CHAPTER 2

QUESTIONS

1. The two major objectives of materials control are (1) physical control or safeguarding the materials and (2) control of the investment in materials.
2. The controls established for safeguarding materials include limiting access to the materials area, segregating the duties of employees involved with materials, and assuring that materials records are being maintained accurately.

Limiting access involves placing inventories in storage areas that can be entered only by authorized personnel and restricting the release of any materials or finished goods to individuals who have properly authorized documents. Control procedures that limit access to work in process areas should be established within each department or production station.

The segregation of duties involves assigning different people to different functions. Employees assigned to purchasing should not also be assigned to receiving, storage, or recording functions, etc.

The accurate recording of purchases and issuances of materials facilitates comparing the recorded materials on hand to the actual materials on hand. If a substantial difference between the recorded and actual quantities is discovered, it can be quickly determined and investigated.
3. Management should consider production and working capital requirements along with alternative uses of available funds that might yield a greater return. Consideration should also be given to the cost of materials handling, storage, and insurance protection against fire, theft, and other casualty losses. In addition, the possibility of loss from damage, spoilage, and obsolescence should not be overlooked.
4. Order point is the time to place an order for additional material because the level of stock has reached a predetermined minimum established by management.
5. In order to determine an order point, the information available should include the:
(1) anticipated daily usage of the material,
(2) lead-time interval, and
(3) required safety stock.

The anticipated usage requirement should be founded upon the number of units expected to be completed daily and the quantity of material each completed unit will require.

The lead time interval involves the typical period of time required between placing the order and receiving the shipment.

The safety stock is the minimum stock on hand needed to prevent running out of stock due to errors in calculations of usage, delivery delays, poor quality of merchandise received, and so on.
6. The economic order quantity (EOQ) is the calculated size of an order that minimizes the total cost of ordering and carrying the inventory over a specified period of time. It is a function of the cost of placing an order, the number of units required annually, and the carrying cost per unit of inventory
7. The cost of placing an order, the number of units required annually, and the annual carrying cost per unit in inventory are the items needed to calculate the economic order quantity.
8. The cost of an order includes the salaries and wages of employees who purchase, receive, and inspect materials; the expenses incurred for telecommunications, postage, and forms; and the accounting and record keeping associated with inventories.
9. The carrying cost of materials inventory includes the cost of storage and handling; the amount of interest lost on alternative investments; the losses due to obsolescence, spoilage, and theft; the cost of insurance and property taxes; and the cost of maintaining accounting records and controls over the inventory.
10. The supply chain is the system that links a manufacturer with its suppliers. If the system is especially "lean", in an effort to be cost efficient, it is quite possible that parts may not be available when needed due to work stoppages, strikes, or natural disasters.
11. a. Purchasing agent duties include:
(1) coordinating materials requirements with production to prevent delays in production due to inadequate materials supply on hand.

Chapter 02

(2) compiling and maintaining a vendor file from which materials can be promptly obtained at the best available prices. (Note to Instructor: You may take this opportunity to explain to the student that the "lowest" price may not always be the "best" price.) The purchasing agent should also consider the quantity to be ordered at one time to get a lower unit price, the quality of the material, the time lapse before delivery, the credit terms, and the reliability of the vendor.
(3) placing purchase orders for materials needed.
(4) supervising the purchase order process until materials are received.
b. The receiving clerk is responsible for supervising the receipt of incoming shipments. These duties include checking the quantity and quality of the goods received.
c. The storeroom keeper's usual duties include properly storing all materials received, issuing materials only when proper authorization is presented, and keeping the purchasing agent informed of the quantities on hand.
d. The production supervisor is responsible for maintaining production and for preparing or approving requisitions for the quantities and kinds of materials needed for current production.
12. A purchase requisition is used by the storeroom keeper to provide the purchasing agent with information concerning the materials to be ordered. A purchase order is a document completed by the purchasing agent and sent to a vendor to order the materials.
13. An enterprise resource planning (ERP) system is a sophisticated computer system that coordinates the sales and production scheduling functions with the purchase and control of materials.
14. Many manufacturing firms use forms somewhat similar to those shown in the text; however, most firms design forms to meet their specific requirements. These specially designed forms usually perform the same functions as those depicted in the text but may
vary in appearance. For example, a purchase order will provide for recording all essential information to obtain materials from selected vendors, regardless of the design or format. Many firms now use enterprise resource planning systems to control materials and electronic data interchange to communicate with suppliers and expedite the receipt of orders which might eliminate the use of some forms.
15. The internal control procedures established for incoming shipments should provide the following safeguards:
a. A receiving report prepared by the receiving clerk authenticates the quantity of specific items ordered and verifies that they were received in good condition.
b. A copy of the receiving report should accompany the materials received when they are moved from the receiving area to the storeroom. As materials are placed in location, the storeroom keeper should review and substantiate the quantities received per the receiving report.
c. The cost and quantity of each item on the approved invoice are independently recorded in the materials ledger.
d. The total of the invoice is independently recorded in the purchases journal to be subsequently posted to the appropriate general ledger accounts.
e. The invoice for materials purchased should not be approved for payment until it is matched to the receiving report and purchase order and the following details are checked:
(1) The unit prices and materials descriptions on the invoice are compared with similar data on the purchase order.
(2) The extensions of unit prices and totals are verified.
(3) The terms of payment and any other charges are verified with the purchase order.
(4) The method of shipment and date of delivery are verified.
16. The purpose of a debit-credit memorandum is to inform the vendor that an adjustment has been made to the vendor's account. The information on the memo includes the amount of the adjustment, the reason for the adjustment, and the type and quantity of materials involved.
17. The bill of materials is a file contained in an enterprise resource planning system that lists all of the materials and components that make up a finished product. When orders are received from customers, the bill of material is used to compute the quantities of materials required. This information is used to prepare lists for the storeroom clerk or trigger purchase requisitions.
18. A materials ledger is a subsidiary ledger in which individual accounts are kept for each item of material carried in stock. The materials account in the general ledger is the control account for the materials ledger.
19. a. First-in, first-out: It is assumed that materials issued are from the oldest materials in stock. They were the first purchased and are costed at the prices paid for these earliest purchases. The cost of the ending inventory will reflect the prices paid for the most recent purchases.
b. Last-in, first-out: It is assumed that materials issued are from the most recent stock. The last purchased will be the first used at the prices paid for these latest purchases. The ending inventory will be costed at the prices paid for the earliest purchases.
c. Weighted average: Under this method, no attempt is made to identify the materials issued as to the time of purchase. The average unit price of all materials in stock is maintained; therefore, materials issued are costed on a basis of average prices. Unit cost changes each time unit purchase prices change; therefore, ending inventory will be priced at the latest average cost.
20. In a period of rising prices, the LIFO method estimates the cost of goods sold using the materials purchased at the highest prices. Such costs, when matched to sales for the period are believed to more accurately reflect the gross margin earned. The lower income, resulting from the use of LIFO, means that a smaller amount of taxes will be paid than if some other method were used.

