add -5 to both sides because $5+(-5)$ gives $w+0$ on the right side.
6. (a) $n+2=-9 \quad$ - Add -2 to both sides because $2+(-2)$ gives $n+0$ on the left side.
(b) $10=b-6 \quad$ - Add 6 to both sides because $-6+6$ gives $b+0$ on the right side.
7. $p+5=9$

$\frac{-5}{\frac{-5}{p+0}}$	$=\frac{-5}{4}$Add the opposite of $5,-5$, to both sides.
p	$=4$

Check $p+5=9$

$$
\begin{aligned}
4+5 & =9 & & \text { Replace } p \text { with } 4 . \\
9 & =9 & & \text { Balances }
\end{aligned}
$$

8. $a+3=12$
$\begin{aligned} \underbrace{\frac{-3}{a+0}}_{\underline{a}} & =\frac{-3}{9} \text { Add }-3 \text { to both sides. } \\ & =\underline{9} \text { The solution is } 9 .\end{aligned}$
Check $a+3=12$

$$
\begin{aligned}
9+3 & =12 & & \text { Replace a with } 9 . \\
12 & =12 & & \text { Balances }
\end{aligned}
$$

9. $8=r-2$

8	$=r+(-2) \quad$Change to addition. +2 +2Add the opposite of $-2,2$, to both sides.
$\underline{10}$	$=\underbrace{r+0}_{\underline{r}}$

Check $8=r-2$
$8=10-2 \quad$ Replace r with 10 .
$8=8 \quad$ Balances
10. $3=b-5$
$\begin{aligned} 3 & =b+(-5) \\ \frac{+5}{8} & =\underbrace{\frac{+5}{b+\quad 0}}_{\underline{b}} \text { Change to addition. } \\ \underline{8} & \text { Add } 5 \text { to both sides. }\end{aligned}$
Check $3=b-5$
$3=8-5 \quad$ Replace b with 8 .
$3=3 \quad$ Balances
11. $-5=n+3$
$\begin{aligned} & -3 \\ & \overline{-8}=\overline{n+0} \\ & -8=n\end{aligned} \quad \begin{aligned} & \text { Add the opposite of } \\ & \text { 3, }-3 \text {, to both sides. }\end{aligned}$
The solution is -8.
Check $-5=n+3$
$-5=-8+3 \quad$ Replace n with -8.
$-5=-5 \quad$ Balances
12. $-1=a+8$
$\frac{-8}{-9}=\frac{-8}{a+0}$
$-9=a$$\quad$ Add -8 to both sides.
$-9=a \quad$ The solution is -9.

$$
\text { Check } \begin{aligned}
-1 & =a+8 & & \\
-1 & =-9+8 & & \text { Replace a with }-9 . \\
-1 & =-1 & & \text { Balances }
\end{aligned}
$$

13. $-4+k=14$
4

$4+k$
$k=$
$k=18$
:---:
$-4,4$, to both sides.

The solution is 18.

$$
\text { Check } \begin{array}{rlrl}
-4+k & =14 \\
-4+18 & =14 & & \text { Replace } k \text { with } 18 . \\
14 & =14 & & \text { Balances }
\end{array}
$$

14. $-9+y=7$

$$
\begin{aligned}
\frac{9}{0+y} & =\frac{9}{16} \text { Add } 9 \text { to both sides. } \\
y & =16
\end{aligned} \text { The solution is } 16 .
$$

$$
\text { Check } \begin{aligned}
-9+y & =7 & & \\
-9+16 & =7 & & \text { Replace y with } 16 . \\
7 & =7 & & \text { Balances }
\end{aligned}
$$

15. $y-6=0$
$y+(-6)=0 \quad$ Change to addition. Add the opposite of

6	6 Add the opposite of $-6,6$, to both sides.
$y+0$	$=\overline{6}$
$y=6$	

$$
\text { Check } \begin{aligned}
y-6 & =0 & & \\
6-6 & =0 & & \text { Replace y with } 6 . \\
0 & =0 & & \text { Balances }
\end{aligned}
$$

16. $k-15=0$ Change to addition. $k+(-15)=0$ Add 15 to both sides.
$\frac{15}{k+0}=\frac{15}{15}$
$k=15$ The solution is 15 .

$$
\text { Check } \begin{aligned}
k-15 & =0 & & \\
15-15 & =0 & & \text { Replace } k \text { with } 15 . \\
0 & =0 & & \text { Balances }
\end{aligned}
$$

17. $7=r+13$

$$
\begin{array}{rll}
\frac{-13}{} & -13 & \begin{array}{l}
\text { Add the opposite of } \\
13,-13, \text { to both sides. }
\end{array} \\
\hline-6 & =r+0 & \\
-6 & =r & \text { The solution is }-6 .
\end{array}
$$

Check $7=r+13$

$$
\begin{array}{ll}
7=-6+13 & \text { Replace } r \text { with }-6 \\
7=7 & \text { Balances }
\end{array}
$$

58 Chapter 2 Understanding Variables and Solving Equations
18. $12=z+19$

$$
\begin{aligned}
\frac{-19}{-7} & =\frac{-19}{z+0} & \text { Add }-19 \text { to both sides. } \\
-7 & =z & \text { The solution is }-7 .
\end{aligned}
$$

Check $12=z+19$

$$
\begin{array}{ll}
12=-7+19 & \text { Replace } z \text { with }-7 \\
12=12 & \text { Balances }
\end{array}
$$

19. $x-12=-12$
$x+(-12)=-12$ Change to addition.
$12 \quad 12$
Add the opposite of
$\frac{12}{x+0}=\frac{12}{0}-12,12$, to both sides. $x=0 \quad$ The solution is 0.

$$
\text { Check } \begin{aligned}
x-12 & =-12 & & \\
0-12 & =-12 & & \text { Replace } x \text { with } 0 . \\
0+(-12) & =-12 & & \text { Change to addition. } \\
-12 & =-12 & & \text { Balances }
\end{aligned}
$$

20. $-3=m-3$
$-3=m+(-3) \quad$ Change to addition.

$$
\frac{3}{0}=\frac{3}{m+\quad 0} \text { Add } 3 \text { to both sides. }
$$

$$
0=m \quad \text { The solution is } 0
$$

$$
\text { Check } \begin{array}{rlr}
-3 & =m-3 & \\
-3 & =0-3 & \text { Replace } m \text { with } 0 . \\
-3 & =0+(-3) & \\
-3 & =-3 & \text { Balances }
\end{array}
$$

21. $-5=-2+t$

$$
\begin{array}{rlr}
2 & 2 & \begin{array}{l}
\text { Add the opposite of } \\
-2,2, \text { to both sides. }
\end{array} \\
\overline{-3} & =\overline{0+t} & \\
-3 & =t & \text { The solution is }-3 .
\end{array}
$$

Check $-5=-2+t$

$$
\begin{array}{ll}
-5=-2+(-3) & \text { Replace } t \text { with }-3 . \\
-5=-5 & \text { Balances }
\end{array}
$$

22. $-1=-10+w$

$$
\begin{array}{rlrl}
\frac{10}{9} & =\frac{10}{0+w} & & \text { Add } 10 \text { to both sides. } \\
9 & =w & \text { The solution is } 9 .
\end{array}
$$

Check $-1=-10+w$

$$
\begin{array}{ll}
-1=-10+9 & \text { Replace } w \text { with } 9 . \\
-1=-1 & \text { Balances }
\end{array}
$$

23. $z-5=3$ - The given solution is -2 .

$$
\text { Check } \begin{aligned}
z-5 & =3 & & \\
-2-5 & =3 & & \text { Replace } z \text { with }-2 . \\
-2+(-5) & =3 & & \text { Change to addition. } \\
-7 & \neq 3 & & \text { Does not balance }
\end{aligned}
$$

Correct solution:

$$
\begin{array}{rl}
z-5= & 3 \\
z+(-5)= & 3 \quad \text { Change to addition. } \\
5 & 5 \quad \begin{array}{l}
\text { Add the opposite of } \\
-5,5, \text { to both sides. }
\end{array} \\
\hline z+0= & \overline{8} \\
z= & 8
\end{array} \text { The solution is } 8 .
$$

Check $\quad z-5=3$
$8-5=3 \quad$ Replace z with 8.
$8+(-5)=3 \quad$ Change to addition. $3=3 \quad$ Balances
24. $x-9=4 \quad$ - The given solution is 13 .

$$
\text { Check } \begin{aligned}
x-9 & =4 & & \\
13-9 & =4 & & \text { Replace } x \text { with } 13 . \\
4 & =4 & & \text { Balances }
\end{aligned}
$$

13 is the correct solution.
25. $7+x=-11 \quad$ - The given solution is -18 .

$$
\text { Check } \begin{array}{rlrl}
7+x & =-11 & \\
7+(-18) & =-11 & & \text { Replace } x \text { with }-18 . \\
-11 & =-11 & & \text { Balances }
\end{array}
$$

-18 is the correct solution.
26. $2+k=-7 \quad$ - The given solution is -5 .

$$
\text { Check } \begin{aligned}
2+k & =-7 & & \\
2+(-5) & =-7 & & \text { Replace } k \text { with }-5 . \\
-3 & \neq-7 & & \text { Does not balance }
\end{aligned}
$$

Correct solution:

$$
\begin{aligned}
2+k= & -7 \\
-2 & -2 \quad \begin{array}{l}
\text { Add the opposite of } \\
2,-2, \text { to both sides. }
\end{array} \\
\overline{0+k}= & \overline{-9} \\
k= & -9
\end{aligned}
$$

Check $\quad 2+k=-7$

$$
\begin{aligned}
2+(-9) & =-7 & & \text { Replace } k \text { with }-9 . \\
-7 & =-7 & & \text { Balances }
\end{aligned}
$$

27. $-10=-10+b \quad$ - The given solution is 10 .

$$
\text { Check } \begin{aligned}
-10 & =-10+b & & \\
-10 & =-10+10 & & \text { Replace } b \text { with } 10 . \\
-10 & \neq 0 & & \text { Does not balance }
\end{aligned}
$$

Correct solution:

$$
-10=-10+b
$$

10	10
0 Add the opposite of $-10,10$, to both sides. 0 $=b$	
The solution is 0.	

$$
\text { Check } \begin{aligned}
-10 & =-10+b & & \\
-10 & =-10+0 & & \text { Replace } b \text { with } 0 . \\
-10 & =-10 & & \text { Balances }
\end{aligned}
$$

28. $0=-14+a \quad$ - The given solution is 0 .

$$
\text { Check } \begin{aligned}
0 & =-14+a & & \\
0 & =-14+0 & & \text { Replace } a \text { with } 0 . \\
0 & \neq-14 & & \text { Does not balance }
\end{aligned}
$$

Correct solution:

\[

\]

$$
\text { Check } \begin{aligned}
0 & =-14+a & & \\
0 & =-14+14 & & \text { Replace a with } 14 . \\
0 & =0 & & \text { Balances }
\end{aligned}
$$

29.

$$
\begin{aligned}
c-4 & =-8+10 & & \\
c-4 & =2 & & \text { Simplify the right side. } . \\
c+(-4) & =2 & & \text { Change to addition. } \\
4 & & & \text { Add } 4 \text { to both sides. } \\
\hline c+0 & =\frac{4}{6} & & \\
c & =6 & & \text { The solution is } 6 .
\end{aligned}
$$

Check $c-4=-8+10$

$$
\begin{array}{rlrl}
6-4 & =-8+10 & & \text { Replace c } \\
2 & =2 & & \text { with } 6 . \\
& \text { Balances }
\end{array}
$$

30. $b-8=10-6$
$b-8=4$
$\frac{8}{b+0}=\frac{8}{12}$
$b=12 \quad$ The solution is 12.

$$
\text { Check } \begin{aligned}
b-8 & =10-6 & & \\
12-8 & =10-6 & & \text { Replace } b \text { with } 12 . \\
4 & =4 & & \text { Balances }
\end{aligned}
$$

31. $-1+4=y-2$
$3=y-2 \quad$ Simplify the left side.
$3=y+(-2)$ Change to addition.
$\frac{2}{5}=\frac{2}{y+}$ Add 2 to both sides.
$5=y \quad$ The solution is 5.

Check

$-1+4=y-2$
$-1+4=5-2 \quad$ Replace y with 5 .
$-1+4=5+(-2) \quad$ Change to addition.
$3=3 \quad$ Balances
32. $2+3=k-4$

$$
\text { Check } \begin{array}{rlrl}
2+3 & =k-4 & \\
2+3 & =9-4 & \\
5 & =5 \quad \text { Balances }
\end{array}
$$

33. $10+b=-14-6$

$$
10+b=-14+(-6) \text { Change to addition. }
$$

$$
10+b=-20 \quad \text { Add }
$$

$$
\frac{-10}{0+b}=\frac{-10}{-30} \quad \text { Add }-10
$$

$$
b=-30 \quad \text { The solution is }-30 \text {. }
$$

Check

$$
10+b=-14-6
$$

$$
10+(-30)=-14+(-6) \quad \text { Replace b with }-30 .
$$

$$
-20=-20
$$

34. $1+w=-8-8$

$$
\begin{array}{rlr}
1+w & =-8+(-8) \\
1+w & =-16 \\
\frac{-1}{0+w} & =\frac{-1}{-17} & \text { Add }-1 \text { to both sides. } \\
w & =-17 & \text { The solution is }-17 .
\end{array}
$$

Check

$$
1+w=-8-8
$$

$$
1+(-17)=-8+(-8) \quad \text { Replace } w \text { with }-17
$$

$$
-16=-16 \quad \text { Balances }
$$

35. $t-2=3-5$
$t+(-2)=3+(-5)$ Change to addition.
$t+(-2)=-2 \quad$ Simplify the right side.
$\frac{2}{t+0}=\frac{2}{0}$ Add 2 to both sides.

$$
t=0 \quad \text { The solution is } 0 .
$$

Check

$t-2=3-5$
$0-2=3-5 \quad$ Replace t with 0 .
$0+(-2)=3+(-5) \quad$ Change to addition.
$-2=-2 \quad$ Balances
36. $p-8=-10+2$
$p-8=-8$
$p+(-8)=-8$
$\begin{array}{rlrl}\square+0 & =\frac{8}{0} \quad \text { Add } 8 \text { to both sides. } \\ p & =0 & \text { The solution is } 0 .\end{array}$

$$
\text { Check } \begin{aligned}
p-8 & =-10+2 & & \\
0-8 & =-10+2 & & \text { Replace } p \text { with } 0 . \\
-8 & =-8 & & \text { Balances }
\end{aligned}
$$

37. $10 z-9 z=-15+8$
$10 z+(-9 z)=-15+8$ Change to addition.

$$
\begin{aligned}
1 z=-7 & \text { Combine like terms. } \\
z=-7 & \text { lz is the same as } z . \\
& \text { The solution is }-7 .
\end{aligned}
$$

Check

$$
10 z-9 z=-15+8
$$

$10 \cdot(-7)-9 \cdot(-7)=-15+8 \quad$ Replace z with -7.

$$
\begin{aligned}
-70-(-63) & =-7 & & \\
-70+63 & =-7 & & \text { Change to add. } \\
-7 & =-7 & & \text { Balances }
\end{aligned}
$$

38. $2 r-r=5-10$
$2 r+(-1 r)=5+(-10)$

$$
1 r=-5
$$

$$
r=-5 \quad \text { The solution is }-5
$$

Check

$$
\begin{aligned}
2 r-r & =5-10 & & \\
2 \cdot(-5)-(-5) & =5-10 & & \text { Replace } r \text { with }-5 . \\
-10+5 & =5+(-10) & & \\
-5 & =-5 & & \text { Balances }
\end{aligned}
$$

39. $-5 w+2+6 w=-4+9$

Rearrange and
combine like terms.
$\begin{aligned}-5 w+6 w & +2 \\ \underbrace{}_{1 w}+2 & =\underbrace{-4+9}_{5}\end{aligned}$
$\begin{aligned} &-2 \\ & 1 w+0=\frac{-2}{3} \quad \text { Add }-2 \text { to both sides. } \\ & w=3\end{aligned} \quad$ The solution is 3.

