Solutions Manual

 to accompanyPrinciples of Highway Engineering and Traffic Analysis, 4e

By
Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski

Chapter 2 Road Vehicle Performance

Metric Units

Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Preface

The solutions to the fourth edition of Principles of Highway Engineering and Traffic Analysis were prepared with the Mathcad ${ }^{1}$ software program. You will notice several notation conventions that you may not be familiar with if you are not a Mathcad user. Most of these notation conventions are self-explanatory or easily understood. The most common Mathcad specific notations in these solutions relate to the equals sign. You will notice the equals sign being used in three different contexts, and Mathcad uses three different notations to distinguish between each of these contexts. The differences between these equals sign notations are explained as follows.

- The ' $:=$ ' (colon-equals) is an assignment operator, that is, the value of the variable or expression on the left side of ' $:=$ 'is set equal to the value of the expression on the right side. For example, in the statement, $\mathrm{L}:=1234$, the variable ' L ' is assigned (i.e., set equal to) the value of 1234. Another example is $x:=y+z$. In this case, x is assigned the value of $y+z$.
- The ' $=$ ' (bold equals) is used when the Mathcad function solver was used to find the value of a variable in the equation. For example, in the equation $5.2 \cdot \mathrm{t}-0.005 \cdot \mathrm{t}^{2}=18.568+10 \cdot(\mathrm{t}-12.792)$, the $=$ is used to tell Mathcad that the value of the expression on the left side needs to equal the value of the expression on the right side. Thus, the Mathcad solver can be employed to find a value for the variable ' t ' that satisfies this relationship. This particular example is from a problem where the function for arrivals at some time ' t ' is set equal to the function for departures at some time ' t ' to find the time to queue clearance.
- The ' $=$ ' (standard equals) is used for a simple numeric evaluation. For example, referring to the $\mathrm{x}:=\mathrm{y}+\mathrm{z}$ assignment used previously, if the value of y was 10 [either by assignment (with :=), or the result of an equation solution (through the use of $=$) and the value of z was 15 , then the expression ' $\mathrm{x}=$ ' would yield 25 . Another example would be as follows: $\mathrm{s}:=$ $1800 / 3600$, with $s=0.5$. That is, ' s ' was assigned the value of 1800 divided by 3600 (using :=), which equals 0.5 (as given by using =).

Another symbol you will see frequently is ' \rightarrow '. In these solutions, it is used to perform an evaluation of an assignment expression in a single statement. For example, in the following statement, $Q(t):=A r r i v a l s(t)-$ Departures $(t) \rightarrow 2.200 \cdot t-1000 \cdot t^{2}, Q(t)$ is assigned the value of Arrivals $(\mathrm{t})-\operatorname{Departures}(\mathrm{t})$, and this evaluates to $2.2 \mathrm{t}-0.10 \mathrm{t}^{2}$.

Finally, to assist in quickly identifying the final answer, or answers, for what is being asked in the problem statement, yellow highlighting has been used (which will print as light gray).
${ }^{1}$ www.mathcad.com

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski.
Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine the power required to overcome aerodynamic drag.

Problem 2.1

$$
\begin{array}{lll}
\rho:=1.2256 & C_{D}:=0.29 & A_{\mathrm{f}}:=1.9 \\
\mathrm{~V}:=160 \cdot \frac{1000}{3600} & \mathrm{~m} / \mathrm{s} & \mathrm{~V}=44.4
\end{array}
$$

(given)
solve for power

$$
\begin{align*}
& \mathrm{P}_{\mathrm{Ra}}:=\frac{\mathrm{\rho}}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \mathrm{~V}^{3} \tag{Eq.2.4}\\
& \mathrm{P}_{\mathrm{Ra}}=29643 \quad \mathrm{~kW}
\end{align*}
$$

Problem 2.2

Determine the final weight of the car.

$\rho:=1.2256 \quad C_{D}:=0.30 \quad A_{f}:=2 \quad W_{o}:=9300 \quad$ (given)
$\mathrm{V}_{\text {max }}:=160 \cdot 0.2778$
At $\mathrm{V}_{\max }$, Power $=\mathrm{R}_{\mathrm{s}} \mathrm{V}_{\max }+\mathrm{R}_{\mathrm{r} 1} \mathrm{~V}_{\max }$
Add one kW per 9 N . additional vehicle weight
additional power $=\mathrm{W}_{\mathrm{a}} \times 1000 / 9$
Solve for additional weight added to the vehicle, set resistance forces equal to additional kW

$$
\begin{aligned}
& \frac{1000 \mathrm{~W}_{\mathrm{a}}}{9}=\frac{\mathrm{\rho}}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \cdot\left(\mathrm{~V}_{\max }\right)^{3}+0.01 \cdot\left(1+\frac{\mathrm{V}_{\max }}{44.73}\right) \cdot\left(\mathrm{W}_{\mathrm{o}}+\mathrm{W}_{\mathrm{a}}\right) \cdot \mathrm{V}_{\max } \\
& \mathrm{W}_{\mathrm{a}}=367.69 \\
& \text { Total }:=\mathrm{W}_{\mathrm{o}}+\mathrm{W}_{\mathrm{a}} \quad \text { Total }=9667.69 \quad \mathrm{~N}
\end{aligned}
$$

Problem 2.3

Determine the distance from the vehicle's center of gravity to the front axle.
$\mathrm{W}:=11000$
$\mu:=0.6$
$\mathrm{L}:=3.05$
$\mathrm{h}:=0.55$
$\mathrm{f}_{\mathrm{rl}}:=0.01$
(given)

FWD $F_{\text {max }}=R W D F_{\text {max }}$
$\frac{\frac{\mu W\left(1_{f}-f_{r l} \cdot h\right)}{L}}{1-\frac{\mu \cdot h}{L}}=\frac{\frac{\mu W\left(1_{r}+f_{r 1} \cdot h\right)}{L}}{1+\frac{\mu \cdot h}{L}}$
solve for I_{r} in terms of L and I_{f}, left with one unknown $\left(l_{f}\right)$
$1_{\mathrm{r}}:=\mathrm{L}-1_{\mathrm{f}}$

$\mathrm{l}_{\mathrm{f}}=1.365 \quad \mathrm{~m}$

Problem 2.4
Determine the minimum coefficient of road adhesion.
$\mathrm{W}:=13300 \quad \mathrm{~g}:=9.807 \quad \mathrm{~L}:=5.10 \quad \mathrm{a}:=4.6$
$\mathrm{h}:=.50 \quad \mathrm{f}_{\mathrm{rl}}:=0.01 \quad \mathrm{l}_{\mathrm{f}}:=3.55$
$\mathrm{F}=\mathrm{ma}+\mathrm{R}_{\mathrm{rl}}=$ rear $\mathrm{F}_{\max }=\mu \mathrm{W}\left(\mathrm{l}_{\mathrm{f}} \mathrm{f}_{\mathrm{rl}} \mathrm{h}\right) / \mathrm{L}$
$1-\mu h / L$
substitute for $m, R_{r l}$

$$
\mathrm{m}:=\frac{\mathrm{W}}{\mathrm{~g}} \quad \mathrm{R}_{\mathrm{rl}}:=\mathrm{f}_{\mathrm{r} 1} \cdot \mathrm{~W}
$$

$$
\frac{W}{g} \cdot a+f_{r 1} \cdot W=\frac{\frac{\mu \cdot W \cdot\left(1 f_{f}-f_{\mathrm{rl}}-\mathrm{h}\right)}{\mathrm{L}}}{1-\frac{\mu \cdot h}{\mathrm{~L}}}
$$

$\mu=0.646$ I
(given)

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski.
Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine the distance from the vehicle's center of gravity to the rear axle.