Since LIFO leaves the earlier costs of purchases in inventory, the overall value of the materials on hand at the end of a period will be more conservatively stated than if FIFO were used. This lower valuation of materials inventory, which affects both the income statement and the balance sheet, may be an advantage or a disadvantage depending on the use made of the balance sheet. The lower valuation is an advantage when property taxes are assessed on the dollar amount of inventory on hand.

Many companies, when prices are rising, adopt LIFO to minimize the income tax effects and believe that in such economic trends the costs charged against sales more accurately depict reality.
21.

Entries

Source of Data
a. Debits in materials ledger to record materials purchased
b. Credits in materials ledger to record

Materials requisition materials requisitioned
c. Debits in job cost ledger to record materials placed in Materials requisition form process
22. In a just-in-time manufacturing system, materials are not received from suppliers until they are ready to be put into process. The work is not done in one department until the subsequent department is ready to work on it. This approach differs from a traditional manufacturing system where materials are ordered and stored well in advance of production, and departments stockpile partially completed units until the next department is ready for them.
23. A traditional "push" manufacturing system produces goods for inventory in the hope that the demand for these goods will then be created. In a JIT "pull" manufacturing system, the credo is "Don't make anything for anybody until they ask for it".
24. Disadvantages of a "push" manufacturing system include: having too many dollars invested in inventory; defects not being detected because partially completed goods are inventoried rather than completed immediately; obsolete products due to the long lead time from start to finish.
25. The throughput time is the time that it takes a unit to make it through the production system, and it is computed by dividing the number of units in work in process by the number of units completed each day to obtain a measure in days. Velocity also measures the speed with which units are produced in the system, but in percentage terms relative to past production; for example, velocity increased by 50%.
26. Advantages of producing all units in a single cell include: fewer and shorter movements of materials; production in smaller lot sizes because other products do not have to be made in the same cell; more worker motivation and satisfaction due to the teamwork approach within the cell.
27. Critics of "backflush" costing argue that it is not consistent with GAAP because it does not accurately account for inventories. Proponents of "backflush" costing argue that Work in Process and Finished Goods are immaterial in a lean production environment and, therefore, their omission does not materially misstate the financial statements.
28. Six Sigma is a process improvement method that uses data gathering, analytical techniques, and customer feedback, and whose aim is to have no more than 3.4 defects per one million process occurrences. It is an important goal because the manufacture and sale of defective items is costly and tends to damage a company's reputation.
29. If the value of the scrap is high, an inventory file should be prepared showing the quantity and market value. If both quantity and market value are known, an inventory account should be debited while an account such as Scrap Revenue is credited. If the market value of the scrap is unknown, a journal entry cannot be made until the scrap is sold, at which time Cash (or Accounts Receivable) is debited and Scrap Revenue is credited.
30. Spoiled work represents products that are not first quality by the company's standards and have imperfections that will not be corrected. They are sold as irregular units, called seconds. Defective work also includes goods that are not first quality by the established standard but have imperfections that will be corrected, making them firstquality products.

EXERCISES

E2-1

a. $500 \mathrm{lbs} . \times 7$ days $3,500 \mathrm{lbs}$.

Safety stock required 2,500
Order point..................... $\underline{\underline{6,000}}$ lbs.
b. $500 \mathrm{lbs} . \times 4$ days $\underline{\underline{2,000}} \mathrm{lbs}$.

E2-2

a. $E O Q=\sqrt{\frac{2 \mathrm{CN}}{\mathrm{K}}}$
$=\sqrt{\frac{2 \times \$ 72 \times 360,000}{\$ 4}}$
$=\sqrt{\frac{\$ 51,840,000}{\$ 4}}$
$=\sqrt{12,960,000}$
= 3,600 gallons
b. 360,000 gals. (annual usage) $\div 3,600$ gals. (per order) $=100$ orders

Ordering cost: 100 orders @ $\$ 72$ per order
Carrying cost: (3,600 gals. $\div 2$) @ $\$ 4.00$ per gals
Total order and carrying cost

E2-3

a. $\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{CN}}{\mathrm{K}}}$
$=\sqrt{\frac{2 \times \$ 40 \times 225,000}{\$ 2}}$
$=\sqrt{\frac{\$ 18,000,000}{\$ 2}}$
$=\sqrt{\$ 9,000,000}$
$=3,000$ gallons

E2-3 Concluded

b. 225,000 gals. (annual usage) $\div 3,000$ gals. (per order) $=75$ orders

Ordering cost: 75 orders @ \$40 per order
\$3,000
Carrying cost: (3,000 gals. $\div 2$) @ $\$ 2.00$ per gals. 3,000
Total order and carrying cost.. \$6,000

E2-4

Work in Process .. 68,000*
Factory Overhead... 4,800**
Materials
72,800
To record materials used during the month of June.

