Table of Contents

Volume I

Preface
Chapter F: Foundations: A Prelude to Functions
F. 1 The Distance and Midpoint Formulas 1
F. 2 Graphs of Equations in Two Variables; Intercepts; Symmetry 12
F. 3 Lines 28
F. 4 Circles 44
Chapter Project 56
Chapter 1: Functions and Their Graphs
1.1 Functions 57
1.2 The Graph of a Function 71
1.3 Properties of Functions 79
1.4 Library of Functions; Piece-defined Functions 94
1.5 Graphing Techniques: Transformations 105
1.6 Mathematical Models: Building Functions 123
1.7 Building Mathematical Models Using Variation 129
Chapter Review 133
Chapter Test 140
Chapter Projects 144
Chapter 2: Linear and Quadratic Functions
2.1 Properties of Linear Functions and Linear Models 146
2.2 Building Linear Models from Data 158
2.3 Quadratic Functions and Their Zeros 163
2.4 Properties of Quadratic Functions 181
2.5 Inequalities Involving Quadratic Functions 202
2.6 Building Quadratic Models from Verbal Descriptions and from Data 220
2.7 Complex Zeros of a Quadratic Function 228
2.8 Equations and Inequalities Involving the Absolute Value Function 233
Chapter Review 241
Chapter Test 253
Cumulative Review 257
Chapter Projects 259
Chapter 3: Polynomial and Rational Functions
3.1 Polynomial Functions and Models 263
3.2 The Real Zeros of a Polynomial Function 286
3.3 Complex Zeros; Fundamental Theorem of Algebra 317
3.4 Properties of Rational Functions 325
3.5 The Graph of a Rational Function 335
3.6 Polynomial and Rational Inequalities 390
Chapter Review 413
Chapter Test 429
Cumulative Review 433
Chapter Projects 438
Chapter 4: Exponential and Logarithmic Functions
4.1 Composite Functions 439
4.2 One-to-One Functions; Inverse Functions 457
4.3 Exponential Functions 476
4.4 Logarithmic Functions 495
4.5 Properties of Logarithms 516
4.6 Logarithmic and Exponential Equations 525
4.7 Financial Models 545
4.8 Exponential Growth and Decay; Newton's Law; Logistic Growth and Decay Models 552
4.9 Building Exponential, Logarithmic, and Logistic Models from Data 561
Chapter Review 567
Chapter Test 578
Cumulative Review 582
Chapter Projects 586
Chapter 5: Trigonometric Functions
5.1 Angles and Their Measure 589
5.2 Trigonometric Functions; Unit Circle Approach 597
5.3 Properties of the Trigonometric Functions 614
5.4 Graphs of the Sine and Cosine Functions 626
5.5 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions 646
5.6 Phase Shift; Sinusoidal Curve Fitting 655
Chapter Review 667
Chapter Test 675
Cumulative Review 678
Chapter Projects 682
Chapter 6: Analytic Trigonometry
6.1 The Inverse Sine, Cosine, and Tangent Functions 686
6.2 The Inverse Trigonometric Functions (Continued) 696
6.3 Trigonometric Equations 708
6.4 Trigonometric Identities 727
6.5 Sum and Difference Formulas. 740
6.6 Double-angle and Half-angle Formulas 762
6.7 Product-to-Sum and Sum-to-Product Formulas 790
Chapter Review 799
Chapter Test 814
Cumulative Review 819
Chapter Projects 824
4. Cannons The velocity of a projectile depends upon many factors, in particular, the weight of the ammunition.
(a) Plot a scatter diagram of the data in the table below. Let x be the weight in kilograms and let y be the velocity in meters per second.

