14 Chapter 1 Functions and Their Graphs OR SALE

Section 1.2 Functions

- 1. domain, range, function
- 2. independent, dependent
- 3. No. The input element x = 3 cannot be assigned to more than exactly one output element.
- 4. To find g(x+1) for g(x) = 3x 2, substitute x with the quantity x + 1.

g(x+1) = 3(x+1) - 2= 3x + 3 - 2 = 3x + 1

- 5. No. The domain of the function $f(x) = \sqrt{1+x}$ is $[-1, \infty)$ which does not include x = -2.
- **6.** The domain of a piece-wise function must be explicitly described, so that it can determine which equation is used to evaluate the function.
- 7. Yes. Each domain value is matched with only one range value.
- 8. No. The domain value of -1 is matched with two output values.
- **9.** No. The National Football Conference, an element in the domain, is assigned to three elements in the range, the Giants, the Saints, and the Seahawks; The American Football Conference, an element in the domain, is also assigned to three elements in the range, the Patriots, the Ravens, and the Steelers.
- **10.** Yes. Each element, or state, in the domain is assigned to exactly one element, or electoral votes, in the range.
- **11.** Yes, the table represents *y* as a function of *x*. Each domain value is matched with only one range value.
- **12.** No, the table does not represent a function. The input values of 0 and 1 are each matched with two different output values.
- **13.** No, the graph does not represent a function. The input values 1, 2, and 3 are each matched with two outputs.
- **14.** Yes, the graph represents a function. Each input value is matched with one output value.
- **15.** (a) Each element of *A* is matched with exactly one element of *B*, so it does represent a function.
 - (b) The element 1 in A is matched with two elements, -2 and 1 of B, so it does not represent a function.
 - (c) Each element of *A* is matched with exactly one element of *B*, so it does represent a function.
- **16.** (a) The element c in A is matched with two elements, 2 and 3 of B, so it is not a function.
 - (b) Each element of *A* is matched with exactly one element of *B*, so it does represent a function.
 - (c) This is not a function from *A* to *B* (it represents a function from *B* to *A* instead).

- **17.** Both are functions. For each year there is exactly one and only one average price of a name brand prescription and average price of a generic prescription.
- **18.** Since b(t) represents the average price of a name brand prescription, $b(2009) \approx \$151$. Since g(t) represents the average price of a generic prescription, $g(2006) \approx \$31$.

19.
$$x^2 + y^2 = 4 \implies y = \pm \sqrt{4 - x^2}$$

Thus, *y* is not a function of *x*. For instance, the values y = 2 and y = -2 both correspond to x = 0.

20. $x = y^2 + 1$

 $y = \pm \sqrt{x - 1}$

This *is not* a function of *x*. For example, the values y = 2 and y = -2 both correspond to x = 5.

21. $y = \sqrt{x^2 - 1}$

This *is* a function of *x*.

22.
$$y = \sqrt{x+5}$$

This *is* a function of *x*.

- 23. $2x + 3y = 4 \Rightarrow y = \frac{1}{3}(4 2x)$ Thus, y is a function of x.
- **24.** $x = -y + 5 \implies y = -x + 5$

This is a function of x.

25.
$$y^2 = x^2 - 1 \Longrightarrow y = \pm \sqrt{x^2 - 1}$$

Thus, *y* is not a function of *x*. For instance, the values $y = \sqrt{3}$ and $y = -\sqrt{3}$ both correspond to x = 2.

26. $x + y^2 = 3 \Longrightarrow y = \pm \sqrt{3 - x}$

Thus, *y* is not a function of *x*.

27. y = |4 - x|

This *is* a function of *x*.

- **28.** $|y| = 3 2x \implies y = 3 2x$ or y = -(3 2x)Thus, *y* is not a function of *x*.
- **29.** x = -7 *does not* represent *y* as a function of *x*. All values of *y* correspond to x = -7.
- **30.** y = 8 *is* a function of *x*, a constant function.
- **31.** f(t) = 3t + 1
 - (a) f(2) = 3(2) + 1 = 7
 - (b) f(-4) = 3(-4) + 1 = -11
 - (c) f(t+2) = 3(t+2) + 1 = 3t + 7

© 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. © Cengage Learning. All Rights Reserved.

