Chapter 2

$2.1 \quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{0.48}{0.11}=\mathbf{4 . 3 6} ; \quad C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{0.25^{2}}{(0.48)(0.11)}=\mathbf{1 . 1 8}$
Since $C_{u}>4$ and C_{c} is between 1 and 3 , the soil is well graded.
$2.2 \quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{1.1}{0.18}=\mathbf{6 . 1 1} ; C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{0.41^{2}}{(1.1)(0.18)}=0.727 \approx \mathbf{0 . 7 3}$

Although $C_{u}>6, C_{c}$ is not between 1 and 3 . The soil is poorly graded.
2.3 The D_{10}, D_{30}, and D_{60} for soils A, B, and C are obtained from the grain-size distribution curves.

Soil $A: \quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{3.5}{0.2}=\mathbf{1 7 . 5} ; \quad C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{1.95^{2}}{(3.5)(0.2)}=\mathbf{5 . 4 3}$
Although $C_{u}>6, C_{c}$ is not between 1 and 3 . The sand is poorly graded.

Soil $B: \quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{1.5}{0.17}=\mathbf{8 . 8 2} ; \quad C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{0.75^{2}}{(1.5)(0.17)}=\mathbf{2 . 2}$
$C_{u}>6$ and C_{c} is between 1 and 3 . The sand is well graded.

Soil $C: \quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{0.55}{0.032}=\mathbf{1 7 . 2} ; \quad C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{0.22^{2}}{(0.55)(0.032)}=\mathbf{2 . 7 5}$
$C_{u}>6$, and C_{c} is between 1 and 3 . The sand is well graded.
2.4 a.

Sieve No.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
4	0.0	0.0	$\mathbf{1 0 0 . 0}$
10	18.5	4.4	$\mathbf{9 5 . 6}$
20	53.2	12.6	$\mathbf{8 3 . 0}$
40	90.5	21.5	$\mathbf{6 1 . 5}$
60	81.8	19.4	$\mathbf{4 2 . 1}$
100	92.2	21.9	$\mathbf{2 0 . 2}$
200	58.5	13.9	$\mathbf{6 . 3}$
Pan	26.5	6.3	$\mathbf{0}$
	$\sum 421.2 \mathrm{~g}$		

The grain-size distribution is shown in the figure.

b. $D_{60}=\mathbf{0 . 4} \mathbf{~ m m} ; D_{30}=\mathbf{0 . 2} \mathbf{~ m m} ; D_{10}=\mathbf{0 . 0 9 5} \mathbf{~ m m}$
c. $\quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{0.4}{0.095}=\mathbf{4 . 2 1}$
d. $\quad C_{c}=\frac{\left(D_{30}\right)^{2}}{\left(D_{10}\right)\left(D_{60}\right)}=\frac{(0.2)^{2}}{(0.4)(0.095)}=\mathbf{1 . 0 5}$
2.5 a.

Sieve No.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
4	0	0.0	$\mathbf{1 0 0}$
6	30	6.0	$\mathbf{9 4 . 0}$
10	48.7	9.74	$\mathbf{8 4 . 2 6}$
20	127.3	25.46	$\mathbf{5 8 . 8 0}$
40	96.8	19.36	$\mathbf{3 9 . 4 4}$
60	76.6	15.32	$\mathbf{2 4 . 1 2}$
100	55.2	11.04	$\mathbf{1 3 . 0 8}$
200	43.4	8.68	$\mathbf{4 . 4 0}$
Pan	22	4.40	$\mathbf{0}$
	$\sum 500 \mathrm{~g}$		

The grain-size distribution is shown in the figure.

b. $D_{10}=\mathbf{0 . 1 3} \mathbf{~ m m} ; D_{30}=\mathbf{0 . 3} \mathbf{~ m m} ; D_{60}=\mathbf{0 . 9} \mathbf{~ m m}$
c. $\quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{0.9}{0.13}=\mathbf{6 . 9 2 3} \approx \mathbf{6 . 9 2}$
d. $\quad C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{0.3^{2}}{(0.9)(0.13)}=\mathbf{0 . 7 6 9} \approx \mathbf{0 . 7 7}$
2.6 a.