$$
\begin{aligned}
& \mathrm{W}:=3013000 \quad \mathrm{~g}:=9.807 \quad \mathrm{~L}:=5.10 \quad \mathrm{a}:=11.77 \quad \text { (given) } \\
& \mathrm{h}:=1.78 \quad \mathrm{f}_{\mathrm{rl}}:=0.01 \quad \mu:=0.95 \\
& \mathrm{~F}=\mathrm{ma}+\mathrm{R}_{\mathrm{rl}}=\text { rear } \mathrm{F}_{\max }=\mu \mathrm{W}\left(\mathrm{l}_{\mathrm{f}} \mathrm{f}_{\mathrm{f}} \mathrm{~h}\right) / \mathrm{L} \\
& 1-\mu \mathrm{h} / \mathrm{L} \\
& \text { substitute for } m, R_{r \mid} \\
& \mathrm{m}:=\frac{\mathrm{W}}{\mathrm{~g}} \quad \mathrm{R}_{\mathrm{rl}}:=\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W} \\
& \frac{\mathrm{~W}}{\mathrm{~g}} \cdot \mathrm{a}+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}=\frac{\frac{\mu \cdot \mathrm{W} \cdot\left(1_{\mathrm{f}}-\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~h}\right)}{\mathrm{L}}}{1-\frac{\mu \cdot \mathrm{h}}{\mathrm{~L}}} \\
& \mathrm{l}_{\mathrm{f}}=4.36 \quad \mathrm{~m}
\end{aligned}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

$$
\begin{align*}
& \mathrm{W}:=12000 \quad \mathrm{r}:=0.355 \quad \mathrm{~L}:=2.5 \\
& \mu:=1.0 \quad \mathrm{~h}:=0.450 \quad \mathrm{f}_{\mathrm{rl}}:=0.01 \quad \mathrm{~L}_{\mathrm{f}}:=1.0 \\
& \mathrm{~F}=\operatorname{rear} \mathrm{F}_{\max }=\frac{\mu \mathrm{W}\left(\mathrm{l}_{\mathrm{f}} \mathrm{f}_{\mathrm{rl}} \mathrm{~h}\right) / \mathrm{L}}{1-\mu \mathrm{h} / \mathrm{L}} \tag{Eq.2.14}
\end{align*}
$$

(given)
"highest possible acceleration" means F_{e} is equal to $F_{\max }$

$$
\begin{aligned}
& \mathrm{F}_{\max }=5827.317 \\
& \mathrm{M}_{\mathrm{e}}:=730 \quad \eta_{\mathrm{d}}:=0.95
\end{aligned}
$$

(given)
solve for ε_{0}
$F_{\max }=\frac{\mathrm{M}_{\mathrm{e}} \cdot \varepsilon_{0} \cdot \eta_{\mathrm{d}}}{\mathrm{r}} \quad \varepsilon_{0}:=\frac{\mathrm{F}_{\max }{ }^{\mathrm{r}}}{\mathrm{M}_{\mathrm{e}} \cdot \eta_{\mathrm{d}}}$
(Eq. 2.17)
$\varepsilon_{0}=31$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.
$z_{0}:=9 \quad \mathrm{r}:=0.355 \quad \mathrm{~g}:=9.807 \quad \mu:=1.0 \quad \mathrm{f}_{\mathrm{r} 1}:=0.01$
$h:=0.45 \quad \mathrm{l}_{\mathrm{f}}:=1.3 \quad \mathrm{~L}:=2.8 \quad \mathrm{~W}:=10900$
$\mathrm{R}_{\mathrm{r}}:=\mathrm{W} \cdot \mathrm{f}_{\mathrm{r} 1} \quad \mathrm{R}_{\mathrm{r} 1}=109$
$\mathrm{M}_{\text {ebase }}:=250 \quad \mathrm{M}_{\text {emod }}:=290 \quad \eta_{\mathrm{d}}:=0.90$
solve for mass factor
$\gamma_{\mathrm{m}}:=1.04+0.0025 \cdot z_{0}^{2} \quad \gamma_{\mathrm{m}}=1.24$
$\mathrm{F}_{\text {ebase }}:=\frac{\mathrm{M}_{\text {ebase }} \cdot \varepsilon_{0} \cdot \eta_{\mathrm{d}}}{\mathrm{r}} \quad \mathrm{F}_{\text {ebase }}=5704.23$
$F_{\max }:=\frac{\frac{\mu \cdot \mathrm{W} \cdot\left(1_{\mathrm{f}}-\mathrm{f}_{\mathrm{rl}} \cdot h\right)}{\mathrm{L}}}{1-\frac{\mu \cdot \mathrm{h}}{\mathrm{L}}} \quad \mathrm{F}_{\max }=6008.91$
since $F_{\text {ebase }}<F_{\text {max }}$, use $F_{\text {ebsse }}$ for calculating acceleration with original engine
$\mathrm{a}_{\text {base }}:=\frac{\mathrm{F}_{\text {ebase }}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{W}}{\mathrm{g}}\right)} \quad \quad \mathrm{a}_{\text {base }}=4.13 \quad \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
(Eq. 2.19)
$\mathrm{F}_{\text {emod }}:=\frac{\mathrm{M}_{\text {emod }} \cdot \varepsilon_{0} \cdot \eta_{\mathrm{d}}}{\mathrm{r}} \quad \mathrm{F}_{\text {emod }}=6616.9$
since $F_{\text {emod }}>F_{\text {max }}$, use $F_{\text {max }}$ for calculating acceleration with modified engine
$\mathrm{a}_{\text {mod }}:=\frac{\mathrm{F}_{\text {max }}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{W}}{\mathrm{g}}\right)} \quad \mathrm{a}_{\text {mod }}=4.35 \quad \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
(Eq. 2.19)

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.
$3000 \mathrm{rev} / \mathrm{min}=50 \mathrm{rev} / \mathrm{sec}$
$\mathrm{i}:=0.035 \quad \mathrm{n}_{\mathrm{e}}:=50 \quad \varepsilon_{\mathrm{o}}:=3.5 \quad \mathrm{r}:=0.38 \quad \mathrm{~g}:=9.807 \quad$ (given)
solve for velocity
$\mathrm{V}:=\frac{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{n}_{\mathrm{e}} \cdot(1-\mathrm{i})}{\varepsilon_{\mathrm{o}}} \quad \mathrm{V}=32.9$
calculate aerodynamic resistance
$\rho:=1.2256 \quad C_{D}:=0.35 \quad A_{f}:=2$
$\mathrm{R}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{A}_{\mathrm{f}} \cdot \mathrm{V}^{2} \quad \mathrm{R}_{\mathrm{a}}=464.73$
calculate rolling resistance
$\mathrm{f}_{\mathrm{r} 1}:=0.01\left(1+\frac{\mathrm{V}}{44.73}\right) \quad \mathrm{W}:=13300$
$\mathrm{R}_{\mathrm{r} 1}:=\mathrm{f}_{\mathrm{rl}} 1 \mathrm{~W} \quad \mathrm{R}_{\mathrm{r} 1}=230.87$
calculate mass factor
$\gamma_{\mathrm{m}}:=1.04+0.0025 \cdot \varepsilon_{\mathrm{o}}^{2} \quad \gamma_{\mathrm{m}}=1.07$
$\mathrm{M}_{\mathrm{e}}:=340 \quad \mathrm{n}_{\mathrm{d}}:=0.90$
calculate engine-generated tractive effort
$F_{e}:=\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r} \quad F_{e}=2818.42$
$\mathrm{F}_{\text {net }}=\mathrm{F}-\sum_{\mathrm{n}} \mathrm{R}=\gamma_{\mathrm{m}} \cdot \mathrm{m} \cdot \mathrm{a}$
so $\quad a:=\frac{F_{e}-R_{a}-R_{r l}}{\gamma_{m} \cdot\left(\frac{W}{g}\right)} \quad a=1.46 \frac{m}{\sec ^{2}}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski.
Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine the drag coefficient.

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{e}}:=200 \quad \varepsilon_{0}:=3.0 \quad \eta_{\mathrm{d}}:=0.90 \quad \mathrm{r}:=0.38 \\
& \mathrm{i}:=0.02 \quad \mathrm{~W}:=9500 \quad \mathrm{n}_{\mathrm{e}}:=\frac{4500}{60} \\
& \mathrm{~V}:=\frac{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{n}_{\mathrm{e}} \cdot(1-\mathrm{i})}{\varepsilon_{0}} \quad \mathrm{~V}=58.496 \\
& \mathrm{~F}_{\mathrm{e}}:=\frac{\mathrm{M}_{\mathrm{e}} \cdot \varepsilon_{0} \cdot \eta_{\mathrm{d}}}{\mathrm{r}} \quad \mathrm{~F}_{\mathrm{e}}=1.421 \times 10^{3} \\
& \mathrm{f}_{\mathrm{rl}}:=0.01 \cdot\left(1+\frac{\mathrm{V}}{44.73}\right) \\
& \mathrm{R}_{\mathrm{rl}}:=\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W} \\
& \mathrm{~A}_{\mathrm{f}}:=1.8 \\
& R_{\mathrm{rl}}=219.238 \\
& \mathrm{~F}_{\mathrm{e}}=\mathrm{R}_{\mathrm{rl}}+\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \cdot \mathrm{~V}^{2} \\
& C_{\mathrm{D}}=0.318 \mathrm{l}
\end{aligned}
$$

Determine the drag coefficient.