Check

$$
\begin{array}{rlrl}
-5 w+2+6 w & =-4+9 \\
& & \\
-5 \cdot 3+2+6 \cdot 3 & =-4+9 & & \text { Replace } w \text { with } 3 . \\
-15+2+18 & =-4+9 & & \\
5 & =5 \quad & \text { Balances }
\end{array}
$$

40. $-2 t+4+3 t=6-7$

$$
\begin{aligned}
1 t+4 & =6+(-7) \\
t+4 & =-1 \\
-4 & =-4 \quad \text { Add }-4 \text { to both sides. } \\
\hline t+0 & =-5 \\
t & =-5 \quad \text { The solution is }-5 .
\end{aligned}
$$

Check

$$
\begin{array}{rlrl}
-2 t+4+3 t & =6-7 & & \\
-2(-5)+4+3(-5) & =6-7 & \text { Let } t=-5 . \\
10+4+(-15) & =6+(-7) & & \\
14+(-15) & =-1 & & \\
-1 & =-1 & & \text { Balances }
\end{array}
$$

41. $-3-3=4-3 x+4 x \quad$ Change to addition.

$$
\begin{aligned}
\underbrace{-3+(-3)}_{-6} & =4+\underbrace{(-3 x)+4 x}_{4+1 x} \text { Combine like terms. }
\end{aligned}
$$

$$
\begin{aligned}
\frac{-4}{-10} & =\frac{-4}{0+1 x} & & \text { Add }-4 \text { to both sides. } \\
-10 & =1 x & & 1 x \text { is the same as } x . \\
-10 & =x & & \text { The solution is }-10 .
\end{aligned}
$$

42. $-5-5=-2-6 b+7 b$ $-5+(-5)=-2+(-6 b)+7 b$ $-10=-2+1 b$ $-10=-2+b$
$\frac{2}{-8}=\frac{2}{0+b}$

$$
-8=b
$$

The solution is -8 .
43.

$$
\begin{aligned}
-3+7-4 & =-2 a+3 a & & \\
-3+7+(-4) & =-2 a+3 a & & \text { Change to addition. } \\
0 & =1 a & & \text { Combine like terms. } \\
0 & =a & & \text { The solution is } 0 .
\end{aligned}
$$

44. $6-11+5=-8 c+9 c$
$6+(-11)+5=-8 c+9 c$
Change to addition.
$0=1 c \quad$ Combine like terms.
$0=c \quad$ The solution is 0.
45. $y-75=-100$
$y+(-75)=-100$ Change to addition.
$\begin{aligned} \frac{75}{y+0} & =\frac{75}{-25} \text { Add } 75 \text { to both sides. } \\ y & =-25 \quad \text { The solution is }-25 .\end{aligned}$
46. $a-200=-100$
$a+(-200)=-100$ Change to addition.
$\frac{200}{a+0}=\frac{200}{100}$ Add 200 to both sides.
$a=100 \quad$ The solution is 100.
47.

$$
\begin{aligned}
&-x+3+2 x=18 \\
& 1 x+3=18 \\
&-3 \\
& \hline 1 x+0=\frac{-3}{15} \text { combine like terms. }-3 \text { to both sides. } \\
& x=15 \text { The solution is } 15 .
\end{aligned}
$$

48. $-s+2 s-4=13$

$$
-1 s+2 s+(-4)=13
$$

$$
1 s+(-4) \quad 13
$$

$\frac{4}{1 s+0}=\frac{4}{17}$ Add 4 to both sides.
$s=17$ The solution is 17 .
49. $82=-31+k$

$$
\begin{aligned}
\frac{31}{113} & =\frac{31}{0+k} \\
113 & =k
\end{aligned} \quad \text { Add 31 to both sides. }
$$

50. $\quad-5=72+w$
$\begin{aligned} & \frac{-72}{-77}=\frac{-72}{0+w} \\ &-77=w \quad \text { Add }-72 \text { to both sides. } \\ & \quad \text { The solution is }-77 .\end{aligned}$
51. $-2+11=2 b-9-b$
$-2+11=2 b+(-9)+(-1 b)$ Change to addition. $9=1 b+(-9) \quad$ Rearrange and combine like terms.
$\begin{array}{rlrl}\frac{9}{18} & =\frac{9}{1 b+0} & & \\ 18 & \text { Add } 9 \text { to both sides. } \\ & & \text { The solution is } 18 .\end{array}$
52. $-6+7=2 h-1-h$
$-6+7=2 h+(-1)+(-1 h)$ $1=1 h+(-1)$

1	
2	$=\frac{1}{1 h+0}$
2	$=h$

The solution is 2 .
53.

$$
\begin{aligned}
r-6 & =7-10-8 & & \\
r+(-6) & =7+(-10)+(-8) & & \text { Change to addition. } \\
r+(-6) & =-11 & & \text { Combine like terms. } \\
6 & & & \\
r+0 & =\frac{\text { Add } 6 \text { to both sides. }}{-5} & & \\
r & =-5 & & \text { The solution is }-5 .
\end{aligned}
$$

54. $m-5=2-9+1$
$m+(-5)=2+(-9)+1$ Change to addition.
$m+(-5)=-6 \quad$ Combine like terms.
$\begin{aligned} \frac{5}{m+0} & =\frac{5}{-1} \\ m & =-1\end{aligned} \quad$ Add 5 to both sides.
$m=-1 \quad$ The solution is -1.
55. $-14=n+91$
$\frac{-91}{-105}=\frac{-91}{n+0}$ Add -91 to both sides.
$-105=n \quad$ The solution is -105 .
56. $66=x-28$
$66=x+(-28)$ Change to addition.
$\frac{28}{94}=\frac{28}{x+0}$ Add 28 to both sides.
$94=x \quad$ The solution is 94.
57. $-9+9=5+h$
$0=5+h$ Combine like terms
$\frac{-5}{-5}=\frac{-5}{0+h}^{\text {Add }-5}$ to both sides.
$-5=h \quad$ The solution is -5.
58. $18-18=6+p$

$$
0=6+p
$$

$\frac{-6}{-6}=\frac{-6}{0+p}$ Add -6 to both sides.
$-6=p \quad$ The solution is -6 .
59. No, the solution is -14 , the number used to replace x in the original equation.
60. Check

To correct the errors, change $-3-6$ to $-3+(-6)$. Then, add 5 to both sides, not -5 .
The correct solution is -4 .
61. $g+10=305$

$$
\begin{aligned}
&-10-10 \quad \begin{array}{l}
\text { Add the opposite of } \\
10,-10, \text { to both sides. }
\end{array} \\
& \begin{aligned}
g+0 & \overline{295} \\
g & =295
\end{aligned}
\end{aligned}
$$

There were 295 graduates this year.
62. $g+10=278$

$$
\begin{aligned}
-10 & -10
\end{aligned} \begin{aligned}
& \text { Add the opposite of } \\
& \text { 10, -10, to both sides. }
\end{aligned}
$$

There were 268 graduates last year.
63. $92=c+37$
$\begin{aligned} \frac{-37}{55} & =\frac{-37}{c+0} \text { Add }-37 \text { to both sides. } \\ 55 & =c\end{aligned}$
When the temperature is 92 degrees, a field cricket chirps 55 times (in 15 seconds).
64. $\quad 77=c+37$
$\begin{aligned} \frac{-37}{40} & =\frac{-37}{c+0} \text { Add }-37 \text { to both sides. } \\ 40 & =c\end{aligned}$
When the temperature is 77 degrees, a field cricket chirps 40 times (in 15 seconds).
65. $p-65=45$
$p+(-65)=45 \quad$ Change to addition.
$\begin{aligned} \frac{65}{p+0} & =\frac{65}{110} \text { Add } 65 \text { to both sides. } \\ p & =110\end{aligned}$
Ernesto's parking fees average $\$ 110$ per month in winter.

$$
\text { 66. } \begin{aligned}
p-56 & =98 \\
p+(-56) & =98 \text { Change to addition. } \\
\frac{56}{p+0} & =\frac{56}{154} \text { Add } 56 \text { to both sides. } \\
p & =154
\end{aligned}
$$

Aimee's parking fees average $\$ 154$ per month in winter.

62 Chapter 2 Understanding Variables and Solving Equations
67. $-17-1+26-38$

$$
\begin{aligned}
& =-3-m-8+2 m \\
-17+(-1)+ & 26+(-38) \\
& =-3+(-1 m)+(-8)+2 m
\end{aligned}
$$

Change all subtractions to additions.
$-17+(-1)+26+(-38)$
$=-3+(-8)+(-1 m)+2 m$
Commutative property
$-30=-11+1 m$ Combine like terms.
$\frac{11}{-19}=\frac{11}{1 m}$ Add 11 to both sides.
$-19=m \quad$ The solution is -19.
68.

$$
\begin{aligned}
19-38-9+11 & =-t-6+2 t-6 \\
19+(-38)+(-9)+11 & =-1 t+(-6)+2 t+(-6) \\
-17 & =1 t+(-12) \\
12 & \frac{12}{1 t+0} \\
-5 & =1 \quad \text { The solution is }-5 .
\end{aligned}
$$

69. $-6 x+2 x+6+5 x=|0-9|-|-6+5|$
$-6 x+2 x+5 x+6=|0+(-9)|-|-6+5|$
Change subtraction within absolute value to addition and rearrange the terms.
$1 x+6=|-9|-|-1|$
Simplify inside absolute value bars. Collect like terms.
$1 x+6=9-1 \quad$ Evaluate absolute values.
$1 x+6=9+(-1)$ Change to addition.
$1 x+6=8$
$\frac{-6}{1 x+0}=\frac{-6}{2}$ Add -6 to both sides.
$x=2 \quad$ The solution is 2.
70. $-h-|-9-9|+8 h-6 h=-12-|-5+0|$
$-h-|-9+(-9)|+8 h+(-6 h)=-12-|-5|$
$-1 h-|-18|+8 h+(-6 h)=-12-5$
$-1 h-18+8 h+(-6 h)=-12+(-5)$
$1 h-18=-17$
$1 h+(-18)=-17$
$h+0=\frac{18}{1}$
$h=1$
The solution is 1 .

Relating Concepts (Exercises 71-72)

71. (a) Equations will vary. Some possibilities are:

$$
\begin{aligned}
n-1 & =-3 \\
n+(-1) & =-3 \text { Change to addition. } \\
\frac{1}{n+0} & =\frac{1}{-2} \text { Add } 1 \text { to both sides. } \\
n & =-2 \text { The solution is }-2 .
\end{aligned}
$$

$$
\begin{array}{rlr}
8 & =x+10 \\
-10 & -10 & \begin{array}{l}
\text { Add the opposite of } \\
\text { 10, -10, to both sides. }
\end{array} \\
\hline-2 & =\overline{x+0} & \\
-2 & =x & \text { The solution is }-2 .
\end{array}
$$

(b) Equations will vary. Some possibilities are:

$$
\begin{array}{rlr}
y+6 & =6 \\
-6 & -6 & \begin{array}{l}
\text { Add the opposite of } \\
6,-6, \text { to both sides. }
\end{array} \\
\overline{y+0} & =\overline{0} & \\
y & =0 & \text { The solution is } 0 . \\
-5 & =-5+b & \\
5 & \begin{array}{l}
\text { Add the opposite of } \\
-5,5, \text { to both sides. }
\end{array} \\
\overline{5} & =\overline{0+b} & \\
0 & =b & \text { The solution is } 0 .
\end{array}
$$

72. (a) $x+1=1 \frac{1}{2}$

$$
\begin{array}{rll}
\frac{-1}{x+0} & =\frac{-1}{\frac{1}{2}} & \\
x & \begin{array}{l}
\text { Add the opposite of } \\
1,-1, \text { to both sides. }
\end{array} \\
x & \text { The solution is } \frac{1}{2} .
\end{array}
$$

(b) $\frac{1}{4}=y-1$
$\frac{1}{4}=y+(-1) \quad$ Change to addition. Add the opposite of - 1, 1, to both sides.
$\overline{1}=\frac{1}{y+0}$
$1 \frac{1}{4}=y \quad$ or $\quad y=\frac{5}{4}$ The solution is $\frac{5}{4}$.
(c) $\$ 2.50+n=\$ 3.35$ Add the opposite
$-\$ 2.50$ of $\$ 2.50,-\$ 2.50$, to both sides.

$$
\overline{\$ 0+n}=\overline{\$ 0.85}
$$

$$
n=\$ 0.85
$$

The solution is $\$ 0.85$.
(d) Equations will vary. Some possibilities are:
$a-\$ 7.32=\$ 9.16 \quad$ The solution is $\$ 16.48$.
$5 c-\$ 11.20=4 c-\$ 2.00 \quad$ The solution is $\$ 9.20$.

2.4 Solving Equations Using Division

2.4 Margin Exercises

1. (a) Solve $4 s=44$.

Use division to undo multiplication. Divide both sides by the coefficient of the variable, which is 4 .

$$
\begin{aligned}
\frac{4 s}{4} & =\frac{44}{4} \\
s & =\underline{11}
\end{aligned}
$$

The solution is 11.

Check $\quad 4 s=44$ Original equation

$$
\begin{aligned}
& \underbrace{\underline{4 \cdot 11}}_{\underline{44}=44 \quad \text { Replace s with } \underline{11} .}=44 \quad \text { Balances }
\end{aligned}
$$

(b) $27=-9 p$

$$
\begin{array}{ll}
\frac{27}{-9}=\frac{-9 p}{-9} & \begin{array}{l}
\text { Divide both } \\
\text { sides by }-9
\end{array} \\
-3=p &
\end{array}
$$

The solution is -3 .
Check $27=-9 p$

$$
\begin{array}{ll}
27=-9 \cdot(-3) & \text { Replace } p \text { with }-3 \\
27=27 & \text { Balances }
\end{array}
$$

(c) $-40=-5 x$

$$
\begin{aligned}
\frac{-40}{-5} & =\frac{-5 x}{-5} \quad
\end{aligned} \begin{aligned}
& \text { Divide both } \\
& \text { sides by }-5
\end{aligned}
$$

The solution is 8 .
Check $-40=-5 x$

$$
\begin{array}{ll}
-40=-5 \cdot 8 & \text { Replace } x \text { with } 8 . \\
-40=-40 & \\
\text { Balances }
\end{array}
$$

(d) $7 t=-70$

$$
\begin{aligned}
\frac{7 t}{7} & =\frac{-70}{7} \\
t & =-10
\end{aligned} \quad \begin{aligned}
& \text { Divide both } \\
& \text { sides by } 7 .
\end{aligned}
$$

The solution is -10 .

$$
\text { Check } \begin{aligned}
7 t & =-70 & & \\
& & & \text { Relace } t \text { with }-10 . \\
& -10) & =-70 & \\
-70 & =-70 & & \text { Balances }
\end{aligned}
$$

2. (a) $-28=-6 n+10 n$

$$
-28=4 n \quad \text { Combine like terms. }
$$

$$
\frac{-28}{4}=\frac{4 n}{4}
$$

Divide both
sides by 4.

$$
-7=n
$$

The solution is -7 .

