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Fourth Edition ( 2017 McGraw-Hill) 

Chapter 2

Answers to "Why?" in the text

Page 187, footnote 21 

Figure below shows specular reflection, that is, a totally elastic collision of an electron with the surface 
of a film. If this were a rubber ball bouncing off a wall, then there would only be a change in the y-
component vy of the velocity, which would be reversed. The x-component is unchanged. The collision 

has no effect on the vx component of the velocity. If there is an electric field in the −x direction then the 
electron can continue to gain velocity from the field as if it never collided with the wall. Specular 
reflection does not increase the resistivity. 

Page 196, footnote 21 

"Pure Al suffers badly from electromigration problems and is usually alloyed with small amounts of Cu, 
called Al(Cu), to reduce electromigration to a tolerable level. But the resistivity increases. (Why?)" The 
increase is due to Matthiessen's rule. The added impurities (Cu) in Al provide an additional scattering 
mechanism. 

2.1 Electrical conduction Na is a monovalent metal (BCC) with a density of 0.9712 g cm−3. Its atomic 
mass is 22.99 g mol−1. The drift mobility of electrons in Na is 53 cm2 V−1 s−1.

a.   Consider the collection of conduction electrons in the solid. If each Na atom donates one electron to 
the electron sea, estimate the mean separation between the electrons. (Note: if n is the concentration 
of particles, then the particles’ mean separation d = 1/n1/3.) 

b.  Estimate the mean separation between an electron (e−) and a metal ion (Na+), assuming that most of 
the time the electron prefers to be between two neighboring Na+ ions. What is the approximate 
Coulombic interaction energy (in eV) between an electron and an Na+ ion? 

c.  How does this electron/metal-ion interaction energy compare with the average thermal energy per 
particle, according to the kinetic molecular theory of matter? Do you expect the kinetic molecular 
theory to be applicable to the conduction electrons in Na?  If the mean electron/metal-ion interaction 
energy is of the same order of magnitude as the mean KE of the electrons, what is the mean speed of 
electrons in Na?  Why should the mean kinetic energy be comparable to the mean electron/metal-ion 
interaction energy? 
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d.   Calculate the electrical conductivity of Na and compare this with the experimental value of 2.1 × 107

Ω−1 m−1 and comment on the difference.  

Solution

a. If D is the density, Mat is the atomic mass and NA is Avogadro's number, then the atomic 
concentration  nat is 
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which is also the electron concentration, given that each Na atom contributes 1 conduction electron. 

If d is the mean separation between the electrons then d and nat are related by (see Chapter 1 Solutions, 
Q1.11; this is only an estimate) 
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d  = 3.40 × 10−10 m or 0.34 nm

b. Na is BCC with 2 atoms in the unit cell. So if a is the lattice constant (side of the cubic unit cell), the 
density is given by  
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so that  a = 4.284 × 10−10 m or 0.4284 nm 

For the BCC structure, the radius of the metal ion R and the lattice parameter a are related by (4R)2 = 
3a2, so that, 

)(3(1/4) 2aR =  = 1.855 × 10−10 m or 0.1855 nm 

If the electron is somewhere roughly between two metal ions, then the mean electron to metal 
ion separation delectron-ion is roughly R.  If delectron-ion ≈ R, the electrostatic potential energy PE between a 
conduction electron and one metal ion is then 
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∴ PE = −1.24 × 10−18 J or −7.76 eV

c. This electron-ion PE is much larger than the average thermal energy expected from the kinetic theory 
for a collection of “free” particles, that is Eaverage = KEaverage = 3(kT/2) ≈ 0.039 eV at 300 K.  In the case 
of Na, the electron-ion interaction is very strong so we cannot assume that the electrons are moving 
around freely as if in the case of free gas particles in a cylinder. If we assume that the mean KE is 
roughly the same order of magnitude as the mean PE, 
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where u is the mean speed (strictly, u = root mean square velocity) and me is the electron mass. 

Thus,  
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so that  u = 1.65 × 106 m/s

There is a theorem in classical physics called the Virial  theorem which states that if the 
interactions between particles in a system obey the inverse square law (as in Coulombic interactions) 
then the magnitude of the mean KE is equal to the magnitude of the mean PE.  The Virial Theorem 
states that: 

averageaverage
2

1
PE=KE −

Indeed, using this expression in Eqn. (2), we would find that u = 1.05 × 106 m/s. If the 
conduction electrons were moving around freely and obeying the kinetic theory, then we would expect 
(1/2)meu2 = (3/2)kT and u = 1.1 × 105 m/s, a much lower mean speed. Further, kinetic theory predicts 
that u increases as T1/2 whereas according to Eqns. (1) and (2), u is insensitive to the temperature. The 
experimental  linear dependence between the resistivity ρ and the absolute temperature T for most 
metals (non-magnetic) can only be explained by taking u = constant as implied by Eqns. (1) and (2). 

d. If µ is the drift mobility of the conduction electrons and n is their concentration, then the electrical 
conductivity of Na is σ = enµ.  Assuming that each Na atom donates one conduction electron (n = nat), 
we have  

)sVm1053)(m10544.2)(C10602.1( 112432819 −−−−− ×××== µσ en

i.e. σ = 2.16 × 107 Ω−1 m−1

which is quite close to the experimental value. 

Nota Bene:  If one takes the Na+-Na+ separation 2R to be roughly the mean electron-electron separation 
then this is 0.37 nm and close to d = 1/(n1/3) = 0.34 nm. In any event, all calculations are only 
approximate to highlight the main point. The interaction PE is substantial compared with the mean 
thermal energy and we cannot use (3/2)kT for the mean KE! 

2.2 Electrical conduction The resistivity of aluminum at 25 °C has been measured to be 2.72 × 10−8 Ω
m.  The thermal coefficient of resistivity of aluminum at 0 °C is 4.29 × 10−3 K−1.  Aluminum has a 
valency of 3, a density of 2.70 g cm−3, and an atomic mass of 27. 

a.   Calculate the resistivity of aluminum at ─40ºC. 

b.   What is the thermal coefficient of resistivity at ─40ºC? 

c.   Estimate the mean free time between collisions for the conduction electrons in aluminum at 25 °C, 
and hence estimate their drift mobility. 
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d.   If the mean speed of the conduction electrons is about 2 × 106 m s−1, calculate the mean free path 
and compare this with the interatomic separation in Al (Al is FCC). What should be the thickness of 
an Al film that is deposited on an IC chip such that its resistivity is the same as that of bulk Al? 

e.   What is the percentage change in the power loss due to Joule heating of the aluminum wire when the 
temperature drops from 25 °C to ─40 ºC? 

Solution

a. Apply the equation for temperature dependence of resistivity, ρ(T) = ρo[1 + αo(T − To)]. We have the 
temperature coefficient of resistivity, αo, at To where To is the reference temperature. We can either 
work in K or  °C inasmuch as only temperature changes are involved. The two given reference 
temperatures are 0 °C or 25 °C, depending on choice. Taking To = 0 °C,  

ρ(−40°C) = ρo[1 + αo(−40°C  − 0°C)] 

ρ(25°C) = ρo[1 + αo(25°C  − 0°C)] 

Divide the above two equations to eliminate ρo, 

ρ(−40°C)/ρ(25°C) = [1 + αo(−40°C)] / [1 + αo(25°C)] 

Next, substitute the given values ρ(25°C) = 2.72 × 10−8 Ω m and αo = 4.29 × 10−3 K−1 to obtain  
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Ω×°−ρ = 2.035 × 10−8 Ω m 

b. In ρ(T) = ρo[1 + αo(T − To)] we have αo at To where To is the reference temperature, for example, 0° C 
or 25 °C depending on choice. We will choose To to be first at 0 °C and then at −40 °C (= T2) so that the 
resistivity at T2 and then at To are: 

At T2,  ρ2 = ρo[1 + αo(Τ2 −Το)];  the reference being To and ρo which defines αo

and at To ρo = ρ2[1 + α2(Το −Τ2)]; the reference being T2 and ρ2 which defines α2

Rearranging the above two equations we find 

α2 = αο / [1 + (Τ2 −Τo)αο]

i.e. α−40 = (4.29 × 10−3) / [1 + (−40 − 0)(4.29 × 10−3)] = 5.18 × 10−3 °C−1 

Alternatively, consider the definition of α2 that is α−40
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we have α−40 ={1/[ρ(−40 °C)]} × {[ρ(25°C) − ρ(−40°C)] / [(25°C) −ρ(−40°C)]}

∴ α-40 = 1 / [(2.035 × 10−8)] × {(2.72 × 10−8) − (2.035 × 10−8)] / [(25) − (−40)]}

∴ α-40 = 5.18 × 10−3 K−1

c. We know that 1/ρ = σ = enµ  where σ  is the electrical conductivity, e is the electron charge, and µ is 
the electron drift mobility. We also know that µ = eτ / me, where τ is the mean free time between 
electron collisions and me is the electron mass. Therefore, 
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1/ρ = e2nτ/me

∴ τ = me/ρe2n  (1) 

Here n is the number of conduction electrons per unit volume. But, from the density d and atomic mass 
Mat, atomic concentration of Al is  
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so that   n = 3nAl = 1.807 × 1029 m−3

assuming that each Al atom contributes 3 "free" conduction electrons to the metal and substituting into 
(1), 
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∴ τ = 7.22 × 10−15 s

(Note: If you do not convert to meters and instead use centimeters you will not get the correct answer 
because seconds is an SI unit.) 

The relation between the drift mobility µd and the mean free time is given by Equation 2.5, so that 
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∴ µd = 1.27 × 10−3 m2 V−1s−1 = 12.7 cm2 V−1s−1

d. The mean free path is l = uτ, where u is the mean speed. With u ≈ 2 × 106 m s−1 we find the mean free 
path: 

l = uτ = (2 × 106 m s−1)(7.22 × 10−15 s) ≈ 1.44 × 10−8 m ≈ 14.4 nm

A thin film of Al must have a much greater thickness than l to show bulk behavior. Otherwise, 
scattering from the surfaces will increase the resistivity by virtue of Matthiessen's rule. 

e. Power P = I2R and is proportional to the resistivity ρ, assuming the rms current level stays relatively 
constant. Then we have 

[P(−40 °C) − P(25 °C)] / P(25 °C) = P(−40 °C) / P(25 °C) − 1= ρ(−40 °C) / ρ(25 °C) − 1 

= (2.03 × 10−8 Ω m / 2.72 × 10−8 Ωm) ─1= -0.254, or -25.4%

(Negative sign means a reduction in the power loss). 

2.3 Conduction in gold  Gold is in the same group as Cu and Ag. Assuming that each Au atom donates 
one conduction electron, calculate the drift mobility of the electrons in gold at 22° C. What is the mean 
free path of the conduction electrons if their mean speed is 1.4 × 106 m s−1? (Use ρo and αo in Table 2.1.) 

Solution

The drift mobility of electrons can be obtained by using the conductivity relation σ = enµd.
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Resistivity of pure gold from Table 2.1 at 0°C (273 K) is ρ0 = 20.50 nΩ m. Resistivity at 20 °C can be 
calculated by. 

)](1[ 000 TT −+= αρρ

The TCR α0 for Au from Table 2.1 is 1/242 K−1. Therefore the resistivity for Au at 22°C is 

ρ(22°C)= 20.50 nΩ m [1 + (1/242) K−1(293 K – 273 K)] = 22.36 nΩ m 

Since one Au atom donates one conduction electron, the electron concentration is  

at

A
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where for gold d = density = 19300 kg m−3, atomic mass Mat = 196.67 g mol−1. Substituting for d, NA, 
and Mat, we have n = 5.91 × 1028 m−3, or 5.91 × 1022 cm−3. 

)m1091.5)(C106022.1(

)mΩ1036.22(
32819

19

−−

−−

××

×
==

en
d

σ
µ

  = 4.72×10−3 m2 V−1 s−1 = 47.2 cm2 V−1 s−1. 
Given the mean speed of electron is u = 1.4 × 106 m s−1

, mean free path is  
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      = 3.76 × 10−8 m = 37.6 nm 

Note: The lattice parameter for Au (which is FCC), a = 408 pm or 0.408 nm. Thus l/a = 92. The electron 
traveling along the cube edge travels for 92 unit cells before it is scattered. 

2.4 Mean free time between collisions   Let 1/τ be the mean probability per unit time that a conduction 
electron in a metal collides with (or is scattered by) lattice vibrations, impurities or defects etc. Then the 
probability that an electron makes a collision in a small time interval δt is δt/τ.  Suppose that n(t) is the 
concentration of electrons that have not yet collided. The change δn in the uncollided electron 
concentration is then −nδt/τ. Thus, δn = −nδt/τ, or δn/n = −δt/τ. We can integrate this from n = no at x = 
0 to n = n(t) at time t to find the concentration of uncollided electrons n(t) at t

n(t) = noexp(−t/τ)  Concentration of uncollided electrons [2.85] 

Show that the mean free time and mean square free time are given by 
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t Electron scattering statistics [2.86] 

What is your conclusion? 

Solution 

Consider  
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The last term can be integrated by parts (for example, online at http://www.wolframalpha.com) to find, 

or in terms of the integration limits, that is, as a definite integral, 

Thus, Equation (1) becomes 
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The definite integral can be evaluated or looked up (for example online at 
http://www.wolframalpha.com)  

Thus Equation (2) becomes, 
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2.5 Effective number of conduction electrons per atom

a.   Electron drift mobility in tin (Sn) is 3.9 cm2 V−1 s−1. The room temperature (20 °C) resistivity of Sn 
is about 110 nΩ m. Atomic mass Mat and density of Sn are 118.69 g mol−1 and 7.30 g cm−3, 
respectively. How many “free” electrons are donated by each Sn atom in the crystal? How does this 
compare with the position of Sn in Group IVB of the Periodic Table? 

b.   Consider the resistivity of few selected metals from Groups I to IV in the Periodic Table in Table 
2.8. Calculate the number of conduction electrons contributed per atom and compare this with the 
location of the element in the Periodic Table. What is your conclusion? 

Table 2.8  Selection of metals from Groups I to IV in the Periodic Table 
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NOTE: Mobility from Hall-effect measurements. 

Solution

a. Electron concentration can be calculated from the conductivity of Sn, σ = enµd. 
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     = 1.46×1029 electrons m3. 

The atomic concentration, i.e. number of Sn atoms per unit volume is 
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      = 3.70 × 1028 Sn atoms m−3.  

Hence the number of electrons donated by each atom is (ne/nat) = 3.94 or 4 electrons per Sn atom. This 
is in good agreement with the position of the Sn in the Periodic Table (IVB) and its valency of 4. 

b. Using the same method used above, the number of electrons donated by each atom of the element are 
calculated and tabulated as follows in Table 2Q05. 

Table 2Q05 Number of electrons donated by various elements 

Metal Periodic 
Group 

Valency Atomic 
Concentration 

nat (m−3) 

Electron 
Concentration 

ne (m−3) 

Number of 
electrons 

ne/nat

Integer 
(ne/nat)

Na IA 1 2.541×1028 2.808×1028 1.11 1 

Mg IIA 2 4.311×1028 8.262×1028 1.91 2 

Ag IB 1 5.862×1028 7.019×1028 1.20 1 

Zn IIB 2 6.575×1028 1.320×1029 2.00 2 

Al IIIB 3 6.026×1028 1.965×1029 3.26 3 

Sn IVB 4 3.703×1028 1.457×1029 3.93 4 

Pb IVB 4 3.313×1028 1.319×1029 3.98 4 
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As evident from the above table, the calculated number of electrons donated by one atom of the element 
is the same as the valency of that element and the position in the periodic table. 

Table 2Q05 Number of electrons donated by various elements in Excel 

2.6 Resistivity of Ta Consider the resisitivity of tantalum, which is summarized in Table 2.9. Plot 
ρ against T on a log-log plot and find n for the behavior ρ ∝Tn. Find the TCR at 0 and 25 °C. What is 
your conclusion? (Data from the CRC Handbook of Chemistry and Physics, 96th Edition, 2015-2016) 

Table 2.9 Resistivity of Ta

T (K) 200 273 293 298 300 400 500 600 700 800 900 

ρ (nΩ m) 86.6 122 131 134 135 182 229 274 318 359 401 

Solution 

Enter the date into Excel 

T (K) Rho (nOhm m) 

150 61.9

200 86.6

273 122

293 131

298 134

300 135

400 182

500 229

600 274

700 318

800 359

900 401

Figure 2Q06-1 shows a plot of resistivity vs. temperature on a log-log plot, from Excel. On a log-log 
plot, the "best line" is a power law fit on a log-log plot. The best power law fit generates 

NA q

6.02E+23 1.60E-19 Unit => g / cm3 nW  m cm2 / (Vs) g /mol 1/m3 1/m3

Element Group Valency Density Resistivity Mobility

Atomic 

Mass n(atomic) n(electron) ne/na Integer

Na IA 1 0.97 42 53 22.99 2.5408E+28 2.804E+28 1.10 1

Mg IIA 2 1.74 44.5 17 24.31 4.3103E+28 8.251E+28 1.91 2

Ag IB 1 10.5 15.9 56 107.87 5.8618E+28 7.011E+28 1.20 1

Zn IIB 2 7.14 59.2 8 65.39 6.5755E+28 1.318E+29 2.00 2

Al IIIB 3 2.7 26.5 12 26.98 6.0265E+28 1.963E+29 3.26 3

Sn IVB 4 7.3 110 3.9 118.71 3.7032E+28 1.455E+29 3.93 4

Pb IVB 4 11.4 206 2.3 207.2 3.3133E+28 1.317E+29 3.98 4
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034.1)3642.0()mn( T=Ωρ

so that n = 1.034 

Figure 2Q06-1  Plot of resistivity vs. temperature on a log-log plot. The best line is a power law fit on a log-log 
plot. (Top, pasted as an editable Excel object, bottom, pasted as bitmap art) 

*2.7 TCR of isomorphous alloys  Determine the composition of the Cu-Ni alloy that will have a TCR 
of 4×10−4 K−1, that is, a TCR that is an order of magnitude less than that of Cu. Over the composition 
range of interest, the resistivity of the Cu-Ni alloy can be calculated from ρCuNi ≈ ρCu + Ceff X (1-X), 
where Ceff, the effective Nordheim coefficient, is about 1310 nΩ m.