Problem 2.10

$$
\begin{equation*}
\mathrm{M}_{\mathrm{e}}:=270 \quad \varepsilon_{\mathrm{o}}:=3.0 \quad \mathrm{n}_{\mathrm{d}}:=0.90 \quad \mathrm{r}:=0.355 \tag{Eq.2.17}
\end{equation*}
$$

$F_{e}:=\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r} \quad F_{e}=2053.5$
$\mathrm{V}:=240 \cdot \frac{1000}{3600} \quad \mathrm{~W}:=11000 \quad \mathrm{f}_{\mathrm{r} 1}:=0.01 \cdot\left(1+\frac{\mathrm{V}}{44.7}\right)$
$\mathrm{R}_{\mathrm{r} 1}:=\mathrm{f}_{\mathrm{r} 1} \cdot \mathrm{~W} \quad \mathrm{R}_{\mathrm{r} 1}=274.057$
$p:=1.2256 \quad A_{f}:=2.3$
set F_{e} equal to the sum of the resistance forces and solve for C_{D}

$$
\mathrm{F}_{\mathrm{e}}=\mathrm{R}_{\mathrm{r}}+\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \cdot \mathrm{~V}^{2} \quad \mathrm{C}_{\mathrm{D}}:=\frac{2\left(\mathrm{~F}_{\mathrm{e}}-\mathrm{R}_{\mathrm{r}}\right)^{\prime}}{\mathrm{A}_{\mathrm{f}} \cdot \mathrm{~V}^{2} \cdot \mathrm{P}}
$$

(given)

$$
\mathrm{C}_{\mathrm{D}}=0.284 \mathbf{I}
$$

$\mathrm{i}:=0.035 \quad \mathrm{n}_{\mathrm{e}}:=\frac{3500}{60} \quad \varepsilon_{\mathrm{o}}:=3.2 \quad \mathrm{r}:=0.355 \quad \mathrm{~g}:=9.807 \quad$ (given)
calculate velocity
$\mathrm{V}:=\frac{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{n}_{\mathrm{e}} \cdot(1-\mathrm{i})}{\varepsilon_{0}} \quad \mathrm{~V}=39.2 \mathrm{~m} / \mathrm{s}$
calculate aerodynamic resistance
$\rho:=1.2256 \quad C_{D}:=0.35 \quad A_{f}:=2.3$
$\mathrm{R}_{\mathrm{a}}:=\frac{\mathrm{P}}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{A}_{\mathrm{f}} \cdot \mathrm{V}^{2} \quad \mathrm{R}_{\mathrm{a}}=759.49 \quad \mathrm{~N}$
calculate rolling resistance

$$
\begin{equation*}
\mathrm{f}_{\mathrm{rl}}:=0.01\left(1+\frac{\mathrm{V}}{44.73}\right) \quad \mathrm{W}:=11000 \quad \mathrm{~N} \tag{Eq.2.5}
\end{equation*}
$$

$\mathrm{R}_{\mathrm{rl}}:=\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{W} \quad \mathrm{R}_{\mathrm{rl}}=206.49 \quad \mathrm{~N}$
calculate engine-generated tractive effort
$\mathrm{M}_{\mathrm{e}}:=270 \quad \mathrm{n}_{\mathrm{d}}:=0.90$
$\mathrm{F}_{\mathrm{e}}:=\frac{\mathrm{M}_{\mathrm{e}} \cdot \varepsilon_{0} \cdot \mathrm{n}_{\mathrm{d}}}{\mathrm{r}} \quad \mathrm{F}_{\mathrm{e}}=2190.42 \quad \mathrm{~N}$
$R_{g}:=F_{e}-R_{a}-R_{r l}$
$R_{g}=1224.44$
$\mathrm{G}:=\frac{\mathrm{R}_{\mathrm{g}}}{\mathrm{W}}$
$\mathrm{G}=0.1113 \quad$ therefore $\mathrm{G}=11.1 \%$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Alternative calculation for grade, using trig relationships

$$
\begin{aligned}
& \theta_{\mathrm{g}}:=\operatorname{asin}\left(\frac{R_{\mathrm{g}}}{\mathrm{~W}}\right) \\
& \theta_{\mathrm{g}}=0.1115 \quad \text { radians } \\
& \operatorname{deg} \theta_{\mathrm{g}}:=\theta_{\mathrm{g}} \cdot \frac{180}{\pi} \quad \text { convert from radians to degrees } \\
& \operatorname{deg} \theta_{\mathrm{g}}=6.391 \\
& \tan \operatorname{deg}=\text { opposite side/adjacent side } \\
& \mathrm{G}:=\tan \left(\theta_{\mathrm{g}}\right) \cdot 100 \quad \mathrm{G}=11.2 \quad \%
\end{aligned}
$$

Thus, error is minimal when assuming $\mathrm{G}=\sin \theta_{\mathrm{g}}$ for small to medium grades

Problem 2.12

Determine the torque the engine is producing and the engine speed.
$\mathrm{F}_{\mathrm{e}}-\mathrm{\Sigma R}=\gamma_{\mathrm{m}} \cdot \mathrm{m} \cdot \mathrm{a}$
at top speed, acceleration $=0$; thus, $F_{e}-\Sigma R=0$
$\mathrm{P}:=1.06 \quad \mathrm{C}_{\mathrm{D}}:=0.28 \quad \mathrm{~A}_{\mathrm{f}}:=1.8 \quad \mathrm{~V}:=200 \cdot \frac{1000}{3600} \quad \mathrm{~V}=55.556 \quad$ (given)
calculate aerodynamic resistance

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \cdot \mathrm{~V}^{2} & \mathrm{R}_{\mathrm{a}}=824.444 \\
\mathrm{f}_{\mathrm{r}}:=0.01 \cdot\left(1+\frac{\mathrm{V}}{44.73}\right) & \mathrm{f}_{\mathrm{r}}=0.022 \tag{Eq.2.5}
\end{array}
$$

$$
\mathrm{W}:=12000 \quad \mathrm{i}:=0.03 \quad \eta_{\mathrm{d}}:=0.90 \quad \varepsilon_{0}:=2.5 \quad \mathrm{r}:=0.320 \quad \text { (given) }
$$

calculate rolling resistance

$$
\begin{equation*}
\mathrm{R}_{\mathrm{r} 1}:=\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W} \quad \mathrm{R}_{\mathrm{r} 1}=269.042 \tag{Eq.2.6}
\end{equation*}
$$

$$
R_{g}:=0
$$

sum of resistances is equal to engine-generated tractive effort, solve for M_{2}

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{e}}:=\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{r} 1}+\mathrm{R}_{\mathrm{g}} & \mathrm{~F}_{\mathrm{e}}=1093.487 \\
\mathrm{~F}_{\mathrm{e}}=\frac{\mathrm{M}_{\mathrm{e}} \cdot \varepsilon_{0} \cdot \eta_{\mathrm{d}}}{\mathrm{r}} & \mathrm{M}_{\mathrm{e}}:=\frac{\mathrm{F}_{\mathrm{e}} \cdot \mathrm{r}}{\varepsilon_{0} \cdot \eta_{\mathrm{d}}} \\
\mathrm{M}_{\mathrm{e}}=155.518 \mathrm{l}
\end{array}
$$

Knowing velocity, solve for n_{e}

$$
\begin{array}{ll}
\mathrm{V}=\frac{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{n}_{\mathrm{e}} \cdot(1-\mathrm{i})}{\varepsilon_{0}} & \mathrm{n}_{\mathrm{e}}:=\frac{\mathrm{V} \cdot \varepsilon_{0}}{2 \cdot \pi \cdot \mathrm{r} \cdot(1-\mathrm{i})} \tag{Eq.2.18}\\
\mathrm{n}_{\mathrm{e}}=71.214 \frac{\mathrm{rev}}{\mathrm{~s}} & \mathrm{n}_{\mathrm{e}} \cdot 60=4273 \frac{\mathrm{rev}}{\min }
\end{array}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 2.13

Determine the maximum acceleration from rest.

$$
\begin{align*}
& \mathrm{W}:=11000 \quad \mathrm{~L}:=2.03 \quad \mathrm{~h}:=0.50 \quad \mathrm{l}_{\mathrm{f}}:=0.76 \quad \mu:=0.75 \\
& \mathrm{f}_{\mathrm{r} 1}:=0.01 \quad \mathrm{~g}:=9.807 \\
& \mathrm{~F}_{\max }:=\frac{\frac{\mu \cdot \mathrm{W} \cdot\left(1_{\mathrm{f}}-\mathrm{f}_{\mathrm{r}} \cdot \mathrm{~h}\right)}{\mathrm{L}}}{1-\frac{\mu \cdot \mathrm{h}}{\mathrm{~L}}} \quad \mathrm{~F}_{\max }=3763.6 \tag{Eq.2.14}
\end{align*}
$$