Check $-28=-6 n+10 n$

$$
-28=-6 \cdot(-7)+10 \cdot(-7)
$$

Replace n with -7 .

$$
-28=42+(-70)
$$

$$
-28=-28 \quad \text { Balances }
$$

(b) $\quad p-14 p=-2+18-3$
$1 p+(-14 p)=-2+18+(-3)$
Change to addition. Rewrite p as $1 p$.

$$
-13 p=13
$$

Combine like terms.

$$
\frac{-13 p}{-13}=\frac{13}{-13}
$$

Divide both sides by -13 .

$$
p=-1
$$

The solution is -1 .

$$
\text { Check } \begin{aligned}
p-14 p & =-2+18-3 \\
-1-14(-1) & =16-3 \\
& \text { Replace } p \text { with }-1 . \\
-1-(-14) & =13 \\
-1+(+14) & =13 \\
13 & =13 \quad \text { Balances }
\end{aligned}
$$

3. (a) $-k=-12$

$$
\begin{array}{cl}
-1 k=-12 & \begin{array}{l}
\text { Write in the understood } \\
-1 \text { as the coefficient of } k .
\end{array} \\
\frac{-1 k}{-1}=\frac{-12}{-1} & \begin{array}{l}
\text { Divide both } \\
\text { sides by }-1 .
\end{array} \\
k=12 & \text { The solution is } 12 .
\end{array}
$$

$$
\text { Check } \begin{array}{rlrl}
-k & =-12 \\
& \\
-1 k & =-12 & & \\
-1 \cdot 12 & =-12 & & \text { Replace } k \text { with } 12 . \\
-12 & =-12 & & \text { Balances }
\end{array}
$$

(b) $7=-t$

$$
7=-1 t \quad \text { Write }-t \text { as }-1 t
$$

$$
\frac{7}{-1}=\frac{-1 t}{-1} \quad \begin{aligned}
& \text { Divide both } \\
& \text { sides by }-1
\end{aligned}
$$

$$
-7=t \quad \text { The solution is }-7
$$

Check $7=-t$

$$
\begin{array}{llrl}
7 & =-1 t & & \\
7 & =-1 \cdot(-7) & & \text { Replace } t \text { with }-7 . \\
7 & =7 & & \text { Balances }
\end{array}
$$

(c) $\quad-m=-20$

$$
-1 m=-20 \quad \text { Write }-m \text { as }-1 m
$$

$$
\frac{-1 m}{-1}=\frac{-20}{-1} \quad \begin{aligned}
& \text { Divide both } \\
& \text { sides by }-1
\end{aligned}
$$

$$
m=20 \quad \text { The solution is } 20
$$

$$
\text { Check } \begin{aligned}
-m & =-20 \\
-1 m & =-20 \\
-1 \cdot 20 & =-20 \\
& \text { Replace } m \text { with } 20 . \\
-20 & =-20 \quad \text { Balances }
\end{aligned}
$$

2.4 Section Exercises

1. $6 z=12$
$\frac{6 z}{6}=\frac{12}{6} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } \underline{6} .\end{aligned}$
$z=\underline{2} \quad$ The solution is 2.

$$
\text { Check } \begin{aligned}
6 z & =12 \\
\underbrace{6 \cdot 2} & =12 \quad \text { Replace } z \text { with } 2 . \\
\underline{12} & =\underline{12} \quad \text { Balances }
\end{aligned}
$$

2.

Balances

$$
\begin{aligned}
& 8 k=24 \\
& \text { Check } \quad 8 k=24 \\
& \frac{8 k}{8}=\frac{24}{8} \\
& k=\underline{3} \\
& \underbrace{8 \cdot 3}=24 \\
& \underline{24}=\underline{24}
\end{aligned}
$$

The solution is 3 .

64 Chapter 2 Understanding Variables and Solving Equations
3. $48=12 r$

$$
\begin{aligned}
\frac{48}{12} & =\frac{12 r}{12} & & \begin{array}{l}
\text { Divide both } \\
\text { sides by } 12 .
\end{array} \\
4 & =r & & \text { The solution is } 4 .
\end{aligned}
$$

$$
\text { Check } \begin{aligned}
48 & =12 r & & \\
48 & =12 \cdot 4 & & \text { Replace } r \text { with } 4 . \\
48 & =48 & & \text { Balances }
\end{aligned}
$$

4. $\quad 99=11 m$

$$
\text { Check } \quad 99=11 m
$$

$$
\begin{array}{rlrl}
\frac{99}{11} & =\frac{11 m}{11} & 99 & =11 \cdot 9 \\
9 & =m & 99 & =99
\end{array}
$$

The solution is 9 .
5. $3 y=0$

$$
\begin{aligned}
& \frac{3 y}{3}=\frac{0}{3} \quad \begin{array}{l}
\text { Divide both } \\
\text { sides by } 3
\end{array} \\
& y=0 \\
& \text { The solution is } 0 .
\end{aligned}
$$

$$
\text { Check } \begin{aligned}
3 y & =0 & & \\
3 \cdot 0 & =0 & & \text { Replace } y \text { with } 0 . \\
0 & =0 & & \text { Balances }
\end{aligned}
$$

6. $\quad 5 a=0$

$$
5 a=0
$$

$$
\begin{array}{rlrl}
\frac{5 a}{5} & =\frac{0}{5} & 5 \cdot 0 & =0 \\
a & =0 & 0 & =0
\end{array}
$$

The solution is 0 .
7. $-7 k=70$

$$
\begin{aligned}
\frac{-7 k}{-7}=\frac{70}{-7} & \begin{array}{l}
\text { Divide both } \\
\text { sides by }-7
\end{array} \\
k=-10 & \text { The solution is }-10 .
\end{aligned}
$$

$$
\text { Check } \begin{aligned}
-7 k & =70 & & \\
-7 \cdot(-10) & =70 & & \text { Replace } k \text { with }-10 . \\
70 & =70 & & \text { Balances }
\end{aligned}
$$

8. $-6 y=36$

$$
\begin{aligned}
-6 y & =36 & & \text { Check }
\end{aligned} \begin{aligned}
-6 y & =36 \\
\frac{-6 y}{-6} & =\frac{36}{-6} \\
y & \\
& \\
-6 & \\
\hline-6) & =36 \\
36 & =36
\end{aligned}
$$

The solution is -6 .
9. $-54=-9 r$

$$
\begin{array}{cl}
\frac{-54}{-9}=\frac{-9 r}{-9} & \\
\begin{array}{cl}
\text { Divide both } \\
\text { sides by }-9
\end{array} \\
6=r & \text { The solution is } 6
\end{array}
$$

$$
\text { Check } \begin{aligned}
-54 & =-9 r & & \\
-54 & =-9 \cdot 6 & & \text { Replace } r \text { with } 6 . \\
-54 & =-54 & & \text { Balances }
\end{aligned}
$$

10. $-36=-4 p$

Check $\quad-36=-4 p$
$\begin{aligned} \frac{-36}{-4} & =\frac{-4 p}{-4} \\ 9 & =p\end{aligned}$
$-36=-4 \cdot 9$
Balances
The solution is 9 .
11. $-25=5 b$

$$
\begin{aligned}
\frac{-25}{5}=\frac{5 b}{5} & \begin{array}{l}
\text { Divide both } \\
\text { sides by } 5
\end{array} \\
-5=b & \text { The solution is }-5
\end{aligned}
$$

$$
\text { Check } \begin{aligned}
-25 & =5 b & & \\
-25 & =5 \cdot(-5) & & \text { Replace } b \text { with }-5 . \\
-25 & =-25 & & \text { Balances }
\end{aligned}
$$

12.

$$
\begin{aligned}
-70 & =10 x & \text { Check } \quad & -70
\end{aligned}=10 x=10-70=10 \cdot(-7)
$$

The solution is -7 .
13. $2 r=-7+13$

$$
\begin{array}{rlrl}
2 r & =6 & & \text { Combine like terms. } \\
\frac{2 r}{2} & =\frac{6}{2} & & \text { Divide both } \\
r & =3 & & \text { sides by } 2 . \\
\text { The solution is } 3 .
\end{array}
$$

Check $\quad 2 r=-7+13$
$2 \cdot 3=-7+13$ $6=6$
Replace r with 3.
Balances
14. $6 y=28-4 \quad$ Check $\quad 6 y=28-4$

$$
\begin{array}{rlrl}
6 y & =24 & 6 \cdot 4 & =28 \\
\frac{6 y}{c} & =\frac{24}{c} & 24 & =24
\end{array}
$$

$$
y=4
$$

Balances

The solution is 4 .
15. $-12=5 p-p$
$-12=5 p+(-p) \quad$ Change to addition.
$-12=5 p+(-1 p) \quad$ Rewrite $-p$ as $-1 p$.
$-12=4 p \quad$ Combine like terms.
$\underline{-12}=\frac{4 p}{4} \quad$ Divide both
sides by 4.
$-3=p \quad$ The solution is -3.

Check

$$
\begin{array}{ll}
-12=5 p-p & \\
-12=5 \cdot(-3)-(-3) & \\
\text { Replace } p \text { with }-3 . \\
-12=-15-(-3) & \\
-12=-15+3 & \\
\text { Change to addition. } \\
-12=-12 & \\
\text { Balances }
\end{array}
$$

16. $20=z-11 z$
$20=1 z+(-11 z) \quad$ Change to addition.
$20=-10 z \quad$ Combine like terms.
$\frac{20}{-10}=\frac{-10 z}{-10} \quad$ Divide both
$-10=\frac{10}{-10} \quad$ sides by -10 .
$-2=z \quad$ The solution is -2.

Check

$$
\begin{array}{ll}
20=z-11 z & \\
20=-2-11 \cdot(-2) & \text { Replace } z \text { with }-2 . \\
20=-2-(-22) & \\
20=-2+22 & \text { Change to addition. } \\
20=20 & \text { Balances }
\end{array}
$$

17. $\quad 3-28=5 a \quad$ Original equation
$3+(-28)=5 a \quad$ Change to addition.
$-25=5 a \quad$ Combine like terms.
$\frac{-25}{5}=\frac{5 a}{5} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 5 .\end{aligned}$
$-5=a \quad$ The solution is -5.
18. $-55+7=8 n \quad$ Original equation
$-48=8 n \quad$ Combine like terms.
$\frac{-48}{8}=\frac{8 n}{8} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 8 .\end{aligned}$
$-6=n \quad$ The solution is -6.
19. $x-9 x=80$

Original equation
$x+(-9 x)=80 \quad$ Change to addition.
$1 x+(-9 x)=80 \quad$ Rewrite x as $1 x$.
$-8 x=80 \quad$ Combine like terms.
$\frac{-8 x}{-8}=\frac{80}{-8} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-8 .\end{aligned}$
$x=-10 \quad$ The solution is -10 .
20. $4 c-c=-27 \quad$ Original equation
$4 c+(-c)=-27 \quad$ Change to addition.
$4 c+(-1 c)=-27 \quad$ Rewrite $-c$ as $-1 c$.
$3 c=-27 \quad$ Combine like terms.
$\frac{3 c}{3}=\frac{-27}{3} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 3 .\end{aligned}$
$c=-9 \quad$ The solution is -9.
21.

$$
\begin{array}{rlrl}
13-13 & =2 w-w & & \text { Original equation } \\
13+(-13) & =2 w+(-w) & & \text { Change to addition. } \\
13+(-13) & =2 w+(-1 w) & & \text { Rewrite }-w \text { as }-1 w . \\
0 & =1 w & & \text { Combine like terms. } \\
0 & =w & & \text { lw is the same as } w . \\
\text { ane solution is } 0 .
\end{array}
$$

22.

$-11+11$	$=8 t-7 t$		
$-11+11$	$=8 t+(-7 t)$		Chiginal equation
0	$=1 t$		Combine lo addike terms.
0	$=t$		It is the same as t.
		The solution is 0.	

23. $3 t+9 t=20-10+26 \quad$ Original equation
$3 t+9 t=20+(-10)+26 \quad$ Change to addition.
$12 t=36 \quad$ Combine like terms.
$\frac{12 t}{12}=\frac{36}{12} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 12 .\end{aligned}$
$t=3 \quad$ The solution is 3.
24. $6 m+6 m=40+20-12$

Original equation
$6 m+6 m=60+(-12)$
$12 m=48$
$\frac{12 m}{12}=\frac{48}{12}$
$m=4$
Change to addition.
Combine like terms.
Divide both
sides by 12 .
The solution is 4 .
25. $0=-9 t \quad$ Original equation
$\frac{0}{-9}=\frac{-9 t}{-9} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-9 .\end{aligned}$
$0=t \quad$ The solution is 0.
26. $-10=10 b \quad$ Original equation
$\frac{-10}{10}=\frac{10 b}{10} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 10\end{aligned}$
$-1=b \quad$ The solution is -1.
27. $-14 m+8 m=6-60 \quad$ Original equation $-14 m+8 m=6+(-60) \quad$ Change to addition. $-6 m=-54 \quad$ Combine like terms. $\underline{-6 m}=\underline{-54} \quad$ Divide both sides by -6 . The solution is 9 .
28. $7 w-14 w=1-50+49 \quad$ Original eq.
$7 w+(-14 w)=1+(-50)+49$
$-7 w=0$ $\frac{-7 w}{-7}=\frac{0}{-7}$

$$
w=0
$$

Combine. Divide both sides by -7 . The solution is 0 .

29

$$
\begin{array}{rlrl}
100-96 & =31 y-35 y & & \text { Original equation } \\
100+(-96) & =31 y+(-35 y) & & \text { Change to addition. } \\
4 & =-4 y & & \text { Combine like terms. } \\
\frac{4}{-4} & =\frac{-4 y}{-4} & & \text { Divide both } \\
-1 & =y & & \text { sides by }-4 . \\
\text { ane solution is }-1 .
\end{array}
$$

30. $150-139=20 x-9 x \quad$ Original equation $150+(-139)=20 x+(-9 x) \quad$ Change to addition.

$$
\begin{array}{rlrl}
11 & =11 x & & \text { Combine like terms. } \\
\frac{11}{11} & =\frac{11 x}{11} & & \text { Divide both } \\
1 & =x & & \text { sides by } 11 . \\
\text { She solution is } 1 .
\end{array}
$$

31. $\begin{array}{rlrl}3(2 z) & =-30 & & \text { Original equation } \\ (3 \cdot 2) \cdot z & =-30 & & \text { To multiply on the left, use } \\ & \text { one associative property. } \\ 6 z & =-30 & & \\ \frac{6 z}{6} & =\frac{-30}{6} & & \text { Divide both } \\ z & =-5 & & \text { sides by } 6 . \\ \text { The solution is }-5 .\end{array}$

Copyright © 2014 Pearson Education, Inc.