Solution

Assume room temperature T = 293 K. Using values for copper from Table 2.1 in Equation 2.19, ρCu = 
17.1 nΩ m and αCu = 4.0 × 10−3 K−1, and from Table 2.3 the effective Nordheim coefficient of Ni 
dissolved in Cu is C = 1310 nΩ m. We want to find the composition of the alloy such that αCuNi = 4 ×
10−4 K−1. Then, 
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ρalloy = ρCu + CX(1 − X) 

i.e. 171.0 nΩ m = 17.1 nΩ m + (1310 nΩ m)X(1 − X) 

∴ X2 − X + 0.1175 = 0 

solving the quadratic, we find X = 0.136 

Thus the composition is 86.4% Cu-13.6% Ni. However, this value is in atomic percent as the 
Nordheim coefficient is in atomic percent. Note that as Cu and Ni are very close in the Periodic Table 
this would also be the weight percentage. Note: the quadratic will produce another value, namely X = 
0.866.  However, using this number to obtain a composition of 13.6% Cu-86.4% Ni is incorrect because 
the values we used in calculations corresponded to a solution of Ni dissolved in Cu, not vice-versa (i.e.
Ni was taken to be the impurity). 

Note: From the Nordheim rule, the resistivity of the alloy is ρalloy = ρο + CX(1 − X). We can find the 
TCR of the alloy from its definition 

[ ])1(
11

alloy

alloy

alloy

alloy XCX
dT

d
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d
o −+== ρ

ρ

ρ

ρ
α

To obtain the desired equation, we must assume that C is temperature independent (i.e. the increase 
in the resistivity depends on the lattice distortion induced by the impurity) so that d[CX(1 − X)]/dT = 0, 
enabling us to substitute for dρo/dT using the definition of the TCR: αo =(dρo/dT)/ρo. Substituting into 
the above equation: 

oo
o

dT

d
ρα

ρ

ρ

ρ
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alloyalloy

alloy

11
==

i.e. ooραρα =alloyalloy or 
AAABAB ραρα =

Remember that all values for the alloy and pure substance must all be taken at the same 
temperature, or the equation is invalid. 

Comment: Nordheim's rule does not work particularly well for alloys in which one or both elements are 
transition metals. Its applicability in alloys that involve a transition metal is only approximate as 
mentioned in the text. The alloy resistivity in these cases is given by 

ρalloy = ρCu + CX(1 − X) + ρs-d

where ρs-d is an additional resistivity term arising from additional scattering mechanism due to the 
addition of transition metals. This term depends on X2(1−X), which has been neglected. Its inclusion 
does not dramatically change the results. 

2.8 Resistivity of isomorphous alloys and Nordheim’s rule What are the maximum atomic and 
weight percentages of Cu that can be added to Au without exceeding a resistivity that is twice that of 
pure gold? What are the maximum atomic and weight percentages of Au that can be added to pure Cu 
without exceeding twice the resistivity of pure copper? (Alloys are normally prepared by mixing the 
elements in weight.) 

Solution

Cu added Au 
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From combined Matthiessen and Nordheim rule,  

ρAlloy =ρAu + ρI,  

with ρI = CX(1−X) is the increase in resistivity dues to Cu addition (impurities). In order to keep the 
resistivity of the alloy less than twice of pure gold, the resistivity of solute (Cu), should be less than 
resistivity of pure gold, i.e. ρI = CX(1−X) < ρAu. From Table 2.3, Nordheim coefficient for Cu in Au at 
20°C is C = 450 nΩ m. Resistivity of Au at 20°C, using α0 = 1/242 K−1 in Table 2.1 is 

mn2.22)]K273K293(K
242

1
1[m)n5.20()](1[ 1

000 Ω=−+Ω=−+= −TTαρρ

Therefore the condition for solute (Cu) atomic fraction is 

ρAlloy =ρAu + ρI < 2ρAu

∴ ρI < ρAu

or CX(1−X) < 22.2 nΩ m. 

∴ X(1−X) < (22.2 nΩ m) /(450 nΩ m) = 0.0493 

Consider the equality case, the maximum Cu addition, 

X2 – X + 0.0493 = 0  

Solving the above equation, we have X = 0.052 or 5.2% (atomic). Therefore the atomic fraction of Cu 
should be less than 0.052 or 5.2% in order to keep the overall resistivity of the alloy less than twice the 
resistivity of pure Au. The weight fraction for Cu for this atomic fraction can be calculated from  

)molg67.196)(0581.01()molg54.63)(052.0(

)molg54.63)(052.0(

)1( 11

1

−−

−

−+
=

−+
=

AuCu

Cu
Cu

MXXM

XM
w

       = 0.0174 or 1.74% (weight).

Au added to Cu 

Now, we discuss the case of Au in Cu, i.e. Au as solute in Cu alloy. Resistivity of Cu at 0°C is 15.4 nΩ
m (Table 2.1) and α0 = 1/(235 K). Therefore the resistivity of Cu at 20°C is  

mnΩ71.16)]K273K293(K
235

1
1[mnΩ4.15)](1[ 1

000 =−+=−+= −TTαρρ

Therefore the condition for solute (Au) atomic fraction is ρI = CX(1−X) < ρCu = 17.03 nΩ m. The 
Nordheim coefficient for Au in Cu at 20°C is, C = 5500 nΩ m. Consider the equality case, the 
maximum Au addition case, 

X(1−X) = (16.71 nΩ m) / (5500 nΩ m) = 3.04×10−3. 

X2 – X – 3.04×10−3 = 0 

Solving the above equation, we get  X = 3.05×10−3 or 0.30 % (atomic) for the maximum Au content 
we can add. Thus, the Au content has to be less than 0.30% (atomic percent) to keep the resistivity of 
alloy less than twice of pure Cu. The weight fraction for Cu for this atomic fraction can be calculated 
from  
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       = 9.35 ×10−3 or 0.935% (weight).

2.9 Physical properties of alloys Consider Cu-Sn alloys, called phosphor bronze. Their properties are 
listed in Table 2.10 from the ASM Handbook. Plot these properties all in graph (using a log-scale for the 
properties axis) as a function of composition and deduce conclusions. How does κ/σ change? 
Compositions are wt. %. Assume the Cu-Sn is a solid solution over this composition range. 

Table 2.10 Selected properties of Cu with Sn at 20 °C. 

ρ κ cs λ E d 

nΩ m W m−1

K−1

J kg−1

K−1

×10−6 GPa g cm−3

Cu 17.1 391 385 17.0 115 8.94 

98.7Cu-1.35Sn 36 208  380  17.8 117 8.89 

92Cu-8Sn 133 62 380 18.2 110 8.80 

90Cu-10Sn 157 50 380 18.4 110 8.78 

Note: ρ is resistivity, κ is thermal conductivity, cs is specific heat capacity, λ is linear expansion 
coefficient, E is Young's modulus and d is density.  

Solution 

We can convert wt% to at.% using 

The atomic fractions of the constituents can be calculated using the relations proved above. The atomic 
masses of the components are MSn = 118.71 g mol−1 and MCu = 63.54 g mol−1.Applying the weight to 
atomic fraction conversion equation derived in Ch. 1 for wSn = 0.01 (10%) case 

0561.0
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Other values are listed in table 2Q09-1 

Table 2Q09-1 Conversion of wt.% to at.% 

Mat (Cu) 63.55 Mat (Sn) = 118.71

X (wt) X (at) X(1-X) ∆ρ ρ 

nΩ m nΩ m 

Cu 0 0 0 0 17.1

98.7Cu-
1.35Sn 

0.0135 0.00727 0.00722 18.9 36
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92Cu-
8Sn 

0.08 0.04448 0.0425 115.9 133

90Cu-
10Sn 

0.1 0.05614 0.05299 139.9 157

Table 2Q09-2 Excel table for the plots 

Figure 2Q09-1 shows various properties of Cu-Sn alloys as a function of Sn content in atomic percent. 
Clearly there are strong changes in the electrical resistivity and thermal conductivity whereas cs, λ, E
and d are hardly affected at all. The alloy retains metallic bonding, the Cu crystal structure and is a solid 
solution so there are no major changes in bonding or the crystal structure with up to ~ 5.6 at.% Sn 
added. The reason both electrical and thermal conductivity are affected strongly is that both depend on 
the motion of conduction electrons and how these are scattered. The introduction of foreign impurities 
that provide an additional scattering mechanism increases the resistivity per Matthiessen's rule. 

Figure 2Q09-2 shows a plot of the resistivity vs. X(1 − X), and it is clearly a straight line with a slope 

Slope = C = 1571 nΩ m 

This is smaller than the value of C quoted in Table 2.1, which is taken from a handbook (1982).  

We can also plot κ vs. σ as in Figure 2Q09-3. Clearly κ is proportional to σ as we expect from the 
Wiedemann-Franz-Lorenz law. The best fit line passing through the origin and gives a slope of 

Slope = CWFLT = 6.862×10−6

so that 

CWFL = (6.862×10−6) / (300) = 2.30×10−8 W Ω K−2.  

This value is about 5.7% different than the expected value in Equation 2.42. 

NOTE: "Tin bronzes, with up 15.8% tin, retain the structure of alpha copper. The tin is a solid solution 
strengthener in copper, even though tin has a low solubility in copper at room temperature. The room 
temperature phase transformations are slow and usually do not occur, therefore these alloys are single 
phase alloys." From: The Website of the Copper Development Associate 
(https://www.copper.org/resources/properties/microstructure/cu_tin.html) accessed October 4, 2016 

Note: The problem emphasizes the importance of electron scattering in controlling ρ and κ. Normally 
Cu-Sn phase diagram shows a very small solubility limit for Sn but, as explained above, these 
compositions are single phase solid solutions. 



Solutions to Principles of Electronic Materials and Devices: 4th Edition (15 March 2017) Chapter 2

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent 
of McGraw-Hill Education. 

Figure 2Q09-1 Various properties of Cu-Sn alloys as a function of Sn content.

Figure 2Q09-2 Resistivity vs. X(1 − X) for Cu-Sn alloys 
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Figure 2Q09-3 κ vs. σ for Cu-Sn alloys 

2.10 Nordheim’s rule and brass Brass is a Cu–Zn alloy. Table 2.11 shows some typical resistivity 
values for various Cu–Zn compositions in which the alloy is a solid solution (up to 30% Zn). 

a.   Plot ρ versus X(1 − X). From the slope of the best-fit line find the mean (effective) Nordheim 
coefficient C for Zn dissolved in Cu over this compositional range. 

b.   Since X is the atomic fraction of Zn in brass, for each atom in the alloy, there are X Zn atoms and (1-
X) Cu atoms. The conduction electrons consist of each Zn donating two electrons and each copper 
donating one electron. Thus, there are 2(X) + 1(1 − X) = 1 + X conduction electrons per atom. Since 
the conductivity is proportional to the electron concentration, the combined Nordheim-Matthiessens 
rule must be scaled up by (1 + X). 

)1(

)1(0
brass

X

XCX

+

−+
=

ρ
ρ

Plot the data in Table 2.11 as ρ(1 + X) versus X(1 − X). From the best-fit line find C and ρo. What is 
your conclusion? (Compare the correlation coefficients of the best-fit lines in your two plots). 

NOTE: The approach in Question 2.10 is an empirical and a classical way to try and account for the fact 
that as the Zn concentration increases, the resistivity does not increase at a rate demanded by the 
Nordheim equation.  An intuitive correction is then done by increasing the conduction electron 
concentration with Zn, based on valency. There is, however, a modern physics explanation that involves 
not only scattering from the introduction of impurities (Zn), but also changes in something called the 
"Fermi surface and density of states at the Fermi energy", which can be found in solid state physics 
textbooks. 

Table 2.11 Cu-Zn brass alloys 
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Data extracted from H. A. Fairbank, Phys. Rev., 66, 274, 1944. 

Solution

a. We know the resistivity to be ρalloy = ρo + CX(1-X) and we can construct the table in Table 2Q10-1.  

Table 2Q10-1  

Zn at.% X X(1−X) 
Resistivity of alloy 

ρalloy ρ(1+X) 

0 0.0000 17.00 17.000 

0.34 0.0034 18.10 18.162 

0.5 0.0050 18.84 18.934 

0.93 0.0092 20.70 20.893 

3.06 0.0297 26.80 27.620 

4.65 0.0443 29.90 31.290 

9.66 0.0873 39.10 42.877 

15.6 0.1317 49.00 56.644 

19.59 0.1575 54.80 65.535 

29.39 0.2075 63.50 82.163 

We can now plot ρalloy versus X(1−X). We have a best-fit straight line of the form y = mx + b, where m is 
the slope of the line. The slope is Ceff, the Nordheim coefficient.  

Figure 2Q10-1: Plot of alloy resistivity against X(1-X) 
The equation of the line is y = 225.76x + 18.523. The slope m of the best-fit line is 225.76 nΩ m, which is the 

effective Nordheim coefficient Ceff for the compositional range of Zn provided. 
b. 
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Figure 2Q10-2: Plot of ρ(1+X) against X(X−1) 

The slope of the best-fit line is 306.67. As given in the question, the modified combined Nordheim–
Matthiessens rule must be scaled up by (1 + X), 

)1(

)1(0
brass

X
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+

−+
=

ρ
ρ

or )1()1( 0brass XCXX −+=+ ρρ

The above equation is of the straight line form y = mx +b, where m is the slope of the line. Therefore 
from the equation of the line y = 306.67x + 17.4, we have the effective Nordheim coefficient is Ceff = 
306.67 nΩ m and ρ0 is 17.40 nΩ m. 

If we calculate the resistivity using the values obtained above in the combined Nordheim-Mattheisen 
rule we obtain the following values in Table 2Q10-2 

Table 2Q10-2: Ceff values calculated by fitting line to experimental data and by taking into account the effect of 
extra valence electron 

Zn 
at.% X

Experimental 
Resistivity 

(nΩ m) 

Case I Case II 

Resistivity 

(nΩ m) 

Ceff = 225.76 nΩ m 

Resistivity 

(nΩ m) 

Ceff = 306.67 nΩ m 

Scaled by (1 + X) 

0 17 17.00 17.00 

0.34 18.1 17.76 17.98 
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0.5 18.84 18.12 18.43 

0.93 20.7 19.08 19.64 

3.06 26.8 23.70 25.32 

4.65 29.9 27.01 29.24 

9.66 39.1 36.70 39.91 

15.6 49 46.72 49.63 

19.59 54.8 52.56 54.61 

29.39 63.5 63.85 62.32 

For case I, the resistivity is calculated using an effective Nordheim coeffcieint (Ceff) and for the second 
case the combined Nordheim–Matthiessens rule is scaled up by (1 + X). It is observed that the values 
obtained by the later method is  closer to the experimental results supporting the method of scaling 
taking into consideration the number of electrons donated by the solute atoms. 

Comment: The Nordheim rule assumes that as the alloy composition changes, the number of conduction 
electrons per metal atom stays the same. In general, the resistivity due to the introduction of solute 
atoms (impurities) can be written as (see, for example, H. A. Fairbank, Phys. Rev. 66, 274, 1944; see 
p278.) 

)1(
3/2

1/3
at XX

n

N
I −∝ρ

where Nat = atomic concentration (roughly constant) and n = average number of conduction electrons 
per atom. These two terms arise from the fact that scattering from the impurities involves something 
called the density of states g(EF) which depends on the electron concentration. n will depend on the 
valency of the solute atom. We can now plot 

3/2brass
)1(

)1(

X

XX
Co

+

−
+= ρρ

The plot of ρ vs. X(1−X)/(1+X)2/3 is shown in Figure 2Q10-3. The fit is comparable to the intuitive and 
classical modification of Nordheim's rule in Figure 2Q10-2. 
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Figure 2Q10-3: Plot of ρ against X(X−1)/(1+X)2/3

2.11 Resistivity of solid solution metal alloys: testing Nordheim’s rule Nordheim’s rule accounts for 
the increase in the resistivity from the scattering of electrons from the random distribution of impurity 
(solute) atoms in the host (solvent) crystal. It can nonetheless be quite useful in approximately 
predicting the resistivity at one composition of a solid solution metal alloy, given the value at another 
composition. Table 2.12 lists some solid solution metal alloys and gives the resistivity ρ at one 

composition X and asks for a prediction ρ′ based on Nordheim’s rule at another composition X ′ . Fill in 

the table for ρ′ and compare the predicted values with the experimental values, and comment. 

Table 2.12  Resistivities of some solid solution metal alloys 

NOTE: First symbol (e.g., Ag in AgAu) is the matrix (solvent) and the second (Au) is the added solute. 
X is in at.%, converted from traditional weight percentages reported with alloys. Ceff is the effective 
Nordheim coefficient in )1(0 XXCeff −+= ρρ .