For maximum torque, derivative of torque equation equals zero

$$
\frac{\mathrm{dM}_{\mathrm{e}}}{\mathrm{dn}_{\mathrm{e}}}=6-0.09 \mathrm{n}_{\mathrm{e}}=0 \quad \mathrm{n}_{\mathrm{e}}:=\frac{6}{0.09} \quad \mathrm{n}_{\mathrm{e}}=66.67
$$

plug this value into torque equation to get value of maximum torque

$$
\begin{array}{lll}
M_{e}:=6 \cdot n_{e}-0.045 \cdot n_{e}^{2} & M_{e}=200 \\
\varepsilon_{0}:=11 & \mathrm{n}_{\mathrm{d}}:=0.75 & \mathrm{r}:=0.355 \\
\varepsilon_{\mathrm{o}}:=11 & \mathrm{n}_{\mathrm{d}}:=0.75 & \mathrm{r}:=0.355
\end{array}
$$

find engine-generated tractive effort from maximum torque

$$
\begin{equation*}
\mathrm{F}_{\mathrm{e}}:=\frac{\mathrm{M}_{\mathrm{e}} \cdot \varepsilon_{0} \cdot \mathrm{n}_{\mathrm{d}}}{\mathrm{r}} \quad \mathrm{~F}_{\mathrm{e}}=4647.89 \tag{Eq.2.17}
\end{equation*}
$$

calculate rolling resistance and mass factor

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{r}}:=\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W} & \mathrm{R}_{\mathrm{rl}}=110 \\
\gamma_{\mathrm{m}}:=1.04+0.0025 \cdot \varepsilon_{0}^{2} & \gamma_{\mathrm{m}}=1.34 \tag{Eq.2.20}\\
\mathrm{~F}_{\max }<\mathrm{F}_{\mathrm{e}} \text { so } \mathrm{F}_{\max } \text { is used }
\end{array}
$$

calculate acceleration from maximum available tractive effort

$$
\begin{equation*}
\mathrm{a}:=\frac{\mathrm{F}_{\max }-\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{~W}}{\mathrm{~g}}\right)} \quad \mathrm{a}=2.43 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \tag{Eq.2.19}
\end{equation*}
$$

Problem 2.14

Determine speed of car.

$$
\begin{aligned}
& \text { Power }=\left(2 \pi M_{e} \cdot n_{e}\right)=6.28 \cdot\left(6 n_{e}^{2}-0.045 n_{e}^{3}\right)=37.68 n_{e}^{2}-0.2826 n_{e}^{3} \\
& P\left(n_{e}\right):=37.68 n_{e}^{2}-0.2826 n_{e}^{3}
\end{aligned}
$$

To find maximum power take derivative of power equation

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dn}_{\mathrm{e}}} \mathrm{P}\left(\mathrm{n}_{\mathrm{e}}\right) \rightarrow 75.36 \cdot \mathrm{n}_{\mathrm{e}}-.8478 \cdot \mathrm{n}_{\mathrm{e}}^{2}=0 \\
& \mathrm{n}_{\mathrm{e}}:=\frac{75.36}{0.8478} \quad \mathrm{n}_{\mathrm{e}}=88.89 \\
& \mathrm{i}:=0.035 \quad \varepsilon_{0}:=2 \quad \mathrm{r}:=0.355
\end{aligned}
$$

Calculate maximum velocity at maximum engine power

$$
\begin{aligned}
\mathrm{V} & =\frac{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{n}_{\mathrm{e}} \cdot(1-\mathrm{i})}{\varepsilon_{0}} \\
\mathrm{~V} & =95.66 \quad \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned} \frac{\mathrm{~V}}{0.2778}=344.4 \quad \frac{\mathrm{~km}}{\mathrm{~h}} .
$$

Problem 2.15

Determine the acceleration for front- and rear-wheel-drive options.
$\mathrm{M}_{\mathrm{e}}:=130 \quad \varepsilon_{\mathrm{o}}:=4.5 \quad \mathrm{n}_{\mathrm{d}}:=0.80 \quad \mathrm{r}:=0.33 \quad$ (given)
$R_{v}, R_{r 1}$, and γ_{m} are as before
calculate engine-generated tractive effort
$F_{e}:=\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r} \quad F_{e}=1418.182$
$\gamma_{\mathrm{m}}:=1.091 \quad \mathrm{~W}:=13300 \quad \mathrm{R}_{\mathrm{a}}:=6.26$
$\mathrm{R}_{\mathrm{r}}:=146.22 \quad \mathrm{~g}:=9.807$
calculate maximum acceleration

$$
\begin{equation*}
\mathrm{a}_{\max }:=\frac{\mathrm{F}_{\mathrm{e}}-\mathrm{R}_{\mathrm{a}}-\mathrm{R}_{\mathrm{r} 1}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{~W}}{\mathrm{~g}}\right)} \quad \mathrm{a}_{\max }=0.855 \tag{Eq.2.19}
\end{equation*}
$$

Rear - wheel drive

$$
\begin{align*}
& \mu:=0.2 \quad \mathrm{f}_{\mathrm{rl}}:=0.011 \quad \mathrm{~h}:=0.50 \mathrm{~L}:=3.05 \quad \mathrm{l}_{\mathrm{f}}:=\frac{3.05}{2} \\
& \mathrm{~F}_{\max }:=\frac{\frac{\mu \cdot \mathrm{W} \cdot\left(1_{\mathrm{f}}-\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~h}\right)}{\mathrm{L}}}{1-\frac{\mu \cdot \mathrm{h}}{\mathrm{~L}}} \quad \mathrm{~F}_{\max }=1370.125 \tag{Eq.2.14}\\
& \mathrm{a}_{\max }:=\frac{\mathrm{F}_{\max }-\mathrm{R}_{\mathrm{a}}-\mathrm{R}_{\mathrm{r}}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{~W}}{\mathrm{~g}}\right)} \quad \mathrm{a}_{\max }=0.823 \frac{\mathrm{~m}}{2} \quad 0.823<0.855 \tag{Eq.2.19}
\end{align*}
$$

Front - wheel drive

$$
\begin{align*}
& \mathrm{F}_{\max }:=\frac{\frac{\mu \cdot \mathrm{W} \cdot\left(1_{\mathrm{f}}+\mathrm{f}_{\mathrm{t} 1} \cdot \mathrm{~h}\right)}{\mathrm{L}}}{1+\frac{\mu \cdot \mathrm{h}}{\mathrm{~L}}} \quad \mathrm{~F}_{\max }=1292.422 \tag{Eq.2.15}\\
& \mathrm{a}_{\max }:=\frac{\mathrm{F}_{\max }-\mathrm{R}_{\mathrm{a}}-\mathrm{R}_{\mathrm{r} 1}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{~W}}{\mathrm{~g}}\right)} \mathrm{a}_{\max }=0.77 \tag{Eq.2.19}
\end{align*} \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad 0.77<0.855
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 2.16

Determine weight and torque.

$$
\begin{aligned}
& \mu:=0.8 \quad \mathrm{~W}_{\mathrm{o}}:=8900 \quad \varepsilon_{\mathrm{o}}:=10 \quad \mathrm{n}_{\mathrm{d}}:=0.8 \quad \mathrm{r}:=.355 \\
& \mathrm{~L}_{\mathrm{f}}:=1.40 \quad \mathrm{f}_{\mathrm{rl}}:=0.01 \quad \mathrm{~h}:=0.55 \quad \mathrm{~L}:=2.55 \\
& \mathrm{~F}_{\mathrm{e}}=\frac{\mathrm{M}_{\mathrm{e}} \cdot \varepsilon_{0} \cdot \mathrm{n}_{\mathrm{d}}}{\mathrm{r}} \\
& \mathrm{~F}_{\max }=\frac{\frac{\mu \cdot \mathrm{W}_{\mathrm{a}} \cdot\left(1_{\mathrm{f}}-\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~h}\right)}{\mathrm{L}}}{1-\frac{\mu \cdot \mathrm{h}}{\mathrm{~L}}} \\
& \text { (given) } \\
& \text { (Eq. 2.1) } \\
& \text { fnew }=\mathrm{l}_{\mathrm{f}}-\frac{2.5 \cdot\left(13 \cdot \mathrm{M}_{\mathrm{e}}\right)}{89} \quad \mathrm{~W}_{\mathrm{a}}=\mathrm{W}_{\mathrm{o}}+13 \cdot \mathrm{M}_{\mathrm{e}}
\end{aligned}
$$

$$
\text { setting } F_{e}=F_{\max } \text { and solving for } M_{e} \text { gives }
$$

$$
\frac{\mathrm{M}_{\mathrm{e}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{n}_{\mathrm{d}}}{\mathrm{r}}=\frac{\frac{\mu \cdot\left(\mathrm{W}_{\mathrm{o}}+13 \cdot \mathrm{M}_{\mathrm{e}}\right) \cdot\left[\left[1_{\mathrm{f}} \mathrm{f}-\frac{2 \cdot 5 \cdot\left(13 \cdot \mathrm{M}_{\mathrm{e}}\right)}{89}\right]-\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~h}\right]}{\mathrm{L}}}{1-\frac{\mu \cdot \mathrm{h}}{\mathrm{~L}}}
$$

$$
\mathrm{M}_{\mathrm{e}}=3.751 \quad \mathrm{~N}-\mathrm{m}
$$

$$
\mathrm{w}_{\mathrm{a}}:=\mathrm{w}_{\mathrm{o}}+13 \cdot \mathrm{M}_{\mathrm{e}_{\mathrm{N}}} \quad \mathrm{~W}_{\mathrm{a}}=8948.8 \quad \mathrm{~N}
$$

