Chapter 2

2.1
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.42}{0.16} = 2.625 \approx 2.63$$
; $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.21^2}{(0.42)(0.16)} = 0.656 \approx 0.666$

2.2
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.81}{0.27} = 3.0$$
; $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.41^2}{(0.81)(0.27)} = 0.768 \approx 0.77$

Sieve	Mass of soil retained	Percent retained	Percent
no.	on each sieve (g)	on each sieve	finer
4	28	4.54	95.46
10	42	6.81	88.65
20	48	7.78	80.88
40	128	20.75	60.13
60	221	35.82	24.31
100	86	13.94	10.37
200	40	6.48	3.89
Pan	24	3.89	0.00
	Σ617 g		

1

b.
$$D_{10} = 0.16 \text{ mm}; D_{30} = 0.29 \text{ mm}; D_{60} = 0.45 \text{ mm}$$

c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.45}{0.16} = 2.812 \approx 2.81$$

d.
$$C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.29^2}{(0.45)(0.16)} = 1.168 \approx 1.17$$

2.	.4	а

Sieve	Mass of soil retained	Percent retained	Percent
no.	on each sieve (g)	on each sieve	Finer
4	0	0.0	100.00
6	30	6.0	94.0
10	48.7	9.74	84.26
20	127.3	25.46	58.80
40	96.8	19.36	39.44
60	76.6	15.32	24.12
100	55.2	11.04	13.08
200	43.4	8.68	4.40
Pan	22	4.40	0.00
	Σ 500 g		

b. $D_{10} = 0.13 \text{ mm}; D_{30} = 0.3 \text{ mm}; D_{60} = 0.9 \text{ mm}$

c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.9}{0.13} = 6.923 \approx 6.92$$

d. $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.3^2}{(0.9)(0.13)} = 0.769 \approx 0.77$

2.5

a.

Sieve	Mass of soil retained	Percent retained	Percent
no.	on each sieve (g)	on each sieve	finer
4	0	0.0	100.00
10	40	5.49	94.51
20	60	8.23	86.28
40	89	12.21	74.07
60	140	19.20	54.87
80	122	16.74	38.13
100	210	28.81	9.33
200	56	7.68	1.65
Pan	12	1.65	0.00
	Σ729 σ		

b. $D_{10} = 0.17 \text{ mm}; D_{30} = 0.18 \text{ mm}; D_{60} = 0.28 \text{ mm}$

c. $C_u = \frac{D_{60}}{D_{10}} = \frac{0.28}{0.17} = 1.647 \approx 1.65$

d.
$$C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.18^2}{(0.28)(0.17)} = 0.68$$

2.6	a.

Sieve	Mass of soil retained	Percent retained	Percent
no.	on each sieve (g)	on each sieve	finer
4	0	0.0	100.00
6	0	0.0	100.00
10	0	0.0	100.00
20	9.1	1.82	98.18
40	249.4	49.88	48.3
60	179.8	35.96	12.34
100	22.7	4.54	7.8
200	15.5	3.1	4.7
Pan	23.5	4.7	0.00
	Σ 500 g		

b. $D_{10} = 0.21 \text{ mm}; D_{30} = 0.39 \text{ mm}; D_{60} = 0.45 \text{ mm}$

c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.45}{0.21} = 2.142 \approx 2.14$$

d. $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.39^2}{(0.45)(0.21)} = 1.609 \approx 1.61$

2.7 a.

- b. Percent passing 2 mm = 100
 Percent passing 0.06 mm = 73
 Percent passing 0.002 mm = 9
- c. Percent passing 2 mm = 100Percent passing 0.05 mm = 68Percent passing 0.002 mm = 9
- d. Percent passing 2 mm = 100Percent passing 0.075 mm = 80Percent passing 0.002 mm = 9

GRAVEL: 100 - 100 = **0%** SAND: 100 - 73 = **27%** SILT: 73 - 9 = **64%** CLAY: 9 - 0 = **9%**

GRAVEL: 100 - 100 = **0%** SAND: 100 - 68 = **32%** SILT: 68 - 9 = **59%** CLAY: 9 - 0 = **9%**

GRAVEL: 100 - 100 = **0%** SAND: 100 - 80 = **20%** SILT: 80 - 9 = **71%** CLAY: 9 - 0 = **9%** 2.8 a.

- b. Percent passing 2 mm = 100
 Percent passing 0.06 mm = 30
 Percent passing 0.002 mm = 5
- c. Percent passing 2 mm = 100 Percent passing 0.05 mm = 28 Percent passing 0.002 mm = 5
- d. Percent passing 2 mm = 100
 Percent passing 0.075 mm = 34
 Percent passing 0.002 mm = 5

GRAVEL: 100 - 100 = **0%** SAND: 100 - 30 = **70%** SILT: 70 - 5 = **65%** CLAY: 5 - 0 = **5%**

GRAVEL: 100 - 100 = **0%** SAND: 100 - 28 = **72%** SILT: 72 - 5 = **67%** CLAY: 5 - 0 = **5%**

GRAVEL: 100 - 100 = **0%** SAND: 100 - 34 = **66%** SILT: 66 - 5 = **61%** CLAY: 5 - 0 = **5%** 2.9 a.