Solution

Combined Matthiessen and Nordheim rule is 
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)1(eff0alloy XXC −+= ρρ

therefore, from the above equation effective Nordheim coefficient Ceff is 

)1(

0alloy

eff
XX

C
−

−
=

ρρ

Ag-Au: 

For this alloy, it is given that for X = 8.8% Au, ρ = 44.2 nΩ m, with ρ0 = 16.2 nΩ m, the effective 
Nordheim coefficient Ceff is 

89.348
)088.01(088.0

mnΩ)2.162.44(
eff =

−×

−
=C  nΩ m 

Now, for X′ = 15.4% Au, the resistivity of the alloy will be 

65.61)154.01)(154.0)(mnΩ88.348(mnΩ2.16 =−+=′ρ  nΩ m 

Similarly, the effective Nordheim coefficient Ceff and the resistivities of the alloys at X′ are calculated 
for the various alloys and tabulated as follows, 

Table 2Q11-1: Resistivities of solid solution metal alloys 

Alloy 

Ag-Au Au-Ag Cu-Pd Ag-Pd Au-Pd Pd-Pt Pt-Pd Cu-Ni 

X (at.%) 8.8% Au 8.77% 
Ag 

6.2% Pd 10.1% 
Pd 

8.88% 
Pd 

7.66% Pt 7.1% Pd 2.16% 
Ni 

ρ0 (nΩ m) 16.2 22.7 17 16.2 22.7 108 105.8 17 

ρ at X

(nΩ m) 

44.2 54.1 70.8 59.8 54.1 188.2 146.8 50 

Ceff 348.88 392.46 925.10 480.18 388.06 1133.85 621.60 1561.51 

X′ 15.4% 
Au 

24.4% 
Ag 

13% Pd 15.2% 
Pd 

17.1% 
Pd 

15.5% Pt 13.8% 
Pd 

23.4% 
Ni 

ρ′ at X′

(nΩ m) 

61.65 95.09 121.63 78.09 77.71 256.51 179.74 296.89 

ρ′ at X′

(nΩ m) 

Experimental

66.3 107.2 121.6 83.8 82.2 244 181 300 

Percentage 
Difference 

7.01% 
less 

11.29% 
less 

0.02% 
more 

6.81% 
less 

5.46% 
less 

4.88% 
more 

0.69% 
less 

1.04% 
less 
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Comment: From the above table, the best case has a 0.02% difference and the worst case has a 7% 
difference. It is clear that the Nordheim rule is very useful in predicting the approximate resistivity of a 
solid solution at one composition from the resistivity at a known composition. 

*2.12 TCR and alloy resistivity  Table 2.13 shows the resistivity and TCR (α) of Cu–Ni alloys. Plot 
TCR versus 1/ρ, and obtain the best-fit line. What is your conclusion? Consider the Matthiessen rule, 
and explain why the plot should be a straight line. What is the relationship between ρCu, αCu, ρCuNi, and 
αCuNi? Can this be generalized? 

Table 2.13  Cu-Ni alloys, resistivity and TCR 

NOTE: ppm-parts per million, i.e. 10−6. 

Solution

We can first construct ta table as shown Table 2Q12-1.  

Table 2Q12-1 Resistivity and TCR values 

Resistivity 1/ρ
TCR (ppm 
1/C) 

TCR 
(1/C) 

17 0.058824 4270 0.00427

50 0.02 1350 0.00135

100 0.01 550 0.00055

150 0.006667 430 0.00043

300 0.003333 160 0.00016

The plot of temperature coefficient of resistivity TCR (α) versus 1/ρ is shown in Figure 2Q12-1, and 
clearly we can fit a linear relationship with an excellent R2 value, 0.9991. Further, on a log-log plot, 
shown in Figure 2Q12-2, we can fit a power law dependence of the form 

n
alloy

alloy

1

ρ
α ∝

in which n = 1.13, again very close to our expectation 1
alloyalloy
−∝ ρα . Notice that the linear dependence in 

Figure 2Q12-1 gives a better R2. 
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Figure 2Q12-1: TCR (α) versus reciprocal of resistivity1/ρ

Figure 2Q12-2: TCR (α) versus reciprocal of resistivity1/ρ on a log-log plot 

From Matthiessen’s  rules, we have 

IoI ρρρρρ +=+= matrixalloy

where ρo is the resistivity of the matrix, determined by scattering of electrons by thermal vibrations of 
crystal atoms and ρI is the resistivity due to scattering of electrons from the impurities. Obviously, ρo is 
a function of temperature, but ρI shows very little temperature dependence. From the definition of 
temperature coefficient of resistivity, 
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Clearly the TCR of the alloy is inversely proportional to the resistivity of the alloy. The higher the 
resistivity, the smaller the TCR, which is evident from the plot. 

2.13 Hall effect measurements The resistivity and the Hall coefficient of pure aluminum and Al with 1 
at.% Si have been measured at at 20 °C (293 K) as ρ = 2.65 µΩ cm, RH = −3.51×10−11 m3 C−1 for Al and 
ρ = 3.33 µΩ cm, RH = −3.16×10−11 m3 C−1 for 99 at.% Al-1 at% Si. The lattice parameters for the pure 
metal and the allloy are 0.4049 nm and 0.4074 nm. What does the simple Drude model predict for the 
drift mobility in these two metals?  How many conduction electrons are there per atom? (Data from M 
Bradley and John Stringer, J.Phys. F: Metal Phys., 4, 839, 1974) 

Solution 

I.  Consider the pure Al crystal 

The Hall coefficient is given by 

en
RH

1
−=

∴
)Cm1051.3)(C10602.1(

11
131119 −−− ×−×

−=−=
-

HeR
n = 1.778×1029 m−3. 

The conductivity can be used to find the drift mobility 
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or µd = 13.3 cm2 V−1 s−1.

We can also find the number x of conduction electrons per Al atom. The atomic concentration in Al is 

3-28

393at m10026.6
m)104049.0(

cellFCCin atoms4cellFCCin atoms4
×=

×
==

−a
n

∴
328

329
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m10778.1
-

-

n

n
x

×

×
−== = 2.95 

very close to the valency of Al. 

II. Consider the 99%Al-1%Si crystal 

We can repeat all the above calculations as follows: 
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n = 1.975×1029 m−3. 

and 
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or µd = 9.49 cm2 V−1 s−1

As expected the drift mobility in this sample is lower due to scattering from Si impurities. 

We can also find the number x of conduction electrons per Al atom. The atomic concentration in Al is 

3-28

393at m10916.5
m)104074.0(

cellFCCin atoms4cellFCCin atoms4
×=

×
==

−a
n

∴
328

329

at m10916.5

m10975.1
-

-

n

n
x

×

×
−== = 3.31 

which is 10% higher than the expected valency.  

The lower drift mobility in the Si-1%C crystal is in agreement with the predictions of the Drude model 
and the Matthiessen's rule. 

Note: The Hall coefficient in general is given by 

en

r
RH −=

where r is a numerical factor, called the Hall factor, that describes how the electrons are scattered in the 
crystal. It was taken as 1 in the simple theory above. Generally it is between 1 and 2, and depends on the 
scattering mechanisms. Unfortunately there is no information on r for the two materials but it should be 
clear that r would not be the same.     

2.14  Hall effect and the Drude model, Table 2.14 shows the experimentally measured Hall coefficient 
and resisitivities for various metals and their position in the periodic table. (a) Calculate the Hall 
mobility for each element. (b) Calculate the conduction electron concentration from the experimental 
value of RH. (c) Find how many electrons per atom are contributed to the conduction electron gas in the 
metal per metal atom. What is your conclusion? 

Table 2.14 Measured Hall coefficients for a few metals at 25 °C 
Li Na K Cs Cu Ag Au Ca Mg Zn Al In 

Group I I I I IB IB IB IIA IIA  IIB III III 

RH (×10−11 m3 C−1) −15 −24.8 −42.8 −73.3 −5.4 −9.0 −7.2 −17.8 −8.3 +10.4 −3.4 −7.0 

ρ (nΩ m) 92.8 48.8 73.9 208 17.1 16.7 22.6 33.6 44.8 60.1 27.1 83.7 

Note: Data from various sources combined, including C. Hurd, The Hall Coefficient of Metals and Alloys, Plenum, 
New York, 1972.

Solution 
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Consider Li, the first element in Group I.  

(a) Consider the magnitude of the conductivity product with RH, 

ddH
en

enR µµσ =






 −
=

1
)(

The drift mobility µd here is called the Hall mobility µH due to the fact that it is found through the 
product of the Hall coefficient and conductivity. 

1121123
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(b) From the equations for RH, we have 
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131119 −−− ×−×
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HeR
n = 4.161×1028 m−3. 

(c) We can get its density and atomic mass from the Appendix at the end of the textbook. If D is the 
density, Mat is the atomic mass and NA is Avogadro's number, then the atomic concentration nat is 

328
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1233

at

at m10686.4
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==
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We can calculate the number of electrons per Li atom that is in the electron gas as follows 

89.0
m10686.4

m10161.4
328

328

at

=
×

×
==

−

−

n

n
x

This is close to 1, the valency of Li. The difference is only 11%. Table 2Q14-1 lists the calculations for 
other elements in Table 2.14. 

Conclusions: 

The basic idea is "How good is the simple Drude model?" 

(1)  Group I elements, Li, Na, K, Cs are very close to expected Drude model values with x close to 
the valency 1; x = 0.89 – 1.10 

(2) Group IB, Ag, Cu, Au, have x = 1.18 – 1.47. Although there is a clear deviation from the Drude 
model by as much as 47%, the sign is correct and the magnitude is very roughly correct, within 47% 

(3)  Mg, from IIA, has a valency of 2.RH gives x = 1.74  and the difference is only 26%, again the 
Drude model is not bad.  

(4) Zn is a metal and in Group IIB. The Drude model is a total failure as the sign is wrong.  

(5) Ca from Group IIA has x = 1.52. The sign is right and the magnitude is very roughly right to 
within 49% 

(6) Group III with Al and In, we find x = 2.33 (In) – 3.05 (Al). The Drude model again is successful 
in predicting the sign and a rough value for the magnitude, within 67%. 

(7) The Drude model works best with Group I elemetns (Li, Na, K, Cs) and in certain cases such as 
Zn it totally fails. 

Table 2Q14-1 Calculations from Hall coefficient and conductivity
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NA 6E+23 q = 1.6E-19

g/mole g /cm3 1/m3 EXPERIMENT 1/m3 nΩ m m2/Vs 

Valency Metal Mat Density nat RH x 1E-11 n from RH x 
Difference

(%) Resistivity

Hall 
mobility 

1 Li 6.94 0.54 4.686E+28 -15 4.161E+28 0.89 11.2 92.8 16.16 

1 Na 22.99 0.968 2.536E+28 -24.8 2.517E+28 0.99 0.7 48.8 50.82 

1 K 39.10 0.862 1.328E+28 -42.8 1.458E+28 1.10 -9.8 73.9 57.92 

1 Cs 132.91 1.93 8.745E+27 -73.3 8.516E+27 0.97 2.6 208 35.24 

1 Ag 107.87 10.49 5.856E+28 -9 6.936E+28 1.18 -18.4 16.7 53.89 

1 Cu 63.55 8.96 8.491E+28 -5.4 1.156E+29 1.36 -36.1 17.1 31.58 

1 Au 196.97 19.3 5.901E+28 -7.2 8.670E+28 1.47 -46.9 22.6 31.86 

2 Mg 24.31 1.74 4.311E+28 -8.3 7.521E+28 1.74 25.6 44.8 18.53 

2 Zn 65.38 7.13 6.567E+28 10.4 
-
6.002E+28 -0.91 291.4 60.1 17.30 

2 Ca 40.08 1.54 2.314E+28 -17.8 3.507E+28 1.52 48.5 33.6 52.98 

3 Al 26.98 2.7 6.026E+28 -3.4 1.836E+29 3.05 -4.7 27.1 12.55 

3 In 114.82 7.31 3.834E+28 -7 8.917E+28 2.33 67.4 83.7 8.36 

11.2 

2.15 The Hall effect Consider a rectangular sample, a metal or an n-type semiconductor, with a length 
L, width W, and thickness D. A current I is passed along L, perpendicular to the cross-sectional area 
WD.  The face W × L is exposed to a magnetic field density B. A voltmeter is connected across the 
width, as shown in Figure 2.40, to read the Hall voltage VH. 

a.   Show that the Hall voltage recorded by the voltmeter is 

Den

IB
VH = Hall voltage

b.   Consider a 1-micron-thick strip of gold layer on an insulating substrate that is a candidate for a Hall 
probe sensor. If the current through the film is maintained at constant 100 mA, what is the magnetic 
field that can be recorded per µV of Hall voltage? 
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Solution

a. The Hall coefficient, RH, is related to the electron concentration, n, by RH = -1 / (en), and is defined 
by RH = Ey / (JB), where Ey is the electric field in the y-direction, J is the current density and B is the 
magnetic field. Equating these two equations: 

JB

E

en

y
=−

1

∴
en

JB
E y −=

This electric field is in the opposite direction of the Hall field (EH) and therefore: 

EH = -Ey =
JB

en
(1) 

The current density perpendicular (going through) the plane W × D (width by depth) is: 

WD

I
J =

∴
JD

I
W = (2) 

The Hall voltage (VH) across W is: 

HH WEV =

If we substitute expressions (1) and (2) into this equation, the following will be obtained: 

Den

IB
VH =

Note:  this expression only depends on the thickness and not on the length of the sample. 

In general, the Hall voltage will depend on the specimen shape. In the elementary treatment here, 
the current flow lines were assumed to be nearly parallel from one end to the other end of the sample. In 
an irregularly shaped sample, one has to consider the current flow lines. However, if the specimen 
thickness is uniform, it is then possible to carry out meaningful Hall effect measurements using the van 
der Pauw technique as discussed in advanced textbooks. 

b. We are given the depth of the film D = 1 micron = 1 µm and the current through the film I = 100 mA 
= 0.1 A. The Hall voltage can be taken to be VH = 1 µV, since we are looking for the magnetic field B
per µV of Hall voltage. To be able to use the equation for Hall voltage in part (a), we must find the 
electron concentration of gold. Appendix B in the textbook contains values for gold’s atomic mass (Mat

=196.97 g mol−1) and density (d = 19.3 g/cm3 = 19300 kg/m3). Since gold has a valency of 1 electron, 
the concentration of free electrons is equal to the concentration of Au atoms.  

∴
( )( )

( )
328

13

-1233

m10901.5
molkg1097.196

mol10022.6mkg19300 −

−−

−

×=
×

×
==

at

A

M

dN
n

Now the magnetic field B can be found by using the equation for the Hall voltage: 

Den

IB
VH =
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∴
( )( )( )( )

( )A0.1

m105.901C101.602m101V101 3281966 −−−− ××××
==

I

DenV
B H

∴ B = 0.0945 T

As a side note, the power (P) dissipated in the film could be found very easily. Using the value for 
resistivity of Au at T = 273 K, ρ = 22.8 nΩ m, the resistance of the film is: 

( )( )
( )( ) Ω=

×

Ω×
===

−

−

228.0
m101m0001.0

m001.0m108.22
6

9

WD

L

A

L
R

ρρ

The power dissipated is then: 

P = I2R = (0.1 A)2(0.228 Ω) = 0.00228 W 

2.16 Electrical and thermal conductivity of In Electron drift mobility in indium has been measured 
to be 6 cm2 V−1 s−1. The room temperature (27 °C) resistivity of In is 8.37 ×10−8 Ωm, and its atomic 
mass and density are 114.82 amu or g mol−1 and 7.31 g cm−3, respectively. 

a.   Based on the resistivity value, determine how many free electrons are donated by each In atom in 
the crystal. How does this compare with the position of In in the Periodic Table (Group IIIB)? 

b.   If the mean speed of conduction electrons in In is 1.74 ×108 cm s−1, what is the mean free path? 

c.   Calculate the thermal conductivity of In. How does this compare with the experimental value of 81.6 
W m−1 K−1? 

Solution

a. From σ = enµd (σ  is the conductivity of the metal, e is the electron charge, and µd is the electron drift 
mobility) we can calculate the concentration of conduction electrons (n): 

)sVm106)(C101.602(

)mΩ108.37(
112419

18

−−−−

−−

××

×
==

de
n

µ

σ

i.e. n = 1.243 × 1029 m−3

Atomic concentration nat is 

)molkg10114.82(

)mol106.022)(mkg107.31(
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12333

at

at −−

−−

×

××
==

M

dN
n A

i.e. nat = 3.834 × 1028 m−3

Effective number of conduction electrons donated per In atom (neff) is: 

neff = n / nat = (1.243 × 1029 m−3) / (3.834 × 1028 m−3) = 3.24  

Conclusion: Within the classical theory of metals, this would imply that about three electrons per atom 
are donated to the conduction-electron sea in the metal. This is in good agreement with the position of 
the In element in the Periodic Table (III) and its valency of 3. 

b. If τ is the mean scattering time of the conduction electrons, then from µd = eτ/me (me = electron mass) 
we have: 



Solutions to Principles of Electronic Materials and Devices: 4th Edition (15 March 2017) Chapter 2

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent 
of McGraw-Hill Education. 

C)10602.1(

kg)10.1099)(sVm106(
19

31-1-124

−

−−

×

××
==

e

medµ
τ  = 3.412 × 10−15 s 

Taking the mean speed u ≈ 1.74 × 106 m s−1, the mean free path (l) is given by 

l = uτ = (1.74 × 106 m s−1)(3.412 × 10−15 s) = 5.94 × 10−9 m or 5.94 nm 

One can estimate the interatomic separation d from 

1/33283/1
at )m10.833(

11
−×

=≈
n

d  = 0.3 nm  

which means that l = 20d.  The electrons passes ~20 atoms before it is scattered. 

c. From the Wiedemann-Franz-Lorenz law, thermal conductivity is given as: 

κ = σTCWFL = (8.37 × 10−8 Ω m)−1(27 ºC + 273 K)(2.44 × 10−8 W Ω K−2) 

i.e. κ = 85.4 W m−1 K−1

This value reasonably agrees with the experimental value. 

Note: Indium has a body-centered tetragonal crystal structure and the lattice constants are a = b = 0.325 
nm and c = 0.494 nm. The atomic concentration is therefore nat = 2/abc = 3.83 × 1028 m−3, which is the 
same as nat = dNA/Mat (as we know from Ch. 1).  