66 Chapter 2 Understanding Variables and Solving Equations

32. $2(4 k)=16$

$$
(2 \cdot 4) \cdot k=16
$$

$$
8 k=16
$$

$$
\frac{8 k}{8}=\frac{16}{8} \quad \begin{aligned}
& \text { Divide both } \\
& \text { sides by } 8
\end{aligned}
$$

$$
k=2 \quad \text { The solution is } 2 .
$$

33. $50=-5(5 p) \quad$ Original equation
$50=(-5 \cdot 5) \cdot p$
To multiply on the right, use the associative prop.
$50=-25 p$
$\frac{50}{-25}=\frac{-25 p}{-25}$
Divide both
$-2=p$
sides by -25 .
The solution is -2 .
34. $60=4(-3 a)$
$60=[4 \cdot(-3)] \cdot a$
$60=-12 a$
$\frac{60}{-12}=\frac{-12 a}{-12}$
$-5=a$
Original equation
To multiply on the right, use the associative prop.

$$
\begin{array}{rlrl}
-2(-4 k) & =56 & & \text { Original equation } \\
{[-2 \cdot(-4)] \cdot k} & =56 & & \text { Associative property } \\
8 k & =56 & & \\
\frac{8 k}{8} & =\frac{56}{8} & & \text { Divide both } \\
k & =7 & & \text { sides by } 8 . \\
\text { The solution is } 7 .
\end{array}
$$

36. $-5(4 r)=-80 \quad$ Original equation
$(-5 \cdot 4) \cdot r=-80 \quad$ Associative property $-20 r=-80$
$\underline{-20 r}=\underline{-80} \quad$ Divide both
sides by -20 .
The solution is 4 .
37. $-90=-10(-3 b) \quad$ Original equation
$-90=[-10 \cdot(-3)] \cdot b \quad$ Associative property
$-90=30 b$
$\underline{-90}=\underline{30 b} \quad$ Divide both
sides by 30.
$-3=b \quad$ The solution is -3.
38. $-90=-5(-2 y) \quad$ Original equation
$-90=[-5 \cdot(-2)] \cdot y \quad$ Associative property
$-90=10 y$
$\frac{-90}{10}=\frac{10 y}{10} \quad$ Divide both
sides by 10 .
$-9=y$
The solution is -9 .
39. $-x=32$ Original equation
$-1 x=32 \quad$ Write in the understood -1.
$\frac{-1 x}{-1}=\frac{32}{-1} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-1 .\end{aligned}$
$x=-32 \quad$ The solution is -32 .
40. $-c=23 \quad$ Original equation
$-1 c=23 \quad$ Write in the understood -1.
$\frac{-1 c}{-1}=\frac{23}{-1} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-1 .\end{aligned}$
$c=-23$ The solution is -23 .
41. $-2=-w \quad$ Original equation
$-2=-1 w \quad$ Write in the understood -1 .
$\frac{-2}{-1}=\frac{-1 w}{-1} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-1 .\end{aligned}$
$2=w \quad$ The solution is 2.
42. $-75=-t \quad$ Original equation
$-75=-1 t \quad$ Write in the understood -1.
$\frac{-75}{-1}=\frac{-1 t}{-1} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-1\end{aligned}$
$75=t \quad$ The solution is 75.
43. $-n=-50 \quad$ Original equation
$-1 n=-50 \quad$ Write in the understood -1 .
$-1 n=-50 \quad$ Divide both
$-1=\frac{-1}{-1} \quad$ sides by -1 .
$n=50 \quad$ The solution is 50 .
44. $-x=-1 \quad$ Original equation
$-1 x=-1 \quad$ Write in the understood -1.
$\frac{-1 x}{-1}=\frac{-1}{-1} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-1 .\end{aligned}$
$x=1 \quad$ The solution is 1 .
45. $10=-p \quad$ Original equation
$10=-1 p \quad$ Write in the understood -1.
$\frac{10}{-1}=\underline{-1 p} \quad$ Divide both
$\overline{-1}=\overline{-1} \quad$ sides by -1 .
$-10=p \quad$ The solution is -10.
46. $100=-k \quad$ Original equation
$100=-1 k \quad$ Write in the understood -1.
$\frac{100}{-1}=\frac{-1 k}{-1} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-1 .\end{aligned}$
$-100=k \quad$ The solution is -100.
47. Each solution is the opposite of the number in the equation. So the rule is: When you change the sign of the variable from negative to positive, then change the number in the equation to its opposite. In $-x=5$, the opposite of 5 is -5 , so $x=-5$.
48. Equations will vary. Some possibilities are (i) $-5 x=20$ and (ii) $12-20=2 x$.
(i) $-5 x=20$

$$
\frac{-5 x}{-5}=\frac{20}{-5} \quad \begin{aligned}
& \text { Divide both } \\
& \text { sides by }-5
\end{aligned}
$$

$x=-4 \quad$ The solution is -4.
(ii) $12-20=2 x$

$$
\begin{array}{rlrl}
12+(-20) & =2 x & & \text { Change to addition. } \\
-8 & =2 x & & \text { Combine like terms. } \\
\frac{-8}{2} & =\frac{2 x}{2} & & \text { Divide both } \\
-4 & =x & & \text { sides by 2. } \\
\text { The solution is }-4 .
\end{array}
$$

49. Divide by the coefficient of x, which is 3 , not by the opposite of 3 .

$$
\begin{aligned}
3 x & =\underbrace{16-1}_{15} \\
3 x & ={ }^{3} \\
\frac{3 x}{3} & =\frac{15}{3}
\end{aligned}
$$

$$
x=5 \quad \text { The correct solution is } 5 .
$$

50. You can divide both sides of an equation by the same nonzero number and keep the equation balanced.
51. $3 s=45$

$$
\begin{aligned}
\frac{3 s}{3} & =\frac{45}{3} \quad \begin{array}{l}
\text { Divide both } \\
\text { sides by } 3
\end{array} \\
s & =15
\end{aligned}
$$

The length of one side is 15 feet.
52. $3 s=63$
$\frac{3 s}{3}=\frac{63}{3} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 3 .\end{aligned}$

$$
s=21
$$

The length of one side is 21 inches.
53. $120=5 s$

$$
\begin{aligned}
& \frac{120}{5}=\frac{5 s}{5} \quad \\
& \quad \begin{array}{l}
\text { Divide both } \\
\text { sides by } 5
\end{array} \\
& 24=s
\end{aligned}
$$

The length of one side is 24 meters.
54. $335=5 s$

$$
\begin{aligned}
\frac{335}{5} & =\frac{5 s}{5} \quad \begin{array}{ll}
\text { Divide both } \\
\text { sides by } 5
\end{array} \\
67 & =s
\end{aligned}
$$

The length of one side is 67 yards.
55.

\[

\]

The solution is 27 .
56. $58-208=-b+8(-3 b)+5(-5 b)$
$58-208=-b+[8 \cdot(-3)] \cdot b+[5 \cdot(-5)] \cdot b$
Associative property
$58+(-208)=-1 b+(-24 b)+(-25 b)$ Change to addition.

$$
-150=-50 b \quad \text { Combine like terms. }
$$

$$
\frac{-150}{-0}=\frac{-50 b}{} \quad \text { Divide both }
$$

$$
\overline{-50}=\overline{-50} \quad \text { sides by }-50
$$

$$
3=b
$$

The solution is 3 .
57. $-37(14 x)+28(21 x)=|72-72|+|-166+96|$ $(-37 \cdot 14) \cdot x+(28 \cdot 21) \cdot x$

$$
=|0|+|-70|
$$

Assoc. prop. Simplify within the absolute values.

$$
-518 x+588 x=0+70
$$

Simplify the absolute values.
$70 x=70$ Combine like terms.

$$
\begin{aligned}
\frac{70 x}{70} & =\frac{70}{70} \quad \begin{array}{l}
\text { Divide both } \\
\text { sides by } 70 .
\end{array} \\
x & =1
\end{aligned}
$$

The solution is 1 .
58.

$$
\begin{aligned}
& 6 a-10 a-3(2 a)=|-25-25|-5(8) \\
& 6 a+(-10 a)-6 a=|-25+(-25)|-40 \\
& \text { Simplify } \text { within the absolute value. } \\
& 6 a+(-10 a)+(-6 a)=|-50|-40 \\
&-10 a=50-40 \\
& \text { Simplify the absolute value. } \\
&-10 a=10 \quad \text { Combine like terms. } \\
& \frac{-10 a}{-10}=\frac{10}{-10} \quad \text { Divide both } \\
& a=-1
\end{aligned}
$$

The solution is -1 .

2.5 Solving Equations with Several Steps

2.5 Margin Exercises

1. (a) $2 r+7=13$ To get $2 r$ by itself,

$$
\begin{aligned}
\underbrace{\frac{-7}{2 r+0}}_{2 r} & =\frac{-7}{6} \text { add }-7 \text { to both sides. } \\
& =6
\end{aligned}
$$

$$
\begin{aligned}
\frac{2 r}{2}=\frac{6}{2} & \begin{array}{l}
\text { To solve for } r \\
\text { divide both sides by } \\
\text { the coefficient, } 2
\end{array} \\
r=\underline{3} & \text { The solution is } 3
\end{aligned}
$$

Check $\begin{aligned} 2 r+7 & =13 \\ 2 \cdot 3+7 & =13 \quad \text { Replace } r \text { with } 3 . \\ \underbrace{6+7}_{\underline{13}} & =13 \\ & =13 \quad \text { Balances }\end{aligned}$
(b) $\quad-10 z-9=11$
$-10 z+(-9)=11 \quad$ Change to addition.
$\frac{9}{-10 z+0}=\frac{9}{20}$ Add 9 to both sides.

$$
-10 z=20
$$

$\frac{-10 z}{-10}=\frac{20}{-10} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-10 .\end{aligned}$
$z=-2 \quad$ The solution is -2 .

Check

$$
\begin{aligned}
&-10 z-9=11 \\
& \underbrace{}_{\underbrace{-10 \cdot(-2)}_{11}-9}=11 \quad \text { Replace } r \text { with }-2 . \\
&=11 \quad \text { Balances }
\end{aligned}
$$

2. (a) Solve, keeping the variable on left side.

$$
\begin{array}{rlrl}
3 y-1 & =2 y+7 & \\
\frac{-2 y}{1 y-1} & =\frac{-2 y}{0+7} & & \text { Add }-2 y \text { to both sides. } \\
1 y+(-1) & =7 & & \text { Change to addition. } \\
1 & & & \text { Add } 1 \text { to both sides. } \\
\hline 1 y+0 & =\frac{1}{8} & & \\
1 y & =8 & & \text { The solution is } 8 .
\end{array}
$$

Solve, keeping the variable on the right side.

$$
\begin{aligned}
& 3 y-1=2 y+7 \\
& \frac{-3 y}{0-1}=\frac{-3 y}{-1 y+7}^{\text {Add }-3 y \text { to both sides. }} \\
& -1=-1 y+7 \\
& \frac{-7}{-8}=\frac{-7}{-1 y+0} \text { Add }-7 \text { to both sides. } \\
& -8=-1 y \\
& \frac{-8}{-1}=\frac{-1 y}{-1} \quad \begin{array}{l}
\text { Divide both } \\
\text { sides by }-1 .
\end{array} \\
& 8=y \quad \text { The solution is } 8 .
\end{aligned}
$$

(b) Solve, keeping the variable on left side.

$$
\begin{array}{rlrl}
3 p-2 & =p-6 & \\
3 p-2 & =1 p-6 & \text { Rewrite } p \text { as } 1 p . \\
\frac{-1 p}{2 p-2} & =\frac{-1 p}{0-6} & \text { Add }- \text { lp to both sides. } \\
2 p+(-2) & =-6 & & \text { Change to addition. } \\
\frac{2}{2 p+0} & =\frac{2}{-4} & & \text { Add } 2 \text { to both sides. } \\
2 p & =-4 & & \\
\frac{2 p}{2} & =\frac{-4}{2} & & \text { Divide both } \\
p & =-2 & & \text { sides by } 2 . \\
\hline 2
\end{array}
$$

Solve, keeping the variable on the right side.

\[

\]

3. (a) $-12=4(y-1)$
$-12=\underbrace{4 \cdot y}-\underbrace{4 \cdot 1}$ Distribute on the right.
$-12=4 y-4$
$-12=4 y+(-4) \quad$ Change to addition.
$\frac{4}{-8}=\frac{4}{4 y+0}$ Add 4 to both sides.
$-8=4 y$
$\frac{-8}{4}=\frac{4 y}{4} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } \underline{4} .\end{aligned}$
$-2=y \quad$ The solution is -2.
Check $-12=4(y-1)$
$-12=4(-2-1) \quad$ Replace y with -2 .
$-12=4(-3)$
$-12=-12 \quad$ Balances
(b) $\quad 5(m+4)=20$
$5 \cdot m+5 \cdot 4=20$ Distribute on the left.
$5 m+20=20$
$\frac{-20}{5 m+0}=\frac{-20}{0}$ Add -20 to both sides.
$5 m=0$
$\frac{5 m}{5}=\frac{0}{5} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 5 .\end{aligned}$
$m=0 \quad$ The solution is 0 .
Check $5(m+4)=20$

$$
\begin{aligned}
5(0+4) & =20 \quad \text { Replace } m \text { with } 0 . \\
5(4) & =20 \\
20 & =20 \quad \text { Balances }
\end{aligned}
$$

(c) $\quad 6(t-2)=18$
$6 \cdot t-6 \cdot 2=18$ Distribute on the left.
$6 t-12=18$
$6 t+(-12)=18$ Change to addition.
$\frac{12}{6 t+0}=\frac{12}{30}$ Add 12 to both sides.

$$
6 t=30
$$

$\frac{6 t}{6}=\frac{30}{6} \begin{aligned} & \text { Divide both } \\ & \text { sides by } 6 .\end{aligned}$
$t=5 \quad$ The solution is 5 .

$$
\text { Check } \begin{aligned}
6(t-2) & =18 \\
6(5-2) & =18 \quad \text { Replace } t \text { with } 5 . \\
6(3) & =18 \\
18 & =18 \quad \text { Balances }
\end{aligned}
$$

4. (a) $3(b+7)=2 b-1 \quad$ Distribute.

$$
\begin{aligned}
3 \cdot b+3 \cdot 7 & =2 b-1 \\
3 b+21 & =2 b+(-1) \text { Variables left } \\
\frac{-2 b}{1 b+21} & =\frac{-2 b}{0+(-1)} \text { Add }-2 b . \\
1 b+21 & =-1 \\
-21 & \\
\hline 1 b+0 & =\frac{-21}{-22} \\
1 b & =-22 \\
\text { or } b & =-22
\end{aligned}
$$

The solution is -22 .
Check $\quad 3(b+7)=2 b-1$

$$
\begin{aligned}
3(-22+7) & =2 \cdot(-22)-1 \\
3(-15) & =-44-1
\end{aligned}
$$

$$
-45=-45
$$

(b)

$$
\begin{array}{rlrl}
6-2 n & =14+4(n-5) & & \text { Distribute. } \\
6-2 n & =14+4 \cdot n-4 \cdot 5 & & \\
6-2 n & =14+4 n-20 & & \begin{array}{l}
\text { Add the } \\
\text { opposite. }
\end{array} \\
6+(-2 n) & =14+4 n+(-20) & \begin{array}{l}
\text { Combine } \\
\text { like terms. }
\end{array} \\
6+(-2 n) & =-6+4 n & & \text { Add } 2 n . \\
2 n & & 2 n &
\end{array}
$$

The solution is 2 .

$$
\text { Check } \begin{aligned}
6-2 n & =14+4(n-5) & & \\
6-2 \cdot 2 & =14+4(2-5) & & \text { Let } n=2 . \\
6-4 & =14+4(-3) & & \\
2 & =14+(-12) & & \\
2 & =2 & & \text { Balances }
\end{aligned}
$$

2.5 Section Exercises

1. $7 p+5=12$ To get $7 p$ by itself,

$$
\begin{array}{rll}
\underbrace{\frac{-5}{7 p+0}}_{7 p} & =\frac{-5}{7} & \text { add }-5 \text { to both sides. } \\
& =7 & \\
\frac{7 p}{7} & =\frac{7}{7} & \\
\text { Divide both } \\
p & =1 & \text { sides by } 7 . \\
\text { The solution is } 1 .
\end{array}
$$

$$
\text { Check } \begin{aligned}
7 p+5 & =12 \\
7(1)+5 & =12 \quad \text { Let } p=1 . \\
7+5 & =12 \\
\underline{12} & =\underline{12} \quad \text { Balances }
\end{aligned}
$$

2. $6 k+3=15 \quad$ Check $\quad 6 k+3=15$

$\underbrace{\frac{-3}{6 k+0}}_{6 k}=\frac{-3}{12}$	$6(2)+3$ $=15$ $6 k$ $=12$
12	$15=15$
$6 k$	Balances

$$
\begin{aligned}
\frac{6 k}{6} & =\frac{12}{6} \\
k & =\underline{2}
\end{aligned}
$$

The solution is 2 .
3. $2=8 y-6$
$2=8 y+(-6) \quad$ Change to addition.
$\frac{6}{8}=\underbrace{\frac{6}{8 y+0}}$ Add 6 to both sides.
$8=8 y$
$\frac{8}{8}=\frac{8 y}{8} \quad$ Divide both
$1=y$
sides by 8 .
The solution is 1 .