Sieve No.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
4	0	0	$\mathbf{1 0 0}$
10	44	7.99	$\mathbf{9 2 . 0 1}$
20	56	10.16	$\mathbf{8 1 . 8 5}$
40	82	14.88	$\mathbf{6 6 . 9 7}$
60	51	9.26	$\mathbf{5 7 . 7 1}$
80	106	19.24	$\mathbf{3 8 . 4 7}$
100	92	16.70	$\mathbf{2 1 . 7 7}$
200	85	15.43	$\mathbf{6 . 3 4}$
Pan	35	5.34	$\mathbf{0}$
	$\sum 551 \mathrm{~g}$		

The grain-size distribution is shown in the figure.

b. $D_{60}=\mathbf{0 . 2 8} \mathbf{~ m m} ; D_{30}=\mathbf{0 . 1 7} \mathbf{~ m m} ; D_{10}=\mathbf{0 . 0 9 5} \mathbf{~ m m}$
c. $\quad C_{u}=\frac{0.28}{0.095}=\mathbf{2 . 9 5}$
d. $\quad C_{c}=\frac{(0.17)^{2}}{(0.095)(0.28)}=\mathbf{1 . 0 9}$
2.7 a.

Sieve	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
4	0	0.0	$\mathbf{1 0 0}$
6	0	0.0	$\mathbf{1 0 0}$
10	0	0.0	$\mathbf{1 0 0}$
20	9.1	1.82	$\mathbf{9 8 . 1 8}$
40	249.4	49.88	$\mathbf{4 8 . 3}$
60	179.8	35.96	$\mathbf{1 2 . 3 4}$
100	22.7	4.54	$\mathbf{7 . 8}$
200	15.5	3.1	$\mathbf{4 . 7}$
Pan	23.5	4.7	$\mathbf{0}$
	$\sum 500 \mathrm{~g}$		

The grain-size distribution is shown in the figure.

b. $D_{10}=\mathbf{0 . 2 1} \mathbf{~ m m} ; D_{30}=\mathbf{0 . 3 9} \mathbf{~ m m} ; D_{60}=\mathbf{0 . 4 5} \mathbf{~ m m}$
c. $\quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{0.45}{0.21}=\mathbf{2 . 1 4 2} \approx \mathbf{2 . 1 4}$
d. $\quad C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{0.39^{2}}{(0.45)(0.21)}=\mathbf{1 . 6 0 9} \approx \mathbf{1 . 6 1}$
2.8 a. The grain-size distribution curve is shown in the figure

b. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.06 \mathrm{~mm}=84$
Percent passing $0.002 \mathrm{~mm}=11$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-84=\mathbf{1 6 \%}$
SILT: $84-11=\mathbf{7 3} \%$
CLAY: $11-0=\mathbf{1 1 \%}$
c. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.05 \mathrm{~mm}=80$
Percent passing $0.002 \mathrm{~mm}=11$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-80=\mathbf{2 0 \%}$
SILT: $80-11=\mathbf{6 9 \%}$
CLAY: $11-0=\mathbf{1 1 \%}$
d. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.075 \mathrm{~mm}=90$
Percent passing $0.002 \mathrm{~mm}=11$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-90=\mathbf{1 0 \%}$
SILT: $90-11=\mathbf{7 9 \%}$
CLAY: $11-0=\mathbf{1 1 \%}$
2.9 a. The grain-size distribution curve is shown in the figure.

b. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.06 \mathrm{~mm}=73$
Percent passing $0.002 \mathrm{~mm}=9$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-73=\mathbf{2 7} \%$
SILT: $73-9=\mathbf{6 4 \%}$
CLAY: $9-0=\mathbf{9 \%}$
c. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.05 \mathrm{~mm}=68$
Percent passing $0.002 \mathrm{~mm}=9$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-68=\mathbf{3 2 \%}$
SILT: $68-9=\mathbf{5 9 \%}$
CLAY: $9-0=\mathbf{9 \%}$
d. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.075 \mathrm{~mm}=80$
Percent passing $0.002 \mathrm{~mm}=9$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-80=\mathbf{2 0 \%}$
SILT: $80-9=\mathbf{7 1 \%}$
CLAY: $9-0=\mathbf{9 \%}$
2.10 a. The grain-size distribution curve is shown in the figure.

b. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.06 \mathrm{~mm}=30$
Percent passing $0.002 \mathrm{~mm}=5$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-30=\mathbf{7 0 \%}$
SILT: $30-5=\mathbf{2 5} \%$
CLAY: $5-0=\mathbf{5 \%}$
c. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.05 \mathrm{~mm}=28$
Percent passing $0.002 \mathrm{~mm}=5 \quad$ SILT: $28-5=\mathbf{2 3} \%$
CLAY: $5-0=\mathbf{5 \%}$
d. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.075 \mathrm{~mm}=34$
Percent passing $0.002 \mathrm{~mm}=5 \quad$ SILT: $34-5=\mathbf{2 9} \%$
CLAY: $5-0=\mathbf{5 \%}$
2.11 a. The grain-size distribution curve is shown in the figure.

b. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.06 \mathrm{~mm}=65$
Percent passing $0.002 \mathrm{~mm}=35$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-65=\mathbf{3 5 \%}$
SILT: $65-35=\mathbf{3 0 \%}$
CLAY: $35-0=\mathbf{3 5 \%}$
c. \quad Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.05 \mathrm{~mm}=62$
Percent passing $0.002 \mathrm{~mm}=35$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-62=\mathbf{3 8 \%}$
SILT: $62-35=\mathbf{2 7 \%}$
CLAY: $35-0=\mathbf{3 5 \%}$
d. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.075 \mathrm{~mm}=70$
Percent passing $0.002 \mathrm{~mm}=35$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-70=\mathbf{3 0 \%}$
SILT: $70-35=\mathbf{3 5 \%}$
CLAY: $35-0=\mathbf{3 5 \%}$
2.12 a. The grain-size distribution curve is shown in the figure.

b. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.06 \mathrm{~mm}=96$
Percent passing $0.002 \mathrm{~mm}=42$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-96=\mathbf{4 \%}$
SILT: $96-42=\mathbf{5 4 \%}$
CLAY: $42-0=\mathbf{4 2 \%}$
c. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.05 \mathrm{~mm}=95$
Percent passing $0.002 \mathrm{~mm}=42$
d. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.075 \mathrm{~mm}=97$
Percent passing $0.002 \mathrm{~mm}=42$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-95=\mathbf{5 \%}$
SILT: $95-42=\mathbf{5 3} \%$
CLAY: $42-0=\mathbf{4 2 \%}$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-97=\mathbf{3 \%}$
SILT: $97-42=\mathbf{5 5 \%}$
CLAY: $42-0=\mathbf{4 2 \%}$
2.13 a. The grain-size distribution curve is shown below.

b. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.06 \mathrm{~mm}=84$
Percent passing $0.002 \mathrm{~mm}=28$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-84=\mathbf{1 6 \%}$
SILT: $84-28=\mathbf{5 6 \%}$
CLAY: $28-0=\mathbf{2 8 \%}$
c. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.05 \mathrm{~mm}=83$
Percent passing $0.002 \mathrm{~mm}=28$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-83=\mathbf{1 7 \%}$
SILT: $83-28=\mathbf{5 5 \%}$
CLAY: $28-0=\mathbf{2 8 \%}$
d. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.075 \mathrm{~mm}=90$
Percent passing $0.002 \mathrm{~mm}=28$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-90=\mathbf{1 0 \%}$
SILT: $90-28=\mathbf{6 2 \%}$
CLAY: $28-0=\mathbf{2 8 \%}$
$2.14 G_{s}=2.65$; temperature $=26^{\circ} ;$ time $=45 \mathrm{~min} . ; L=10.4 \mathrm{~cm}$.
Eq. (2.6): $D(\mathrm{~mm})=K \sqrt{\frac{L(\mathrm{~cm})}{t(\mathrm{~min})}}$