2.17 Electrical and thermal conductivity of Ag The electron drift mobility in silver has been 
measured to be 54 cm2 V−1 s−1 at 27 °C.  The atomic mass and density of Ag are given as 107.87 amu or 
g mol−1 and 10.50 g cm−3, respectively. 

a.   Assuming that each Ag atom contributes one conduction electron, calculate the resistivity of Ag at 
27 °C. Compare this value with the measured value of 1.6 × 10−8 Ω m at the same temperature and 
suggest reasons for the difference. 

b.   Calculate the thermal conductivity of silver at 27 °C and at 0 °C. 

Solution

a. Atomic concentration nat is 

)molkg10107.87(

mol106.022)(mkg1010.50(
13

12333

at

at −−

−−

×

××
==

M

dN
n A  = 5.862 × 1028 m−3

If we assume there is one conduction electron per Ag atom, the concentration of conduction electrons 
(n) is 5.862 × 1028 m−3, and the conductivity is therefore: 

σ = enµd = (1.602 × 10−19 C)(5.862 × 1028 m−3)(54 × 10−4 m2 V−1s−1) = 5.071 × 107 Ω−1

m−1 

and the resistivity, ρ = 1/σ = 19.7 nΩ m 

The experimental value of ρ  is 16 nΩ m. We assumed that exactly 1 "free" electron per Ag atom 
contributes to conduction. This may not necessarily be true.  

Note: More importantly, the difference is part of the failure of classical physics. Some of this will be 
apparent in Ch. 4 where energy bands are used for conduction. 
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b. From the Wiedemann-Franz-Lorenz law at 27 °C, 

κ = σTCWFL = (5.259 × 107 Ω−1 m−1)(27 + 273 K)(2.44 × 10−8 W Ω K−2) 

i.e. κ = 385 W m−1 K−1 (at 27 °C and 0 °C) 

For pure metals such as Ag this is nearly independent of temperature (same at 0 °C). 

2.18 Mixture rules A 70% Cu - 30% Zn brass electrical component has been made of powdered metal 
and contains 15 vol. % porosity. Assume that the pores are dispersed randomly. Given that the 
resistivity of 70% Cu-30% Zn brass is 62 nΩ m, calculate the effective resistivity of the brass 
component using the simple conductivity mixture rule, Equation 2.26 and the Reynolds and Hough rule.

Solution

The component has 15% air pores, which is the dispersed phase. Apply the empirical mixture rule in 
Equation 2.32. The fraction of volume with air pores is χd = 0.15. Then, 

0.15)(1

0.15)0.5(1
mΩn62
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χ

χ
ρρ  = 78.41 nΩ m 

Reynolds and Hough rule is given by Equation 2.34 as  
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For the given case σair = 0, σalloy = (62 nΩ m)−1. Substituting the conductivity values in the RHS of the 
equation we have 
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2σσ

σσ
χ = −0.075. 

Solving for effective conductivity, we have σ = 1.2753×107 Ω−1m−1 

∴ ρeff = 78.41 ×10−9 Ωm or 78.41 nΩ m. 

Hence the values obtained are the same. Equation 2.32 is in fact the simplified version of Reynolds and 
Hough rule for the case when the resistivity of dispersed phase is considerably larger than the 
continuous phase. 

2.19 Mixture rules

a.   A certain carbon electrode used in electrical arcing applications is 47 percent porous. Given that the 
resistivity of graphite (in polycrystalline form) at room temperature is about 9.1 µΩ m, estimate the 
effective resistivity of the carbon electrode using the appropriate Reynolds and Hough rule and the 
simple conductivity mixture rule. Compare your estimates with the measured value of 18 µΩ m and 
comment on the differences. 

b.   Silver particles are dispersed in a graphite paste to increase the effective conductivity of the paste. If 
the volume fraction of dispersed silver is 30 percent, what is the effective conductivity of this paste? 
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Solution 

a. The effective conductivity of mixture can be estimated using Reynolds and Hough rule in Equation 
2.34, which is  

cd

cd

c

c

σσ

σσ
χ

σσ

σσ

22 +

−
=

+

−

If the conductivity of the dispersed medium is very small compared to the continuous phase, as in the 
given case conductivity of pores is extremely small compared to polycrystalline carbon, i.e. σc>>σd. 
Equation 2.32 is the simplified version of Reynolds and Hough rule.  

The volume fraction of air pores is χ = 0.47 and the conductivity of graphite is ρc = 9.1 µΩ m, therefore 

)47.01(

)47.05.01(
)mΩμ 1.9(
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−

+
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d
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c
χ

χ
ρρ = 21.21 µΩ m

Conductivity mixture rule is based on the assumption that the two phases α and β are parallel to each 
other and the effective conductivity from Equation 2.31 is  

σeff = χασα + χβσβ

For the given situation χair = 0.47, χgraphite = (1 − 0.47), σair = 0, σgraphite = (9.1 µΩ m)−1, therefore the 
effective resistivity using the conductivity mixture rule is 

0
mμΩ1.9

)47.01(1

eff

+
−

=
ρ

∴ ρeff = 17.17 µΩ m 

which is not as good as Equation 2.34. We cannot use the resistivity mixture rule. (ρeff goes to inifnity) 

b. If the dispersed phase has higher conductivity than the continuous phase, the Reynolds and Hough 
rule is reduced to Equation 2.33. From Table 2.1, resistivity for silver at 273 K is 14.7 nΩ m. Using α0 = 
1/242 K−1, the resistivity at room temperature (20°C) can be calculated as 

[ ] mnΩ91.15)K273K293(K
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1)mnΩ7.14()(1 1

000 =
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


−+=−+= −TTαρρ

Since ρd < 0.1ρc, we can try first Equation 2.33 as a first approximation. Volume fraction of dispersed 
silver is 30%, χd = 0.3. The effective resistivity is  
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−
=

+

−
=

d

d
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ρρ = 3.98 µΩ m. 

The resisitivity of graphite is therefore reduced i.e. it is made more conducting. This rule works if ρc > 
ρd/10. Now, ρc = resistivity of graphite = 9.1 µΩ m = 9100 nΩ m from part (a), which is much greater 
than 16.9 nΩ m for Ag, so the condition is satisfied. Indeed, we did not use ρd at all in this calculation! 

In a more accurate calculation, we would use he Reynolds and Hough rule to calculate the effective 
resistivity. If σ is the effective conductivity (1/ρeff), then 
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In terms of µΩ m units, 
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which can be solved to find, 

ρeff = 1/σ = 3.99 µΩ m 

very close to the approximation in Equation 2.33 

Clearly, The approximate equation works well and we did not even need the resistivity of Ag in this 
case to find the effective resistivity.

2.20 Ag–Ni alloys (contact materials) and the mixture rules Silver alloys, particularly Ag alloys 
with the precious metals Pt, Pd, Ni, and Au, are extensively used as contact materials in various 
switches. Alloying Ag with other metals generally increases the hardness, wear resistance, and corrosion 
resistance at the expense of electrical and thermal conductivity. For example, Ag–Ni alloys are widely 
used as contact materials in switches in domestic appliances, control and selector switches, circuit 
breakers, and automotive switches up to several hundred amperes of current. Table 2.15 shows the 
resistivities of four Ag–Ni alloys used in make-and-break as well as disconnect contacts with current 
ratings up to ∼100 A. 

a.   Ag–Ni is a two-phase alloy, a mixture of Ag-rich and Ni-rich phases. Using an appropriate mixture 
rule, predict the resistivity of the alloy and compare with the measured values in Table 2.15. Explain 
the difference between the predicted and experimental values. 

b.   Compare the resistivity of Ag–10% Ni with that of Ag–10% Pd in Table 2.12. The resistivity of the 
Ag–Pd alloy is almost a factor of 3 greater. Ag–Pd is an isomorphous solid solution, whereas Ag–Ni 
is a two-phase mixture. Explain the difference in the resistivities of Ag–Ni and Ag–Pd. 

Table 2.15 Resistivity of Ag-Ni contact alloys for switches

Ni % in Ag-Ni alloy 
0 10 15 20 30 40 100 

d (g cm−3) 10.49 10.25 10.15 10.05 9.8 9.7 8.91 

ρ (nΩ m) 16.9 18.7 19.0 20.0 24.4 27.0 71.0 

NOTE: Compositions are in wt.%. Ag–10% Ni means 90% Ag–10% Ni. d = density and ρ = resistivity. 
Use volume fraction of Ni = wNi(dalloy/dNi), where wNi is the Ni weight fraction, to convert wt.% to 
volume %. Data combined from various sources. 

Solution 

a. The Ni contents are given in wt.%. For volume fraction we use the relation 

Ni

Ni
Ni

d

dw
=χ
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where wNi is the weight fraction of Ni, dNi is the density of Ni and, d is the density of the alloy mixture. 
For example, for Ni-30% wt. the volume fraction of Ni in the alloy will be 

33.0
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)mkg108.9)(3.0(
33
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×

×
=

−

−

Niχ

First we use Reynolds and Hough rule for mixture of dispersed phases to calculate the effective 
resistivity of the alloy. From Equation 2.28 we have 
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Solving for Ni-30% wt., the R.H.S. of the above equation will be 

1

11

11

)mnΩ(112.0
)mnΩ9.16(2)mnΩ0.71(

)mnΩ9.16()mnΩ0.71(
)33.0( −

−−

−−

−=
+

−
×=

So that 

1

1

1

)mnΩ(112.0
)mnΩ9.16(2

)mnΩ9.16( −

−

−

−=
+

−

σ

σ

∴ σ = 0.0412 (nΩ m)−1

∴ ρ = 24.25 nΩ m. 

Substitute the calculated value in the Reynolds and Hough rule as above, to find the effective resistivity 
of the alloy, which is ρ = 24.25 nΩ m. Similarly the resistivity of alloy with other Ni contents is 
calculated and is tabulated below in Table 2Q20-1. 

We can see that the Reynolds Hough rule provides a reasonable estimate for the alloy resistivity with 
the discrepancy being 7.5% at worst case. 

Table 2Q20-1  Resistivity of Ag-Ni contact alloys for switches 

Ni % in 
Ag-Ni 

d 

(g cm−3) 
χNi

ρeff (Reynolds 
& Hough) 

(nΩ m) 

Experimental 
(nΩ m) 

Discrepancy 

(%) 

10 10.25 0.115 19.06 18.7 1.93 

15 10.15 0.171 20.24 19.0 6.53 

20 10.05 0.226 21.50 20.0 7.50 

30 9.8 0.330 24.25 24.4 0.62 

40 9.7 0.435 27.59 27.0 2.20 
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Figure 2Q20-1 Plot of effective and calculated resistivity for Ni-Ag alloys 

b. 90%Ag-10% Ni, the solid is a mixture, and has two phases with an overall  ρ = 19.06 nΩ m. On the 
other hand  90%Ag-10% Pd, the solid is a solid solution with ρ = 59.8 nΩ m, the value is roughly 3 
times greater. The resistivity of a mixture is normally much lower than the resistivity of a similar solid 
solution. In a solid solution, the added impurities scatter electrons and increase the resistivity. In a 
mixture, each phase is almost like a "pure" metal, and the overall resistivity is simply an appropriate 
"averaging" or combination of the two resistivities. 

Note: Data were extracted from http://www.electrical-contacts-wiki.com 

12.21 Ag–W alloys (contact materials) and the mixture rule Silver–tungsten alloys are frequently 
used in heavy-duty switching applications (e.g., current-carrying contacts and oil circuit breakers) and in 
arcing tips. Ag–W is a two-phase alloy, a mixture of Ag-rich and W-rich phases. The measured 
resistivity and density for various Ag–W compositions are summarized in Table 2.16. 

a.   Plot the resistivity and density of the Ag–W alloy against the W content (wt. %) 

b.   Show that the density of the mixture, d, is given by 

111 −−− += βα αα dwdwd

  where wα is the weight fraction of phase α, wβ is the weight fraction of phase β, dα is the density of 
phase α, and dβ is the density of phase β. Calculate d and plot it in a above. 

c.   Show that the resistivity mixture rule is 

β

β
β

α

α
α ρρρ

d

dw

d

dw
+=

where ρ is the resistivity of the alloy (mixture), d is the density of the alloy (mixture), and subscripts 
α and β refer to phases α and β, respectively. 
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d.   Calculate the density d and the resistivity ρ of the mixture for various values of W content (in wt. %) 
and plot the calculated values in the same graph as the experimental values. Try both the resistivity 
and conductivity mixture rules. What is your conclusion? 

Table 2.16  Dependence of resistivity in Ag–W alloy on composition as a function of wt.% W 

NOTE: ρ = resistivity and d = density. 

Solution

a.  The plot of density versus W weight percentage data in Table 2Q21-1, from Table 2.16, is shown in 
Figure 2Q21-1 

Table 2Q20-1 Resistivity of Ag-W alloys 

Ag-W Alloy 

wt.% W Resistivity Density

[nΩ m]  [g cm-3] 

0 16.2 10.5 

10 18.6 10.75 

15 19.7 10.95 

20 20.9 11.3 

30 22.7 12 

40 27.6 12.35 

65 35.5 14.485 

70 38.3 15.02 

75 40 15.325 

80 46 16.18 

85 47.9 16.6 

90 53.9 17.25 

100 55.6 19.1 
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Figure 2Q21-1: Experimental resistivity and density vs. composition of W 
in wt%. A simple second order polynomial provides a reasonable fit. 

b. The given mixture consists of two phases α, and β. Assume that the total mass of the alloy is Mmixture. 
If wα and wβ are the weight fractions of α, and β phases, then their respective masses in the mixture are 

Mα = wα Mmixture 

Mβ = wβ Mmixture

The densities of the phases α, and β, are dα and dβ, therefore the volume occupied by these phases can 
be calculated using the definition of density. i.e. density = mass / volume, we have 

α
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α
α
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d

Mw

d

M
V mixture

ofdensity

ofmass
===

β

β

β

β
β

β
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d

Mw

d

M
V mixture

ofdensity

ofmass
===

The total volume of the alloy mixture is  

Vmixture = Vα + Vβ

β

β

α

α

d

Mw

d

Mw mixturemixture +=

The density of the mixture is therefore, 
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or 
β

β

α

α

d

w

d

w

d
+=

1
(1) 

Figure 2Q21-2 shows the experimental and calculated density vs. W (wt. %) points and it is clear that 
the effective density equation in (1) is quite good in predicting the density over the whole alloy 
composition. 

Figure 2Q21-2  Experimental and calculated density vs. W (wt. %)

c. The resistivity-mixture rule or the series rule of mixtures is defined in Equation 2.30 as 

ββαα ρχρχρ +=eff

where χα and χβ are the volume fractions of phase α and β respectively. (For detailed derivation of this 
rule please see Example 2.14.) Volume fractions of the two phases are,  

mixtureV

Vα
αχ =  and 

mixtureV

Vβ
βχ =

From part a of this problem, the volume of the phasesα and β in the mixture are  

α

α
α

d

Mw
V mixture=  and 

β

β
β

d

Mw
V mixture=

and the volume of the mixture is 
d

M
V mixture= , therefore the volume fraction of the two contents is 

α

αα

α

α
αχ

d

dw

d

M

d

Mw

V

V
===

mixture

mixture

 and 
β

ββ

β

β
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d
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d

M
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V
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mixture

mixture
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In summary, the volume fractions are 

α

α
αχ

d

dw
= and   

β

β

βχ
d

dw
= (2) 

Substituting the volume fraction χα and χβ, the resistivity mixture rule is  

β

β

β
α

α

α ρρρ
d

dw

d

dw
+=eff (3) 

d. We calculate the density and the resistivity using the relations proved in parts b and c. As an example, 
for 30% W wt. content, the density and resistivity are,  

33

1
WW

1
AgAg

1

cmg1.19

)3.0(

cmg5.10

)3.01(
−−

−−− +
−

=+= dwdwd

d = 12.14 g cm−3. 

The measured value in Table 2.16 is 12.0 so the calculated value is very close (within 1%).   

Using the resistivity-mixture rule, the resistivity of the alloy ρeff is 

W

W
W

Ag

Ag

Ageff
d

wd

d

wd ⋅
+

⋅
= ρρρ

∴
)cmg1.19(

)3.0)(cmg0.12(
)mnΩ6.55(

)cmg5.10(

)3.01)(cmg0.12(
)mnΩ2.16(

3

3

3

3

eff −

−

−

−

+
−

=ρ

∴ ρeff = 23.44 nΩ m 

The experimental resistivity as given in the table is 22.7 nΩ m; difference is only 3.3%. Similarly, the 
densities and resistivities for the given W contents are calculated and listed in the Table 2Q21-2. 

Using the conductivity-mixture rule, the resistivity of the alloy ρeff is 

W

W

WAg

Ag

Ageff

111

d

wd

d

wd ⋅








+

⋅














=









ρρρ

substituting in the values for the RHS 

∴
)cmg1.19(

)3.0)(cmg0.12(
)mnΩ6.55(

)cmg5.10(

)3.01)(cmg0.12(
)mnΩ2.16(

1
3

3
1

3

3
1

eff
−

−
−

−

−
− +

−
=

ρ

∴ ρeff = 18.95 nΩ m 

The experimental resistivity 1s given in the table as 22.7 nΩ m; the difference is significant, 16%, 
especially with respect to the prediction of the series resistivity rule. Clearly the conductivity mixture 
rule fails. 

Similarly, the resistivities for the given W contents are all calculated and listed in the Table 2Q21-2. 
Figure 2Q21-3 shows the plot of experimental resistivity vs. W content and the resistivities from 
resistivity and conductivity mixture rules in Equations 2.30 and 2.31 respectively. 
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Figure 2Q21-3  Experimental resistivity and resistivities from resistivity and conductivity mixture rules vs. W 
(wt. %)

Table 2Q21-2: Resistivity of Ag–W alloy as a function of wt.% W calculated using series mixture and parallel 
mixture rules. 