- b. Percent passing 2 mm = 100
 Percent passing 0.06 mm = 84
 Percent passing 0.002 mm = 28
- GRAVEL: 100 100 = **0%** SAND: 100 - 84 = **16%** SILT: 84 - 28 = **56%** CLAY: 28 - 0 = **28%**
- c. Percent passing 2 mm = 100 Percent passing 0.05 mm = 83 Percent passing 0.002 mm = 28
- d. Percent passing 2 mm = 100Percent passing 0.075 mm = 90Percent passing 0.002 mm = 28

GRAVEL: 100 - 100 = **0%** SAND: 100 - 83 = **17%** SILT: 83 - 28 = **55%** CLAY: 28 - 0 = **28%**

GRAVEL: 100 - 100 = **0%** SAND: 100 - 90 = **10%** SILT: 90 - 28 = **62%** CLAY: 28 - 0 = **28%** 2.10 a.

- b. Percent passing 2 mm = 100Percent passing 0.06 mm = 65Percent passing 0.002 mm = 35
- GRAVEL: 100 100 = **0%** SAND: 100 - 65 = **35%** SILT: 65 - 35 = **30%** CLAY: 35 - 0 = **35%**
- c. Percent passing 2 mm = 100Percent passing 0.05 mm = 62Percent passing 0.002 mm = 35
- d. Percent passing 2 mm = 100Percent passing 0.075 mm = 70Percent passing 0.002 mm = 35

GRAVEL: 100 - 100 = **0%** SAND: 100 - 62 = **38%** SILT: 62 - 35 = **27%** CLAY: 35 - 0 = **35%**

GRAVEL: 100 - 100 = **0%** SAND: 100 - 70 = **30%** SILT: 70 - 35 = **35%** CLAY: 35 - 0 = **35%**

2.11 $G_s = 2.7$; temperature = 24°; time = 60 min; L = 9.2 cm

Eq. (2.5):
$$D \text{ (mm)} = K \sqrt{\frac{L \text{ (cm)}}{t \text{ (min)}}}$$

From Table 2.6 for $G_s = 2.7$ and temperature = 24° , K = 0.01282

$$D = 0.01282 \sqrt{\frac{9.2}{60}} = 0.005 \,\mathrm{mm}$$

2.12 $G_s = 2.75$; temperature = 23°C; time = 100 min; L = 12.8 cm

Eq. (2.5):
$$D (mm) = K \sqrt{\frac{L (cm)}{t (min)}}$$

From Table 2.6 for $G_s = 2.75$ and temperature = 23°, K = 0.01279

$$D = 0.01279 \sqrt{\frac{12.8}{100}} = 0.0046 \,\mathrm{mm}$$

CRITICAL THINKING PROBLEM

2.C.1 a. Soil A:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{11}{0.6} = 18.33$$
; $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{5^2}{(11)(0.6)} = 3.78$

Soil B:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{7}{0.2} = 35$$
; $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{2.1^2}{(7)(0.2)} = 3.15$

Soil C:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{4.5}{0.15} = 30$$
; $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{1^2}{(4.5)(0.15)} = 1.48$

- b. Soil A is coarser than Soil C. A higher percentage of soil C is finer than any given size compared to Soil A. For example, about 15% is finer than 1 mm for Soil A, whereas almost 30% is finer than 1 mm in case of soil C.
- c. Particle segregation may take place in aggregate stockpiles such that there is a separation of coarser and finer particles. This makes representative sampling difficult. Therefore Soils A, B, and C demonstrate quite different particle size distribution.

J	0-11	
a.	Percent passing $4.75 \text{ mm} = 29$	GRAVEL: 100 – 29 = 71%
	Percent passing $0.075 \text{ mm} = 1$	SAND: $29 - 1 = 28\%$
		FINES: $1 - 0 = 1\%$
	Soil B:	
	Percent passing $4.75 \text{ mm} = 45$	GRAVEL: 100 – 45 = 55%
	Percent passing $0.075 \text{ mm} = 2$	SAND: $45 - 2 = 43\%$
		FINES: $2 - 0 = 2\%$
	Soil C:	
	Percent passing $4.75 \text{ mm} = 53$	GRAVEL: 100 – 53 = 47%
	Percent passing $0.075 \text{ mm} = 3$	SAND: 47 – 3 = 44%
		FINES: $3 - 0 = 3\%$