* \$20,000 + \$18,000 + \$16,000 + \$3,000 + \$9,000 + \$2,000
** $\$ 1,800$ + \$1,300 + \$1,700

E2-5

a. Materials... 200,000
Accounts Payable 200,000
b. Work in Process 175,000
Materials 175,000
c. Factory Overhead 12,000
Materials 12,000
2,500
d. Materials ..
Work in Process 2,500
e. Accounts Payable 1,800Materials1,800
f. Accounts Payable 165,000Cash165,000
E2-6
FIFO method

LIFO method

E2-6 Concluded

Weighted average method

	RECEIVED			ISSUED			BALANCE			
Date	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount	Quantity	Unit Price		Amount
8/1							1,250	250		312,500
8/8	1,000	275	275,000				2,250	261.111		587,500
8/15				1,800	261.111	470,000	450	261.111		117,500
8/24	1,000	285	285,000				1,450	277.586	2	402,500
8/27				1,200	277.586	333,103	250	277.586		69,397

[^0]E2-7
First-in, first-out method

	RECEIVED			ISSUED			BALANCE		
Date	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount
7/1							1,000	4.00	4,000.00
7/3				250	4.00	1,000.00	750	4.00	3,000.00
7/5	500	4.50	2,250.00				750	4.00 \}	
							500	4.50	5,250.00
7/6				150	4.00	600.00	600	$4.00\}$	
							500	4.50	4,650.00
7/10				110	4.00	440.00	490	4.00	
							500	4.50 \}	4,210.00
7/11				(10)	4.00	(40.00)	500	4.00	
							500	4.50 \}	4,250.00
7/15	500	5.00	2,500.00				500	4.00	
							500	4.50	
							500	5.00	6,750.00
7/20	(300)	5.00	(1,500.00)				500	4.00	
							500	4.50 \}	
							200	5.00	5,250.00
7/26				500	4.00	2,000.00	400	4.50	
				100	4.50	450.00	200	5.00 \}	2,800.00

[^1]Last-in, first-out method

	RECEIVED			ISSUED			BALANCE		
Date	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount
7/1							1,000	4.00	4,000.00
7/3				250	4.00	1,000.00	750	4.00	3,000.00
7/5	500	4.50	2,250.00				750	4.00	
							500	4.50	5,250.00
7/6				150	4.50	675.00	750	4.00	
							350	4.50 \}	4,575.00
7/10				110	4.50	495.00	750	4.00	
							240	4.50 \}	4,080.00
7/11				(10)	4.50	(45.00)	750	4.00	
							250	4.50	4,125.00
7/15	500	5.00	2,500.00				750	4.00	
							250	4.50 \}	
							500	5.00	6,625.00
7/20	(300)	5.00	(1,500.00)				750	4.00	
							250	4.50	
							200	5.00	5,125.00
7/26				200	5.00	1,000.00			
				250	4.50	1,125.00			
				150	4.00	600.00	600	4.00	2,400.00

[^2]E2-9

Weighted average method									
	RECEIVED			ISSUED			BALANCE		
Date	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount
7/1							1,000	4.00	4,000.00
7/3				250	4.00	1,000.00	750	4.00	3,000.00
7/5	500	4.50	2,250.00				1,250	${ }^{2} 4.201$	5,250.00
7/6				150	4.20	630.00	1,100	4.20)	4,620.00
7/10				110	4.20	462.00	990	4.20 1	4,158.00
7/11				(10)	4.20	(42.00)	1,000	4.20 J	4,200.00
7/15	500	5.00	2,500.00				1,500	${ }^{3} 4.4667$	6,700.00
7/20	(300)	$5.00{ }^{1}$	(1,500.00)				1,200	${ }^{4} 4.3333$	5,200.00
7/26				600	4.3333	2,600.00	600	4.3333	2,600.00

Cost of materials used (issued): $\$ 4,650$
Cost of $7 / 31$ inventory: $\$ 2,600$

[^3]
Inventory Method

FIFO
LIFO
Weighted average

Cost Transferred to Work in Process

$\$ 4,450$	$\$ 2,800$
4,850	2,400
4,650	2,600

Cost of Ending Inventory

\$2,800
2,400
2,600

In a period of constantly rising prices as illustrated in the problem, the LIFO method of inventory pricing will result in the highest cost being charged to cost of goods sold; the FIFO method will result in the lowest cost being charged to cost of goods sold; and the weighted average method will result in a cost between the other two. Theoretically, LIFO provides a better "matching of costs with revenue" because the inventory sold will have to be replaced at current prices. In a period of falling prices, the reverse will be true, with the weighted average method again falling in between the other two.

E2-11

a. The FIFO method, which results in the most recent purchases being costed in ending inventory, indicates that materials costs have continued to increase over the three-year period, given that the number of units in inventory did not change.
b. FIFO would show the highest net income for 2017. The information given indicates that prices rose during the year. Using FIFO, the cost of goods sold would be charged with the oldest materials costs, which during a time of rising prices would be the lowest materials costs.
c. LIFO would show the lowest net income for 2018, because it would continue to charge the latest and highest costs to cost of goods sold while the other two methods would be less affected by the rising cost of the more recent purchases.
d. FIFO would show the highest net income for the three years combined, because it consistently charges the earliest, lower costs to the product, thereby increasing the yearly net income.
a. 1. Materials 23,750
Accounts Payable 23,750
2. Work in Process 19,250Materials19,250
3. Materials 1,200
Work in Process 1,200
4. Factory Overhead 2,975Materials2,975
5. Materials 385Factory Overhead385
b.