W 
wt.% 

Volume 
Fraction 

Experimental 

density 

(g cm−3) 

Calculated 

density 

(g cm−3) 

Experimental 
resistivity 

(nΩ m) 

Resistivity 
mixture rule 

(nΩ m) 

Conductivity 
mixture rule 

(nΩ m) 

0 0.000 10.5 10.50 16.2 16.20 16.20

10 0.056 10.75 11.00 18.6 18.06 18.6

15 0.086 10.95 11.26 19.7 19.14 19.7

20 0.118 11.3 11.54 20.9 20.53 20.9

30 0.188 12.0 12.14 22.7 23.44 22.7

40 0.259 12.35 12.81 27.6 25.81 27.6

65 0.493 14.485 14.84 35.5 35.23 35.5

70 0.550 15.02 15.33 38.3 37.56 38.3

75 0.602 15.325 15.85 40 39.37 40

80 0.678 16.18 16.41 46 42.67 46

85 0.739 16.6 17.01 47.9 44.92 47.9

90 0.813 17.25 17.65 53.9 47.85 53.9

100 1.000 19.1 19.10 55.6 55.60 55.6

Major assumption: Ag-W is a two phase alloy, made up of α (Ag-rich) and β (W-rich) phases. We assumed that 
we can simply use the properties of Ag for the α and the properties of W for the β phase. 

Comment: The data were collected from a variety of sources (various handbooks and papers) and combined into a 
single table. The data are not simply from a single source. Hence the experimental values show some scatter. 



Solutions to Principles of Electronic Materials and Devices: 4th Edition (15 March 2017) Chapter 2

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent 
of McGraw-Hill Education. 

Given the scatter, the resistivity mixture model is in very good agreement with the experimental data. The 
conductivity mixture rule fails badly in this case. 

2.22 Strain gauges Consider a strain gauge that consists of a nichrome wire of resistivity 1100 nΩ m, 
TCR (α) = 0.0004 K−1, a total length of 25 cm, and a diameter of 50 µm. What is δR for a strain of 10−3? 
For nichrome, ν ≈ 0.3. What is δR if there is a temperature variation of 1 °C, given that the linear 
thermal expansion coefficient is 15 ppm K−1?  

Solution 

Clearly we can easily measure the strain 
through  δR, which is roughly 2 Ω; although a 
temperature fluctuation can significantly affect 
the measurement. Indeed, we need to 
compensate for the temperature fluctuation 
effects, otherwise the changes in δR will not 
reflect the changes in the strain.  See Question 
2.23 

Comment: λ = 14 ppm/K is typical of nichrome 
wires

2.23 Strain measurements  How would you use strain gauges in a Wheatstone bridge circuit to 
measure strains and reduce the effects of temperature variations? What would be the advantages and 
disadvantages of such a bridge circuit? 

Solution
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Figure 2Q23-1a shows a Wheatstone bridge. In Figure 2Q23-1b, R4 is the strain gauge, represented as 
Rs. The voltage between the terminals b and a is given by 

δV = 
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Figure 2Q23-1 Wheatstone bridge configurations for measuring strain. 

I.  Strain measurement without temperature compensation, and R4 as the strain gauge Rs

Take R4 = Rs, the strain gauge. A small change in Rs gives a change in v, 
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The fractional change in the voltage δv per unit fractional change in Rs is the sensitivity S, that is,  
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This quantity represents how the sensitivity S of the bridge depends on Rs/R3 = x  as shown in Figure 
2Q23-2. Clearly, S has a maximum magnitude at x = 1, that is, when Rs = R4 =  R3 and it is S = −0.25 

∴
4

1
max −=S

Figure 2Q23-2 Sensitivity vs. x = R3/Rs

Consider a strain gauge with a gauge factor (GF) of 1.6 (see Example 2.13), V = 10 V and Rs = 1000 Ω. 
What is the signal for a strain of 0.1%?   
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The voltage change is 
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or   δV = (10 V)(0.4×10−3) = 0.004 V or 4 mV, which is measurable 
Note that the responsivity (δV) can be increased by using a higher V across the bridge. 20 V would give 
a voltage change of 8 mV. 

II.  Temperature compensation 
In this case, we need to compensate for the change in R4 with temperature. If an exactly identical strain 
gauge is used for R3 (which is called a reference gauge Rref) but only R4 is subject to the strain, and both 
are subject to the same temperature change, then δV will not be affected by a temperature variation. The 
circuit is shown in Figure 2Q23-1c. Consider 
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Assume R1 = R2, R3 = R4 (for maximum bridge sensitivity). For a temperature change δT, δR1 = δR2 and 
δR3 = δR4 so that we always have v = 0. 
However, the strain only affects R4 and not R3. The derivation in Part I is valid and 
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Advantages 
1. In a Wheatstone bridge sensing circuit, one is measuring changes about zero volts across the 

bridge between a and b in Figure 2Q23-1b. 
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2. Changes in the temperature can be compensated with a "reference" strain gauge for R3 and the 
sensing gauge for R4. 

3. The responsivity can be increased by using a higher applied voltage without any dc shift in the 
voltage between a and b. 

4. We can use identical strain gauges for R1 = R2 = R3 = R4 and allow only R1 and R3 be subjected 
to the same strain. This would provide twice the sensitivity 
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2.24 Strain gauges Suppose you wish to construct a strain gauge from constantan, which is 55%Cu-
45%Ni alloy. Constantan has a resistivity of 500 nΩ m, TCR (α) of 8×10−6 K−1, linear thermal 
expansion coefficient (λ) of 14.9 × 10−6 K−1 and a Poisson ratio ν of 0.3 Suppose that the strain gauge 
uses 50 cm of wire and the diameter is 5 µm. What is δR for a strain of 10−3? What is δR if there is a 
temperature variation of 1 °C? 
Solution 

It is clear that the change δR in resistance due to a small temperature change of 1 °C is a fraction of the 
change in R due to the strain. This is a distinct advantage of constantans. Their thermal coefficient of 
resistivity (TCR) is generally very small.   
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2.25 Strain gauges Consider the derivation of Equation 2.26 for metal strain gauges. Is the equation the 
same if the cross section is a rectangle with dimensions a×b instead of a circular area of diameter D? 
Does this equation depend on the shape of the cross section? What would be the advantage of using a 
gauge made from thin film strips on a carrier substrate that could be bonded to the structure under test? 
How important is the substrate in strain measurements? 

Solution 

Consider a metal strip with a cross sectional area ab

ab

L
R

ρ
= (1) 

The applied load changes L, a and b by δL, δa and δb, which change R by δR. The total derivative of a 
function R of three variables L, a and b can be found by taking partial differentials  
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We can substitute from Equation (1) into (2) to find, 
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The longitudinal and transverse strains, εl and εt, are defined as follows 
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where ν is the Poisson ratio. Thus 
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which is the same as that for the circular cross sectional wire in Equation 2.26 Clearly, the result is 
independent of the exact cross sectional area shape. 

Thin film strips are much easier to bond directly on to an insulating substrate (a carrier structure that 
will hold – carry –  the metal strips) with good contact. Usually substrates are polymers such as 
polyimide (Kapton). Good contact between the metal strips and the substrate is essential because we 
need the strain to be transmitted to the metal strips. The substrate has to be such that it can be bonded to 
the structure easily and be able to transmit the strain to the metal gauge. Most substrates have to be 
flexible as well so that they be bonded onto various surface. The adhesive between the substrate and the 
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structure is also very important because the bond has to transfer the strain from the structure to the 
substrate. Some strain gauges have the metal wires embedded in a polymer sheet. 

2.26 Thermal coefficients of expansion and resistivity

a.   Consider a thin metal wire of length L and diameter D. Its resistance is R =ρL/A, where A = πD2/4.  
By considering the temperature dependence of L, A, and ρ individually, show that 

oo
dT

dR

R
λα −=

1

where αo is the temperature coefficient of resistivity (TCR), and λo is the temperature coefficient of 
linear expansion (thermal expansion coefficient or expansivity), that is, 
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Note: Consider differentiating R = ρL/[(πD2)/4] with respect to T with each parameter, ρ, L, and D, 
having a temperature dependence. 

 Given that typically, for most pure metals, αo ≈ 1/273 K−1 and λo ≈ 2 × 10−5 K−1, confirm that the 
temperature dependence of ρ controls R, rather than the temperature dependence of the geometry.  Is 
it necessary to modify the given equation for a wire with a noncircular cross section? 

b.   Is it possible to design a resistor from a suitable alloy such that its temperature dependence is almost 
nil? Consider the TCR of an alloy of two metals A and B, for which αAB ≈ αAρA/ρAB. 

Solution

a. Consider the resistance R of the wire, 
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Consider a change δR in R due to a change δT in the temperature. We can differentiate R with respect to 
T by considering that ρ, L, and D depend on T, 
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At T = To we have, 
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where the derivatives are at T = To. Recall that the temperature coefficient of resistivity, TCR (αo), and 
the linear expansion coefficient λo are defined as follows, 
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which reduces Eqn. (3) to  
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Typically λo ≈ 2 × 10−5 K−1, and for pure metals αo ≈ 1/273 K−1 or 3.6 × 10−3 K−1. Thus, 

0
131513 K106.3K102K106.3

1
α≈×≈×−×=




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

 −−−−−−

dT

dR

R

Since αo is much larger than λo, it dominates the change in R. 

Figure 2Q22-1:  Wire with non-circular cross section. 

There is no need to modify Eqn. (5) for a non-circular cross sectional area. You can derive the 
same expression for a rectangular or an elliptic cross section, or, indeed, any arbitrary cross section.  
One can consider the wire to be made up of N thin fibers each of circular cross section Af. Imagine 
holding a bunch of these in your hand and then sliding them into any cross section you like as in the 
Figure 2Q22-1. In all cases A = ΣAf. However, since the fibers are in parallel, the total resistance is 
given by R−1 = ΣRf

−1 = NRf
−1. Thus R = Rf / N. For each fiber, δRf = Rf(αo − λo)δT as we have derived 

above. Then, 

δR = (δRf)/N = [Rf(αo − λo)δT]/N = R(αo − λo)δT 

[There are a few assumptions such as the resistivity is homogeneous and the cross section does not 
change along the wire!] 

b. For pure metals, αo > > λo. Alloying metal A with metal B reduces the TCR (temperature coefficient 
of resistivity) αA of metal A to αAB = αA(ρA/ρAB). The αo − λo can be brought to zero by using a suitable 
composition alloy for which αo = λo. Since αo strictly depends (however slightly) on T, the condition 

Af

Rf
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αo − λo can only be exactly true at one temperature or approximately true in a small region around that 
temperature.  In practice this temperature range may be sufficient to cover a typical application range in 
which, for most practical purposes, αo − λo is negligible.   

2.27 Thermal conduction  Consider brass alloys with an X atomic fraction of Zn. These alloys form a 
solid solution up to 30 at. %, and we can use the combined Matthiessen-Nordhein rule in Equation 2.21 
to calculate the resistivity of the alloy. Take C = 300 nΩ m and mnΩ17Cu == ρρo . 

a.   An 80 at .% Cu─20 at. % Zn brass disk of 40 mm diameter and 5 mm thickness is used to conduct 
heat from a heat source to a heat sink. 

      (1)  Calculate the thermal resistance of the brass disk. 

      (2)  If the disk is conducting heat at a rate of 100 W, calculate the temperature drop along the disk. 

b.   What should be the composition of brass if the temperature drop across the disk is to be halved? 

Solution

a.

(1) Assume T = 20 ºC = 293 K.  Apply Equation 2.22 to find the resistivity of the brass in the disk with 
ρCu = 17.1 nΩ m and XZn = 0.20: 

ρbrass = ρCu + CZn-in-CuXZn(1 − XZn) 

i.e. ρbrass = 17.1 nΩ m + (300 nΩ m)(0.20)(1 − 0.20) 

∴ ρbrass = 65.1 nΩ m 

We know that the thermal conductivity is given by κ/σbrass = CFWLT  where σbrass is the conductivity of 
the disk, CFWL is the Lorenz number and T is the temperature. This equation can also be written as 
κρbrass = CFWLT so that κ = CFWLT/ρ. Applying this equation, 

κ(20 °C) = (2.44 × 10−8 W Ω K−2)(293 K) / (6.51 × 10−8 Ω m) 

∴ κ(20 °C) = 109.8 W K−1 m−1

The thermal resistance is θ = L/(κA), where L is the thickness of the disk and A is the cross-sectional 
area of the disk. 

θ = L/(κA) = (5 × 10−3 m)/[(109.8 W K−1 m−1)(π)(2 × 10−2 m)2] = 0.0362 K W−1

(2) From dQ/dt = Aκ∆T/∆x = ∆T/θ (∆x can be taken to be the same as L), and dQ/dt = P (power 
conducted), we can substitute to obtain: 

∆T = Pθ = (100 W)(3.62 × 10−2 K W−1) = 3.62 K or 3.62 °C

Note:  Change in temperature is the same in either Kelvins or degrees Celsius, i.e. ∆T = T1 ─ T2 = (T1 + 
273) ─ (T2 + 273). 

b. Since ∆T = Pθ, to get half ∆T, we need half θ or double κ or double σ or half ρ. We thus need 1/2ρbrass

or 1/2(65.1 nΩ m) which can be attained if the brass composition is Xnew so that 
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ρnew = ρCu + CZn in CuXnew(1 − Xnew) 

i.e. 1/2(65.1 nΩ m) = 17 nΩ m + (300 nΩ m)Xnew(1 − Xnew) 

Solving this quadratic equation we get Xnew = 0.0545, or 5.5% Zn. Thus we need 94.5% Cu-5.5% Zn
brass. 

2.28 Thermal resistance Consider a thin insulating disc made of mica to electrically insulate a 
semiconductor device from a conducting heat sink. Mica has κ = 0.75 W m−1 K−1. The disk thickness is 
0.1 mm, and the diameter is 10 mm. What is the thermal resistance of the disk? What is the temperature 
drop across the disk if the heat current through it is 5 W?

Solution

The thermal resistance of the mica disk can be calculated directly from Equation 2.46. If L is the 
thickness of the disk and D is the diameter 
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 = 1.70 K W−1

 The temperature drop across the disk according to Equation 2.43 is 

θQT ′=∆  = (5 W)( 1.70 K W−1) = 8.5 °C

*2.29 Thermal resistance Consider a coaxial cable operating under steady state conditions when the 
current flow through the inner conductor generates Joule heat at a rate P = I2R. The heat generated per 

second by the core conductor flows through the dielectric; RIQ 2=′ . The inner conductor reaches a 

temperature Ti whereas the outer conductor is at To. Show that the thermal resistance θ of the hollow 
cylindrical insulation for heat flow in the radial direction is 

( )
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TT oi

πκ
θ

2
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'


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





=
−

= Thermal resistance of hollow cylinder [2.87] 

where a is the inside (core conductor) radius, b is the outside radius (outer conductor), κ is the thermal 
conductivity of the insulation, and L is the cable length. Consider a coaxial cable that has a copper core 
conductor and polyethylene (PE) dielectric with the following properties: Core conductor resistivity ρ = 
19 nΩ m, core radius, a = 4 mm, dielectric thickness, b − a = 3.5 mm, dielectric thermal conductivity κ
= 0.3 W m−1 K−1. The outside temperature To is 25 °C. The cable is carrying a current of 500 A. What is 
the temperature of the inner conductor?  

Solution
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Consider a thin cylindrical shell of thickness dr as shown in Figure 2Q29-1.  The problem with the 
thermal equivalent circuit is shown in Figure 2Q29-2. The temperature difference across dr is dT. The 
surface area of this shell is 2πrL. Thus, from Fourier’s law, 

dr

dT
rLQ κπ )2(−=′

which we can integrate with respect to r from r = a where T = Ti to r = b where T = To, 
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Thus the thermal resistance of the hollow cylindrical insulation is 
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Figure 2Q29-1: Thermal resistance of a hollow cylindrical shell.  Consider an infinitesimally thin cylindrical 
shell of radius r and thickness dr in the dielectric and concentrically around the inner conductor. The surface area 

is 2πrL
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Figure 2Q29-2: (a) The joule heat generated in the core conductor flows outwards radially through the dielectric 
material. (b) The equivalent circuit. 

The actual length of the conductor does not affect the calculations as long as the length is sufficiently 
long such that there is no heat transfer along the length; heat flows radially from the inner to the outer 
conductor. We consider a portion of length L of a very long cable and we set L = 1 m so that the 
calculations are per unit length. The joule heating per unit second (power) generated by the current I
through the core conductor is 
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The thermal resistance of the insulation is, 
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 = 0.33 °C/W

Thus, the temperature difference ∆T due to Q′ flowing through θ is, 

∆T = Q′θ = (94.5 W)(0.33 °C/W) = 31.2 °C. 

The inner temperature is therefore, 

Ti = To + ∆T = 25 + 31.2 = 56.2 °C.

Note that for simplicity we assumed that the inner conductor resistivity ρ and thermal conductivity κ are 
constant (do not change with temperature). 

2.30 Temperature of a light bulb filament
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a.   Consider a 100 W, 120 V incandescent bulb (lamp). The tungsten filament has a length of 0.579 m 
and a diameter of 63.5 µm. Its resistivity at room temperature is 56 nΩ m. Given that the resistivity 
of the filament can be represented as 

n

T

T








=

0

0ρρ Resistivity of W [2.88] 

where T is the temperature in K, ρ0 is the resistance of the filament at T0 K, and n = 1.24, estimate 
the temperature of the bulb when it is operated at the rated voltage, that is, directly from the mains 
outlet. Note that the bulb dissipates 100 W at 120 V. 

b.   Suppose that the electrical power dissipated in the tungsten wire is totally radiated from the surface 
of the filament. The radiated power at the absolute temperature T can be described by Stefan's Law 

Pradiated = εσsA(T4 − T0
4) Radiated power [2.89]

where σs is Stefan's constant (5.67 × 10−8 W m−2 K−4), ε is the emissivity of the surface (0.35 for 
tungsten), A is the surface area of the tungsten filament, and T0 is the room temperature (293 K).  
Obviously, for T > T0, Pradiated = εσsAT4. 