Visit TestBankDeal.com to get complete for all chapters

NOT FOR SA Section 1.2 Functions 15

32. g(y) = 7 - 3y(a) g(0) = 7 - 3(0) = 7(b) $g\left(\frac{7}{3}\right) = 7 - 3\left(\frac{7}{3}\right) = 0$ (c) g(s+5) = 7 - 3(s+5)= 7 - 3s - 15 = -3s - 8**33.** $h(t) = t^2 - 2t$ (a) $h(2) = 2^2 - 2(2) = 0$ (b) $h(1.5) = (1.5)^2 - 2(1.5) = -0.75$ (c) $h(x-4) = (x-4)^2 - 2(x-4)$ $= x^2 - 8x + 16 - 2x + 8$ $= x^{2} - 10x + 24$ 34. $V(r) = \frac{4}{3}\pi r^3$ (a) $V(3) = \frac{4}{3}\pi(3)^3 = 36\pi$ (b) $V\left(\frac{3}{2}\right) = \frac{4}{3}\pi\left(\frac{3}{2}\right)^3 = \frac{4}{3}\cdot\frac{27}{8}\pi = \frac{9\pi}{2}$ (c) $V(2r) = \frac{4}{3}\pi(2r)^3 = \frac{32\pi r^3}{3}$ **35.** $f(y) = 3 - \sqrt{y}$ (a) $f(4) = 3 - \sqrt{4} = 1$ (b) $f(0.25) = 3 - \sqrt{0.25} = 2.5$ (c) $f(4x^2) = 3 - \sqrt{4x^2} = 3 - 2|x|$ **36.** $f(x) = \sqrt{x+8} + 2$ (a) $f(-4) = \sqrt{-4+8} + 2 = 4$ (b) $f(8) = \sqrt{8+8} + 2 = 6$ (c) $f(x-8) = \sqrt{x-8+8} + 2 = \sqrt{x} + 2$ **37.** $q(x) = \frac{1}{x^2 - 9}$ (a) $q(-3) = \frac{1}{(-3)^2 - 9} = \frac{1}{9 - 9} = \frac{1}{0}$ undefined (b) $q(2) = \frac{1}{(2)^2 - 9} = \frac{1}{4 - 9} = -\frac{1}{5}$ (c) $q(y+3) = \frac{1}{(y+3)^2 - 9} = \frac{1}{y^2 + 6y + 9 - 9} = \frac{1}{y^2 + 6y}$

38.
$$q(t) = \frac{2t^{2} + 3}{t^{2}}$$
(a) $q(2) = \frac{2(2)^{2} + 3}{(2)^{2}} = \frac{8 + 3}{4} = \frac{11}{4}$
(b) $q(0) = \frac{2(0)^{2} + 3}{(0)^{2}}$ Division by zero is undefined.
(c) $q(-x) = \frac{2(-x)^{2} + 3}{(-x)^{2}} = \frac{2x^{2} + 3}{x^{2}}$
39. $f(x) = \frac{|x|}{x}$
(a) $f(9) = \frac{|9|}{9} = 1$
(b) $f(-9) = \frac{|-9|}{-9} = -1$
(c) $f(t) = \frac{|t|}{t} = \begin{cases} 1, t > 0\\ -1, t < 0 \end{cases}$
f(0) is undefined.
40. $f(x) = |x| + 4$
(a) $f(5) = |5| + 4 = 9$
(b) $f(-5) = |-5| + 4 = 9$
(c) $f(t) = |t| + 4$
41. $f(x) = \begin{cases} 2x + 1, x < 0\\ 2x + 2, x \ge 0 \end{cases}$
(a) $f(-1) = 2(-1) + 1 = -1$
(b) $f(0) = 2(0) + 2 = 2$
(c) $f(2) = 2(2) + 2 = 6$
42. $f(x) = \begin{cases} 2x + 5, x \le 0\\ 2 - x, x > 0 \end{cases}$
(a) $f(-2) = 2(-2) + 5 = 1$
(b) $f(0) = 2(0) + 5 = 5$
(c) $f(1) = 2 - 1 = 1$
43. $f(x) = \begin{cases} x^{2} + 2, x \le 1\\ 2x^{2} + 2, x > 1 \end{cases}$
(a) $f(-2) = (-2)^{2} + 2 = 6$
(b) $f(1) = (1)^{2} + 2 = 3$
(c) $f(2) = 2(2)^{2} + 2 = 10$