Materials			
Bal.	5,000	(2)	19,250
(1)	23,750	(4)	2,975
(3)	1,200		22,225
(5)	385		
8,110			30,335

Work in Process			Accounts Payable			
(2)	19,250	(3)		(1)	23,750	

Factory Overhead			
(4)	2,975	(5)	385
	2,590		

c. $\$ 8,110$
E2-13
a. 1. Materials 35,750Accounts Payable35,750
2. Work in Process 29,250
Materials 29,250
3. Materials 2,200
Work in Process 2,200
4. Factory Overhead

\qquad 3,975
Materials 3,975
5. Materials 585
Factory Overhead 585

E2-13 Concluded

b.

Materials				Factory Overhead			
Bal.	10,000	(2)	29,250	(4)	3,975	(5)	585
(1)	35,750	(4)	3,975				
(3)	2,200		33,225				
(5)	585						
	48,535						

Work in Process			
(2)	29,250	(3)	2,200
	27,050		

Accounts Payable		
	(1)	35,750

c. $\$ 15,310$

E2-14

1. $25,000 / 5,000=5$ days
2. $25,000-(25,000 \times 0.50)=12,500$
$12,500 / 5,000=2.5$ days
3. a. $0.15 \times \$ 500,000=\$ 75,000$
b. $0.15 \times(0.5 \times \$ 500,000)=\$ 37,500$

E2-15

a. Raw and In-Process 80,000Accounts Payable80,000b. No entry.c. Conversion Costs10,000Payroll10,000
d. Conversion Costs 60,000Various Credits
\qquad60,000
e. Finished Goods 150,000
Raw and In-Process 80,000
Conversion Costs 70,000

E2-15 Concluded

f. Accounts Receivable 225,000Sales225,000
Cost of Goods Sold 150,000Finished Goods150,000
E2-16
e. No entry
f. Cost of Goods Sold 150,000
Raw and In-Process. 80,000
Conversion Costs 70,000
E2-17
a. Raw and In-Process. 70,000
Accounts Payable 70,000
b. No entry.
c. Conversion Costs 15,000
Payroll 15,000
d. Conversion Costs 45,000Various Credits45,000
e. Finished Goods 130,000
Raw and In-Process 70,000
Conversion Costs 60,000
f. Accounts Receivable 195,000
Sales195,000
Cost of Goods Sold 130,000Finished Goods130,000
E2-18
e. No entry
f. Cost of Goods Sold. 130,000
Raw and In-Process 70,000
Conversion Costs 60,000

E2-19

a. Scrap Materials 125
Factory Overhead (Scrap) 125
Cash 125Scrap Materials125
b. No entry at the time scrap is identifiedAt the time of sale:
Cash 75
Factory Overhead (Scrap) 75
c. No entry at the time scrap is identified
At the time of sale:
Accounts Receivable 85
Work in Process85
d. No entry at the time scrap is identified
At the time of sale:
Cash 40
Scrap Revenue 40
E2-20
a. Work in Process 108,000
Materials36,000
Payroll 48,000
Factory Overhead 24,000
Spoiled Goods Inventory 995
Factory Overhead (Loss Due to Spoiled Work) 355*
Work in Process 1,350
*Unit cost of completed work:
\$108,000 $\div 8,000$ skirts \$13.50
Sale of spoiled work as seconds 9.95
Loss due to spoiled work $\$ 3.55$
100 units $\times \$ 3.55=\$ 355$

E2-20 Concluded

b. Work in Process 108,000Materials36,000
Payroll. 48,000
Factory Overhead 24,000
Spoiled Goods Inventory 995
Work in Process 995
E2-21
a. Factory Overhead (Loss Due to Defective Work) 300
Materials 150
Payroll 100
Factory Overhead 50
b. Work in Process 300
Materials 150
Payroll 100
Factory Overhead 50

PROBLEMS

P2-1

1. Order Point $=$ Expected Usage During Lead Time + Safety Stock
$=(200$ units per day $\times 5$ days $)+500$ units

$$
=1,500 \text { units }
$$

2. $\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{CN}}{\mathrm{K}}}$

$$
\begin{aligned}
& =\sqrt{\frac{2 \times \$ 50 \times 25,000}{\$.10}} \\
& =\sqrt{25,000,000} \\
& =5,000 \text { units }
\end{aligned}
$$

3. 25,000 units (annual usage) $\div 5,000$ units (per order) $=5$ orders

Ordering cost: 5 orders @ $\$ 50$ per order $=\underline{\underline{\$ 250}}$

$$
\begin{aligned}
\text { Average number of units in inventory } & =(1 / 2 \times \mathrm{EOQ})+\text { Safety Stock } \\
& =(1 / 2 \times 5,000)+500 \\
& =3,000
\end{aligned}
$$

Carrying Cost $=$ Average Inventory \times Carrying Cost per Unit

$$
=3,000 \times \$.10 \quad=\underline{\underline{\$ 300}}
$$

Total Cost $=$ Order Costs + Carrying Costs

$$
=\$ 250+\$ 300 \quad=\$ 550
$$

(Note that when there is safety stock, the carrying cost does not equal the order cost at the EOQ.)

P2-2

1. Order Point $=$ Expected Usage During Lead Time + Safety Stock

$$
\begin{aligned}
& =(500 \text { units per day } \times 5 \text { days }) \quad+\quad 1,500 \text { units } \\
& =4,000 \text { units }
\end{aligned}
$$

P2-2 Concluded

2. $\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{CN}}{\mathrm{K}}}$

$$
\begin{aligned}
& =\sqrt{\frac{2 \times \$ 194.45 \times 63,000}{\$.50}} \\
& =\sqrt{49,001,400} \\
& =7,000 \text { units (rounded) }
\end{aligned}
$$

3. 63,000 units (annual usage) $\div 7,000$ units (per order) $=9$ orders Ordering cost: 9 orders @ \$194.45 per order $=\$ 1,750$ (rounded)

Average number of units in inventory $=(1 / 2 \times E O Q)+$ Safety Stock

$$
\begin{aligned}
& =(1 / 2 \times 7,000)+1,500 \\
& =5,000
\end{aligned}
$$

Carrying Cost	$=$ Average Inventory	\times Carrying Cost per Unit	
	$=5,000$	$\times \$.50$	$=\underline{\$ 2,500}$
Total Cost	$=$ Order Costs		+ Carrying Costs

(Note that when there is safety stock, the carrying cost does not equal the order cost at the EOQ.)