 Assuming that all of the electrical power is radiated from the surface, estimate the temperature of 
the filament and compare it with your answer in part (a). 

c.   If the melting temperature of W is 3407 °C, what is the voltage that guarantees that the light bulb 
will blow? 

Solution

a. First, find the current through the bulb at 100 W and 120 V. 

P = VI

∴ I = P/V = (100 W)/(120 V) = 0.8333 A 

From Ohm’s law the resistance of the bulb can be found: 

R = V/I = (120 V)/(0.8333 A) = 144.0 Ω

The values for length of the filament (L = 0.579 m) and diameter of the filament (D = 63.5 µm) at 
operating temperature are given. Using these values we can find the resistivity of the filament when the 
bulb is on (ρ1). 

2

1

4
D

L
R

π
ρ

=

∴
( ) ( )

( )
m10876.7

m579.0

m105.63
4

0.144
4 7

262

1 Ω×=
×Ω

== −

−ππ

ρ
L

DR

Now the bulb’s operating temperature (T1) can be found using our values above in the equation for 
resistivity of W (assuming room temperature To = 293 K and given n = 1.24): 
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Figure 2Q30-1 Power radiated from a light bulb at 2570 °C is equal to the electrical power dissipated in the 
filament. 

b. First we need the surface area A of the Tungsten filament. Since it is cylindrical in shape: 

A = L(πD) = (0.579 m)(π)(63.5 × 10−6 m) = 0.0001155 m2

Now, the temperature of the filament T1 can be found by assuming that all the electrical power delivered 
to the filament at T1 is radiated away by Stefan's law. That is, P is the electrical power delivered to the 
filament 
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where A is the surface area of the filament, ε is the emissivity of tungsten and σS is Stefan’s constant. 
Substitute ε = 0.35, σS = 5.67 × 10−8 W m−2 K−4, and room temperature (T0 = 293 K) into 
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and then solve for T1, 
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∴ T1 = 2570 K 

Note: We can even ignore T0 to get the same temperature since T0 << T1: 
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These values are fairly close to the answer obtained in part (a). 

c. Let V be the voltage and R be the resistance when the filament is at temperature Tm. We are given the 
melting temperature, Tm = 3407 °C + 273 = 3680 K. Since we know the following: 

ρ
π 2

4
D

L
R =  and 

n

m

T

T








=

0
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We can make a substitution for ρ and use the values given for the light bulb filament to find the 
resistance of the filament at temperature Tm.   
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∴ R = 236.03 Ω

Assuming that all electrical power is radiated from the surface of the bulb, we can use Stefan’s law 
again. Substitute for R in V2/R for the electrical power P delivered to the filament and hence radiated 
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42 TTARV ms −= εσ

∴ ( )( )( )( ) ( ) ( )[ ]444282 K293K3680m0001155.0KmW1067.535.003.236 −×Ω= −−−V

∴ V = 315 V  

The voltage must be greater than 315 V 

2.31 Superionic conduction in RbAg4I5 Figure 2.29 shows that the RbAg4I5 (rubidium silver iodide) 
crystal has a conductivity that is orders of magnitude higher than traditional ceramics and glasses in the 
same temperature range.  Table 2.17 gives the conductivity of RbAg4I5 as a function of temperature. By 
carrying out a suitable plot, find the activation energy Eσ (eV) and the pre-exponential constant A in the 
expression for ionic conduction, σ = (A/T)exp(−Eσ/kT). 

Table 2.17 Conductivity vs. temperature data for a RbAg4I5 crystal 

T (°C) 25 27 34 51 56 65 75 77

σ (Ω−1 cm−1) 0.288 0.304 0.322 0.339 0.371 0.395 0.427 0.434

T (°C) 87 89 92 107 121 132 134 147

σ (Ω−1 cm−1) 0.455 0.465 0.477 0.527 0.55 0.581 0.608 0.659

Data extracted from K. S. Kim and W Piak, J. Chem. Engin. Data 20, 356 1975 

Solution 

The data in Table 2.17 is reproduced in Table 2Q31 in Excel with the required quantities σT and 1/T

calculated. The semilogarithmic plot of conductivity × temperature product (σT) against reciprocal 

temperature (103/T) is shown in Figure 2Q31. 
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Table 2Q31 Conductivity at various temperatures for RbAg4I5 crystal 

UNITS °C 1/(Ohm cm) K 1/K K/(Ohm cm) 

QUANTITY T Conductivity T (K) 1/T σΤ 

VALUES 25 0.288 298 3.3557047 85.824 

27 0.304 300 3.33333333 91.2 

34 0.322 307 3.25732899 98.854 

51 0.339 324 3.08641975 109.836 

56 0.371 329 3.03951368 122.059 

65 0.395 338 2.95857988 133.51 

87 0.455 360 2.77777778 163.8 

89 0.465 362 2.76243094 168.33 

92 0.477 365 2.73972603 174.105 

107 0.527 380 2.63157895 200.26 

121 0.55 394 2.53807107 216.7 

132 0.581 405 2.4691358 235.305 

134 0.608 407 2.45700246 247.456 

Figure 2Q31   A semilogarithmic plot of conductivity × temperature product (σT) against reciprocal temperature 

(103/T). 

We expect the conductivity to follow 
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So that taking the natural logs of both sides, we find 
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The observed straight line in Figure 2Q31 confirms the above behavior. From the best fit exponential 

line in Figure 2Q31 (in Excel), the slope is 

Slope = −1.143×103 Κ−1, 

y = 3977.9e-1.143x

R² = 0.9952
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∴ Eσ = 0.099 eV. 

The pre-exponential in the best fit exponential function is 

A = 3978 K Ω−1 cm−1.

Note: We can check that the above values are correct by, for example, calculating the conductivity at T

= 360 K. Substituting T = 360 K, we have   
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= 0.454 Ω−1 cm−1, which is the value in Table 2Q31.  

2.32 Hall effect with ions in ionic crystals  By using various sensitive measurement techniques, it is 
possible to carry out Hall effect measurements on certain ionic crystals. Stuhrmann, Kreiterling and 
Funke in 2002 (Solid State Ionics, 154, 109) were able to measure the Hall voltage on superionic 
RbAg4I5 crystals in a magnetic field. The results at 100 °C indicate that the Hall coefficient is 
approximately 5.7 × 10−4 cm3 C−1. The conductivity of the sample at the same temperature is 
approximately 0.53 Ω−1 cm−1. The mobile charges are Ag+ ions. What is the Hall mobility of Ag+ ions? 
The Ag+ concentration in in the crystal can be estimated from the density of the crystal (d = 5.38 g cm−3) 
and is approximately 1.13×1022 cm−3. Assuming that all the ions are moving, what should be the drift 
mobility of Ag+ ions at 100 °C? What is your conclusion? 

Solution 

The Hall mobility is given by the product of conductivity and the Hall coefficient, that is 
112413411 sVcm1002.3)Ccm107.5)(cm53.0( −−−−−−− ×=×Ω== HH Rσµ

Consider now the conductivity σ  due to the drift of Ag+ ions. Let n(Ag+) be the concentration of Ag+-

ions drifting, then  

dd enen µµσ )Ag( +==

from which we can find the drift mobility µd, 
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The agreement is excellent and confirms that nearly all Ag+ are drifting.  

Comment:  The data were extracted from Figure 3 and 4 in Stuhrmann, Kreiterling and Funke in Solid State 

Ionics, 154, 109, 2002, where their conclusion is that the two mobilities, Hall and drift, are the same, exactly as 

above. Note that there are 4 (RbAg4I5) units in the cubic unit cell of the RbAg4I5 crystal. The lattice parameter a is 

0.1124 nm, so we can calculate the number of Ag+-ions per unit volume as 4×(4/a3) or 1.13×1022 cm−3.  
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2.33 Ionic conduction in soda-silicate glasses  Consider soda-silica glass of composition 25%Na2O-
75%SiO2 which represents (Na2O)0.25(SiO2)0.75. Its density is 2.39 g cm−3. The diffusion coefficient D of 
Na+ in this soda-silica at 350 °C is 3.38 ×10−9 cm2 s−1 and the Haven ratio f is 0.53. Calculate the 
conductivity of 25%Na2O-75%SiO2 glass at 350 °C and compare it the value deduced from Figure 2.29. 

Solution 
Following Example 2.25, we first calculate the concentration of Na+ ions in the glass. If MNa, MSi and 

MO are the atomic masses of Na, Si and O respectively, the molecular mass of (Na2O)0.25(SiO2)0.75 is 

)2(75.0)2(25.0 OSiONa MMMMM +++=

= 0.25(2×23.0+16.0) + 0.75(28.1+2×16) = 60.6 g mol−1

Given the density d, the concentration of (Na2O)0.25(SiO2)0.75 units ("molecules") is 

)molg6.60(

)mol10022.6)(cmg39.2(
1

1233

molecule −

−− ×
==

M

dN
n A =  2.38×1022 cm−3 

Each of these (Na2O)0.25(SiO2)0.75 units has 0.25×2 number of Na atoms so that the Na+-ion 

concentration is 

ni = 0.25×2×2.38 ×1022 cm−3 = 1.19×1022 cm−3. 

We need the drift mobility µi of the Na+ ions, which is 

)scm1038.3(
)K273360)(KJ10381.1(

)C10602.1(

53.0

11 128

123
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−−
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×








+×

×
=








= ii D

kT

e

f
µ

∴ µi = 1.235 ×10−7 cm2 s−1 

The conductivity is 

σ = eniµi = (1.602×10−19 C)(1.19×1022 cm−3)(1.235 ×10−7 cm2 s−1) = 2.35×10−4 Ω−1 cm−1 

Consider 24%Na2O-76%SiO2 in Figure 2.29, which is almost the same as the composition 25%Na2O-

75%SiO2. The conductivity of 24%Na2O-76%SiO2 in Figure 2.29 at 350 C is roughly 2×10−4 W−1 cm−1. 

Given the uncertainty in reading off the conductivity scale in Figure 2.29, the agreement is very good. 
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Figure 2Q33-1 (Figure 2.29 in the 4th Edition.) The composition 24%Na2O-76%SiO2 in this figure (Figure 2.29) 
is almost the same as the composition 25%Na2O-75%SiO2. Its conductivity at 350 C is roughly 2×10−4 W−1 cm−1.

Note: The Na+ diffusion coefficient D in silica is from Table I in C. Lim and D.E. Day," Sodium Diffusion in 
Glass: I, Single-Alkali Silicate", J. Am. Ceram Soc., 60, 198-203, 1977. Their table of values is reproduced 
below. 

T °C 1/T (103/K) D (cm2 s-1) 

300 1.745201 9.10E-10 

350 1.605136 3.38E-09 

400 1.485884 1.03E-08 

430 1.422475 1.87E-08 

2.34 Ionic conduction in borosilicate glasses  Table 2.18 shows the conductivities of four types of 
borosilicate glass identified as samples L,N, K and C where L is 53.4SiO2-25.8B2O3-20.8Li2O, N is 
53.5SiO2-26.1B2O3-20.4Na2O; K is 55.1SiO2-25.8B2O3-19.1K2O and C is 58.1SiO2-24.7B2O3-
17.2Na2O. The numbers represent molar percentages i.e. 55.1%SiO2 etc. The main difference between 
the samples is the alkaline ion species: L has Li+, N has Na+, K has K+ and C has Cs+ mobile ions.  

a Find the constant A, the activation energy Eσ  for each sample. Plot Eσ vs. the alkaline ion radius.  

b Calculate and compare the conductivities at the same temperature, say at 400 °C. Which are 
lower?  Why? Plot semilogarithmically σ at 400 °C vs. ionic radius. 
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c Find approximately the temperature for each glass so that all four glasses at this temperature 
have the same conductivity of σ = 8.00×10−6 Ω−1 cm−1. For example, T is 235 °C for glass L. What is 
your conclusion? 

Table 2.18 Selected conductivities and properties of borosilicate glasses with different alkaline ions 

Sample Mobile ion  Ionic 
radius (nm) 

σ1 at T1

Ω−1 cm−1 

σ2 at T2

Ω−1 cm−1

L Li+ 0.061 9.18×10−6 at 240 °C 8.86×10−4 at 490 °C 
N Na+ 0.086 1.54×10−7 at 190 °C 2.34×10−4 at 500 °C 
K K+ 0.139 2.22×10−8 at 220 °C 1.25×10−4 at 520 °C 
C Cs+ 0.160 5.43×10−9 at 230 °C 9.50×10-6 at 500 °C 

Note: Conductivity and ionic radius values from M. Neyret et al, J. Non-Cryst. Solids, 410, 74 
(2015) 

Solution 

a. This problem is indetical to Example 2.24, that is, at temperature T1, σ = σ1 and at T2, σ = σ2,   









−=

11

1 exp
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E

T

A σσ   and  







−=

22

2 exp
kT

E

T

A σσ

We have two equations with two unknowns (Eσ and A). Dividing first by the second eliminates A and 

then we can solve for Eσ to find   










−
=

11

22

12

21 ln
)( T

T

TT

TkT
E

σ

σ
σ

from which we can calculate Eσ. Then, we can use any one of the equations to find A, 









=

1

11 exp
kT

E
TA σσ

The results of the calculations are summarized in Table 2Q34-1. The plot of Eσ vs the ionic radius is 

shown in Figure 2Q34-1. Clearly, as the ionic radius increases (the size of the ion), the activation energy 

also increases. It becomes harder for the ion to diffuse. 

Table 2Q34-1 Selected conductivities and properties of borosilicate glasses with different alkaline ions and the 
results of the calculations of EA, A and σ at 400 °C 
Sample Mobile 

ion 
 Ionic 
radius 
(nm) 

σ1 at T1

Ω−1 cm−1 

σ2 at T2

Ω−1 cm−1

Εσ

(eV) 
A
(K Ω−1 cm−1) 

σ  
(Ω−1 cm−1) 
at 400 °C 

L Li+ 0.061 9.18×10−6 at 240 °C 8.86×10−4 at 490 °C 0.67 1.80×104 2.57×10−4

N Na+ 0.086 1.54×10−7 at 190 °C 2.34×10−4 at 500 °C 0.78 2.20×104 4.72×10−5

K K+ 0.139 2.22×10−8 at 220 °C 4.64×10−5 at 520 °C 0.91 2.30×104 5.35×10−6

C Cs+ 0.160 5.43×10−9 at 230 °C 9.50×10−6 at 500 °C 0.98 1.80×104 1.26×10−6
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Figure 2Q34-1 A plot of the activation energy EA (eV) vs. ionic radius (nm) of drifting ions in the glass 

b. Since the temperature is given, and we know A and Eσ for each, we can calculate the σ at 400 
°C, σ400, from 










+×
−

+

Ω×
=

−−

−−

)K273400)(KeV109.4(

)eV67.0(
exp

)K273400(

)cmK108.1(
14

114

400σ = 2.57×10−4 Ω−1 cm−1

This and the results for the other ions are listed in Table 2Q34-1. We can now plot semilogarithmically 
σ400 vs. the ion radius as in Figure 2Q34-2. Clearly, there is an exponential decay in the conductivity as 
the ion size increases. This is not surprising because the activation energy Eσ increases linearly with the 
ionic radius. The conductivity σ = (A/T)exp(−Eσ/kT) but A is relatively independent of the ionic radius 
as can be seen from Table 2Q34-1. Thus, the exponential drop in the conductivity along Li+, Na+, K+

and Cs+ ions is due to the activation energy increasing linearly with the ionic radius.
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Figure 2Q34-2 A semilogarithmic plot of conductivity at 400 °C vs ionic radius of drifting ions in the glass 

Table 2Q34-1 Selected conductivities and properties of borosilicate glasses with different alkaline ions 
Sample Mobile 

ion 
 Ionic 
radius 
(nm) 

Εσ

(eV) 
A
(K Ω−1 cm−1) 

σ at 400 °C 
(Ω−1 cm−2)  

Τ for σ = 8.00×10−6

Ω−1 cm−1

L Li+ 0.061 0.67 1.80×104 2.57×10−4 235 °C 
N Na+ 0.086 0.78 2.20×104 4.72×10−5 316 °C 
K K+ 0.139 0.91 2.30×104 5.35×10−6 420 °C 
C Cs+ 0.160 0.98 1.80×104 1.26×10−6 490 °C 

c.  To calculate the temperature at which σ = 8×10−6 Ω−1 cm−1, we need to solve 









−=Ω×= −−−

kT

E

T

A σσ expcm108 116

for a given set of EA and A from Table 2Q34-1. For example, for Li, we can write this as 



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14
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which can be solved only numerically or by graphing the function. The exponential part exp(−Eσ/kT) 

dominates the temperature dependence of σ rather than the pre-exponential part A/T. Thus, we can take 

an initial guess for T = T1 = (for example) 400 °C, and then use this in the pre-exponential part (A/T) and 

calculate T from the exponential part, i.e. 
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141 ATk

E
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σ
σ = 517.6 K 

We can now take this value, 517.6 K, as a better initial guess for T1 and recalculate a new T, i.e. 