16 Chapter 1 Functions and Their Graphs OR SALE

44.	$f(x) = \begin{cases} x^2 - 4, & x \le 0\\ 1 - 2x^2, & x > 0 \end{cases}$
	(a) $f(-2) = (-2)^2 - 4 = 4 - 4 = 0$ (b) $f(0) = 0^2 - 4 = -4$ (c) $f(1) = 1 - 2(1^2) = 1 - 2 = -1$
45.	$f(x) = \begin{cases} x+2, & x<0\\ 4, & 0 \le x < 2\\ x^2+1, & x \ge 2 \end{cases}$
	(a) $f(-2) = (-2) + 2 = 0$
	(b) $f(0) = 4$ (c) $f(2) = (2)^2 + 1 = 5$
46.	$f(x) = \begin{cases} 5 - 2x, & x < 0\\ 5, & 0 \le x < 1\\ 4x + 1, & x \ge 1 \end{cases}$
	(a) $f(-4) = 5 - 2(-4) = 13$
	(b) $f(0) = 5$
	(c) $f(1) = 4(1) + 1 = 5$
47.	$f(x) = \left(x - 1\right)^2$
	$\{(-2, 9), (-1, 4), (0, 1), (1, 0), (2, 1)\}$
48.	$f(x) = x^2 - 3$
	$\{(-2, 1), (-1, -2), (0, -3), (1, -2), (2, 1)\}$
49.	f(x) = x + 2
	$\{(-2, 4), (-1, 3), (0, 2), (1, 3), (2, 4)\}$
50.	f(x) = x+1
	$\{(-2, 1), (-1, 0), (0, 1), (1, 2), (2, 3)\}$

51.	$h(t) = \frac{1}{2}$	t+3				
	h(-5) =	$\frac{1}{2} -5+$	$-3 = \frac{1}{2}$	-2 = -2	$\frac{1}{2}(2) =$	1
	h(4) =	$\frac{1}{2} -4+$	$ +3 = \frac{1}{2}$	- -1 =	$\frac{1}{2}(1) =$	$\frac{1}{2}$
	h(-3) = -	$\frac{1}{2} -3+$	$ -3 = \frac{1}{2}$	0 = 0		
	h(-2) =	2	-	2	2	-
	h(-1) = -	$\frac{1}{2} -1+$	$ 3 = \frac{1}{2}$	$ 2 = \frac{1}{2}$	(2) = 1	
	t	-5	-4	-3	-2	-1
	h(t)	1	$\frac{1}{2}$	0	$\frac{1}{2}$	1

52.
$$f(s) = \frac{|s-2|}{s-2}$$

$$f(0) = \frac{|0-2|}{0-2} = \frac{2}{-2} = -1$$

$$f(1) = \frac{|1-2|}{1-2} = \frac{1}{-1} = -1$$

$$f\left(\frac{3}{2}\right) = \frac{\left|\frac{3}{2}-2\right|}{\frac{3}{2}-2} = \frac{\frac{1}{2}}{-\frac{1}{2}} = -1$$

$$f\left(\frac{5}{2}\right) = \frac{\left|\frac{5}{2}-2\right|}{\frac{5}{2}-2} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1$$

$$f(4) = \frac{|4-2|}{4-2} = \frac{2}{2} = 1$$

$$\boxed{\begin{array}{c|c|c|c|c|c|} s & 0 & 1 & \frac{3}{2} & \frac{5}{2} & 4 \\ \hline f(s) & -1 & -1 & -1 & 1 & 1 \end{array}}$$

53.
$$f(x) = 15 - 3x = 0$$

 $3x = 15$
 $x = 5$
54. $f(x) = 5x + 1 = 0$
 $5x = -1$
 $x = -\frac{1}{5}$

NOT FOR SASection^{1.2} Functions</sup> 17

55. $f(x) = \frac{9x - 4}{5} = 0$ 9x - 4 = 09x = 4 $x = \frac{4}{9}$

56.
$$f(x) = \frac{2x-3}{7} = 0$$

 $2x-3 = 0$
 $2x = 3$
 $x = \frac{3}{7}$

57. $f(x) = 5x^2 + 2x - 1$

Since f(x) is a polynomial, the domain is all real numbers x.

58.
$$g(x) = 1 - 2x^2$$

Because g(x) is a polynomial, the domain is all real numbers x.