Check $2=8 y-6$
$2=8(1)-6 \quad$ Replace y with 1 .
$2=8-6$
$2=2$
Balances
4. $10=11 p-12$ Check
$10=11 p-12$
$10=11 p+(-12)$
$\frac{12}{22}=\frac{12}{11 p+0}$
$10=11(2)-12$
$10=22-12$
$\frac{22}{11}=\frac{11 p}{11}$
$2=p$
The solution is 2 .
5. $28=-9 a+10$ To get $-9 a$ by itself,
$\begin{array}{rll}\frac{-10}{18} & =\frac{-10}{-9 a+0} & \\ 18 & & \text { add }-10 \text { to both sides. } \\ \frac{18}{-9} & =\frac{-9 a}{-9} & \\ & & \text { Divide both } \\ -2 & =a & \\ \text { sides by }-9 . \\ & \text { The solution is }-2 .\end{array}$
Check $28=-9 a+10$
$28=-9(-2)+10 \quad$ Replace a with -2. $28=18+10$
$28=28$
Balances
6. $-4 k+5=5$
$\frac{-5}{-4 k+0}=\frac{-5}{0}$
$\begin{aligned}-4 k+5 & =5 \\ -4(0)+5 & =5 \\ 0+5 & =5 \\ 5 & =5\end{aligned}$

$$
\begin{aligned}
\frac{-4 k}{-4} & =\frac{0}{-4} \\
k & =0
\end{aligned}
$$

$$
5=5
$$

Balances

The solution is 0 .
7. $-3 m+1=1$ To get $-3 m$ by itself,

$$
\begin{array}{rlrl}
\frac{-1}{-3 m+0} & =\frac{-1}{0} & & \text { add }-1 \text { to both sides. } \\
-3 m & =0 & & \\
\frac{-3 m}{-3} & =\frac{0}{-3} & & \text { Divide both } \\
m & =0 & & \text { Thes by }-3 . \\
\text { Thelution is } 0 .
\end{array}
$$

$$
\text { Check } \begin{aligned}
-3 m+1 & =1 \\
-3(0)+1 & =1 \quad \text { Replace } m \text { with } 0 . \\
0+1 & =1 \\
1 & =1 \quad \text { Balances }
\end{aligned}
$$

8.

$$
\begin{aligned}
& 75=-10 w+25 \\
&-25 \\
& \hline 50=\frac{-25}{-10 w+0} \\
& \frac{50}{-10}=\frac{-10 w}{-10} \\
&-5=w
\end{aligned}
$$

The solution is -5 .

$$
\text { Check } \quad \begin{aligned}
75 & =-10 w+25 \\
75 & =-10(-5)+25 \\
75 & =50+25 \\
75 & =75
\end{aligned}
$$

Balances
9.

$$
\begin{aligned}
&-5 x-4=16 \quad \text { Change to addition. } \\
&-5 x+(-4)=16 \quad \text { To get }-5 x \text { by itself }, \\
& 4 \frac{4}{20} \text { add } 4 \text { to both sides. } \\
& \hline-5 x+0=20 \\
&-5 x=\frac{20}{-5 x} \quad \text { Divide both } \\
& \text { sides by }-5 . \\
& x=-4 \quad \text { The solution is }-4 .
\end{aligned}
$$

$$
\text { Check } \begin{aligned}
-5 x-4 & =16 \\
-5(-4)-4 & =16 \quad \text { Replace } x \text { with }-4 . \\
20-4 & =16 \\
16 & =16 \quad \text { Balances }
\end{aligned}
$$

10.

$$
\begin{aligned}
-12 b-3 & =21 \\
-12 b+(-3) & =21 \\
3 & \frac{3}{24} \\
\hline-12 b+0 & =\frac{24}{-12 b} \\
\frac{-12}{-12} & \frac{2}{-12} \\
b & =-2
\end{aligned}
$$

The solution is -2 .

$$
\text { Check } \begin{aligned}
-12 b-3 & =21 \\
-12(-2)-3 & =21 \\
24-3 & =21 \\
21 & =21
\end{aligned}
$$

Balances
11. Solve, keeping the variable on the left side.

$$
\begin{array}{rlrl}
6 p-2 & =4 p+6 \\
6 p+(-2) & =4 p+6 \text { Change to addition. } \\
\frac{-4 p}{2 p+(-2)} & =\frac{-4 p}{0+6} \quad \text { Add }-4 p \text { to both sides. } \\
2 p+(-2) & =6 & \\
\frac{2}{2 p+0} & =\frac{2}{8} & \\
2 p & =8 & & \\
\frac{2 p}{2} & =\frac{8}{2} & & \text { Divide both } 2 \text { to both sides. } \\
p & =4 & & \text { sides by } 2 . \\
\text { The solution is } 4 .
\end{array}
$$

Solve, keeping the variable on the right side.

$$
\begin{aligned}
& 6 p-2=4 p+6 \\
& 6 p+(-2)=4 p+6 \text { Change to addition. } \\
& \frac{-6 p}{} \begin{aligned}
6+(-2) & = \\
-2 & \frac{-6 p}{-2 p+6} \text { Add }-6 p \text { to both sides. } \\
-6 & -2 p+6 \\
-6 & =\frac{-6}{-2 p+0} \\
\hline-8 & =-2 p \\
\frac{-8}{-2} & =\frac{-2 p}{-2} \quad \\
4 & \begin{array}{l}
\text { Divide both }-6 \text { to both sides. } \\
4
\end{array} \\
\hline p & \text { The solution is } 4 .
\end{aligned}
\end{aligned}
$$

Check $\quad 6 p-2=4 p+6$
$6(4)-2=4(4)+6$
$24-2=16+6$
$22=22 \quad$ Balances
12. Left side:

Right side:

$$
\begin{array}{rlrl}
5 y-5 & =2 y+10 & 5 y-5 & =2 y+10 \\
\frac{-2 y}{3 y-5} & =\frac{-2 y}{0+10} & \frac{-5 y}{0-5} & =\frac{-5 y}{-3 y+10} \\
3 y+(-5) & =10 & -5 & =-3 y+10 \\
\frac{5}{3 y+0} & =\frac{5}{15} & \frac{-10}{-15} & =\frac{-10}{-3 y+0} \\
\hline \frac{3 y}{3} & =\frac{15}{3} & \frac{-15}{-3} & =\frac{-3 y}{-3} \\
y & =5 & 5 & =y
\end{array}
$$

The solution is 5 .

$$
\text { Check } \begin{aligned}
5 y-5 & =2 y+10 \\
5(5)-5 & =2(5)+10 \\
25-5 & =10+10 \quad \\
20 & =20 \quad \text { Balances }
\end{aligned}
$$

13. Solve, keeping the variable on the left side.

$$
\begin{aligned}
-2 k-6= & 6 k+10 \\
-2 k+(-6)= & 6 k+10 \text { Change to addition. } \\
& \begin{array}{l}
\text { Add }-6 k \text { to } \\
\text { both sides. }
\end{array} \\
-6 k & \frac{-6 k}{} \begin{array}{l}
0+10 \\
-8 k+(-6)
\end{array} \\
-8 k+(-6)= & 10
\end{aligned}
$$

$$
\begin{array}{rlrl}
6 & & \begin{array}{l}
\text { Add } 6 \text { to } \\
\text { both sides. }
\end{array} \\
-8 k+0 & =\frac{-8 k}{-8} & =\frac{16}{-8} & \\
\text { Divide both } \\
k & =-2 & & \text { sides by }-8 . \\
\text { The solution is }-2 .
\end{array}
$$

Solve, keeping the variable on the right side.

Check

$$
\begin{aligned}
-2 k-6 & =6 k+10 & & \\
-2(-2)-6 & =6(-2)+10 & & \text { Replace } k \text { with }-2 . \\
4+(-6) & =-12+10 & & \\
-2 & =-2 & & \text { Balances }
\end{aligned}
$$

14. Left side:

Right side:

The solution is -1 .
Check $\quad 5 x+4=-3 x-4$

$$
\begin{aligned}
5(-1)+4 & =-3(-1)-4 \\
-5+4 & =3+(-4) \\
-1 & =-1
\end{aligned}
$$

Balances

$$
\begin{aligned}
& 5 x+4=-3 x-4 \quad 5 x+4=-3 x-4 \\
& \frac{3 x}{8 x+4}=\frac{3 x}{0-4} \frac{-5 x}{0+4}=\frac{-5 x}{-8 x-4} \\
& 8 x+4=-4 \quad 4=-8 x+(-4) \\
& \frac{-4}{8 x+0}=\frac{-4}{-8} \frac{4}{8}=\frac{4}{-8 x+0} \\
& \frac{8 x}{8}=\frac{-8}{8} \quad \frac{8}{-8}=\frac{-8 x}{-8} \\
& \begin{array}{ll}
x=-1 & -1=x
\end{array}
\end{aligned}
$$

15. $-18+7 a=2 a+3+4$ simplifies to
$-18+7 a=2 a+7$.
$-18+7 a=2 a+7$
$-2 a$
$\frac{-18+5 a}{-18}=\frac{-2 a}{-18+5 a}=7$

$\frac{18}{18}$	$=\frac{18}{25}$	Add 18 to both sides.		
$5 a$	$=25$			
$\frac{5 a}{5}$	$=\frac{25}{5}$			Divide both
:---				
sides by 5.				

The solution is 5 .

$$
\text { Check } \begin{aligned}
-18+7 a & =2 a+3+4 \\
-18+7(5) & =2(5)+7 \\
-18+35 & =10+7 \\
17 & =17
\end{aligned}
$$

Balances
16. $-10+5 r=-7-12-1$ simplifies to
$-10+5 r=-20$.
$-10+5 r=-20$

$$
\begin{array}{rll}
\frac{10}{10} & & \begin{array}{l}
\text { Add 10 to } \\
\text { both sides. }
\end{array} \\
\cline { 1 - 1 } 0+5 r & = & -10 \\
5 r & =-10 & \\
\frac{5 r}{5} & =\frac{-10}{5} & \begin{array}{l}
\text { Divide both } \\
\text { sides by } 5 .
\end{array} \\
r & =-2
\end{array}
$$

The solution is -2 .

$$
\text { Check } \begin{aligned}
-10+5 r & =-7-12-1 \\
-10+5(-2) & =-19-1 \\
-10-10 & =-20 \\
-20 & =-20
\end{aligned}
$$

Balances
17. Neither side can be simplified, so solve the equation.

$$
\begin{array}{rll}
-3 t & =8 t & \\
\frac{3 t}{} & =\frac{3 t}{11 t} & \begin{array}{l}
\text { Add 3t to } \\
\text { both sides. }
\end{array} \\
\frac{0}{11} & =\frac{11 t}{11} & \begin{array}{l}
\text { Divide both } \\
\text { sides by 11. }
\end{array} \\
0 & =t & \text { The solution is } 0 .
\end{array}
$$

$$
\text { Check } \begin{aligned}
-3 t & =8 t & & \\
-3(0) & =8(0) & & \text { Replace } t \text { with } 0 . \\
0 & =0 & & \text { Balances }
\end{aligned}
$$

72 Chapter 2 Understanding Variables and Solving Equations

18. Neither side can be simplified, so solve the equation.

$$
\begin{array}{rll}
15 z & =-9 z & \\
\frac{9 z}{24 z} & =\frac{9 z}{0} & \begin{array}{l}
\text { Add } 9 z \text { to } \\
\text { both sides. }
\end{array} \\
\frac{24 z}{24} & =\frac{0}{24} & \begin{array}{l}
\text { Divide both } \\
\text { sides by } 24 .
\end{array} \\
z & =0 & \text { The solution is } 0 .
\end{array}
$$

Check $\quad 15 z=-9 z$

$$
\begin{aligned}
15(0) & =-9(0) & & \text { Replace } z \text { with } 0 . \\
0 & =0 & & \text { Balances }
\end{aligned}
$$

19. $4+16-2=2-2 b$ simplifies to $18=2-2 b$.

$$
\begin{array}{rll}
18 & =2-2 b & \\
\frac{-2}{18-2} & =\frac{1 d d-2 \text { to }}{} & \begin{array}{ll}
\text { Add } \\
\text { both sides. }
\end{array} \\
16 & =-2 b & \\
\frac{16}{-2} & =\frac{-2 b}{-2} & \begin{array}{l}
\text { Divide both } \\
\text { sides by }-2 .
\end{array} \\
-8 & =b &
\end{array}
$$

The solution is 5 .
Check $4+16-2=2-2 b$

$$
\begin{aligned}
20-2 & =2-2(-8) \\
20+(-2) & =2+16 \\
18 & =18
\end{aligned}
$$

Balances
20. $-9+2 z=9 z-1+13$ simplifies to
$-9+2 z=9 z+12$.
$-9+2 z=9 z+12$

$$
\frac{-2 z}{9+0}=\frac{-2 z}{7 z+12} \begin{aligned}
& \text { Add }-2 z \text { to } \\
& \text { both sides. }
\end{aligned}
$$

The solution is -3 .
Check $\quad-9+2 z=9 z-1+13$

$$
\begin{aligned}
-9+2(-3) & =9(-3)+12 \\
-9-6 & =-27+12 \\
-15 & =-15
\end{aligned}
$$

21. $8(w-2)=32$
$8 w-16=32$ $8 w+(-16)=32$ $\frac{16}{8 w+0}=\frac{16}{48}$ Add 16 to both sides.

$$
8 w=48
$$

$$
\frac{8 w}{8}=\frac{48}{8}
$$

$$
w=6 \quad \text { The solution is } 6 .
$$

22. $9(b-4)=27$
$9 b-36=27$ Distribute.
$9 b+(-36)=27$ Change to addition. Add 36 to both sides.
$\frac{36}{9 b+0}=\frac{36}{63}$
$\frac{9 b}{9}=\frac{63}{9} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 9 .\end{aligned}$
$b=7 \quad$ The solution is 7.
23. $-10=2(y+4)$
$-10=2 y+8 \quad$ Distribute.
$\frac{-8}{-18}=\frac{-8}{2 y+0}$ Add -8 to both sides.
$-18=2 y$
$\underline{-18}=\underline{2 y} \quad$ Divide both
$-9=\begin{array}{ll}2 & \text { sides by } 2 . \\ -9 & \text { The solution is }-9 .\end{array}$
24. $-3=3(x+6)$
$-3=3 x+18 \quad$ Distribute.
$\frac{-18}{-21}=\frac{-18}{3 x+0}$ Add -18 to both sides.
$\frac{-21}{3}=\frac{3 x}{3} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 3\end{aligned}$
$-7=x \quad$ The solution is -7.
25. $-4(t+2)=12$
$-4 t+(-8)=12 \quad$ Distribute.
$\frac{8}{-4 t+0}=\frac{8}{20}$ Add 8 to both sides.
$-4 t=20$
$\frac{-4 t}{-4}=\frac{20}{-4} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-4 .\end{aligned}$
$t=-5$ The solution is -5 .
26. $-5(k+3)=25$
$-5 k+(-15)=25$ Distribute.
$\frac{15}{-5 k+0}=\frac{15}{40}$ Add 15 to both sides.
$\frac{-5 k}{-5}=\frac{40}{-5} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-5 .\end{aligned}$
$k=-8$ The solution is -8 .
27. $6(x-5)=-30$
$6 x-30=-30$ Distribute.
$6 x+(-30)=-30$ Change to addition.
$\frac{30}{6 x+0}=\frac{30}{0}$ Add 30 to both sides.
$6 x=0$
$\frac{6 x}{6}=\frac{0}{6} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 6 .\end{aligned}$
$x=0 \quad$ The solution is 0.
28. $7(r-7)=-49$
$7 r-49=-49$ Distribute.
$7 r+(-49)=-49$ Change to addition.
$\frac{49}{7 r+0}=\frac{49}{0}$ Add 49 to both sides.

$$
\frac{7 r}{7}=\begin{array}{ll}
\frac{0}{7} & \begin{array}{l}
\text { Divide both } \\
\text { sides by } 7 .
\end{array}
\end{array}
$$

$r=0 \quad$ The solution is 0 .
29. $-12=12(h-2)$

$$
\begin{array}{rlrl}
-12 & =12 h-24 & & \text { Distribute. } \\
-12 & =12 h+(-24) & \text { Change to addition. } \\
\frac{24}{12} & =\frac{24}{12 h+0} & & \text { Add } 24 \text { to both sides. } \\
12 & =12 h & & \\
\frac{12}{12} & =\frac{12 h}{12} & & \begin{array}{l}
\text { Divide both } \\
1
\end{array}
\end{array}
$$