Ω×

Ω×
×

==

−−

−−−
−−

)cmK108.1(

K)6.517)(cm108(
ln)KeV109.4(

)eV67.0(

)/ln(
114

116
141 ATk

E
T

σ
σ = 508.6 K 

Of course, we can repeat the above by taking an even better guess for T1 as 508.7 K, so that 


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Clearly the calculations have now converged to a value 508.1 K that is 235 °C. This value is entered 
into Table 2Q34-2. Similar calculations for the other 3 ions lead to the temperatures shown in Table 
2Q34-2. The Livemath (formerly, Theorist) calculations are given below. 
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2.35 Skin effect

a.  What is the skin depth for a copper wire carrying a current at 60 Hz? The resistivity of copper at 27 
°C is 17 nΩ m. Its relative permeability is µr ≈ 1. Is there any sense in using a conductor for power 
transmission with a diameter of more than 2 cm? 

b.  What is the skin depth for an iron wire carrying a current at 60 Hz? The resistivity of iron at 27 °C is 
97 nΩ m. Assume that its relative permeability is µr ≈ 700. How does this compare with the copper 
wire? Discuss why copper is preferred over iron for power transmission even though the iron is 
nearly 100 times cheaper than copper. 

Solution

a. The conductivity is 1/ρ. The relative permeability (µr) for copper is 1, thus µCu = µo. The angular 
frequency is ω = 2πf = 2π(60 Hz). Using these values in the equation for skin depth (δ): 

( )( )
( )m1017

mH104
s602

2

1

1

1

2

1

1

9

17
1-

Cu
Ω×

×
==

−

−−π
πµ

ρ
ω

δ

o

∴ δ = 0.00847 m or 8.47 mm
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This is the depth of current flow. If the radius of wire is 10 mm or more, no current flows through the 
core region and it is wasted. There is no point in using wire much thicker than a radius of 10 mm 
(diameter of 20 mm). 

b. The conductivity is 1/ρ. The relative permeability (µr) for Iron is 700, thus µFe = 700µo. The angular 
frequency is ω = 2πf = 2π(60 Hz). Using these values in the equation for skin depth (δ): 

( )( )( )
( )m1097

mH104700
s602

2

1

1

1

2

1

1

9

17
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Fe
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×
==

−

−−π
πµ

ρ
ω

δ

o

∴ δ = 0.000765 m or 0.765 mm

Thus the skin depth is 0.765 mm, about 11 times less than that for copper. 

To calculate the resistance we need the cross sectional area for conduction. The material cross sectional 
area is πr2 where r is the radius of the wire. But the current flow is within depth δ. We deduct the area 
of the core, π (ρ − δ)2, from the overall area, πr2, to obtain the cross sectional area for conduction. 

Comparison of Cu and Fe based on solid core wires:

The resistance per unit length of the solid core Fe wire (RFe) is: 

( ) 2
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FeFe
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Fe

FeFe
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The resistance per unit length of solid core Cu wire is: 
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If we equate these two resistances, we can make a comparison between Fe and Cu: 

R Fe = R Cu

∴ 2

CuCuCu

Cu
2

FeFeFe

Fe

22 πδδπ

ρ

πδδπ

ρ

−
=

− rr

∴ ( )2

CuCuCuFeFeFeCu 22 πδδπρδπρ −= rr  (Neglect the δFe
2 term which is small) 

∴
( )

FeCu

2

CuCuCuFe
Fe

2

2

δπρ

πδδπρ −
=

r
r

We can assume a value for rCu for calculation purposes, rCu = 10 mm. The resistivity ρCu is given as 17 
nΩ m and the skin depth of Cu is known to be δCu = 8.47 mm. The resistivity of Fe is given as ρFe = 97 
nΩ m and its skin depth was just calculated to be δFe = 0.765 mm. We can substitute these values into 
the above equation to determine the radius of Fe wire that would be equivalent to 10 mm diameter Cu 
wire. 

( ) ( )( ) ( )[ ]
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∴ rFe = 0.364 m
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Now compare the volume (V) of Fe per unit length to the volume of Cu per unit length: 
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1325===
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2
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Cu

Fe

m010.0

m364.0
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m1

r
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V
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π

π

Even though Fe costs 100 times less than Cu, we need about 1300 times the volume of Cu if Fe is used.  
The cost disadvantage is 13 times in addition to weight disadvantage. 

ADDENDUM JANUARY 2001 (A Discussion by Dr. George Belev)

Comparison of Cu and Fe wires: any shape and any number:

To determine if it is worthwhile to use iron rather than copper, we must compare the amount of 
iron needed to perform the equivalent task of some amount of copper (i.e. have the same resistance). Let 
us first assume that by choosing a proper shape for the conductors we can eliminate the influence of the 
skin effect on conduction. 

The resistance per unit length of the Fe wire (RFe) is: 

Fe

Fe
Fe

A
R

ρ
=

The resistance per unit length of Cu wire is 

CuA
R Cu
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ρ
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If we equate these two resistances, we can make a direct comparison between Fe and Cu: 
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and the volumes of iron and copper per unit length will be in the same ratio 
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Let us compare the masses of Fe and Cu needed per unit length 
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Since Fe costs 100 times less than Cu, if we use iron conductors, we will reduce the cost for wire 
by 100/5 = 20 times. So it seems that the use of Fe will have great economic advantage if we can find a 
reasonable way to eliminate the influence of the skin effect on conduction. 

There is no sense in making the conductor with a radius bigger than the skin depth, so let us 
consider a single copper conductor with radius δCu, and using N iron conductors each with radius δCu as 
shown bellow in Figure 2Q35-1, 
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Figure 2Q35-1 

As we have calculated above both conductors will have equal resistance per unit length if 
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==
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A

and we can calculate the number N of Fe wires that should run in parallel  

700
2
Fe

2
Cu

Cu

Fe ≈=
δ

δ

ρ

ρ
N

Thus, copper as a single conductor has 700 times better performance than a single iron conductor.  

It is not necessary to manufacture 700 Fe wires and run them in parallel. The iron conductor can be 
produced more conveniently in the shapes shown bellow in Figure 2Q35-2, and it will be cheaper than 
the Cu conductor. 

Figure 2Q35-2 

But, it will be of impractical size; it will have poor mechanical properties and will be 5 times 
heavier compared with the single Cu wire. A power grid based on Cu conductors will be much cheaper 
and much smaller than the one based on Fe conductors. 

2.36 Mayadas-Shatzkes thin film resistivity Consider Equation 2.72 for the resistivity of a 
ploycrystalline thin film in terms of β.  Consider the expansion of Equation 2.72 around β = 1. If ∆β = β
– 1, then show that 

β
ρ

ρ
348.1030.1

crystal

film +≈ Grain boundary scattering in thin films [2.89]

Plot the actual expression for )/( crystalfilm ρρ  vs. β and then Equations 2.73a and 2.89 vs β and compare 

the three. What would be a range of values for which Equations 2.73 and 2.89 can be used with 3% 
error? What is your conclusion? 

Solution 

2 δCu

2 δFe

N

2 δFe = 1.53 mm

2 N δFe = 1071 mm

δFe = 0.763 mm

N δFe
4
π

= 682 mm
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The Mayadas-Shatzkes equation needs to be differentiated only once to find the linear term in β in the 
expansion. Consider
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Differentiating u with respect to β,  
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The final result is then 
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and at β = 1 we have 
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Then, the Taylor expansion around β = 1 becomes 
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yy = 2.3778 + (β−1)(1.3475) = 1.0303 + 1.3475β

Figure 2Q36-1 shows the plots of the actual Mayadas-Shatzkes thin film resistivity (BLACK) and the 
approximations in Equations 2.73a and 2.90. Equation 2.90 seems to provide a good approximation to 
the exact expression for β at least from 0.1 to 10  
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Figure 2Q36-1 Plots of the actual Mayadas-Shatzkes thin film resistivity (BLACK) and the 
approximations in Equation 2.90 (RED) and 2.73a (BLUE)

we can find the error by using a math software and plotting the error as a function of β as in Figure 
2Q36-2. β  cannot be bigger than 10 for the errors to remain below 2%. Thus, we need 0 < β < 10 

Consider now the error.  Define y = Equation 2.72a (actual Mayadas=Shatzkes formula), y' = Equation 
2.90 and y'' = Equation 2.73a. Then errors are defined as 
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These errors are plotted in Figure 2Q36-1. Clearly the error in Equation 2.73a shrinks as β gets smaller, 
as we expect since this equation assumes that β is mall. The error in Equation 2.90 remains below 3% at 
least over for 0.01 < β < 100 and vanishes at β =1 as we expect.  

Conclusion: We can use Equation 2.90 over 0.01 < β  < 100 with error below 3% 

Figure 2Q36-2 Plots of error involved in using the approximation in Equation 2.90 for a range of β values. Top 
curve has a logarithmic β-axis. Bottom curve is a linear plot. The error remains below 3% for 0.01 < β < 100 

Note: The Taylor expansion can also be done by using a symbolic algebra software as shown below using 
Livemath (formerly Theorist) or by using an online application such as WolframAlpha 
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One can also use the online WolframAlpha from Wolfram (http://www.wolframalpha.com) (accessed 
October 14, 2016) 
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2.37  Polycrystalline copper films Consider the data in Figure 2.38a, which are reproduced below in 
Table 2.19 in terms of the average grain size (d) and the resistivity of the film. Plot these on an excel 
graph resistivity Equation 2.72a. You can then modify R to bring the theoretical curve as close as 
possible to the experimental curve. What is your conclusion? 

Table 2.19 Dependence of the resistivity of polycrystalline films of copper on the grain size. Data extracted from 
S. Riedel et al., Microelec. Engin. 33, 165, 1997.

d (nm) 189 168 139 140 128 107 99.3 59.8 44.3 

ρfilm (nΩ m) 20.97 21.16 22.21 22.65 22.09 23.39 23.89 27.92 31.20 

Solution 

Assume that the resistivity of the polycrystalline films is limited by the grain size rather than the actual 
film thickness.  Figure 2Q37-1 and 2Q37-2 show the plots of the experimental thin film resistivity vs. 
grain size (ρfilm vs. d) for the present polycrystalline copper films, using the data from Table 2.19. The 
dashed lines in both Figure 2Q37-1 and 2Q37-2 are the theoretical Mayadas-Shatzkes equation curves 
generated from 










−
=

+−+−
=

− 1
;

)1ln(33)2/3(1 132

crystal

film
R

R

d

λ
β

ββββ

ρ
ρ (1) 

where λ = mean free path of electrons in the crystal, taken approximately as 40 nm. In Figure 2Q37-1, 
ρcrystal = 17.3 nΩ m from Example 2.31 and R set to 0.39 initially (based on Example 2.31). Different R
values have been also used in Figure 2Q37-1 to show the effect of R on the theoretical resistivity curve. 
The values are given in Table 2Q37-1, which is copied from an Excel worksheet with the calculated 
values. 

Clearly R = 0.39 is a good choice. We can try other R to see what happens to the fit such as R = 
0.39 ± 0.5. These R values generate theoretical curves that are far out from the experimental curve. One 
can also examine the effect of changing ρcrystal  by a little as shown in Figure 2Q37-2 where ρcrystal = 17 
nΩ m. The best choice for R seems to be 0.41 in this case as shown in Figure 2Q37-2. The theoretical 
curves for R = 0.40 and 0.42 are slightly off the experimental curve as apparent in Figure 2Q37-2.  

In summary, we can fit the data reasonably well using the theoretical Mayadas-Shatzkes 
equation using ρcrystal = 17 – 17.3 nΩ m and R = 0.39 – 0.41. 

Table 2Q37-1 Calculations in Excel for Equation 1 using λ =  40 nm, ρcrystal = 17.3 nΩ m (Example 2.31) and R = 
0.35 – 0.44. 
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Parameter = Lamda R Cu resistivity R R R R 

Value = 40 0.4 17.3 0.35 0.35 0.44 0.44 

d (nm)
ρfilm

(nΩ m) 
β 

Mayadas-
Shatzkes 

β 
Mayadas-
Shatzkes 

β 
Mayadas-
Shatzkes 

220 
Not 

measured 
0.1212 20.344 0.0979 19.769 0.1429 20.875

189 20.97 0.1411 20.832 0.1140 20.166 0.1663 21.447

168 21.16 0.1587 21.262 0.1282 20.516 0.1871 21.952

139 22.21 0.1918 22.068 0.1550 21.170 0.2261 22.896

140 22.65 0.1905 22.034 0.1538 21.143 0.2245 22.857

128 22.09 0.2083 22.467 0.1683 21.495 0.2455 23.364

107 23.39 0.2492 23.453 0.2013 22.297 0.2937 24.521

99.3 23.89 0.2685 23.917 0.2169 22.674 0.3165 25.066

59.8 27.92 0.4459 28.143 0.3602 26.107 0.5256 30.024

44.3 31.2 0.6020 31.823 0.4862 29.095 0.7094 34.346

37 
Not 

measured 
0.7207 34.610 0.5821 31.356 0.8494 37.622

Table 2Q37-2 Calculations in Excel for Equation 1 using λ =  40 nm, ρcrystal = 17.3 nΩ m (Example 2.31) and R
= 0.35 – 0.44. 

Parameter 
= Lamda R Cu resistivity R R R R 

Value = 40 0.41 17 0.4 0.4 0.42 0.42 

d (nm) ρfilm (nΩ m) 
β 

Mayadas-
Shatzkes 

β 
Mayadas-
Shatzkes 

β 
Mayadas-
Shatzkes 

220 
Not 

measured 
0.1263 20.115 0.1212 19.991 0.1317 20.243

189 20.97 0.1471 20.614 0.1411 20.470 0.1533 20.763

168 21.16 0.1655 21.055 0.1587 20.894 0.1724 21.221

139 22.21 0.2000 21.879 0.1918 21.685 0.2084 22.078

140 22.65 0.1985 21.845 0.1905 21.652 0.2069 22.043

128 22.09 0.2172 22.287 0.2083 22.077 0.2263 22.504

107 23.39 0.2598 23.296 0.2492 23.046 0.2707 23.553

99.3 23.89 0.2799 23.771 0.2685 23.503 0.2917 24.048

59.8 27.92 0.4648 28.094 0.4459 27.654 0.4844 28.548

44.3 31.2 0.6275 31.860 0.6020 31.271 0.6538 32.469

37 
Not 

measured 
0.7513 34.713 0.7207 34.010 0.7829 35.440
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Figure 2Q37-1  Thin film resistivity vs  grain size (ρfilm vs. d) for polycrystalline copper films, using the data 
from Table 2Q371-1. The dashed lines are the Mayadas-Shatzkes equation with ρcrystal = 17.3 nΩ m from 
Example 2.31, and brown β = 0.34, black β = 0.39, green β = 0.44, but other choices can also be plotted. 

Figure 2Q37-2  Thin film resistivity vs  grain size (ρfilm vs. d) for polycrystalline copper films, using the data 
from Table 2Q371-2. The dashed lines are the Mayadas-Shatzkes equation with ρcrystal = 17.0 nΩ m, and brown β

= 0.40, black β = 0.41, green β = 0.42. 

Note: This question also highlight to students that the fitting a multivariable function to experimental data does 
not necessarily result in a unique set of best fit parameters. The black dashed curves in Figures 2Q37-1 and 2 are 
both "best fits". 

2.38 Thin films
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a.   Consider a polycrystalline copper film that has R = 0.40. What is the approximate mean grain size d
in terms of the mean free path λ in the bulk that would lead to the polycrystalline Cu film having a 
resistivity that is 1.5ρbulk. If the mean free path in the crystal is about 40 nm at room temperature, 
what is d? 

b.   What is the thickness D of a copper film in terms of λ in which surface scattering increases the film 
resistivity to 1.2ρbulk if the specular scattering fraction p is 0.1? 

Solution

a. We can estimate the grain size quite quickly by using the approximation to the Mayadas-Shatzkes 
equation in Part 1. Part 2 provides an exact calculation by solving the Mayadas-Shatzkes equation. Part 
3 uses the approximate equation given in Equation 2.90

1. Large grain size approximation, assumes that d >> λ, so that the Mayadas-Shatkez equation gives the 
resistivity of polycrystalline sample as 

β
ρ

ρ
)2/3(1

crystal

+≈  where,  








−
=

R

R

d 1

λ
β . 

Using the probability of reflection at a grain boundary R = 0.40, in the above formula we have 


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4.01
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5.1

crystal

crystal

d

λ

ρ

ρ

∴
d

λ
)1(15.1 +=       or       

d

λ
=−15.1

∴ d = 2λ

If the mean free path in the crystal is λ = 40 nm, then the mean grain size is d = 2(40 nm) = 80 nm. 

2. Using the exact Mayadas-Shatzkes Equation, we have 
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Therefore d/λ = 1.90 and d = 76.2 nm. The estimate for d in Part 1 is about 4.8% bigger than the actual 
grain size we need 

3. Using the approximate expression in Equation 2.90 
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or d = 76.5 nm, which is very close to that calculated from the exact Mayadas-Shatzkes equation.   

Note: Equation 2.90 has the advantage that it is based on approximating the Mayadas-Shatzkes Equation 
around β = 1, rather than β = 0. 

b. Surface scattering resistivity is given by Equation 2.77 as 

)1(
8

3
1

bulk

p
D

−+≈
λ

ρ

ρ
3.0>

λ

D

Using p = 0.1, and ρfilm = 1.2ρcrystal, we have 

)1.01(
8

3
12.1

bulk

bulk −⋅⋅+≈
D

λ

ρ

ρ

D

λ
3375.012.1 +≈

Simplifying we have  

D ≈ 1.69 λ = 67.5  nm 

Note:  Most successful models that account for the observed resistivity of a thin film as a function of thickness 
invariably involve combining surface scattering not only with grain boundary scattering, but also including other 
factors, such as the effect of surface roughness on the scattering mechanism. (A good example is H. D. Liu et al, 
Thin Solid Films, 384, 151-156, 2001.) 