59.
$$h(t) = \frac{4}{t}$$

Domain: All real numbers except t = 0

$$\begin{aligned} \mathbf{60.} \quad s(y) &= \frac{3y}{y+5} \\ y+5 \neq 0 \\ y \neq -5 \end{aligned}$$

The domain is all real numbers $y \neq -5$.

61.
$$f(x) = \sqrt[3]{x-4}$$

Domain: all real numbers x

62.
$$f(x) = \sqrt[4]{x^2 + 3x}$$

 $x^2 + 3x = x(x+3) \ge 0$

Domain: $x \le -3$ or $x \ge 0$

63.
$$g(x) = \frac{1}{x} - \frac{3}{x+2}$$

Domain: All real numbers except x = 0, x = -2

64.
$$h(x) = \frac{10}{x^2 - 2x}$$
$$x^2 - 2x \neq 0$$
$$x(x - 2) \neq 0$$

The domain is all real numbers except x = 0, x = 2.

65.
$$g(y) = \frac{y+2}{\sqrt{y-10}}$$

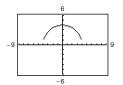
 $y-10 > 0$
 $y > 10$

Domain: all y > 10

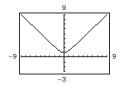
66.
$$f(x) = \frac{\sqrt{x+6}}{6+x}$$

 $x + 6 \ge 0$ for numerator and $x \ne -6$ for denominator. Domain: all x > -6

67.
$$f(x) = \sqrt{16 - x^2}$$

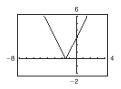


68.
$$f(x) = \sqrt{x^2 + 1}$$



Domain: all real numbers Range: $1 \le y$

69.
$$g(x) = |2x+3|$$

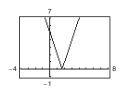


Domain: $(-\infty, \infty)$

Range: [0, ∞)

70.
$$g(x) = |3x - 5|$$

Range: y



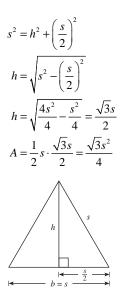
Domain: all real numbers ≥ 0

18 Chapter 1 Functions and Their Graphs OR SALE

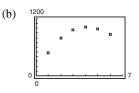
71. $A = \pi r^2$, $C = 2\pi r$

$$r = \frac{C}{2\pi}$$
$$A = \pi \left(\frac{C}{2\pi}\right)^2 = \frac{C^2}{4\pi}$$

72. $A = \frac{1}{2}bh$, in an equilateral triangle b = s and:



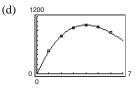
73. (a) From the table, the maximum volume seems to be 1024 cm^3 , corresponding to x = 4.



Yes, *V* is a function of *x*.

(c) $V = \text{length} \times \text{width} \times \text{height}$ = (24 - 2x)(24 - 2x)x= $x(24 - 2x)^2 = 4x(12 - x)^2$

Domain: 0 < x < 12



The function is a good fit. Answers will vary.

74. $A = \frac{1}{2}$ (base)(height) $= \frac{1}{2}xy$.

Since (0, y), (2, 1), and (x, 0) all lie on the same line, the slopes between any pair of points are equal.

$$\frac{1-y}{2-0} = \frac{1-0}{2-x}$$

$$1-y = \frac{2}{2-x}$$

$$y = 1 - \frac{2}{2-x} = \frac{x}{x-2}$$
Therefore, $A = \frac{1}{2}xy = \frac{1}{2}x\left(\frac{x}{x-2}\right) = \frac{x^2}{2x-4}$

The domain is x > 2, since A > 0.

75.
$$A = l \cdot w = (2x)y = 2xy$$

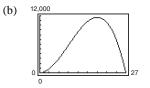
But
$$y = \sqrt{36 - x^2}$$
, so $A = 2x\sqrt{36 - x^2}$, $0 < x < 6$.

76. (a) $V = (\text{length})(\text{width})(\text{height}) = yx^2$

But,
$$y + 4x = 108$$
, or $y = 108 - 4x$.