Problem 2.17

Determine the difference in minimum theoretical stopping distances with and without aerodynamic resistance considered.

$$
\begin{aligned}
& \rho:=1.2256 \quad C_{D}:=0.45 \quad A_{\mathrm{f}}:=2.3 \quad \mathrm{~V}:=145 \cdot 0.2778 \\
& \mathrm{~g}:=9.807 \quad \gamma_{\mathrm{b}}:=1.04 \quad \mathrm{~W}:=11000 \quad \eta_{\mathrm{b}}:=1.0 \\
& \mathrm{f}_{\mathrm{rl}}:=0.0145 \quad \mu:=0.7 \quad \theta:=5.71 \\
& \mathrm{~K}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \quad \mathrm{~K}_{\mathrm{a}}=0.634 \\
& \mathrm{~S}:=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~W}}{2 \cdot \mathrm{~g} \cdot \mathrm{~K}_{\mathrm{a}}} \cdot \ln \left(1+\frac{\mathrm{K}_{\mathrm{a}} \cdot \mathrm{~V}^{2}}{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{f}_{\mathrm{r}} \cdot \mathrm{~W}-\mathrm{W} \cdot \sin (\theta \cdot \mathrm{deg})}\right) \quad \mathrm{S}=130.22 \\
& \text { compared to } \mathrm{S}=134.97 \mathrm{~m} \text { and } \mathrm{S}=139.87 \mathrm{~m} \\
& 134.97-130.22=4.75 \quad \mathrm{~m} \\
& 139.87-130.22=9.65 \quad \mathrm{~m}
\end{aligned}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 2.18

Determine the initial speed with and without aerodynamic resistance.
$C_{D}:=0.40 \quad A_{\mathrm{f}}:=2.4 \quad \rho:=1.2256 \quad W:=15600$
$\mu:=0.5 \quad \mathrm{f}_{\mathrm{rl}}:=0.015 \quad \eta_{\mathrm{b}}:=0.78 \quad$ (given)
$\mathrm{S}:=76 \quad \mathrm{~g}:=9.807 \quad \gamma_{\mathrm{b}}:=1.04$
$\mathrm{K}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{A}_{\mathrm{f}} \quad \mathrm{K}_{\mathrm{a}}=0.588$
with aerodynamic resistance considered

$$
\begin{align*}
& \mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~W}}{2 \cdot \mathrm{~g} \cdot \mathrm{~K}_{\mathrm{a}}} \cdot \ln \left(1+\frac{\mathrm{K}_{\mathrm{a}} \cdot \mathrm{~V}^{2}}{\mu \cdot \eta_{\mathrm{b}} \cdot \mathrm{~W}+\mathrm{f}_{\mathrm{r} 1} \cdot \mathrm{~W}}\right) \tag{Eq.2.43}\\
& \mathrm{V}=24.423 \quad \frac{\mathrm{~V}}{0.2778}=87.915 \frac{\mathrm{~km}}{\mathrm{~h}}
\end{align*}
$$

with aerodynamic resistance ignored

$$
\begin{aligned}
& \mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~V}^{2}}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}\right)} \quad \mathrm{V}:=\sqrt{\frac{\mathrm{S} \cdot 2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}\right)}{\gamma_{\mathrm{b}}}} \\
& \mathrm{~V}=24.094 \quad \frac{\mathrm{~V}}{0.2778}=86.73 \quad \frac{\mathrm{~km}}{\mathrm{~h}}
\end{aligned}
$$

Problem 2.19

Determine the unloaded braking efficiency, ignoring aerodynamic resistance.
$\mu:=0.75 \quad \mathrm{f}_{\mathrm{rl}}:=0.018 \quad \gamma_{\mathrm{b}}:=1.04 \quad$ (given)
$\mathrm{g}:=9.807 \quad \mathrm{~S}:=61 \quad \mathrm{~V}:=100 \cdot 0.2778$
solve Eq. 2.43 for braking efficiency

$$
\begin{align*}
& \mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{v}^{2}}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{r} 1}\right)} \quad \eta_{\mathrm{b}}:=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{v}^{2}}{\mathrm{~S} \cdot 2 \cdot \mathrm{~g} \cdot \mu}-\mathrm{f}_{\mathrm{r} 1} \tag{Eq.2.43}\\
& \eta_{\mathrm{b}}=0.8704 \\
& \eta_{\mathrm{b}} \cdot 100=87.04 \quad \%
\end{align*}
$$

Problem 2.20

Determine the braking efficiency.

$$
\begin{align*}
& \mu:=0.60 \quad \gamma_{\mathrm{b}}:=1.04 \quad \mathrm{~g}:=9.807 \quad \mathrm{~S}:=180 \quad \mathrm{G}:=0.03 \\
& \mathrm{~V}_{1}:=180 \cdot \frac{1000}{3600} \quad \mathrm{~V}_{1}=50 \\
& \mathrm{~V}_{2}:=90 \cdot \frac{1000}{3600} \quad \mathrm{~V}_{2}=25 \\
& \mathrm{f}_{\mathrm{r} 1}:=0.01 \cdot\left(1+\frac{\frac{\mathrm{V}_{1}+\mathrm{V}_{2}}{2}}{44.73}\right) \quad \mathrm{f}_{\mathrm{rl}}=0.018 \tag{Eq.2.5}
\end{align*}
$$

solve for braking efficiency using theoretical stopping distance equation

$$
\begin{array}{ll}
\mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}-\mathrm{G}\right)} & \eta_{\mathrm{b}}:=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}\right)}{2 \cdot \mathrm{~S} \cdot \mathrm{~g} \cdot \mu}-\mathrm{f}_{\mathrm{rl}}+\mathrm{G} \tag{Eq.2.43}\\
\eta_{\mathrm{b}}=0.9399 \quad \eta_{\mathrm{b}} \cdot 100=93.99 \quad \%
\end{array}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 2.21

Determine the maximum amount of cargo that can be carried.

$\mathrm{V}_{1}:=120.0 .2778 \quad \mathrm{~V}_{1}=33.336 \mathrm{~m} / \mathrm{s} \quad \mathrm{V}_{2}:=0 \quad$ (vehicle is assumed to stop)

$$
\begin{align*}
& \mu:=0.95 \quad \mathrm{G}:=-0.04 \quad \mathrm{~g}:=9.807 \quad \text { (given) } \\
& \gamma_{b}:=1.04 \quad \eta_{b}:=0.80 \quad S:=90 \\
& V_{\text {avg }}:=\frac{V_{1}+V_{2}}{2} \quad V_{\text {avg }}=16.668 \\
& \mathrm{f}_{\mathrm{rl}}:=0.01 \cdot\left(1+\frac{\mathrm{V}_{\text {avg }}}{44.73}\right) \quad \mathrm{f}_{\mathrm{r} 1}=0.0137 \tag{Eq.2.5}
\end{align*}
$$

solve for additional vehicle weight using theoretical stopping distance equation, ignoring aerodynamic resistance
$S=\frac{\gamma_{b} \cdot V_{1}{ }^{2}}{2 \cdot\left[\left(\eta_{b}-\frac{W}{100 \cdot 445}\right) \cdot \mu+f_{r 1}+G\right]}$
(Eq. 2.43)
$\mathrm{W}=3701.1 \quad \mathrm{~N}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

$$
\begin{array}{rl}
\mathrm{C}_{\mathrm{D}} & :=0.5 \\
\mathrm{~A}_{\mathrm{f}}:=2.3 & \mathrm{~W}:=15600 \\
\mathrm{~S} & \mathrm{P}:=45 \\
\mu:=0.85 & \mathrm{~g}:=9.807 \\
\mathrm{f}_{\mathrm{rl}} & :=0.018 \tag{Eq.2.37}\\
\eta_{\mathrm{b}}:=0.80 & \gamma_{\mathrm{b}}:=1.04 \\
\mathrm{~V}_{1}:=130 \cdot 0.2778 & \mathrm{~V}_{1}=36.114 \\
\mathrm{~K}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \quad \mathrm{~K}_{\mathrm{a}}=0.705
\end{array}
$$