P2-3

Order Size 1	Number of Orders 2		Order Cost 3	Avg Inv 4	
300	67	$\$ 1,340$	150	Carrying Cost $^{\mathbf{5}}$	
$\mathbf{4 0 0}$	$\mathbf{5 0}$	$\mathbf{1 , 0 0 0}$	$\mathbf{2 0 0}$	 C. C.	
500	40	800	250	1,250	2,090
600	34	680	300	1,500	2,180
700	29	580	350	1,750	2,330
800	25	500	400	2,000	2,500

P2-3 Concluded

2. Annual requirement of 20,000 gallons divided by order size in column 1 .
3. Number of orders $\times \$ 20$ cost per order.
4. Order size in column 1 divided by 2.
5. Average inventory in column $4 \times \$ 5$ per gallon carrying cost.
6. Total order cost in column $3+$ total carrying cost in column 5 .

P2-4

1. Average number of gals. In inventory $=(1 / 2 \times E O Q)+$ Safety Stock

$$
=(1 / 2 \times 400)+500=700 \text { gals } .
$$

2. Carrying costs $=$ Average inventory \times Carrying Cost per Unit

$$
=700 \text { gals. } \times \$ 5=\$ 3,500
$$

3. Since the EOQ does not change, the number of orders (50) does not change; therefore, the total order cost is still $\$ 1,000$ (or $50 \times \$ 20$).
P 2-5

	MATERIALS LEDGER										
	Description Rubber gaskets								Materials Ledger Account No. 11216		
Date	RECEIVED				ISSUED				BALANCE		
	Rec. Rep. No.	Quantity	Unit Price	Amount	Mat. Req. No.	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount
11/1									30,000	3.00	90,000.00
11/4	112	10,000	3.10	31,000.00					30,000	3.00	
									10,000	3.10 J	121,000.00
11/5					49	30,000	3.00	90,000.00	10,000	3.10	31,000.00
11/8	113	50,000	3.30	165,000.00					10,000	3.10	
									50,000	3.30 f	196,000.00
11/15					50	10,000	3.10				
						10,000	3.30 \}	64,000.00	40,000	3.30	132,000.00
11/22	114	25,000	3.50	87,500.00					40,000	3.301	
									25,000	3.50	219,500.00
11/28					51	30,000	3.30	99,000.00	10,000	3.301	
									25,000	3.50)	120,500.00

P2-5 Continued
P2-5 Continued

	inimictimlo LEDGER										
	Description Rubber gaskets							Materials Ledger Account No. 11216\qquad			
	RECEIVED				ISSUED				BALANCE		
Date	Rec. Rep. No.	Quantity	Unit Price	Amount	Mat. Req. No.	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount
11/1									30,000	3.00	90,000.00
11/4	112	10,000	3.10	31,000.00					40,000	3.025^{1}	121,000.00
11/5					49	30,000	3.025	90,750.00	10,000	3.025	30,250.00
11/8	113	50,000	3.30	165,000.00					60,000	3.25417^{2}	195,250.00
11/15					50	20,000	3.25417	65,083.40	40,000	3.25417	130,166.60
11/22	114	25,000	3.50	87,500.00					65,000	3.34872^{3}	217,666.60
11/28					51	30,000	3.34872	100,461.60	35,000	3.34872	117,205.00

[^4]
P2-5 Concluded

2.

Inventory Method
FIFO.
LIFO
Weighted average

Cost Transferred to Work in Process

\$253,000
261,000
256,295

Cost of Ending Inventory

\$120,500
112,500
117,205
3. Probably LIFO because it will come closer to matching current costs with current revenues. When costs are rising, revenues are usually increasing; therefore, the resulting gross profit under LIFO will reflect the company's product profitability more accurately. Other inventory factors that should be given consideration in selecting any method are: the dollar amount of the inventories; the magnitude of the price changes; the direction of the price changes, whether rising or falling; and the length of the inventory cycle. Also, adopting LIFO in periods of rising prices will result in the minimization of income taxes.
4. In a period of rising prices, the balance sheet inventory under either method will most likely be less than the current market prices. However, as shown by the problem, the lowest figure for ending inventory will be reported when LIFO is used. LIFO charges the higher materials cost to Cost of Goods Sold whereas FIFO defers more of the higher cost to the inventory on hand.
P2-6

1. FIFO method

	MATERIALS LEDGER										
	Description Plastic tubing (ft.)							Materials Ledger Account No. 906\qquad			
	RECEIVED				ISSUED				BALANCE		
Date	Rec. Rep. No.	Quantity	Unit Price	Amount	Mat. Req. No.	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount
2/1									1,200	2.76	3,312.00
2/5					108	60	2.76	165.60	1,140	2.76	3,146.40
2/11					210	200	2.76	552.00	940	2.76	2,594.40
2/14	634	800	2.80	2,240.00					940	2.76)	
									800	2.80 \}	4,834.40
2/15					274	400	2.76	1,104.00	540	2.76	
									800	2.80 J	3,730.40
2/16	Ret.	(90)	2.80	(252.00)					540	2.76	
									710	2.80 ك	3,478.40
2/18	712	1,000	2.83	2,830.00					540	2.76	
									710	2.80 \}	
									1,000	2.83	6,308.40
2/21					318	540	2.76	1,490.40			
						100	2.80)	280.00	610	2.80	
									1,000	2.83 J	4,538.00