30. $-11=11(c-3)$
$-11=11 c-33 \quad$ Distribute.
$-11=11 c+(-33)$ Change to addition.
$\frac{33}{22}=\frac{33}{11 c+0}$ Add 33 to both sides.
$\frac{22}{11}=\frac{11 c}{11} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 11 .\end{aligned}$
$2=c$
The solution is 2 .
31. $0=-2(y+2)$
$0=-2 y-4 \quad$ Distribute.
$0=-2 y+(-4)$ Change to addition.
$\frac{4}{4}=\frac{4}{-2 y+0}$ Add 4 to both sides.
$4=-2 y$
$\frac{4}{-2}=\frac{-2 y}{-2} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-2 .\end{aligned}$
$-2=y \quad$ The solution is -2.
32. $0=-9(b+1)$
$0=-9 b-9 \quad$ Distribute.
$0=-9 b+(-9) \quad$ Change to addition.
$\frac{9}{9}=\frac{9}{-9 b+0}$ Add 9 to both sides.
$\frac{9}{-9}=\frac{-9 b}{-9} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-9 .\end{aligned}$
$-1=b \quad$ The solution is -1 .
33. $6 m+18=0$

$$
\begin{array}{rll}
\frac{-18}{6 m+0} & =\frac{-18}{-18} & \text { Add }-18 \text { to both sides. } \\
6 m & =-18 & \\
\frac{6 m}{6} & =\frac{-18}{6} & \begin{array}{l}
\text { Divide both } \\
\text { sides by } 6 . \\
m
\end{array} \\
=-3 & \text { The solution is }-3 .
\end{array}
$$

34. $8 p-40=0$
$8 p+(-40)=0 \quad$ Change to addition.
$\frac{40}{8 p+0}=\frac{40}{40}$ Add 40 to both sides.
$\frac{8 p}{8}=\frac{40}{8} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 8 .\end{aligned}$
$p=5$ The solution is 5 .
35. $6=9 w-12$

$$
\begin{array}{rlrl}
6 & =9 w+(-12) & & \text { Change to addition. } \\
\frac{12}{18} & =\frac{12}{12} & & \text { Add } 12 \text { to both sides. } \\
18 & & & \\
\frac{18}{9} & =\frac{9 w}{9} & & \\
2 & & \text { Divide both } \\
2 & =w & & \text { sides by } 9 . \\
\text { The solution is } 2 .
\end{array}
$$

36. $\begin{array}{rll}8 & =8 h+24 & \\ \frac{-24}{-16} & =\frac{-24}{8 h+0} & \text { Add }-24 \text { to both sides. } \\ \frac{-16}{8} & =\frac{8 h}{8} & \begin{array}{l}\text { Divide both } \\ \text { sides by } 8 .\end{array} \\ -2 & =h & \text { The solution is }-2 .\end{array}$
37. $5 x=3 x+10$
$\frac{-3 x}{2 x}=\frac{-3 x}{0+10}$ Add $-3 x$ to both sides.
$2 x=10$
$\frac{2 x}{2}=\frac{10}{2} \quad$ Divide both sides by 2 .
$x=5 \quad$ The solution is 5 .
38. $7 n=-2 n-36$
$7 n=-2 n+(-36) \quad$ Change to addition.
$\frac{2 n}{9 n}=\frac{2 n}{0+(-36)}$ Add $2 n$ to both sides.
$\underline{9 n}=\underline{-36} \quad$ Divide both
sides by 9 .
The solution is -4 .

74 Chapter 2 Understanding Variables and Solving Equations
39. $2 a+11=8 a-7$
$2 a+11=8 a+(-7)$ Change to addition.

$11=6 a+(-7)$
$\frac{7}{18}=\frac{7}{6 a+0}$ Add 7 to both sides.
$18=6 a$
$\frac{18}{6}=\frac{6 a}{6} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 6 .\end{aligned}$
$3=a \quad$ The solution is 3.
40.

$$
\begin{array}{rlrl}
r-10 & =10 r+8 \\
1 r+(-10) & =10 r+8 \text { Change to addition. } \\
\frac{-1 r}{} \frac{-1 r}{9+(-10)} & =\frac{\text { Add }-1 r .}{9 r+8} \\
\hline-10 & =9 r+8 & \\
-8 & \frac{-8}{9 r+0} & & \text { Add }-8 . \\
\frac{-18}{9} & =\frac{9 r}{9} & & \text { Divide both } \\
\hline-2 & =r & & \text { sides by } 9 . \\
\text { The solution is }-2 .
\end{array}
$$

41. $7-5 b=28+2 b$

$$
\begin{array}{rlrl}
7+(-5 b) & =28+2 b & \text { Change to addition. } \\
\frac{5 b}{7+0} & =\frac{5 b}{28+7 b} & \text { Add 5b to both sides. } \\
7 & =28+7 b \\
-28 & & \\
\hline-21 & =\frac{-28}{0+7 b} & & \\
-21 & =7 b & & \\
\frac{-21}{7} & =\frac{7 b}{7} & & \text { Divide both }-28 \text { to both sides. } \\
-3 & =b & & \text { sides by } 7 . \\
\text { The solution is }-3 .
\end{array}
$$

42.

43.

$$
\begin{array}{rlrl}
-20+2 k & =k-4 k & & \\
-20+2 k & =k+(-4 k) & \text { Change to addition. } \\
-20+2 k & =-3 k & & \text { Combine like terms. } \\
-2 k & -2 k & \text { Add }-2 k . \\
\hline-20+0 & =-5 k & & \\
-20 & =-5 k & &
\end{array}
$$

$$
\begin{array}{rll}
\frac{-20}{-5} & =\frac{-5 k}{-5} & \text { Divide both } \\
4 & \text { sides by }-5
\end{array}
$$

44. $6 y-y=-16+y$ $6 y+(-1 y)=-16+1 y$ Change to addition. $5 y=-16+1 y$ Combine like terms.
$\frac{-1 y}{4 y}=\frac{-1 y}{-16+0}$ Add -1y. $\frac{4 y}{4}=\frac{-16}{4} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 4 .\end{aligned}$ $y=-4 \quad$ The solution is -4 .
45. $10(c-6)+4=2+c-58$
$10 c-60+4=2+c-58 \quad$ Distribute.
$10 c+(-60)+4=2+c+(-58)$ Change to add. $10 c+(-60)+4=2+(-58)+c$ Group terms.
$10 c+(-56)=-56+c \quad$ Combine terms.
$\begin{array}{lll}\frac{-c}{9 c+(-56)} & =\frac{-c}{-56+0} & \\ 9 c+(-56) & =-56 & \text { Add }-c . \\ & \text { Add } 56 .\end{array}$
$\frac{56}{9 c+0}=\frac{56}{0}$

$$
\begin{aligned}
\frac{9 c}{9} & =\frac{0}{9} & & \text { Divide both } \\
c & =0 & & \text { sides by } 9
\end{aligned}
$$

The solution is 0 .
46.

$$
\begin{aligned}
8(z+7)-6 & =z+60-10 \\
8 z+56-6 & =z+60-10 \\
8 z+56+(-6) & =z+60+(-10) \\
8 z+50 & =1 z+50 \\
-1 z & \frac{-1 z}{0+50} \\
\hline 7 z+50 & =50 \\
7 z+50 & =5 \\
-50 & \frac{-50}{0} \\
\hline 7 z+0 & =0 \\
\frac{7 z}{7} & =\frac{0}{7} \\
z & =0
\end{aligned}
$$

The solution is 0 .
47.

$-18+13 y+3$	$=3(5 y-1)-2$		
$-18+13 y+3$	$=15 y-3-2$		Distribute.
$-18+13 y+3$	$=15 y+(-3)+(-2)$	Add the opposites.	
$13 y+(-18)+3$	$=15 y+(-3)+(-2)$	\begin{tabular}{l}	
\end{tabular}			
	troup like terms.		
$13 y+(-15)$	$=15 y+(-5)$		Combine like terms.
$-13 y$		Add $-13 y$.	
$0+(-15)$	$=\frac{-13 y}{2 y+(-5)}$		
-15	$=2 y+(-5)$		Add 5.
5			

$-18+13 y+3=3(5 y-1)-2$
$-18+13 y+3=15 y-3-2$
$-18+13 y+3=15 y+(-3)+(-2)$
Add the opposites. terms. like terms.

$\frac{-13 y}{0+(-15)}$	$=\frac{-13 y}{2 y+(-5)}$		
-15	$=2 d d-13 y$.		
5			
-10	$=$	Add 5.	
$2 y+0$			

Copyright © 2014 Pearson Education, Inc.

$$
\begin{aligned}
&-10=2 y \\
& \frac{-10}{2}=\frac{2 y}{2} \quad \begin{array}{l}
\text { Divide } \\
-5
\end{array} \\
&-y
\end{aligned}
$$

The solution is -5 .
48. $3+5 h-9=4(3 h+4)-1$
$3+5 h+(-9)=12 h+16+(-1)$
$5 h+(-6)=12 h+15$
$\frac{-5 h}{0+(-6)}=\frac{-5 h}{7 h+15}$
$-6=7 h+15$
$\frac{-15}{-21}=\frac{-15}{7 h+0}$
$\frac{-21}{7}=\frac{7 h}{7}$

$$
-3=h
$$

The solution is -3 .
49. $6-4 n+3 n=20-35$
$\begin{array}{rlrl}6+(-4 n)+3 n & =20+(-35) & \text { Change to add. } \\ 6+(-1 n) & =-15 & & \text { Combine terms. } \\ \frac{-6}{0+(-1 n)} & =\frac{-6}{-21} & & \text { Add }-6 .\end{array}$ $\frac{-1 n}{-1}=\frac{-21}{-1} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-1 .\end{aligned}$

$$
n=21
$$

The solution is 21 .
50. $-19+8=6 p-7 p-5$

$$
-19+8=6 p+(-7 p)+(-5) \text { Change to add }
$$

$$
\begin{aligned}
-11 & =-1 p+(-5) & & \text { Combine terms. } \\
\hline \frac{5}{-6} & =\frac{1}{-1 p+0} & & \text { Add } 5 . \\
\frac{-6}{-1} & =\frac{-1 p}{-1} & & \text { Divide both } \\
6 & =p & & \text { sides by }-1 .
\end{aligned}
$$

The solution is 6 .
51. $\quad 6(c-2)=7(c-6)$
$6 c-12=7 c-42 \quad$ Distribute.
$6 c+(-12)=7 c+(-42)$ Change to add.
$\begin{aligned} \frac{-6 c}{0+(-12)} & =\frac{-6 c}{1 c+(-42)} \\ -12 & =1 c+(-42) \\ 42 & \\ 30 & =\frac{42}{1 c+0} \\ 30 & =c\end{aligned}$

The solution is 30 .
52. $-3(5+x)=4(x-2)$
$-15+(-3 x)=4 x-8$
$\begin{aligned} & \frac{3 x}{-15+0}=\frac{3 x}{7 x-8} \text { Add } 3 x . \\ &-15=7 x+(-8) \\ & 8 \\ &-7=\frac{8}{7 x+0} \text { Add } 8 .\end{aligned}$

$$
\frac{-7}{7}=\frac{7 x}{7} \quad \begin{aligned}
& \text { Divide both } \\
& \text { sides by } 7
\end{aligned}
$$

$-1=x \quad$ The solution is -1.
53.

$$
\begin{array}{rlrl}
-5(2 p+2)-7 & =3(2 p+5) \\
-10 p+(-10)-7 & =6 p+15 \\
-10 p+(-10)+(-7) & =6 p+15 & \\
-10 p+(-17) & =6 p+15 \\
-6 p & & \text { Add }-6 p \\
\hline-16 p+(-17) & =\frac{-6 p}{0+15} & & \\
-16 p+(-17) & =15 & & \text { Add } 17 . \\
\frac{17}{-16 p+0} & =\frac{17}{32} & & \text { Divide } \\
\frac{-16 p}{-16} & =\frac{32}{-16} & & \text { by }-16 \\
p & =-2 & &
\end{array}
$$

The solution is -2 .
54. $\quad 4(3 m-6)=72+3(m-8)$

$$
12 m-24=72+3 m-24
$$

$12 m+(-24)=72+3 m+(-24)$
$12 m+(-24)=3 m+48$
$\frac{-3 m}{9 m+(-24)}=\frac{-3 m}{0+48}$
$9 m+(-24)=48$
$\frac{24}{9 m+0}=\frac{24}{72}$
$\frac{9 m}{9}=\frac{72}{9}$
$m=8$ The solution is 8 .
55. $2(3 b-2)-5 b=4(b-1)+8 b$

$$
6 b-4-5 b=4 b-4+8 b
$$

$$
b-4=12 b-4
$$

$$
\begin{aligned}
\frac{4}{b} & =\frac{4}{12 b} \\
-b & \text { Add } 4 . \\
-\frac{-b}{11 b} & A d d-b .
\end{aligned}
$$

$$
\begin{aligned}
\frac{0}{11} & =\frac{11 b}{11} \\
0 & =b
\end{aligned}
$$

The solution is 0 .
56. $-3(w+3)+10=-1(w+14)+w$
$-3 w-9+10=-w-14+w$

$$
-3 w+1=-14
$$

$$
\frac{-1}{-3 w}=\frac{-1}{-15} A d d-1 .
$$

$$
\frac{-3 w}{-3}=\frac{-15}{-3}
$$

$$
w=5
$$

The solution is 5 .
57. The series of steps may vary. One possibility is:

$-2 t-10$	$=3 t+5 \quad$	Change to addition.
$-2 t+(-10)$	$=3 t+5 \quad$Add $2 t$ to both sides $2 t$	$=\frac{2 t}{5 t+5}$
$\frac{-5}{}$(addition property). Add -5 to both sides (addition property).		
$\frac{-5}{\frac{-15}{5}}$	$=\frac{-5}{5}$	Divide both sides by 5 (division property).
-3	$=t$	

The solution is -3 .
58. Multiplication distributes over both addition and subtraction. Examples will vary. Some possibilities are $3(2 y+6)$ is $6 y+18$ and $5(x-3)$ is $5 x-15$.
59. Check $-8+4 a=2 a+2$

$$
\begin{aligned}
-8+4(3) & =2(3)+2 \\
-8+12 & =6+2 \\
4 & \neq 8
\end{aligned}
$$

The check does not balance, so 3 is not the correct solution. The student added $-2 a$ to -8 on the left side, instead of adding $-2 a$ to $4 a$. The correct solution, obtained using $-8+2 a=2,2 a=10$, is $a=5$.
60. Check $2(x+4)=-16$

$$
\begin{aligned}
2(-10+4) & =-16 \\
2(-6) & =-16 \\
-12 & \neq-16
\end{aligned}
$$

The check does not balance, so -10 is not the correct solution.

$$
\begin{array}{rll}
2(x+4) & =-16 & \text { Student did not } \\
2 x+8 & =-16 & \text { distribute the } 2 \\
-8 & -8 & \text { over the } 4 . \\
\hline 2 x+0 & =\frac{-24}{2} & =\frac{-24}{2} \\
x & =-12
\end{array}
$$

The correct solution is -12 .

Relating Concepts (Exercises 61-64)

61. (a) It must be negative, because the sum of two positive numbers is always positive.
(b) The sum of x and a positive number is negative, so x must be negative.
62. (a) It must be positive, because the sum of two negative numbers is always negative.
(b) The sum of d and a negative number is positive, so d must be positive.
63. (a) It must be positive. When the signs are the same, the product is positive, and when the signs are different, the product is negative.
(b) The product of n and a negative number is negative, so n must be positive.
64. (a) It must be negative also. When the signs are different, the product is negative, and when the signs match, the product is positive.
(b) The product of y and a negative number is positive, so y must be negative.