(given)

How fast will the car be travelling when it strikes the object on a level surface?

$$
\begin{gather*}
\mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~W}}{2 \cdot \mathrm{~g} \cdot \mathrm{~K}_{\mathrm{a}}} \cdot \ln \left[\frac{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{K}_{\mathrm{a}} \cdot \mathrm{v}_{1}^{2}+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}}{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{K}_{\mathrm{a}} \cdot\left(\mathrm{v}_{2}^{2}\right)+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}}\right] \tag{Eq.2.39}\\
\mathrm{V}_{2}=25.961 \quad \frac{\mathrm{~V}_{2}}{0.2778}=93.45 \quad \frac{\mathrm{~km}}{\mathrm{~h}}
\end{gather*}
$$

How fast will the car be travelling when it strikes the object on a 5% grade?

$$
\begin{align*}
& \mathrm{G}:=0.05 \\
& \mathrm{~S}=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~W}}{2 \cdot \mathrm{~g} \cdot \mathrm{~K}_{\mathrm{a}}} \cdot \ln \left[\frac{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{K}_{\mathrm{a}} \cdot \mathrm{v}_{1}^{2}+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}+\mathrm{G} \cdot \mathrm{~W}}{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{K}_{\mathrm{a}} \cdot\left(\mathrm{v}_{2}^{2}\right)+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}+\mathrm{G} \cdot \mathrm{~W}}\right] \tag{Eq.2.39}\\
& \mathrm{V}_{2}=25.147 \quad \frac{\mathrm{~V}_{2}}{0.2778}=90.52 \quad \frac{\mathrm{~km}}{\mathrm{~h}}
\end{align*}
$$

Determine the speed of the car just before it impacted the object.

$$
\begin{array}{ll}
\mathrm{V}_{1}:=120 \cdot \frac{1000}{3600} & \mathrm{~V}_{1}=33.333 \\
\gamma_{\mathrm{b}}:=1.04 & \mathrm{~g}:=9.807 \\
\eta_{\mathrm{b}}:=0.90 & \mathrm{f}_{\mathrm{r} 1}:=0.015 \\
\mu_{\mathrm{m}}:=0.6 & \mu_{\mathrm{s}}:=0.3 \\
\mathrm{~S}_{\mathrm{al}}:=60 & \mathrm{~S}_{\text {skid }}:=30
\end{array}
$$

(given)
(given)

Find velocity of the car when it starts to skid

$$
\begin{align*}
& \mathrm{S}_{\mathrm{al}}=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{m}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)} \tag{Eq.2.43}\\
& \mathrm{V}_{2}:=\sqrt{\mathrm{V}_{1}^{2}-\frac{2 \cdot \mathrm{~S}_{\mathrm{al}} \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{m}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)}{\gamma_{\mathrm{b}}}} \\
& \mathrm{~V}_{2}=22.738 \quad \mathrm{~V}_{2} \cdot \frac{3600}{1000}=81.858 \quad \frac{\mathrm{~km}}{\mathrm{~h}}
\end{align*}
$$

Vehicle's velocity at start of skid is $\quad \mathrm{V}_{1}:=22.738$
Find velocity when the vehicle strikes the object

$$
\begin{align*}
& \mathrm{S}_{\mathrm{skid}}=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{s}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)} \tag{Eq.2.43}\\
& \mathrm{V}_{2}:=\sqrt{\mathrm{v}_{1}^{2}-\frac{2 \cdot \mathrm{~S}_{\mathrm{skid}} \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{s}}+\mathrm{f}_{\mathrm{r} 1}-0.03\right)}{\gamma_{\mathrm{b}}}} \\
& \mathrm{~V}_{2}=19.306 \\
& \mathrm{~V}_{2} \cdot \frac{3600}{1000}=69.5 \quad \frac{\mathrm{~km}}{\mathrm{~h}}
\end{align*}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine if the driver should appeal the ticket.

$\mu:=0.6 \quad$ (for good, wet pavement, and slide value because of skidding)
$\gamma_{\mathrm{b}}:=1.04 \quad$ g. $:=9.807$
$\mathrm{V}_{2}:=65 \cdot \frac{1000}{3600} \quad \mathrm{~V}_{2}=18.056$
(given)
$\eta_{\mathrm{b}}:=0.95 \quad \mathrm{~S}:=61 \quad \mathrm{f}_{\mathrm{rl}}:=0.015$
Solve for the initial velocity of the car using theoretical stopping distance

$$
\begin{equation*}
\mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{~V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}-0.04\right)} \quad \mathrm{V}_{1}:=\sqrt{\frac{2 \cdot \mathrm{~S} \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}-0.04\right)}{\gamma_{\mathrm{b}}}+\mathrm{V}_{2}^{2}} \tag{Eq.2.43}
\end{equation*}
$$

1-
$\mathrm{V}_{1}=30.871$
$\mathrm{V}_{1} \cdot \frac{3600}{1000}=111.13 \quad \frac{\mathrm{~km}}{\mathrm{~h}}$

No, the driver should not appeal the ticket as the initial velocity was higher than the speed limit, in addition to the road being wet.

Determine the shortest distance from the stalled car that the driver could apply the brakes and stop before hitting it.

$$
\begin{aligned}
& \eta_{\mathrm{b}}:=0.90 \quad \gamma_{\mathrm{b}}:=1.04 \quad \mathrm{f}_{\mathrm{r} 1}:=0.013 \\
& \mathrm{~V}:=110 \cdot \frac{1000}{3600} \quad \mathrm{~V}=30.556 \\
& \mathrm{~S}:=45 \quad \mathrm{~g}:=9.807 \\
& \mu_{\text {dry }}:=1.0 \\
& \mu_{\text {wet }}:=0.9
\end{aligned}
$$

Solve for velocity when entering wet section of pavement

$$
\begin{align*}
& \mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{v}_{1}^{2}-0\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{wet}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)} \quad \mathrm{v}_{1}:=\sqrt{\frac{2 \cdot \mathrm{~S} \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{wet}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)}{\gamma_{\mathrm{b}}}} \tag{Eq.2.43}\\
& \mathrm{v}_{1}=25.942 \quad \mathrm{v}_{1} \cdot \frac{3600}{1000}=93.392
\end{align*}
$$

Using this as final velocity, solve for distance to slow to this velocity

$$
\begin{aligned}
\mathrm{S} & =\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{v}^{2}-\mathrm{v}_{1}^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{dry}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)} \\
\mathrm{S} & =15.651
\end{aligned}
$$

Add this distance to the 45 m of wet pavement

$$
45+S=60.65 \quad m
$$

Determine the braking efficiency of car 1.
$\gamma_{\mathrm{b}}:=1.04 \quad \mathrm{~g}:=9.807 \quad \mathrm{~V}:=100 \cdot 0.2778 \quad \mathrm{~V}=27.78$
(given)
$\mathrm{t}_{\mathrm{r} 1}:=2.5 \quad \mathrm{t}_{\mathrm{r} 2}:=2.0 \quad \eta_{\mathrm{b} 2}:=0.75 \quad \mu:=0.80$
$\mathrm{f}_{\mathrm{rl}}:=0.01\left(1+\frac{\mathrm{V}}{2 \cdot 44.73}\right) \quad \mathrm{f}_{\mathrm{r} 1}=0.013$
Total stopping distance is perception/reaction distance plus braking distance
Set stopping distance of two cars equal to each other and solve for $\eta_{\mathrm{b} 1}$

$$
\begin{aligned}
& {\mathrm{V} \cdot \mathrm{t}_{\mathrm{r} 1}}+\frac{\gamma_{\mathrm{b}} \cdot \mathrm{v}^{2}}{2 \cdot \mathrm{~g}} \cdot\left(\frac{1}{\eta_{\mathrm{b} 1} \cdot \mu+\mathrm{f}_{\mathrm{r} 1}}\right)=\mathrm{v} \cdot \mathrm{t}_{\mathrm{t} 2}+\frac{\gamma_{\mathrm{b}} \cdot \mathrm{v}^{2}}{2 \cdot \mathrm{~g}} \cdot\left(\frac{1}{\eta_{\mathrm{b} 2} \cdot \mu+\mathrm{f}_{\mathrm{r} 1}}\right) \\
& \eta_{\mathrm{b} 1}=0.9514 \quad \eta_{\mathrm{b} 1} \cdot 100=95.14 \quad \%
\end{aligned}
$$

Problem 2.27

Determine the student's associated perception reaction time.