P2-6 Continued

2. LIFO method

	MATERIALS LEDGER										
	Description Plastic tubing (ft.)								$\text { Account No. } 906$		
	RECEIVED				ISSUED				BALANCE		
Date	Rec. Rep. No.	Quantity	Unit Price	Amount	Mat. Req. No.	Quantity	Unit Price	Amount	Quantity	Unit Price	Amount
2/1									1,200	2.76	3,312.00
2/5					108	60	2.76	165.60	1,140	2.76	3,146.40
2/11					210	200	2.76	552.00	940	2.76	2,594.40
2/14	634	800	2.80	2,240.00					940	2.76 \}	
									800	2.80	4,834.40
2/15					274	400	2.80	1,120.00	940	2.76 \}	
									400	2.80	3,714.40
2/16	Ret.	(90)	2.80	(252.00)					940	2.76 \}	
									310	2.80	3,462.40
2/18	712	1,000	2.83	2,830.00					940	2.76	
									310	2.80	
									1,000	2.83	6,292.40
2/21					318	640	2.83	1,811.20	940	2.76	
									310	2.80	
									360	2.83	4,481.20

Concluded
 P2-6

3. Weighted average method

[^5]
P2-7

1.

a. Materials
74,000
Accounts Payable
74,000
b. Work in Process... 57,000
Factory Overhead 11,000
Materials
68,000
c. Materials \qquad 1,100
Work in Process
1,100
d. Accounts Payable
2,500
Materials
2,500
e. Accounts Payable
68,500
Cash
68,500
2.

Cash			
Bal.	82,250	(e)	68,500

Accounts Payable			
(d)	2,500	Bal.	21,000
(e)	68,500	(a)	74,000
	71,000		95,000
			24,000

Materials
Factory Overhead

Bal.	29,500	(b)	68,000
(a)	74,000	(d)	2,500
(c)	1,100		70,500
34,100			
Work in Process			
Bal.	27,000	(c)	1,100
(b)	57,000		
82,900			

3. a. Cash
\$ 13,750
b. Materials

34,100
c. Accounts payable

24,000

P2-8

1.

a. Materials
58,000
Accounts Payable
58,000 58,000
b. Work in Process
45,000
Factory Overhead 8,000
Materials
53,000
c. Materials \qquad 900
Work in Process
d. Accounts Payable
1,500
Materials
1,500
e. Accounts Payable ... 51,500
Cash
51,500
2.

Cash				Accounts Payable			
Bal.	64,250	(e)	51,500	(d)	1,500	Bal.	29,000
12,750				(e)	51,500	(a)	58,000
					53,000		87,000
						34,000	
Materials				Factory Overhead			
Bal.	23,500	(b)	53,000	(b)	8,000		
(a)	58,000	(d)	1,500				
(c)	900		54,500				
	82,400						

Work in Process			
Bal.	31,000	(c)	900
(b)	45,000		
	76,000		
	75,100		

3. a. Cash

\$ 12,750
b. Materials
c. Accounts payable 34,000

P2-9

1. and 2.
a. The company purchased materials costing $\$ 22,000$. (Forms used: receiving report and vendor's invoice.)
b. The storeroom issued direct materials to the factory in the amount of $\$ 19,000$. (Form used: materials requisitions.)
c. The direct labor cost was $\$ 17,000$.
d. Factory overhead in the amount of $\$ 12,000$ was charged to jobs in process.
e. Jobs having a total cost of $\$ 47,500$ were completed in the factory and transferred to the finished goods storeroom.
f. Total cost of goods sold during the month was $\$ 55,000$.
2. Ending Inventories:

Materials
\$10,000
Work in Process
4,100
Finished Goods
4,150
P2-10

	a.	b.	c.	d.
Date	Form	Journal Entry	Book of Original Entry	Subsidiary Ledger
Mar. 31	Purchase Requisition (for 1,800 aluminum sheets)	None	None	None
Apr. 1	Purchase Order	None	None	Materials Ledger (if "On Order" column is used)
Apr. 6	Receiving Report Vendor's Invoice	Materials \qquad Accounts Payable (1,700 sheets @ \$25) 42,500 \qquad 42,500	Purchases Journal	Materials Ledger
Apr. 11	Receiving Report Vendor's Invoice	Materials \qquad Accounts Payable (100 sheets @ \$25) 2,500 \qquad 2,500	Purchases Journal	Materials Ledger
Apr. 16	Approved Invoice	Accounts Payable........42,500 Cash41,650 Purchases Discount.................... 850	Cash Payments Journal	None

P2-10 Concluded

	a.	b.	c.	d.
Date	Form Used	Journal Entry	Book of Original Entry Used	Subsidiary Records Affected
Apr. 30	Materials Requisition	$\left.\begin{array}{l} \text { Work in Process.................. 46,500 } \\ \begin{array}{rl} \text { Materials............ } \end{array} \\ \qquad \begin{array}{rrrr} 500 & \times & \$ 23 & = \\ 500 & \$ 11,500 \\ 1,400 & \times & \$ 23 & = \\ \hline 11,500 \\ & & & \\ \hline \$ 4,500 \\ \$ 46,500 \end{array} \end{array}\right] .$	General Journal	Materials Ledger Job Cost Ledger
Apr. 30	Returned Materials Report	Materials....................... Work in Process...... $(20$ sheets @ \$25)	General Journal	Materials Ledger Job Cost Ledger
Apr. 30	Inventory Report	Factory Overhead(Inventory Short and Over).... $550 \quad$Materials.......... $(22$ sheets$\$ 25$) *420 unused sheets - 398 sheets on hand	General Journal	Stores Ledger Factory Overhead Ledger

*Beg. Bal. $500+$ purchased 1,800 - requisitioned $1,900+$ returned $20=420$

P2-11

1. $200,000 / 50,000=4$ days
2. $25 \% \times \$ 1,000,000=\$ 250,000$
3. $[(200,000 \times(1-0.50)] / 50,000=2$ days
4. By reducing the average work in process by 50% while keeping the daily production constant, the velocity of production doubled.
5. $25 \% \times(1 / 2 \times \$ 1,000,000)=\$ 125,000$
6. The cost of carrying inventory has been reduced by 50%.