Type

MG 17
MG 131
MG 151
MG 151/20
MG/FF
MK 103
MK 108
WGr 21
10.2
19.7
41.5
42.3
35.7

145
58
111

Initial

Weight (kg)
905
710
850
695
575
860
520
315
(Data and information taken from "Flugzeug-Handbuch, Ausgabe Dezember 1996: Guns and Cannons of the Jagdwaffe" at www.xs4all.nl/~rhorta/jgguns.htm)
(b) Determine which type of function would fit this data the best: linear or quadratic. Use a graphing utility to find the function of best fit. Are the results reasonable?
(c) Based on velocity, we can determine how high a projectile will travel before it begins to come back down. If a cannon is fired at an angle of 45° to the horizontal, then the function for the height of the projectile is given by $s(t)=-16 t^{2}+\frac{\sqrt{2}}{2} v_{0} t+s_{0}$, where v_{0} is the velocity at which the shell leaves the cannon (initial velocity), and s_{0} is the initial height of the nose of the cannon (because cannons are not very long, we may assume that the nose and the firing pin at the back are at the same height for simplicity). Graph the function $s=s(t)$ for each of the guns described in the table. Which gun would be the best for anti-aircraft if the gun were sitting on the ground? Which would be the best to have mounted on a hilltop or on the top of a tall building? If the guns were on the turret of a ship, which would be the most effective?
3. Suppose $f(x)=\sin x$.
(a) Build a table of values for $f(x)$ where $x=0, \frac{\pi}{6}, \frac{\pi}{4}$, $\frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{5 \pi}{4}, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}, \frac{7 \pi}{4}$, $\frac{11 \pi}{6}, 2 \pi$. Use exact values.
(b) Find the first differences for each consecutive pair of values in part (a). That is, evaluate $g\left(x_{i}\right)=\frac{\Delta f\left(x_{i}\right)}{\Delta x_{i}}=$ $\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}, \quad$ where $\quad x_{1}=0, \quad x_{2}=\frac{\pi}{6}, \ldots$, $x_{17}=2 \pi$. Use your calculator to approximate each value rounded to three decimal places.
(c) Plot the points $\left(x_{i}, g\left(x_{i}\right)\right)$ for $i=1, \ldots, 16$ on a scatter diagram. What shape does the set of points give? What function does this resemble? Fit a sine curve of best fit to the points. How does that relate to your guess?
(d) Find the first differences for each consecutive pair of values in part (b). That is, evaluate $h\left(x_{i}\right)=\frac{\Delta g\left(x_{i}\right)}{\Delta x_{i}}=$
$g\left(x_{i+1}\right)-g\left(x_{i}\right)$ $\frac{g\left(x_{i+1}\right)-g\left(x_{i}\right)}{x_{i+1}-x_{i}}$ where $x_{1}=0, x_{2}=\frac{\pi}{6}, \ldots, x_{16}=$ $\frac{11 \pi}{6}$. This is the set of second differences of $f(x)$. Use your calculator to approximate each value rounded to three decimal places. Plot the points $\left(x_{i}, h\left(x_{i}\right)\right)$ for $i=1, \ldots, 15$ on a scatter diagram. What shape does the set of points give? What function does this resemble? Fit a sine curve of best fit to the points. How does that relate to your guess?
(e) Find the first differences for each consecutive pair of values in part (d). That is, evaluate $k\left(x_{i}\right)=\frac{\Delta h\left(x_{i}\right)}{\Delta x_{i}}$ $=\frac{h\left(x_{i+1}\right)-h\left(x_{i}\right)}{x_{i+1}-x_{i}}$, where $x_{1}=0, x_{2}=\frac{\pi}{6}, \ldots, x_{15}$ $=\frac{7 \pi}{4}$. This is the set of third differences of $f(x)$. Use your calculator to approximate each value rounded to three decimal places. Plot the points $\left(x_{i}, k\left(x_{i}\right)\right)$ for $i=1, \ldots, 14$ on a scatter diagram. What shape does the set of points give? What function does this resemble? Fit a sine curve of best fit to the points. How does that relate to your guess?
(f) Find the first differences for each consecutive pair of
values in part (e). That is, evaluate $m\left(x_{i}\right)=\frac{\Delta k\left(x_{i}\right)}{\Delta x_{i}}$ $=\frac{k\left(x_{i+1}\right)-k\left(x_{i}\right)}{x_{i+1}-x_{i}}$, where $x_{1}=0, \quad x_{2}=\frac{\pi}{6}, \ldots$, $x_{14}=\frac{5 \pi}{3}$. This is the set of fourth differences of $f(x)$.
Use your calculator to approximate each value rounded to three decimal places. Plot the points $\left(x_{i}, m\left(x_{i}\right)\right)$ for $i=1, \ldots, 13$ on a scatter diagram. What shape does the set of points give? What function does this resemble? Fit a sine curve of best fit to the points. How does that relate to your guess?
(g) What pattern do you notice about the curves that you found? What happened in part (f)? Can you make a generalization about what happened as you computed the differences? Explain your answers.
7. CBL Experiment Locate the motion detector on a Calculator Based Laboratory (CBL) or a Calculator Based Ranger (CBR) above a bouncing ball.
(a) Plot the data collected in a scatter diagram with time as the independent variable.
(b) Find the quadratic function of best fit for the second bounce.
(c) Find the quadratic function of best fit for the third bounce.
(d) Find the quadratic function of best fit for the fourth bounce.
(e) Compute the maximum height for the second bounce.
(f) Compute the maximum height for the third bounce.
(g) Compute the maximum height for the fourth bounce.
(h) Compute the ratio of the maximum height of the third bounce to the maximum height of the second bounce.
(i) Compute the ratio of the maximum height of the fourth bounce to the maximum height of the third bounce.

E(j)

 Compare the results from parts (h) and (i). What do you conclude?