$$
\begin{array}{lll}
\mathrm{V}_{1}:=90.0 .2778 & \mathrm{~V}_{1}=25.002 \mathrm{~m} / \mathrm{s} \\
\mathrm{~V}_{2}:=55 \cdot 2778 & \mathrm{~V}_{2}=15.28 \quad \mathrm{~m} / \mathrm{s} \\
\mathrm{~g}:=9.807 & \mathrm{G}:=0 \quad \quad \mathrm{a}:=3.4 \mathrm{ft} / \mathrm{s}^{2}
\end{array}
$$

Solve for distance to slow from $90 \mathrm{~km} / \mathrm{h}$ to $55 \mathrm{~km} / \mathrm{h}$

$$
\begin{align*}
& \mathrm{d}:=\frac{\left(\mathrm{v}_{1}\right)^{2}-\left(\mathrm{v}_{2}\right)^{2}}{2 \cdot \mathrm{a}} \tag{Eq.2.45}\\
& \mathrm{~d}=57.6 \quad \mathrm{~m}
\end{align*}
$$

Subtract this distance from total distance to sign $(185 \mathrm{~m})$ to find perception/reaction time

$$
\begin{array}{ll}
d_{\mathrm{s}}:=185 & \\
\mathrm{~d}_{\mathrm{r}}:=\mathrm{d}_{\mathrm{s}}-\mathrm{d} & \mathrm{~d}_{\mathrm{r}}:=185-\mathrm{d} \quad \mathrm{~d}_{\mathrm{r}}=127.4 \\
\mathrm{t}_{\mathrm{r}}:=\frac{\mathrm{d}_{\mathrm{r}}}{\mathrm{~V}_{1}} & \mathrm{t}_{\mathrm{r}}=5.1 \quad \mathrm{sec} \tag{Eq.2.49}
\end{array}
$$

(given)

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Comment on the student's claim.

Problem 2.28

Method 1:

$\mathrm{V}_{1}:=110 \cdot 0.2778$	$\mathrm{~V}_{1}=30.558$
$\mathrm{~g}:=9.807$	$\mathrm{a}:=3.4$

Find practical stopping distance
$\mathrm{d}:=\frac{\mathrm{v}_{1}{ }^{2}}{2 \cdot \mathrm{a}} \quad \mathrm{d}=137.322$

Subtract this distance from the total sight distance and solve for perception/reaction time
$\mathrm{d}_{\mathrm{s}}:=180$
$d_{r}:=d_{s}-d \quad d_{r}=42.678$
$\mathrm{t}_{\mathrm{r}}:=\frac{\mathrm{d}_{\mathrm{r}}}{\mathrm{V}_{1}} \quad \mathrm{t}_{\mathrm{r}}=1.397 \mathrm{sec}$
This reaction time is well below the design value; therefore, the student's claim is unlikely.

Method 2:

$$
\begin{array}{ll}
\mathrm{V}_{1}:=110.0 .2778 & \mathrm{~V}_{1}=30.558 \\
\mathrm{~g}:=9.807 & \mathrm{a}:=3.4 \quad \mathrm{t}_{\mathrm{r}}:=2.5 \quad \mathrm{G}:=0
\end{array}
$$

Stopping sight distance $=$ practical stopping distance plus perception/reaction distance

$$
\begin{equation*}
\mathrm{SSD}:=\frac{\mathrm{v}_{1}^{2}}{2 \cdot \mathrm{~g} \cdot\left[\left(\frac{\mathrm{a}}{\mathrm{~g}}\right)+\mathrm{G}\right]}+\mathrm{V}_{1} \cdot \mathrm{t}_{\mathrm{r}} \quad \mathrm{SSD}=213.717 \quad \mathrm{~m} \tag{Eq.2.47}
\end{equation*}
$$

$180 \mathrm{ft}<214 \mathrm{~m}$ (required from Table 3.1) therefore 180 m is not enough for $110 \mathrm{~km} / \mathrm{h}$ design speed.

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

$$
\begin{array}{ll}
\mathrm{V}_{1}:=90 \cdot 0.2778 & \mathrm{~V}_{1}=25.002 \\
\mathrm{t}_{\mathrm{r}}:=2.5 & \mathrm{~d}_{\mathrm{s}}:=140
\end{array}
$$

Solve for distance travelled during braking (total distance minus perception/reaction)

$$
\mathrm{d}_{\mathrm{r}}:=\mathrm{V}_{1} \cdot \mathrm{t}_{\mathrm{r}} \quad \mathrm{~d}_{\mathrm{r}}=62.505
$$

$$
\mathrm{d}:=\mathrm{d}_{\mathrm{s}}-\mathrm{d}_{\mathrm{r}} \quad \mathrm{~d}=77.495
$$

$$
a:=3.4 \quad g:=9.807
$$

$$
\mathrm{d}=\frac{\left(\mathrm{V}_{1}\right)^{2}}{2 \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{a}}{\mathrm{~g}}+\mathrm{G}\right)} \quad \mathrm{G}:=\frac{\mathrm{V}_{1}^{2}}{2 \cdot \mathrm{~d} \cdot \mathrm{~g}}-\frac{\mathrm{a}}{\mathrm{~g}}
$$

$$
\mathrm{G}=0.0646 \quad \mathrm{G} \cdot 100=6.46 \quad \%
$$

Determine the driver's perception/reaction time before and after drinking.
$\mathrm{V}_{1}:=90.0 .2778 \quad \mathrm{~V}_{1}=25.002 \mathrm{~m} / \mathrm{s} \quad$ (given)
$\mathrm{g}:=9.807 \quad \mathrm{a}:=3.4$
while sober, $\quad d_{s}:=160$
solve for perception/reaction time using total stopping distance formula

$$
\begin{array}{ll}
\mathrm{d}:=\frac{\mathrm{v}_{1}^{2}}{2 \cdot \mathrm{a}} & \\
\mathrm{~d}_{\mathrm{s}}:=\mathrm{d}_{\mathrm{r}}+\mathrm{d}^{\mathbf{\prime}} & \mathrm{d}_{\mathrm{r}}:=\mathrm{d}_{\mathrm{s}}-\mathrm{d}^{\mathbf{\prime}} \\
\mathrm{d}_{\mathrm{r}}:=\mathrm{V}_{1} \cdot \mathrm{t}_{\mathrm{r}}^{\prime} & \mathrm{t}_{\mathrm{r}}:=\frac{\mathrm{d}_{\mathrm{r}}^{\prime}}{\mathrm{v}_{1}} \tag{Eq.2.49}
\end{array}
$$

substituting Eqs. 2.46 and 2.50 into Eq. 2.49 gives

$$
\mathrm{t}_{\mathrm{r}}:=\frac{\mathrm{d}_{\mathrm{s}}}{\mathrm{~V}_{1}}-\frac{\mathrm{v}_{1}}{2 \mathrm{a}} \quad \mathrm{t}_{\mathrm{r}}=2.72 \quad \mathrm{sec}
$$

after drinking, driver strikes the oject at $\quad \mathrm{V}_{2}:=55 \cdot 0.2778 \quad \mathrm{~m} / \mathrm{s}$
solve for perception/reaction time using total stopping distance formula

$$
\begin{equation*}
\mathrm{t}_{\mathrm{r}}:=\frac{\mathrm{d}_{\mathrm{s}}}{\mathrm{v}_{1}}-\frac{\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}}{2 \mathrm{a} \cdot \mathrm{v}_{1}} \quad \mathrm{t}_{\mathrm{r}}=4.1 \quad \mathrm{sec} \tag{Eq.2.50}
\end{equation*}
$$

Solutions Manual

to accompany
Principles of Highway Engineering and Traffic Analysis, 4e

By

Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski

Chapter 2 Road Vehicle Performance

U.S. Customary Units

Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Preface

The solutions to the fourth edition of Principles of Highway Engineering and Traffic Analysis were prepared with the Mathcad ${ }^{1}$ software program. You will notice several notation conventions that you may not be familiar with if you are not a Mathcad user. Most of these notation conventions are self-explanatory or easily understood. The most common Mathcad specific notations in these solutions relate to the equals sign. You will notice the equals sign being used in three different contexts, and Mathcad uses three different notations to distinguish between each of these contexts. The differences between these equals sign notations are explained as follows.