Thus,
$$V = (108 - 4x)x^2$$
.
Since $y = 108 - 4x > 0$
 $4x < 108$

Domain: 0 < x < 27



- (c) The highest point on the graph occurs at x = 18. The dimensions that maximize the volume are $18 \times 18 \times 36$ inches.
- 77. (a) Total cost = Variable costs + Fixed costs C = 68.75x + 248,000
 - (b) Revenue = Selling price × Units sold R = 99.99x
 - (c) Since P = R C

$$P = 99.99x - (68.75x + 248,000)$$
$$P = 31.24x - 248,000.$$

NOT FOR SA Section 1.2 Functions 19

78. (a) The independent variable is *x* and represents the month. The dependent variable is *y* and represents the monthly revenue.

(b)
$$f(x) = \begin{cases} -1.97x + 26.3, & 7 \le x \le 12\\ 0.505x^2 - 1.47x + 6.3, & 1 \le x \le 6 \end{cases}$$

Answers will vary.

- (c) f(5) = 11.575, and represents the revenue in May: \$11,575.
- (d) f(11) = 4.63, and represents the revenue in November: \$4630.
- (e) The values obtained from the model are close approximations to the actual data.
- 79. (a) The independent variable is *t* and represents the year. The dependent variable is *n* and represents the numbers of miles traveled.

(b)	t	0	1	2	3	4	5
	n(t)	3.95	3.96	3.98	3.99	4.00	4.02
	t	6	7	8	9	10	11
	n(t)	6 4.03	4.04	4.05	9 4.07	4.08	4.09

- (c) The model fits the data well.
- (d) Sample answer: No. The function may not accurately model other years

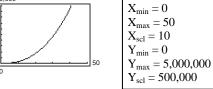
80. (a)
$$F(y) = 149.76\sqrt{10}y^{5/2}$$

у	5	10	20	30	40
F(y)	26,474	149,760	847,170	2,334,527	4,792,320

(Answers will vary.)

F increases very rapidly as y increases.

(b) 5,000,000



- (c) From the table, $y \approx 22$ ft (slightly above 20). You could obtain a better approximation by completing the table for values of *y* between 20 and 30.
- (d) By graphing F(y) together with the horizontal line $y_2 = 1,000,000$, you obtain $y \approx 21.37$ feet.

81. Yes. If
$$x = 30$$
, $y = -0.01(30)^2 + 3(30) + 6$
 $y = 6$ feet

Since the child trying to catch the throw is holding the glove at a height of 5 feet, the ball will fly over the glove.

82. (a) $\frac{f(2013) - f(2005)}{2013 - 2005} \approx 525 million/year

This represents the increase in sales per year from 2005 to 2013.

(b)	t	5	6	7	8	9
	S(t)	217.3	136.9	237.4	518.8	981.1

t	10	11	12	13
S(t)	1624.2	2448.2	3453.1	4638.9

The model approximates the data well.

83. f(x) = 2x

$$\frac{f(x+c) - f(x)}{c} = \frac{2(x+c) - 2x}{c}$$
$$= \frac{2c}{c} = 2, \ c \neq 0$$

84. g(x) = 3x - 1

g(x+h) = 3(x+h) - 1 = 3x + 3h - 1 g(x+h) - g(x) = (3x+3h-1) - (3x-1) = 3h $\frac{g(x+h) - g(x)}{h} = \frac{3h}{h} = 3, h \neq 0$

85.
$$f(x) = x^2 - x + 1, f(2) = 3$$

$$\frac{f(2+h) - f(2)}{h} = \frac{(2+h)^2 - (2+h) + 1 - 3}{h}$$
$$= \frac{4 + 4h + h^2 - 2 - h + 1 - 3}{h}$$
$$= \frac{h^2 + 3h}{h} = h + 3, \ h \neq 0$$

86. $f(x) = x^3 + x$

$$\begin{aligned} f(x+h) &= (x+h)^3 + (x+h) = x^3 + 3x^2h + 3xh^2 + h^3 + x + h \\ f(x+h) - f(x) &= (x^3 + 3x^2h + 3xh^2 + h^3 + x + h) - (x^3 + x) \\ &= 3x^2h + 3xh^2 + h^3 + h \\ &= h(3x^2 + 3xh + h^2 + 1) \\ \frac{f(x+h) - f(x)}{h} &= \frac{h(3x^2 + 3xh + h^2 + 1)}{h} = 3x^2 + 3xh + h^2 + 1, \ h \neq 0 \end{aligned}$$

- **87.** False. The range of f(x) is $(-1, \infty)$.
- **88.** True. The first number in each ordered pair corresponds to exactly one second number.