P2-12

1.

a. Raw and In-Process
150,000
Accounts Payable
150,000
b. No entry
c. Conversion Costs... 25,000

Payroll
25,000
d. Conversion Costs.. 100,000

Various Credits
100,000
e. Finished Goods.. 275,000

Raw and In-Process.. 150,000
Conversion Costs... 125,000
f. Accounts Receivable ... 400,000

Sales .. 400,000
Cost of Goods Sold.. 275,000
Finished Goods... 275,000
2.
e. No entry
f. Cost of Goods Sold

275,000
Raw and In-Process
150,000
Conversion Costs
125,000

P2-13

1.

a. Raw and In-Process 135,000
Accounts Payable 135,000
b. No entry
c. Conversion Costs .. 20,000

Payroll
20,000
d. Conversion Costs .. 80,000

Various Credits
80,000
e. Finished Goods... 235,000

Raw and In-Process
135,000
Conversion Costs ... 100,000
f. Accounts Receivable ... 355,000
\qquad 355,000
Cost of Goods Sold .. 235,000
Finished Goods
235,000
2.
e. No entry
f. Cost of Goods Sold ... 235,000

Raw and In-Process.. 135,000
Conversion Costs
100,000

P2-14

a. Factory Overhead (Inventory Over and Short) 26

Materials
To adjust materials account to physical inventory count: $(10,000-9,950) \times \$.52=\$ 26$
b. Materials... 775

Work in Process
c. Work in Process ... 770

Factory Overhead (Repairs and Maintenance)
770
d. Accounts Payable ... 234

Materials
P 2-14 Concluded
e. Sales Returns and Allowances 5,000
Accounts Receivable
2,500
Finished GoodsCost of Goods Sold
20,200
f. Work in Process
2,100
Factory Overhead (Supplies)
Materials 22,300
g. Materials 25,685
Accounts Payable
950
h. Materials
Work in Process 950
i. Scrap Materials 685
Factory Overhead 685
j. Spoiled Goods 60
Work in Process 60
k. Cash 685
Scrap Materials 685
P2-15
1.
a. Work in Process 7,500
Materials 3,500
Payroll 1,500
Factory Overhead 2,500
b. Spoiled Goods $(6 \times \$ 50)$ 300
Factory Overhead (Loss Due to Spoiled Goods) 150
Work in Process $(6 \times \$ 75)$ 450
c. Cash 300
Spoiled Goods 300
2.
a. Same as 1a above.
b. Spoiled Goods 300Work in Process300c. Same as 1c above.

P2-16

2. Work in Process ... 4,350

Materials
1,650
Payroll.. 1,500
Factory Overhead .. 1,200

Payroll (18×\$100).. 1,800

5. NOTE: You may want students to read the Differential Cost Analysis section of Ch. 10 before attempting Part 5 of this problem. Alternatively, you may wish to challenge them with Part 5 to see if they can determine the relevant items to this decision without first teaching them the concept.

The cost of reconditioning the 15 defective motors is $\$ 4,350$ or $\$ 290$ each. Lloyd would be better off reconditioning the motors and selling them for $\$ 400$ for a gain of $\$ 110$ per unit versus selling them as is for $\$ 75$ each.

REVIEW PROBLEM FOR CHAPTERS 1 \& 2

P2-17R

1. and 3.

Cash			
Bal.	12,000	(b)	1,000
(e)	72,500	(g)	32,800
6,950	84,500	()	6,000
		(k)	2,000
		(l)	33,750
		(n)	2,000
			77,550

Prepaid Insurance			
Bal.	3,000	(m)	400
2,600			
Machinery			
Bal.	125,000		

	Accounts Receivable		
(d)	126,375	(e)	72,500
53,875			

Finished Goods

(q)	98,290	(r)	84,250
14,040			

Work in Process

Bal.	35,000	(q)	98,290
(a)	28,000		
(f)	54,340		
(p)	11,950		
31,000	129,290		

Materials			
Bal.	51,000	(f)	54,340
(b)	1,000	(h)	650
(c)	22,000		54,990
	74,000		
19,010			

Accum. Depr./Machinery		
	Bal.	10,500
(0)	1,200	
		11,700

Office Equipment						
Bal. 30,000						
Accum. Depr./Office Equipment			$	$	Bal.	4,800
:---	:---					
	(0)					
	500					

Office Furniture			
Bal.	20,000		
	Accum. Depr./Office Furniture		
		Bal.	2,500
		(0)	
			2,680

P2-17R Continued

2.
a. Work in Process.. 28,000
Factory Overhead 4,800
Payroll
32,800
b. Materials \qquad 1,000 Cash ... 1,000
c. Materials ... 22,000
Accounts Payable
22,000
d. Accounts Receivable .. 126,375
Sales 126,375
e. Cash ... 72,500
Accounts Receivable
72,500
P2-17R Continued
f. Work in Process 54,340
Materials 54,340
Chain:
12,000 lbs. @ $\$ 2.00$ \$24,000 2,000 lbs. @ \$2.20 4,400\$ 28,400Pulleys:4,000 sets @ \$5.00 \$20,000400 sets@ $\$ 5.10 \quad 2,040 \quad 22,040$Bolts and taps:
4,000 lbs. @ $\$.50$ 2,000
Steel plates:3,800 units@ $\$.50$1,900\$ 54,340
g. Payroll 32,800Cash..
650
h. Factory Overhead
Materials 650
i. Factory Overhead 3,000
Accounts Payable3,000
j. Selling and Administrative Expense (Salaries) 6,000
Cash2,000k. Selling and Administrative Expense (Advertising)
Cash
33,750
I. Accounts Payable
Cash
100
m. Selling and Administrative Expense (Insurance)
300
Factory Overhead
Prepaid Insurance 400