2.39 Thin films of Cu  Consider the resistivity of three types of Cu thin films are shown in Table 
2.20Tree films are one single crystal layer, and two polycrystalline layers with an average grain size 
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shown in the table.  All have the same thickness D = 40 nm. The resistivity measurements have an error 
bar (resenting the scatter) that is roughly ±3%. Suppose we write Matthiessen’s rule as 

ρfilm = ρcrystal + ∆ρMS + ∆ρSF Surface and grain boundary scattering in films [2.90a] 
or ρfilm/ρcrystal  ≈ 1 + (3/2)β + (3/8)(λ/D)(1−p) Surface and grain boundary scattering in films [2.90b] 

where β is defined in Equation 2.73b, ρcrystal is the bulk resistivity of the Cu crystal and  ∆ρMS and ∆ρSF

are the contributions to resistivity arising from the scattering of electrons at the grain boundary and 
surfaces respectively; that is, the Mayadas-Shatzkes and Fuch-Sondheimer contributions respectively. 
Complete Table 2.20 by taking ρcrystal = 17.0 nΩ m and assuming p = 0 and R = 0.25. What is your 
conclusion?  

Table 2.20 The resistivity of three types of thin Cu films with the same thickness D = 40 nm.

d (nm) ρfilm (nΩ m) ∆ρMS (nΩ m) ∆ρSF (nΩ m) ρcrystal + ρMS + ρSF Difference (%) 
∞ 24.8 0 6.375 23.38 5.7 
160 26.8 2.125 6.375 25.50 4.85  
40 29.1 8.500 6.375 31.9 9.5  
NOTE: Data extracted from J.S. Chawla, Phys. Rev. B 84, 235423, 2011. d is the average grain size. 

Solution
Consider the d = 40 nm, as an example 

∆ρMS = ρcrystal(3/2)β  

∴ 








−
Ω=
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




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λ
ρρ = 8.5 nΩ m 

For the surface scattering we have 

( ) ( )01
nm40

nm40
)8/3)(mn17(1)8/3(crystalSF −Ω=−=∆ p

D

λ
ρρ = 6.375 nΩ m 

Thus, the overall resistivity is 

ρfilm = ρcrystal + ∆ρMS + ∆ρSF = 17 nΩ m + 8.5 nΩ m + 6.375 nΩ m =  31.88 nΩ m  

which is entered into Table 2.20. The other 2 rows are similarly calculated and entered as can been in 

Table 2.20 above. The excel calculations are summarizes in Table 2Q39-1. 

For each film, we can calculate the difference between the experimental and calculated value as 

a  percentage as shown in the table; these are 4.9 – 9.5%. The simple combination of grain boundary 

scattering (small β approximation) and surface scattering works reasonably well in this case.  

 Table 2Q39-1 

Parameter = Lamda R Cu resistivity p D (nm) 

Value = 40 0.25 17 0 40 

d (nm) ρfilm (nΩ m) 
β MS SF 

ρtotal

Difference 
(%) 

1.00E+06 24.8 0.0000 0.000 6.3750 23.38 5.74 

160 26.8 0.0833 2.125 6.3750 25.50 4.85 
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40 29.1 0.3333 8.500 6.3750 31.88 -9.54 

ADDENDUM 
We can try and do better by playing with R, as shown in Tables 2Q39-2. We can reduce the difference 
for the 40 nm grain-size film by setting R = 0.20, but this increases the difference for 160 nm grain-size 
film. 

Parameter 
= Lamda R Cu resistivity p D (nm) 

Value = 40 0.2 17 0 40 

d (nm) ρfilm (nΩ m) β MS SF ρtotal Difference (%) 

1.00E+06 24.8 0.0000 0.000 6.3750 23.38 5.74 

160 26.8 0.0625 1.594 6.3750 24.97 6.83 

40 29.1 0.2500 6.375 6.3750 29.75 -2.23 

2.40 Thin films of single crystal Cu on TiN   Thin single crystal  films of  Cu have been deposited on 
to a TiN (001) surface gown on a MgO crystal substrate by . Room temperature (25 °C) resistivity 
measurements in situ (in vacuum) give the data in Table 2.21.  How would you interpret the data? 

Table 2.21 The resistivity of Cu single crystal thin films deposited on TiN (001) surface in situ in vacuum.  

D (nm) 830 40.0 13.3 6.20 

ρ (nΩ m) (vacuum) 17.1 21.0 29.7 44.4 

Data selectively taken from J.S. Chawla et al., J. Appl. Phys. 110, 043714, 2011 

Solution 

For single crystal thin films, we would only have scattering from the surfaces (ignoring any surface 

roughness) and we can use 
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so that we can plot ρfilm vs 1/D as in Figure 2Q40-1. We can easily fit a best straight line which is 
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Clearly, ρcrystal = 16.84 nΩ m, and  

( ) 1711)8/3(Slope crystal =−= pλρ
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We can substitute 

( ) 1711)40)(84.16)(8/3(Slope =−= p

∴ p = 0.323 

Conclusion: The data can be interpreted in a straightforward way by simply assuming thin film surface 

scattering in which p = 0.323 

Figure 2Q40-1  The plot of the resistivity of single crystal thin films of copper vs. reciprocal film thickness, ρfilm

vs 1/D (Data from Table 2.21) 

2.41 Thin films of W   Thin single crystal  films of  W have been grown epitaxial on sapphire (Al2O3) 

substrates. The resistivity of a 187 nm thick film is 64 nΩ m, which can be taken as the bulk resistivity. 

The W film with a thickness19.9 nm has a resistivity of 86 nΩ m. If the mean free path λ in the bulk is 

19.1 nm, what is the average p? 

Solution 

The ratio of the film resistivity to that of the crystal is  

( )p
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ρ
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and solving for p

p = 0.045 
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Note: Data on annealed samples at 293 K from Table II in D. Choi et al, "Electron mean free path of tungsten and 

the electrical resistivity of epitaxial (110) tungsten films", Phys. Rev. B, 86, 045432 (2012).  

2.42 Thin films of Cu on Si (100) surface   Different thickness polycrystalline Cu films have been 
deposited on the (100) surface of a Si crystal. Their resistivities have been measured as summarized in 
Table 2.22. For these films, the average grain size d has been shown to be related to the film thickness D
by d ≈ D/2.3. Use Matthiessen’s rule to combine Fuch-Sondheimer and Mayadas-Shatzkes equations as 
in Equation 2.90b and plot ρ against 1/D and also ρ against D as a log-log plot on Excel or a similar 
application. Plot the expected ρ in these graphs from Equation 2.90b by taking p = 0,  λ = 40 nm and R
= 0.25. Try a slightly greater and slightly lower R values (e.g. 0.20 and 0.30) to see how the predicted 
curve changes with respected to the data. What is your conclusion? 

Table 2.22 The resistivity of thin polycrystalline Cu films on the Si (100) surface. 

D (nm) 407 222 170 120 101 85.4 68.5 51.2 34.1 17.2 8.59 

ρ (nΩ m) 19.8 20.8 20.0 22.1 23.5 27.9 30.7 32.2 50.4 70.5 126 

NOTE: J.W. Lim and M. Isshiki, J. Appl. Phys. 99 094909, 2006 
 

Solution 
We can combine grain boundary and surface scattering through Matthiessn's rule as follows 

ρfilm = ρcrystal + ∆ρMS + ∆ρSF
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It is important to understand that with just grain boundary scattering we would have 

)(MScrystalfilm βρρ f=

so that 
]1)([)( MScrystalcrystalMScrystalMS −=−=∆ βρρβρρ ff

Although only the film thickness D is given, experimentally the average grain size d = D/2.3. Given 

ρcrystal = 17 nΩ m and λ = 40 nm, we can choose p = 0 and say R = 0.25, and then calculate β for each 

film thickness D and hence the overall resistivity of the film by using Equation (1) as shown in Table 

2Q42-1. We can then increase R to 0.3 and then decrease it to 0.2; all can be done conveniently on 

Excel. 

Table 2Q42-1 Table of calculations used in generating Figure 2Q42-1. Note: ρcrystal = 17 nΩ m, λ = 40 nm. For 

the first curve fit, black in Figure 2Q42-1, p = 0 and R = 0.25 

D d = D/2.3 ρfilm (Experimental) β ∆ρMS / ρcrystal ∆ρSF / ρcrystal ρfilm in Eq. (1) 
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nm nm nΩ m 

407 176.96 19.8 0.0753 0.110 0.037 19.50 

222 96.52 20.8 0.1381 0.200 0.068 21.55 

170 73.91 20 0.1804 0.260 0.088 22.91 

120 52.17 22.1 0.2556 0.364 0.125 25.32 

101 43.91 23.5 0.3036 0.431 0.149 26.85 

85.4 37.13 27.9 0.3591 0.508 0.176 28.61 

68.5 29.78 30.7 0.4477 0.629 0.219 31.42 

51.2 22.26 32.2 0.5990 0.835 0.293 36.18 

34.1 14.83 50.4 0.8993 1.242 0.440 45.59 

17.2 7.48 70.5 1.7829 2.429 0.872 73.12 

8.59 3.73 126 3.5700 4.818 1.746 128.60 

 

 

Figure 2Q42 The plot of experimental resistivity vs. film thickness on a log-log scale (large black circles).  
Equation 1 was used to calculate the film resistivity by taking ρcrystal = 17 nΩ m and λ = 40 nm The black curve is 

a particular theoretical fit in which p = 0 and R = 0.25. Red is R = 0.30 and blue is R = 0.20. Both curves are 
away from the experimental points. 

Note: The data extracted from: J.W. Lim and M. Isshiki, "Electrical resistivity of Cu films deposited by ion beam 
deposition: Effects of grain size, impurities, and morphological defect", J. Appl. Phys., 99, 094909 (2006). Their 
d is the film thickness and D is the grain size. 

2.43 Interconnects Consider a CMOS chip in which the interconnects are copper with a pitch P of 500 
nm, interconnect thickness T of 400 nm, aspect ratio 1.4, and H = X. The dielectric is FSG with εr = 3.6. 
Consider two cases, L = 1 mm and L = 10 mm, and calculate the overall effective interconnect 
capacitance Ceff and the RC delay time. Suppose that Al, which is normally Al with about 4 wt.% Cu in 
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the microelectronics industry with a resistivity 31 nΩ m, is used as the interconnect. What is the 
corresponding RC delay time? 

Solution

The effective capacitance in multilevel interconnect structure is given by Equation 2.61 
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T
W = 285.71 nm. 

The interconnect separation X is 

X = P – W = 500 nm – 285.71 nm = 214.29 nm. 

Further  H = X = 214.29 nm. 

Therefore the effective capacitance of the interconnect is  

For L = 1 mm 
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       = 0.204 × 10−12 F or 0.20 pF.

For L = 10 mm, since Ceff is proportional to L,

Ceff   = 10 × 0.204 pF = 2.04 pF

Therefore for Cu, the RC delay time for L = 1 mm is 
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∴ RC = 3.05 × 10−11 s or 30.5 ps

The RC delay time is proportional to L2, so that for L = 10 mm is 

       = (3.05 × 10−9 s)(10 mm / 1 mm)2 =  3.05 ns

Given that for Al ρ = 31 nΩ m, the RC time constant for L = 1 mm is  
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∴ RC = 5.53 × 10−11 s or 55.3 ps

The RC delay time is proportional to L2, so that for L = 10 mm is 

       = (55.3 ps)(10 mm / 1 mm)2 =  5,530 ps = 5.53 ns

*2.44 Thin 50 nm interconnects   Equation 2.77 is for conduction in a thin film of thickness D and 
assumes scattering from two surfaces, which that the increase in the resistivity 

( )( )pD −=∆ 1/
8

3
bulk2 λρρ . An interconnect line in an IC is not quite a thin film and has four surfaces 

(interfaces), because the thickness T of the conductor is comparable to the width W. If we assume T = 

W, we can very roughly take ( )( )pD −≈∆+∆≈∆ 1/
4

3
bulk224 λρρρρ  in which D = T. (The exact 

expression is more complicated, but the latter will suffice for this problem.) In addition there will be a 
contribution from grain boundary scattering so that we need to use Equation 2.90a. For simplicity 
assume T ≈ W ≈ X ≈ H ≈ 50 nm, λ = 40 nm, p = 0 and εr = 3.6. If the mean grain size d is roughly 30 nm 
and R = 0.4, estimate the resistivity of the interconnect and hence the RC delay for a 0.5 mm 
interconnect.  

Solution 

In thin films, in addition to the bulk resistivity, we take into account the resistivity due to scattering 
from the surfaces and resistivity due to scattering from grain boundariers. As described in the problem 
statement, the resistivity due to surface scattering from four surfaces in an interconnect can roughly be 
taken into account as  

)1(
4

3
bulksurface p

D
−=

λ
ρρ

In addition to the surface scattering, there will be resistivity due to grain boundary scattering as well, 
which is approximately given by 










−
≈

R

R

d 1
)2/3(bulkgrain

λ
ρρ

The effective resistivity of the interconnect is then 

grainsurfacebulk ρρρρ ++=

∴ 








−
+−+=

R

R

d
p

D 1
)2/3()1(

4

3
bulkbulkbulkfilm

λ
ρ

λ
ρρρ

Taking the bulk resistivity of Cu as 17 nΩ m, we have 
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m)n17(mn17ρ  = 49.9 nΩ m 

The RC time constant is given by 


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Therefore for Cu, the RC delay time for L = 500 µm is 
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       = 6.36 × 10−10 s or 0.64 ns 

Note that the calculations can be conveniently done by using the online math software by Wolfram. 
Using WolframAlpha for the RHS calculation,  

Solution in Livemath (formerly Theorist) 
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2.45 Electromigration Although electromigration-induced failure in Cu metallization is less severe 
than in Al metallization, it can still lead to interconnect failure depending on current densities and the 
operating temperature. In a set of experiments carried out on electroplated Cu metallization lines, failure 
of the Cu interconnects have been examined under accelerated tests (at elevated temperatures). The 
mean lifetime t50 (time for 50 percent of the lines to break) have been measured as a function of current 
density J and temperature T at a given current density. The results are summarized in Table 2.23. 

a.   Plot semi-logarithmically t50 versus 1/T (T in Kelvins) for the first three interconnects. Al(Cu) and 
Cu (1.3 × 0.7µm2) have single activation energies EA. Calculate EA for these interconnects. Cu (1.3 
× 0.7µm2) exhibits different activation energies for the high-and low-temperature regions. Estimate 
these EA. 

b.   Plot on a log-log plot t50 versus J at 370 ºC. Show that at low J, n ≈ 1.1 and at high J, n ≈ 1.8. 

Table 2.23  Results of electromigration failure experiments on various Al and Cu interconnects 

Solution 

a. The mean time to 50 percent failure is calculated using Black’s equation given by Equation 2.84 as 
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
= −

kT

E
JAt An

B expMTF

Figure 2Q45-1 shows a semilogarithmic plot of t50 versus reciprocal temperature (1/T) for Al(Cu). The 

straight line on this plot implies an exponential behavior with 1/T. According to Figure 2Q45-1, the best 

exponential fit is  

t50 = (1.79×10−6)exp(1.227×104/Τ) 

According to Black's Equation, 









= −

kT

E
JAt An

B expMTF

the slope of ln(t50) vs 1/T in Figure 2Q45-1 is 

K10277.1 4×=
k

EA

that is,   EA = (12770 K) (8.617× 10−5 eV K−1) = 1.10 eV.

Figure 2Q45-1: Mean time to 50 percent failure (t50) vs. 1/T for Al(Cu), 0.35×0.2 (µm)2

Similarly, the semilogarithmic plot of t50 vs. reciprocal temperature (1/T) plot for Cu (A = 0.24 ×

0.28 (µm)2) is shown in Figure 2Q45-2. From the plot we have   

K101419.1 4×=
k

EA

or   EA = (11,419 K) (8.617× 10−5 eV K−1) = 0.9840 eV or 0.98 eV



Solutions to Principles of Electronic Materials and Devices: 4th Edition (15 March 2017) Chapter 2

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent 
of McGraw-Hill Education. 

Figure 2Q45-2: Mean time to 50 percent failure (t50) vs. 1/T for Cu [0.24 × 0.28 (µm)2] 

Comment: In both cases the activation energy EA is about 1 eV, close to the activation energy for vacancy 

formation. Vacancies assist atomic electromigration. 

The plot for Cu [A = 1.3 × 0.70 (µm)2] is shown in Figure 2Q45-3. We can identify two 

thermally activated regions.  
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Figure 2Q45-3: Mean time to 50 percent failure (t50) vs. 1/T for Cu [A = 1.3 × 0.70 (µm)2] 

The activation energies at high and low temperatures for this case are different.  

From Figure 2Q45-3 

At low temperatures 

EA/k =1.054×104 K ∴ EA = (1.054×104 K)(8.617× 10−5 eV K−1) = 0.9084 eV or 0.91 eV

At high temperatures 

EA/k =1.911×104 K ∴ EA = (1.911×104 K)(8.617× 10−5 eV K−1) = 1.647 eV or 1.65 eV

b. A log-log plot of current density J mA/µm2 against mean time to 50% failure t50 is shown in Figure 
2Q45-4 

Figure 2Q45-4: Log-Log plot of t50 vs. J  at T = 370 ºC 

The equation for the best fit line are mentioned next to the plot. It is evident from the equations that at 
low current densities,  J−n has n value that is roughly n ≈ 1.14 or 1.1, and at high temperatures n ≈ 1.76 
or 1.8 

Taking natural logarithm ln of both sides of Black's equation 

( ) 
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



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






= −
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E
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∴ ( )
kT

E
JAt An

B ++= −lnlnln MTF

 so that at a given temperature 
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which shows that the slope of t50 vs. J on a log-log plot is −n

"No one believes in the experimental data except the person who took the measurements; everyone believes in 
the theory except the person who formulated it." 

Anonymous. A humorous adage in Materials Science
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