89.
$$f(x) = \sqrt{x+2}$$

Domain: $[0, \infty)$ or $x \ge 0$

Range:
$$[2, \infty)$$
 or $y \ge 2$

Precalculus Real Mathematics Real People 7th Edition Larson Solutions Manual

- 20 Chapter 1 Functions and Their Graphs OR SALE
- **90.** $f(x) = \sqrt{x+3}$

Domain: $[-3, \infty)$ or $x \ge -3$

Range: $[0, \infty)$ or $y \ge 0$

- **91.** No. f is not the independent variable. Because the value of f depends on the value of x, x is the independent variable and f is the dependent variable.
- **92.** (a) The height *h* is a function of *t* because for each value of *t* there is exactly one corresponding value of *h* for $0 \le t \le 2.6$.
 - (b) The height after 0.5 second is about 20 feet. The height after 1.25 seconds is about 28 feet.
 - (c) From the graph, the domain is $0 \le t \le 2.6$.
 - (d) The time *t* is not a function of *h* because some values of *h* correspond to more than one value of *t*.

93. $12 - \frac{4}{x+2} = \frac{12(x+2) - 4}{x+2} = \frac{12x+20}{x+2}$

Section 1.3 Graphs of Functions

- 1. decreasing
- 2. even
- **3.** Domain: $1 \le x \le 4$ or $\lceil 1, 4 \rceil$
- 4. No. If a vertical line intersects the graph more than once, then it does not represent *y* as a function of *x*.
- 5. If $f(2) \ge f(2)$ for all x in (0, 3), then (2, f(2)) is a relative maximum of f.
- 6. Since $f(x) = \llbracket x \rrbracket = n$, where *n* is an integer and $n \le x$, the input value of *x* needs to be greater than or equal to 5 but less than 6 in order to produce an output value of 5. So the interval [5, 6) would yield a function value of 5.
- 7. Domain: all real numbers, $(-\infty, \infty)$

Range: $(-\infty, 1]$

$$f(0) = 1$$

8. Domain: all real numbers, $(-\infty, \infty)$

Range: all real numbers, $(-\infty, \infty)$

$$f(0) = 2$$

9. Domain: [-4, 4]

Range: [0, 4]

94.
$$\frac{3}{x^2 + x - 20} + \frac{2x}{x^2 + 4x - 5}$$
$$= \frac{3}{(x + 5)(x - 4)} + \frac{2x}{(x + 5)(x - 1)}$$
$$= \frac{3(x - 1)}{(x + 5)(x - 4)(x - 1)} + \frac{2x(x - 4)}{(x + 5)(x - 1)(x - 4)}$$
$$= \frac{3x - 3 + 2x^2 - 8x}{(x + 5)(x - 4)(x - 1)}$$
$$= \frac{2x^2 - 5x - 3}{(x + 5)(x - 4)(x - 1)}$$

95.
$$\frac{2x^3 + 11x^2 - 6x}{5x} \cdot \frac{x + 10}{2x^2 + 5x - 3} = \frac{x(2x^2 + 11x - 6)(x + 10)}{5x(2x - 1)(x + 3)}$$
$$= \frac{(2x - 1)(x + 6)(x + 10)}{5(2x - 1)(x + 3)}$$
$$= \frac{(x + 6)(x + 10)}{5(x + 3)}, x \neq 0, \frac{1}{2}$$

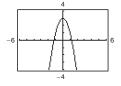
96.
$$\frac{x+7}{2(x-9)} \div \frac{x-7}{2(x-9)} = \frac{x+7}{2(x-9)} \cdot \frac{2(x-9)}{x-7} = \frac{x+7}{x-7}, x \neq 9$$

10. Domain: all real numbers, $(-\infty, \infty)$

Range:
$$[-3, \infty]$$

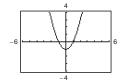
 $f(0) = -3$

11.
$$f(x) = -2x^2 + 3$$



Range:
$$(-\infty, 3)$$

12.
$$f(x) = x^2 - 1$$



Domain: $(-\infty, \infty)$

Range: $[-1, \infty)$

f(0) = 4 **INSTRUCTOR USE ONLY** © 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. © Cengage Learning. All Rights Reserved.

Visit TestBankDeal.com to get complete for all chapters