Chapter 2 Review Exercises

1. (a) In the expression $-3+4 k, k$ is the variable, 4 is the coefficient, and -3 is the constant term.
(b) The term that has 20 as the constant term and -9 as the coefficient is $-9 y+20$.
2. (a) Evaluate $4 c+10$ when c is 15 .

$$
\begin{aligned}
& 4 c+10 \\
& \underbrace{4 \cdot 15}_{70}+10 \\
& \underbrace{60+10}_{70}
\end{aligned} \text { Replace } c \text { with } 15 .
$$

(b) Evaluate $4 c+10$ when c is 24 .

$$
\begin{aligned}
& 4 c+10 \\
& \underbrace{4 \cdot 24}_{106}+10 \quad \text { Replace } c \text { with } 24
\end{aligned} \text { Order } 106 \text { test tubes. }
$$

3. (a) $x^{2} y^{4}$ means $x \cdot x \cdot y \cdot y \cdot y \cdot y$
(b) $5 a b^{3}$ means $5 \cdot a \cdot b \cdot b \cdot b$
4. (a) n^{2} means

(b) n^{3} means

Copyright © 2014 Pearson Education, Inc.

$$
\text { (c) } \begin{aligned}
&- 4 m p^{2} \text { means } \\
&-4 \cdot m \cdot p \cdot p \\
& \underbrace{-4 \cdot 2} \cdot 4 \cdot 4 \\
& \underbrace{-32 \cdot 4}_{-128}
\end{aligned}
$$

(d) $5 m^{4} n^{2}$ means
$5 \cdot m \cdot m \cdot m \cdot m \cdot n \cdot n$
$\underbrace{5 \cdot 2} \cdot 2 \cdot 2 \cdot 2 \cdot(-3) \cdot(-3)$
Replace m with 2
and n with -3 .

$$
\begin{aligned}
& \underbrace{\underbrace{10 \cdot(-3)}_{\underbrace{80 \cdot(-3)}_{-240 \cdot(-3)}}}_{\underbrace{40 \cdot 2}_{\underbrace{20 \cdot 2}_{720} \cdot 2 \cdot 2 \cdot(-3) \cdot(-3)} \cdot(-3) \cdot(-3)}
\end{aligned}
$$

5. $a b+a b^{2}+2 a b$
$\underline{1 a b}+a b^{2}+\underline{2 a b}$ Combine like terms.
$3 a b+a b^{2}$ or $a b^{2}+3 a b$
6. $-3 x+2 y-x-7$
$-3 x+2 y-1 x-7 \quad$ Rewrite x as $1 x$.
$-3 x+2 y+(-1 x)+(-7) \quad$ Change to addition.
$-4 x+2 y-7 \quad$ Combine like terms.
7. $-8\left(-2 g^{3}\right) \quad$ Associative property
$[-8 \cdot(-2)] \cdot g^{3}$
$16 \cdot g^{3}$
$16 g^{3}$
8. $4\left(3 r^{2} t\right)$ Associative property

$$
\begin{gathered}
(4 \cdot 3) \cdot r^{2} t \\
12 \cdot r^{2} t \\
12 r^{2} t
\end{gathered}
$$

9. $5(k+2) \quad$ Distribute.

$$
\begin{gathered}
5 \cdot k+5 \cdot 2 \\
5 k+10
\end{gathered}
$$

10. $-2(3 b+4) \quad$ Distribute.
$-2 \cdot 3 b+(-2) \cdot 4$
$-6 b+(-8)$ or $-6 b-8$
11. $3(2 y-4)+12 \quad$ Distribute.

$$
\begin{gathered}
\underbrace{3 \cdot 2 y}_{6 y-12}-\underbrace{3 \cdot 4}_{12}+12 \\
6 y+(-12)+12 \\
6 y+0 \\
6 y
\end{gathered}
$$

12. $-4+6(4 x+1)-4 x \quad$ Distribute.
$-4+24 x+6-4 x$
$-4+24 x+6+(-4 x)$
$2+20 x$ or $20 x+2$
13. Expressions will vary. One possibility is $6 a^{3}+a^{2}+3 a-6$.
14. $16+n=5$ Add -16 to both sides.
$\frac{-16}{0+n}=\frac{-16}{-11}$
$n=-11$ The solution is -11 .

$$
\text { Check } \begin{aligned}
16+n & =5 & & \\
16+(-11) & =5 & & \text { Replace } n \text { with }-11 . \\
5 & =5 & & \text { Balances }
\end{aligned}
$$

15. $-4+2=2 a-6-a$
$-4+2=2 a+(-6)+(-1 a)$
$-2=1 a+(-6)$
$\begin{aligned} \frac{6}{4} & =\frac{6}{1 a+0} \\ 4 & =a\end{aligned}$
The solution is 4 .

$$
\text { Check } \begin{aligned}
-4+2 & =2 a-6-a \\
-4+2 & =2(4)-6-4 \\
-2 & =8+(-6)+(-4) \\
-2 & =2+(-4) \\
-2 & =-2
\end{aligned}
$$

Balances
16. $48=-6 m$
$\frac{48}{-6}=\frac{-6 m}{-6} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-6 .\end{aligned}$
$-8=m \quad$ The solution is -8.
17. $k-5 k=-40$

$$
1 k-5 k=-40
$$

$$
1 k+(-5 k)=-40
$$

$$
-4 k=-40 \quad \text { Combine like terms }
$$

$$
\frac{-4 k}{-4}=\frac{-40}{-4} \quad \begin{aligned}
& \text { Divide both } \\
& \text { sides by }-4
\end{aligned}
$$

$$
k=10 \quad \text { The solution is } 10
$$

18.

$$
\begin{aligned}
\underbrace{-17+11+6}_{0} & =7 t \\
& =7 t
\end{aligned}
$$

$\frac{0}{7}=\frac{7 t}{7} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 7 .\end{aligned}$
$0=t \quad$ The solution is 0 .
19. $-2 p+5 p=3-21$
$-2 p+5 p=3+(-21)$
$3 p=-18$
$\underline{3 p}=\underline{-18} \quad$ Divide both
sides by 3.
The solution is -6 .

78 Chapter 2 Understanding Variables and Solving Equations

20. $-30=3(-5 r)$
$-30=-15 r$
$\frac{-30}{-15}=\frac{-15 r}{-15} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-15 .\end{aligned}$
$2=r \quad$ The solution is 2.
21. $12=-h$
$12=-1 h$
$\frac{12}{-1}=\frac{-1 h}{-1} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-1 .\end{aligned}$
$-12=h \quad$ The solution is -12 .
22. $12 w-4=8 w+12$
$12 w+(-4)=8 w+12$

$-8 w$	$\frac{-8 w}{0+12}$		
$4 w+(-4)$ $4 w+(-4)$$=12$			Add $-8 w$ to
:---			
both sides.			

4		Add 4 to both sides.		
$4 w+0$	$=$			
$\frac{4 w}{4}$	$=$	$\frac{16}{4}$		Divide both
:---				
sides by 4.				

The solution is 4 .
23. $0=-4(c+2)$
$0=-4 \cdot c+(-4) \cdot 2$ Distribute.
$0=-4 c+(-8)$

$\frac{8}{8}$	$=\overline{-4 c+0}$		Add 8 to both sides.
8	$=-4 c$		
$\frac{8}{-4}$	$=\frac{-4 c}{-4}$		Divide both -2
sides by -4.			

24. $34=2 n+4$

$$
\begin{array}{rll}
\frac{-4}{30} & =\overline{2 n+0} & \begin{array}{l}
\text { Add }-4 \text { to } \\
\text { both sides. }
\end{array} \\
\overline{30} & =2 n \\
\frac{30}{2} & =\frac{2 n}{2} \quad & \begin{array}{l}
\text { Divide both } \\
\text { sides by } 2 .
\end{array} \\
15 & =n &
\end{array}
$$

The number of employees is 15 .
25. [2.5] $12+7 a=4 a-3$

$$
\begin{aligned}
& \frac{-4 a}{} \begin{array}{l}
-4 a
\end{array} \begin{array}{l}
\text { Add }-4 a \text { to } \\
\text { both sides. }
\end{array} \\
& \begin{aligned}
12+3 a & = \\
12+3 a & =-3 \\
\frac{-12}{0+3 a} & =\frac{-12}{-15}
\end{aligned}
\end{aligned}
$$

$\frac{3 a}{3}=\frac{-15}{3} \begin{aligned} & \text { Divide both } \\ & \text { sides by } 3 .\end{aligned}$
$a=-5 \quad$ The solution is -5.
26. $[2.5]-2(p-3)=-14$ $-2 p+6=-14$ Distribute.

$$
\begin{array}{rrl}
-6 & \frac{-6}{-2 p+0} & =\begin{array}{l}
\text { Add }-6 \text { to } \\
\text { both sides. }
\end{array} \\
\frac{-2 p}{-2} & =\frac{-20}{-2} & \begin{array}{l}
\text { Divide both } \\
\text { sides by }-2
\end{array}
\end{array}
$$

$$
p=10 \quad \text { The solution is } 10
$$

27. [2.5] $10 y=6 y+20$

$$
\begin{array}{rll}
\frac{-6 y}{4 y} & =\frac{-6 y}{0+20} & \begin{array}{l}
\text { Add }-6 y \text { to } \\
\text { both sides. }
\end{array} \\
\frac{4 y}{4} & =\frac{20}{4} & \\
\text { Divide both } \\
y & =5 & \\
\text { sides by } 4 . \\
\text { The solution is } 5 .
\end{array}
$$

28. [2.5] $2 m-7 m=5-20$

$$
\begin{aligned}
2 m+(-7 m) & =5+(-20) \\
-5 m & =-15 \\
\frac{-5 m}{-5} & =\frac{-15}{-5} \\
m & =3
\end{aligned}
$$

Add the opposites. Combine like terms. Divide both sides by -5 .

The solution is 3 .
29. $[2.5] \quad 20=3 x-7$

$$
20=3 x+(-7)
$$

$$
\begin{aligned}
\frac{7}{27} & =\overline{3 x+0} & & \begin{array}{l}
\text { Add } 7 \text { to } \\
\text { both sides. }
\end{array} \\
\frac{27}{3} & =\frac{3 x}{3} & & \begin{array}{l}
\text { Divide both } \\
9
\end{array}=x
\end{aligned}
$$

30. $[2.5] \quad b+6=3 b-8$

$$
\begin{array}{rll}
\frac{-3 b}{-2 b+6} & =\overline{0-8} & \begin{array}{l}
\text { Add }-3 b \text { to } \\
\text { both sides. }
\end{array} \\
-2 b+6 & =-8 & \\
\frac{-6}{-2 b+0} & =\frac{-6}{} & \begin{array}{l}
\text { Add }-6 \text { to } \\
\text { both sides. }
\end{array} \\
\frac{-2 b}{-2} & =\frac{-14}{-2} & \begin{array}{l}
\text { Divide both } \\
\text { sides by }-2 .
\end{array} \\
b & =7 & \text { The solution is } 7 .
\end{array}
$$

31. $[2.3] z+3=0$

$$
\begin{aligned}
& \frac{-3}{z+0}=\overline{-3} \text { Add }-3 \text { to } \\
& \text { both sides. }
\end{aligned}
$$

32. [2.5] $3(2 n-1)=3(n+3)$

$$
\begin{aligned}
6 n-3 & =3 n+9 \\
-3 n & -3 n \quad \begin{array}{l}
\text { Distribute. } \\
\text { Add }-3 n \text { to } \\
\text { both sides. }
\end{array} \\
\hline 3 n-3 & =\overline{0+9} \\
3 n-3 & =9
\end{aligned}
$$

3	3	Add 3 to both sides.
$\frac{3 n+0}{3}$	$=\frac{12}{3}$	Divide both sides by 3.
n	$=4$	
The solution is 4.		

33. $[\mathbf{2 . 5}]-4+46=7(-3 t+6)$
$-4+46=-21 t+42$ Distribute.
$42=-21 t+42$
-42
0 $\frac{-42}{-21 t+0} \begin{aligned} & \text { Add }-42 \text { to } \\ & \text { both sides. }\end{aligned}$
$\begin{array}{rlrl}\frac{0}{-21} & =\frac{-21 t}{-21} & & \text { Divide both } \\ 0 & =t & & \text { sides by }-21 . \\ \text { The solution is } 0 .\end{array}$
34. [2.5]

$$
\begin{array}{rlrl}
6+10 d-19 & =2(3 d+4)-1 & \\
6+10 d+(-19) & =6 d+8-1 & & \\
-13+10 d & =6 d+7 & & \text { Add }-6 d . \\
-6 d & \frac{-6 d}{0+7} & & \\
\hline-13+4 d & =\frac{13}{}-13+4 d & = & \\
13 & & \text { Add } 13 \text { to } \\
\text { both sides. }
\end{array}
$$

The solution is 5 .
35. [2.5]

$$
\begin{aligned}
-4(3 b+9) & =24+3(2 b-8) & & \\
-12 b-36 & =24+6 b-24 & & \\
-12 b+(-36) & =24+6 b+(-24) & & \\
-12 b+(-36) & =6 b & & \begin{array}{l}
\text { Add } 12 b \text { to } \\
\text { both sides. } \\
12 b
\end{array} \\
\hline 0+(-36) & =\overline{18 b} & & \text { Divide } \\
\frac{-36}{18} & =\frac{18 b}{18} & & \text { by } 18 . \\
-2 & =b & &
\end{aligned}
$$

Chapter 2 Test

1. In the expression $-7 w+6,-7$ is the coefficient, w is the variable, and 6 is the constant term.
2. Evaluate the expression $3 a+2 c$ when a is 45 and c is 21 .

$$
\begin{gathered}
3 a+2 c \\
\underbrace{3 \cdot 45}_{135+45}+\underbrace{2 \cdot 21}_{42} \\
177
\end{gathered}
$$

Buy 177 hot dogs.
3. $x^{5} y^{3}$ means $x \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y$
4. $4 a b^{4}$ means $4 \cdot a \cdot b \cdot b \cdot b \cdot b$
5. $-2 s^{2} t$ means

$$
-2 \cdot s \cdot s \cdot t
$$

$$
\underbrace{-2 \cdot(-5)} \cdot(-5) \cdot 4 \quad \begin{aligned}
& \begin{array}{l}
\text { Replace s with }-5 \\
\text { and } t \text { with } 4 .
\end{array}
\end{aligned}
$$

$$
\underbrace{10 \cdot(-5)}_{\underbrace{-50 \cdot 4}_{-200}} \cdot 4
$$

6. $\quad 3 w^{3}-8 w^{3}+w^{3}$

$$
3 w^{3}-8 w^{3}+1 w^{3}
$$

$$
\underbrace{3 w^{3}+\left(-8 w^{3}\right)}+1 w^{3}
$$

$$
\underbrace{-5 w^{3}+1 w^{3}}_{-4 w^{3}}
$$

7. $x y-x y$

$$
\begin{gathered}
1 x y-1 x y \\
(1-1) x y \\
0 x y
\end{gathered}
$$

0
8. $-6 c-5+7 c+5$

$$
-6 c+(-5)+7 c+5
$$

$$
\underbrace{-6 c+7 c}_{1 c}+\underbrace{(-5)+5}_{0}
$$

$$
1 c \text { or } c
$$

9. $3 m^{2}-3 m+3 m n$

There are no like terms.
The expression cannot be simplified.
10. $-10\left(4 b^{2}\right)$
$(-10 \cdot 4) \cdot b^{2} \quad \begin{aligned} & \text { Associative property } \\ & \text { of multiplication }\end{aligned}$
$-40 b^{2}$

The solution is -2 .