From Table 2.9 for $G_{s}=2.65$ and temperature $=26^{\circ}, K=0.01272$
$D=0.01272 \sqrt{\frac{10.4}{45}}=\mathbf{0 . 0 0 6} \mathbf{~ m m}$
$2.15 G_{s}=2.75$; temperature $=21^{\circ} \mathrm{C} ;$ time $=88 \mathrm{~min} . ; L=11.7 \mathrm{~cm}$
Eq. (2.6): $D(\mathrm{~mm})=K \sqrt{\frac{L(\mathrm{~cm})}{t(\mathrm{~min})}}$
From Table 2.6 for $G_{s}=2.75$ and temperature $=21^{\circ}, K=0.01309$
$D=0.01309 \sqrt{\frac{11.7}{88}}=\mathbf{0 . 0 0 4 7} \mathbf{~ m m}$

CRITICAL THINKING PROBLEMS

2.C. 1 a. Soil $A: \quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{11}{0.6}=\mathbf{1 8 . 3 3} ; \quad C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{5^{2}}{(11)(0.6)}=\mathbf{3 . 7 8}$

Soil $B: \quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{7}{0.2}=\mathbf{3 5} ; \quad C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{2.1^{2}}{(7)(0.2)}=\mathbf{3 . 1 5}$
Soil $C: \quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{4.5}{0.15}=\mathbf{3 0} ; \quad C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{1^{2}}{(4.5)(0.15)}=\mathbf{1 . 4 8}$
b. Soil A is coarser than Soil C. A higher percentage of soil C is finer than any given size compared to Soil A. For example, about 15% is finer than 1 mm for Soil A, whereas almost 30% is finer than 1 mm in case of Soil C.
c. Particle segregation may take place in aggregate stockpiles such that there is a separation of coarser and finer particles. This makes representative sampling difficult. Therefore, Soils A, B, and C demonstrate quite different particle size distribution.
d. $\underline{\text { Soil } A}$

Percent passing $4.75 \mathrm{~mm}=29 \quad$ GRAVEL: $100-29=\mathbf{7 1} \%$
Percent passing $0.075 \mathrm{~mm}=1 \quad$ SAND: $29-1=\mathbf{2 8 \%}$
FINES: $1-0=\mathbf{1 \%}$
Soil B
Percent passing $4.75 \mathrm{~mm}=45 \quad$ GRAVEL: $100-45=\mathbf{5 5 \%}$
Percent passing $0.075 \mathrm{~mm}=2 \quad$ SAND: $45-2=\mathbf{4 3} \%$
FINES: $2-0=\mathbf{2 \%}$
Soil C
Percent passing $4.75 \mathrm{~mm}=53$ GRAVEL: $100-53=\mathbf{4 7 \%}$
Percent passing $0.075 \mathrm{~mm}=3$ SAND: $53-3=\mathbf{5 0 \%}$
FINES: $3-0=\mathbf{3 \%}$
2.C. 2 a. Total mass in the ternary $\mathrm{mix}=8000 \times 3=24,000 \mathrm{~kg}$

Percent of each soil in the mix $=\frac{8,000}{24,000} \times 100=33.33 \%$
Mass of each soil used in the sieve analysis, $\sum m_{A}=\sum m_{B}=\sum m_{C}=500 \mathrm{~g}$
If a sieve analysis is conducted on the ternary mix using the same set of sieves, the percent of mass retained on each sieve, $m_{M}(\%)$, can be computed as follows:

$$
m_{M}(\%)=0.333\left(\frac{m_{A}}{500} \times 100\right)+0.333\left(\frac{m_{B}}{500} \times 100\right)+0.333\left(\frac{m_{C}}{500} \times 100\right)
$$

The calculated values are shown in the following table.

$\begin{array}{l}\text { Sieve } \\ \text { size }\end{array}$	Mass retained					
	m_{A}	m_{B}	m_{C}		m_{M}	\(\left.\begin{array}{l}Percent

passing for

the mixture\end{array}\right]\)
b. The grain-size distribution curve for the mixture is drawn below.

From the curve, $D_{10}=0.21 ; D_{30}=2.5 ; D_{60}=9.0$

$$
C_{u}=\frac{D_{60}}{D_{10}}=\frac{9.0}{0.21}=\mathbf{4 2 . 8 5} ; \quad C_{c}=\frac{D_{30}^{2}}{\left(D_{60}\right)\left(D_{10}\right)}=\frac{2.5^{2}}{(9.0)(0.21)}=\mathbf{3 . 3 1}
$$