P2-17R Continued

n. Factory Overhead 2,000
Cash 2,000
o. Selling and Administrative Expense (Depreciation of Office Equipment and Office Furniture). 580
Factory Overhead 1,200
Accumulated Depreciation/Office Equipment 400
Accumulated Depreciation/Office Furniture 180
Accumulated Depreciation/Machinery 1,200
p. Work in Process 11,950
Factory Overhead 11,950
q. Finished Goods 98,290
Work in Process 98,290
(Beg. Bal. \$35,000 + Dir. Labor \$28,000 + Dir. Materials \$54,340 + Factory OH11,950 - End. Bal. \$31,000)
r. Cost of Goods Sold 84,250
Finished Goods 84,250
P2-17R Continued
4.
UltraLift Corp.
Statement of Cost of Goods Manufactured For the Month Ended October 31, 20—
Materials:
Inventory, October 1 \$51,000
Purchases 23,000
Total cost of available materials \$74,000
Less inventory, October 31 19,010
Cost of materials used \$54,990
Less indirect materials used 650
Cost of materials used in production \$ 54,340Direct labor28,000
Factory overhead 11,950
Total manufacturing costs \$ 94,290
Add work in process inventory, October 1 35,000\$ 129,290
Less work in process inventory, October 31 31,000
Cost of goods manufactured\$ 98,290
5. UltraLift Corp.
Income Statement
For the Month Ended October 31, 20—
Net sales \$ 126,375
Cost of goods sold:
Finished goods inventory, October 1 0
Add cost of goods manufactured (see statement) \$98,290
Goods available for sale \$98,290
Less finished goods inventory, October 31 14,040
Cost of goods sold84,250
Gross profit on sales \$ 42,125
Selling and administrative expenses 8,680
Net income$\$ \quad 33,445$

P2-17R Concluded

$6 . \quad$| UltraLift Corp. |
| :--- |
| Balance Sheet |
| October 31, $20-$ |

Assets
Current assets:
Cash...

Accounts receivable
\$ 6,950
53,875
Inventories:
Finished goods...................................... \$ 14,040

Work in process
Materials \qquad
Prepaid insurance
31,000
19,010
64,050
2,600
\$127,475
Plant and equipment:
Machinery \$ 125,000
Less accumulated depreciation 11,700
\$113,300
Office equipment
$\$ 30,000$
Less accumulated depreciation
5,200
\$ 20,000
Office furniture \qquad
2,680
17,320
Less accumulated depreciation.
\longrightarrow

155,420
\$282,895

Liabilities

Current liabilities:
Accounts payable \qquad
Stockholders' Equity
Capital stock \qquad
\$ 46,000
Retained earnings, October 1 33,445
Net income for October
\$182,200
\$ 21,250

79,445

Total stockholders' equity
Total liabilities and stockholders' equity \$282,895

MINI-CASE 1

1. Savings from implementing JIT:

Reduction in rework costs (\$300,000 $\times 25 \%$)	\$ 75,000
Reduction in storage and handling (\$250,000 $\times 40 \%$).	100,000
Savings in carrying costs (300,000 $\times \$.35)$.	105,000
Total savings.	\$280,000
Less: Increase in changeover costs	200,000
Net advantage of JIT.	\$ 80,000

2. Non-financial advantages:

- Anticipated improvement in product quality
- Frees up factory space for other uses.

Non-financial disadvantages:

- Interruptions in materials supply or strike by their own workers resulting in lost sales.
- Difficulty of workers to master JIT processes.

MINI-CASE 2

1. Inventory carrying costs such as storage space for raw materials, security, insurance, and spoilage and obsolesence should be reduced by a JIT system. Also, a JIT system can reduce nonvalue-added production activities such as moving materials and work in process, storage of work in process and finished goods, and inspection of work in process.
2. Yes, benefits to Phillips' customers would include increased customer satisfaction due to quicker delivery, decreased cost of products due to some of the savings in carrying costs and production costs being passed on to the consumer, and higher quality products due to quality control techniques being practiced at the time an individual unit is produced.
3. Yes, inventory should not be accounted for using traditional job costing techniques. Products move through the system so rapidly in a JIT environment that it would not be cost effective to track production costs to them while in process. For example, a Raw and In-Process account may replace the Materials account, and the Work in Process and Finished Goods accounts may disappear in a backflush costing system.

[^0]: $1,250 \times 250=312,500$
 $\frac{1,000}{2,250} \times 275=\frac{275,000}{587,500} / 2,250=\$ 261.111$ per kg.
 $450 \times 261.111=117,500$
 $\frac{1,000}{1,450} \times 285.000=\frac{285,000}{402,500} / 1,450=\$ 277.586$ per kg.
 $\stackrel{\sim}{\sim}$

[^1]: Cost of materials used (issued): $\$ 4,450$
 Cost of $7 / 31$ inventory: $\$ 2,800$

[^2]: Cost of materials used (issued): $\$ 4,850$ Cost of 7/31 inventory: \$2,400

[^3]: 3. $1,000 \times 4.20=4,200$
 $\overline{1,500}$ units $\quad \overline{6,700} / 1,500=4.4667$
[^4]: $$
 \frac{10,000}{40,000} \text { units }-\frac{01,000}{121,000 / 40,000}=3.025
 $$

 $$
 \begin{aligned}
 & 10,000 \times 3.025= \\
 & \frac{50,000}{60,000} \times 3.300=
 \end{aligned}
 $$

 $$
 195,250 / 60,000=3.25417
 $$

 3. $40,000 \times 3.25417=130,166.80$
[^5]: 3. $\begin{aligned} 1,250 \times 2.7768 & =3,471.04 \\ \frac{1,000}{2,250} \times 2.8300 & =\underline{2,830.00} \\ \text { units } & 6,301.04 / 2,250=2.8005\end{aligned}$ 1. $\begin{aligned} & 940 \times 2.76=2,594.40 \\ & \frac{800}{1,740} \times 2.80=\underline{2,240.00} \\ & 4,834.40\end{aligned} 1,740=2.7784$