80 Chapter 2 Understanding Variables and Solving Equations
11. $-5(-3 k)$
$\left[\begin{array}{cl}{[-5 \cdot(-3)] \cdot k} & \begin{array}{l}\text { Associative property } \\ \text { of multiplication }\end{array} \\ 15 k & \end{array}\right.$
12. $7(3 t+4)$
$7(3 t)+7(4) \quad$ Distributive property $21 t+28$
13. $-4(a+6)$
$-4 \cdot a+(-4) \cdot 6 \quad$ Distributive property

$$
-4 a+(-24)
$$

$$
-4 a-24
$$

14. $-8+6(x-2)+5$
$-8+6 x-12+5 \quad$ Distributive property
$-8+6 x+(-12)+5$
$6 x+(-15) \quad$ Combine like terms.
or $6 x-15$
15. $-9 b-c-3+9+2 c$
$-9 b-1 c-3+9+2 c$
$-9 b+(-1 c)+(-3)+9+2 c$

$$
-9 b+c+6
$$

Combine like terms.
16. $-4=x-9$

$$
\begin{aligned}
\frac{9}{5} & =\frac{9}{x+0} \text { Add } 9 \text { to both sides. } \\
5 & =x
\end{aligned}
$$

The solution is 5 .
Check $-4=x-9$

$$
\begin{array}{ll}
-4=5-9 & \text { Replace } x \text { with } 5 \\
-4=-4 & \text { Balances }
\end{array}
$$

17. $-7 w=77$

$$
\begin{array}{rlr}
\frac{-7 w}{-7} & =\frac{77}{-7} \quad \begin{array}{ll}
\text { Divide both } \\
\text { sides by }-7 .
\end{array} \\
w=-11 &
\end{array}
$$

The solution is -11 .

$$
\text { Check } \begin{aligned}
-7 w & =77 & & \\
-7 \cdot(-11) & =77 & & \text { Replace w with }-11 . \\
77 & =77 & & \text { Balances }
\end{aligned}
$$

18. $-p=14$

$$
\begin{array}{rlrl}
-1 p & =14 & \\
\frac{-1 p}{-1} & =\frac{14}{-1} & & \text { Divide both } \\
p & \text { sides by }-1 .
\end{array}
$$

The solution is -14 .

$$
\text { Check } \begin{aligned}
&-p=14 \\
&-1 p=14 \\
& \\
&-1 \cdot(-14)=14 \\
& \text { Replace } p \text { with }-14 . \\
& 14=14 \\
& \text { Balances }
\end{aligned}
$$

19. $-15=-3(a+2)$
$-15=-3 a-6$

$$
\begin{array}{rlr}
\frac{6}{-9}=\frac{6}{-3 a} & \text { Add } 6 \text { to both sides. } \\
\frac{-9}{-3} & =\frac{-3 a}{-3} & \\
\text { Divide both } \\
3 & =a & \\
\text { sides by }-3
\end{array}
$$

The solution is 3 .

$$
\text { Check } \begin{aligned}
-15 & =-3(a+2) & & \\
-15 & =-3(3+2) & & \text { Replace } a \text { with } 3 . \\
-15 & =-3(5) & & \\
-15 & =-15 & & \text { Balances }
\end{aligned}
$$

20. $6 n+8-5 n=-4+4$
$6 n+8+(-5 n)=0$
$n+8=0$
$\frac{-8}{n}=\frac{-8}{-8}$ Add -8.
The solution is -8 .
21. $5-20=2 m-3 m$
$5+(-20)=2 m+(-3 m)$

$$
-15=-1 m
$$

$$
\frac{-15}{-1}=\frac{-1 m}{-1} \quad \begin{aligned}
& \text { Divide both } \\
& \text { sides by }-1
\end{aligned}
$$

sides by -1 .

$$
15=m
$$

The solution is 15 .
22. $-2 x+2=5 x+9$
$\frac{2 x}{2}=\frac{2 x}{7 x+9}$ Add $2 x$ to both sides.
$\begin{array}{rll}\frac{-9}{\frac{-7}{7}} & =\frac{-9}{\frac{7 x}{7}} & \begin{array}{l}\text { Add }-9 \text { to both sides. } \\ \text { Divide both } \\ \text { sides by } 7 .\end{array} \\ -1 & =x & \end{array}$
The solution is -1 .
23. $3 m-5=7 m-13$

The solution is 2 .
24. $2+7 b-44=-3 b+12+9 b$
$7 b-42=6 b+12$

$-6 b$	$\frac{-6 b}{12}$		
42	42		Add $-6 b$ to
:---			
both sides.			

The solution is 54 .
25. $3 c-24=6(c-4)$
$3 c-24=6 c-24$ Distribute.
$\frac{-3 c}{-24}=\frac{-3 c}{3 c-24}$
$\frac{24}{0}=\overline{3 c} \quad \begin{aligned} & 24\end{aligned} \begin{aligned} & \text { Add 24 to } \\ & \text { both sides. }\end{aligned}$
$\begin{array}{ll}\frac{0}{3}=\frac{3 c}{3} & \\ 0=c & \\ 0 & \text { Divides by } 3 .\end{array}$
The solution is 0 .
26. Addition property of equality: Start with a possible solution, for example, $x=-4$. Now add an abitrary number, say -5 , to both sides, to give us the equation $x-5=-9$.

Division property of equality: Start with a possible solution, for example, $-4=y$. Now multiply both sides by an abitrary number, say 6 , to give us the equation $-24=6 y$.
Thus, equations will vary. Two possibilities are

$$
x-5=-9 \quad \text { and } \quad-24=6 y
$$

Solving:

$$
\begin{aligned}
x-5 & =-9 \\
\frac{5}{x} & =\frac{5}{-4} \\
-24 & \text { Add } 5 \text { to both sides } . \\
\frac{-24}{6} & =\frac{6 y}{6} \\
-4 & =y
\end{aligned}
$$

Cumulative Review Exercises (Chapters 1-2)

1. $306,000,004,210$ in words is three hundred six billion, four thousand, two hundred ten.
2. Eight hundred million, sixty-six thousand: 800,066,000
3. (a) -3 lies to the right of -10 on the number line, so $-3>-10$.
(b) - 1 lies to the left of 0 on the number line, so $-1<0$.
4. (a) $-6+2=2+(-6)$ - Commutative property of addition: Changing the order of the addends does not change the sum.
(b) $0 \cdot 25=0 \quad$ - Multiplication property of zero: Multiplying any number by 0 gives a product of 0 .
(c) $5(-6+4)=5 \cdot(-6)+5 \cdot 4$ - Distributive property: Multiplication distributes over addition.
5. (a) $9047 \approx 9000$

Underline the hundreds place: $9 \underline{0} 47$
The next digit is 4 or less, so leave 0 as 0 . Change 4 and 7 to 0 .
(b) $289,610 \approx 290,000$

Underline the thousands place: $28 \underline{9}, 610$
The next digit is 5 or more, so add 1 to 9 , write the 0 and add 1 to the ten-thousands place. Change 6 and 1 to 0 .
6. $0-8$

$$
\begin{aligned}
& =0+(-8) \quad \text { Change to addition. } \\
& =-8
\end{aligned}
$$

7. $|-6|+|4|$

$$
\begin{aligned}
& =6+4 \\
& =10
\end{aligned} \quad \begin{aligned}
& -6 \text { is } 6 \text { units from } 0 \\
& \\
& =1
\end{aligned}
$$

8. $-3(-10)$
$=30 \quad$ Same sign, positive product
9. $(-5)^{2}$

$$
=-5 \cdot(-5)
$$

$$
=25 \quad \text { Same sign, positive product }
$$

10. $\frac{-42}{-6}$
$=7 \quad$ Same sign, positive quotient
11. $-19+19$

$$
=0 \quad \begin{aligned}
& \text { Addition of a number } \\
& \text { and its opposite is zero. }
\end{aligned}
$$

12. $(-4)^{3}$
$\underbrace{\underbrace{16 \cdot(-4)}_{-}}_{-64} \quad$ Multiply left to right.
13. $\frac{-14}{0}$ is undefined. Division by 0 is undefined.
14. $-5 \cdot 12$
$=-60$ Different signs, negative product

82 Chapter 2 Understanding Variables and Solving Equations
15. $-20-20$

$$
\begin{aligned}
& =-20+(-20) \quad \text { Change to addition. } \\
& =-40
\end{aligned}
$$

16. $\frac{45}{-5}=-9 \quad$ Different signs, negative quotient
17. $-50+25=-25$
18. $-10+6(4-7)$

$$
\begin{array}{cl}
\begin{array}{cc}
-10+6[4+(-7)] & \text { Change to addition. } \\
\underbrace{-10+6(-3)}_{-18} & \text { Multiply. } \\
-10+(-18)
\end{array} & \text { Add. }
\end{array}
$$

19. $\frac{-20-3(-5)+16}{(-4)^{2}-3^{3}}$

Numerator:

$$
\begin{array}{cl}
-20-3(-5)+16 & \\
-20-(-15)+16 & \text { Multiply. } \\
\underbrace{-20+15}_{\underbrace{-5+16}}+16 & \text { Change to addition. }
\end{array} \text { Add left to right. }
$$

Denominator:

$$
\begin{aligned}
& (-4)^{2}-3^{3} \\
& \underbrace{(-4)(-4)}_{16}-\underbrace{3 \cdot 3 \cdot 3}_{27} \text { Exponents } \\
& \underbrace{16+(-27)}_{-11}
\end{aligned}
$$

Last step is division: $\frac{11}{-11}=-1$
20. 22 days rounds to 20 .

616 miles rounds to 600 .
Average distance "per" day implies division.
Estimate: $\frac{600 \text { miles }}{20 \text { days }}=30$ miles per day
Exact: $\frac{616 \text { miles }}{22 \text { days }}=28$ miles per day
The average distance the tiger traveled each day was 28 miles.
21. -48 degrees rounds to -50 .
"Rise" of 23 degrees rounds to 20 .
A start temperature of -48 degrees followed by a rise of 23 degrees implies addition.

Estimate: $-50+20=-30$ degrees
Exact: $-48+23=-25$ degrees
The daytime temperature was -25 degrees.
22. 52 shares rounds to 50 .
$\$ 2132$ rounds to $\$ 2000$.
$\$ 8$ stays $\$ 8$ (it's a single digit number).
Each stock dropped in value by $\$ 8$ and Doug owned 52 shares. Multiply to find out how much money he lost. Then, subtract this amount from the original total value.

Estimate: $\$ 2000-(50 \cdot 8)=\$ 1600$
Exact: $\$ 2132-(52 \cdot 8)=\$ 1716$
His shares are now worth $\$ 1716$.
23. $\$ 758$ rounds to $\$ 800$.
$\$ 45$ rounds to $\$ 50$.
12 months (in one year) rounds to 10 .
Estimate: $10(\$ 800+\$ 50)$

$$
=10(\$ 850)=\$ 8500
$$

Exact: $12(\$ 758+\$ 45)=12(\$ 803)=\$ 9636$
She will spend $\$ 9636$ for rent and parking in one year.
24. $-4 a b^{3} c^{2}$ means $-4 \cdot a \cdot b \cdot b \cdot b \cdot c \cdot c$
25. $3 x y^{3}$ means

26. $3 h-7 h+5 h$
$\underbrace{3 h+(-7 h)}_{\underbrace{-4 h+5 h}_{1 h \text { or } h}}+5 h \quad$ Change to addition.
27. $c^{2} d-c^{2} d$

$$
\begin{array}{ll}
=1 c^{2} d-1 c^{2} d &
\end{array} \begin{aligned}
& \text { Write the understood } \\
& =1 c^{2} d+\left(-1 c^{2} d\right)
\end{aligned} \begin{array}{ll}
\text { coefficients of } 1 . \\
=[1+(-1)] c^{2} d & \\
\text { Change to addition. } \\
=0 \cdot c^{2} d &
\end{array}
$$

28. $4 n^{2}-4 n+6-8+n^{2}$
$4 n^{2}+(-4 n)+6+(-8)+n^{2}$
$\underbrace{6+(-1)}_{5 n^{2}+(-4 n)+\underbrace{4 n^{2}+n^{2}}_{(-2)}+(-4 n)+(-8)}$
or $5 n^{2}-4 n-2$
29. $-10\left(3 b^{2}\right)$
$\underbrace{(-10 \cdot 3)}_{-30 b^{2}} b^{2} \quad$ Associative property
30. $7(4 p-4)$

$$
\underbrace{7 \cdot 4 p}_{28 p-28}-\underbrace{7 \cdot 4}_{2} \text { Distribute. }
$$

31. $3+5\left(-2 w^{2}-3\right)+w^{2}$

$$
3+\left(-10 w^{2}\right)-15+w^{2}
$$

$$
3+\left(-10 w^{2}\right)+(-15)+w^{2}
$$

$$
-9 w^{2}+(-12) \text { or } \quad-9 w^{2}-12
$$

32. $3 x=x-8$

$$
\begin{array}{rlr}
\frac{-x}{2 x} & =\frac{-x}{0-8} & \text { Add }-x \text { to both sides. } \\
2 x & =-8 & \\
\frac{2 x}{2} & =\frac{-8}{2} & \\
\text { Divide both } \\
x & \text { sides by } 2 .
\end{array}
$$

The solution is -4 .

$$
\text { Check } \begin{aligned}
3 x & =x-8 & & \\
3(-4) & =-4-8 & & \text { Replace } x \text { with }-4 . \\
-12 & =-4+(-8) & & \\
-12 & =-12 & & \text { Balances }
\end{aligned}
$$

33. $-44=-2+7 y$

$$
\begin{aligned}
\frac{2}{-42} & =\frac{2}{0+7 y} & & \text { Add } 2 \text { to both sides. } \\
-42 & =7 y & & \\
\frac{-42}{7} & =\frac{7 y}{7} & & \text { Divide both } \\
-6 & =y & & \text { sides by } 7 .
\end{aligned}
$$

The solution is -6 .

$$
\begin{aligned}
\text { Check }-44 & =-2+7 y & & \\
-44 & =-2+7(-6) & & \text { Replace } y \text { with }-6 . \\
-44 & =-2+(-42) & & \\
-44 & =-44 & & \text { Balances }
\end{aligned}
$$

34. $2 k-5 k=-21$
$2 k+(-5 k)=-21$
$-3 k=-21$ $\frac{-3 k}{-3}=\frac{-21}{-3} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-3 .\end{aligned}$
$k=7$
The solution is 7 .
Check $\quad 2 k-5 k=-21$

$$
\begin{aligned}
2(7)-5(7) & =-21 \quad \text { Replace } k \text { with } 7 \\
14-35 & =-21 \\
14+(-35) & =-21 \\
-21 & =-21 \quad \text { Balances }
\end{aligned}
$$

35. $m-6=-2 m+6$
$\frac{2 m}{3 m-6}=\frac{2 m}{0+6} \quad$ Add $2 m$ to both sides.
$3 m-6=6$
$\begin{aligned} \frac{6}{3 m+0} & =\frac{6}{12} & & \text { Add } 6 \text { to both sides. } \\ \frac{3 m}{3} & =\frac{12}{3} & & \text { Divide both } \\ m & =4 & & \text { sides by } 3 .\end{aligned}$
The solution is 4 .

Check

$$
\begin{aligned}
m-6 & =-2 m+6 & & \\
4-6 & =-2(4)+6 & & \text { Replace } m \text { with } 4 . \\
4+(-6) & =-8+6 & & \\
-2 & =-2 & & \text { Balances }
\end{aligned}
$$

36. $4-4 x=18+10 x$

$$
\begin{aligned}
\begin{array}{rlrl}
4 x & & \frac{4 x}{18+14 x} & \\
\hline 4+0 & \text { Add } 4 x \text { to both sides. } \\
4 & =18+14 x & & \\
-18 & & -18 & \\
\hline-14 & \text { Add }-18 \text { to both sides. } \\
\hline \frac{-14}{14} & =\frac{14 x}{14} & & \\
& & \text { Divide both } \\
-1 & =x & & \text { sides by } 14 . \\
\text { The solution is }-1 .
\end{array}
\end{aligned}
$$

37. $18=-r$
$18=-1 r$
$\frac{18}{-1}=\frac{-1 r}{-1} \quad \begin{aligned} & \text { Divide both } \\ & \text { sides by }-1 .\end{aligned}$
$-18=r \quad$ The solution is -18.
38. $-8 b-11+7 b=b-1$

$$
-1 b-11=1 b-1
$$

$1 b$	$1 b$Add lb to both sides.
-11	$=2 b-1$
-11	

1	Add 1 to aoth sides.	
$\frac{-10}{2}$	$=\frac{{ }^{2}}{2 b+0}$	Divide both sides by 2.
-5	$=b$	

The solution is -5 .

84 Chapter 2 Understanding Variables and Solving Equations

The solution is 1 .
40. $5+6 y-23=5(2 y+8)-10$
$5+6 y+(-23)=10 y+40+(-10)$
$6 y+(-18)=10 y+30$
$\begin{aligned} & 18 \\ & 6 y+0=\frac{18}{10 y+48} \\ & 6 y=10 y+48\end{aligned}$ Add 18.
$\frac{-10 y}{-4 y}=\frac{-10 y}{0+48}$ Add $-10 y$. $\begin{array}{rlr}\frac{-4 y}{-4} & =\frac{48}{-4} & \begin{array}{l}\text { Divide } \\ y\end{array} \\ =-12 & & \text { by }-4 .\end{array}$

The solution is -12 .