- The ' $:=$ ' (colon-equals) is an assignment operator, that is, the value of the variable or expression on the left side of ' $:=$ 'is set equal to the value of the expression on the right side. For example, in the statement, $L:=1234$, the variable ' L ' is assigned (i.e., set equal to) the value of 1234. Another example is $x:=y+z$. In this case, x is assigned the value of $y+z$.
- The ' $=$ ' (bold equals) is used when the Mathcad function solver was used to find the value of a variable in the equation. For example, in the equation $5.2 \cdot t-0.005 \cdot \mathrm{t}^{2}=18.568+10 \cdot(\mathrm{t}-12.792)$, the $=$ is used to tell Mathcad that the value of the expression on the left side needs to equal the value of the expression on the right side. Thus, the Mathcad solver can be employed to find a value for the variable ' t ' that satisfies this relationship. This particular example is from a problem where the function for arrivals at some time ' t ' is set equal to the function for departures at some time ' t ' to find the time to queue clearance.
- The ' $=$ ' (standard equals) is used for a simple numeric evaluation. For example, referring to the $\mathrm{x}:=\mathrm{y}+\mathrm{z}$ assignment used previously, if the value of y was 10 [either by assignment (with :=), or the result of an equation solution (through the use of $=$) and the value of z was 15 , then the expression ' $\mathrm{x}=$ ' would yield 25 . Another example would be as follows: $\mathrm{s}:=$ $1800 / 3600$, with $s=0.5$. That is, ' s ' was assigned the value of 1800 divided by 3600 (using :=), which equals 0.5 (as given by using =).

Another symbol you will see frequently is ' \rightarrow '. In these solutions, it is used to perform an evaluation of an assignment expression in a single statement. For example, in the following statement, $\mathrm{Q}(\mathrm{t}):=\mathrm{Arrivals}(\mathrm{t})-$ Departures $(\mathrm{t}) \rightarrow 2.200 \cdot \mathrm{t}-.1000 \cdot \mathrm{t}^{2}, \mathrm{Q}(\mathrm{t})$ is assigned the value of Arrivals (t) - Departures (t), and this evaluates to $2.2 \mathrm{t}-0.10 \mathrm{t}^{2}$.

Finally, to assist in quickly identifying the final answer, or answers, for what is being asked in the problem statement, yellow highlighting has been used (which will print as light gray).
${ }^{1}$ www.mathcad.com

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski.
Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 2.1

Determine the power required to overcome aerodynamic drag.

$$
\begin{aligned}
& \rho:=0.002378 \quad C_{D}:=0.29 \quad A_{f}:=20 \quad \mathrm{ft}^{2} \quad \text { (given) } \\
& V:=100 \cdot \frac{5280}{3600} \quad \mathrm{ft} / \mathrm{s} \quad \mathrm{~V}=146.7
\end{aligned}
$$

solve for horsepower

$$
\begin{equation*}
h p:=\frac{\rho \cdot C_{D} \cdot A_{f} \cdot V^{3}}{1100} \tag{Eq.2.4}
\end{equation*}
$$

```
hp=39.6
```


Problem 2.2

Determine the final weight of the car.

$\rho:=0.002378 \mathrm{C}_{\mathrm{D}}:=0.30 \quad \mathrm{~A}_{\mathrm{f}}:=21 \quad \mathrm{~W}_{0}:=2100$
$\mathrm{~V}_{\max }:=100 \cdot \frac{5280}{3600}$
At $\mathrm{V}_{\max }$. Power $=\mathrm{R}_{\mathrm{a}} \mathrm{V}_{\max }+\mathrm{R}_{\mathrm{rl}} \mathrm{V}_{\max }$

Add one horsepower per 2 lbs . additional vehicle weight
additional power $=\mathrm{W}_{\mathrm{a}} \times 550 / 2$
Solve for additional weight added to the vehicle, set resistance forces equal to additional hp

$$
\begin{aligned}
& \frac{550 \mathrm{~W}_{\mathrm{a}}}{2}=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \cdot\left(\mathrm{~V}_{\max }\right)^{3}+0.01 \cdot\left(1+\frac{\mathrm{V}_{\max }}{147}\right) \cdot\left(\mathrm{W}_{\mathrm{o}}+\mathrm{W}_{\mathrm{a}}\right) \cdot \mathrm{V}_{\max } \\
& \mathrm{W}_{\mathrm{a}}=109.48 \\
& \text { Total }:=\mathrm{W}_{0}+\mathrm{W}_{\mathrm{a}} \\
& \text { Total }=2209.48 \mathrm{lb}
\end{aligned}
$$

Problem 2.3

Determine the distance from the vehicle's center of gravity to the front axle.

$$
\begin{align*}
& W:=2500 \quad \mu:=0.6 \quad \mathrm{~L}:=120 \quad \mathrm{~h}:=22 \quad \mathrm{f}_{\mathrm{rl}}:=0.01 \quad \text { (given) } \\
& F W D F_{\text {max }}=R W D F_{\text {max }} \\
& \frac{\frac{\mu W\left(l_{f}-f_{r \mid} \cdot h\right)}{L}}{1-\frac{\mu \cdot h}{L}}=\frac{\frac{\mu W\left(I_{r}+f_{r \mid} \cdot h\right)}{L}}{1+\frac{\mu \cdot h}{L}} \tag{Eq.2.14}\\
& \text { solve for } I_{r} \text { in terms of } L \text { and } I_{f} \text { left with one unknown }\left(l_{f}\right) \\
& I_{r}:=L-I_{f} \\
& I_{f}=53.62 \text { inches }
\end{align*}
$$

Problem 2.4

Determine the minimum coefficient of road adhesion.

$$
\begin{align*}
& W:=3000 \quad g:=32.2 \quad L:=200 \\
& a:=15 \quad h:=20 \quad f_{r l}:=0.01 \quad I_{f}:=140 \\
& F=m a+R_{r l}=\text { rear } F_{\max }=\frac{\mu \mathrm{W}\left(l_{f} \cdot f_{r \mid} h\right) / L}{1-\mu \mathrm{h} / \mathrm{L}} \tag{Eq.2.14}\\
& \text { substitute for } m, R_{r l} \\
& m:=\frac{W}{g} \quad \text { (given) } \\
& \frac{W}{g} \cdot a+f_{r \mid} \cdot W=\frac{\frac{\mu \cdot W \cdot\left(I_{f}-f_{r \mid} \cdot h\right)}{L}}{1-\frac{\mu \cdot h}{L}} \\
& \mu=0.637
\end{align*}
$$

Problem 2.5

Determine the distance from the vehicle's center of gravity to the rear axle.

$$
\begin{align*}
& \mathrm{W}:=3000 \quad \mathrm{~g}:=32.2 \quad \mathrm{~L}:=200 \\
& \mathrm{a}:=32.2 \quad \mathrm{~h}:=36 \quad \mathrm{f}_{\mathrm{rl}}:=0.01 \quad \mu:=1.0 \\
& \mathrm{~F}=\mathrm{ma}+\mathrm{R}_{\mathrm{rl}}=\text { rear } \mathrm{F}_{\max }=\frac{\mu \mathrm{W}\left(\mathrm{l}_{\mathrm{f}} \cdot \mathrm{frl}_{\mathrm{l}} \mathrm{~h}\right) / \mathrm{L}}{1-\mu \mathrm{h} / \mathrm{L}} \tag{Eq.2.14}\\
& \text { substitute for } \mathrm{m}, \mathrm{R}_{\mathrm{rl}} \\
& \mathrm{~m}:=\frac{\mathrm{W}}{\mathrm{~g}} \quad \text { (given) } \\
& \frac{\mathrm{W}}{\mathrm{~g}} \cdot \mathrm{a}+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}=\frac{\frac{\mu \cdot \mathrm{W} \cdot\left(\mathrm{I}_{\mathrm{f}}-\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~h}\right)}{\mathrm{L}}}{1-\frac{\mu \cdot \mathrm{h}}{\mathrm{~L}}} \\
& \mathrm{I}_{\mathrm{f}}=166 \quad \text { inches } 2.1
\end{align*}
$$

Problem 2.6

Determine the lowest gear reduction ratio.

$$
\begin{align*}
& W:=2700 \quad r:=\frac{14}{12} \quad L:=8.2 \cdot 12 \\
& \mu:=1.0 \quad h:=18 \quad f_{r l}:=0.01 \quad I_{f}:=3.3 \cdot 12 \\
& F=\operatorname{rear} F_{\max }=\frac{\mu W\left(l_{f}-f_{r \mid} h\right) / L}{1-\mu \mathrm{h} / \mathrm{L}} \tag{Eq.2.14}
\end{align*}
$$

(given)
"highest possible acceleration" means F_{e} is equal to $F_{\max }$
$F_{\text {max }}:=\frac{\frac{\mu \cdot W \cdot\left(l_{f}-f_{r \mid} \cdot h\right)}{L}}{1-\frac{\mu \cdot h}{L}}$

$$
F_{\max }=1323.806
$$

$$
M_{e}:=540 \quad \eta_{d}:=0.95
$$

(given)
solve for ε_{0}
$F_{\max }=\frac{M_{e} \cdot \varepsilon_{0} \cdot \eta_{d}}{r} \quad \varepsilon_{0}:=\frac{F_{\max ^{-r}}}{M_{e} \cdot \eta_{d}}$
$\varepsilon_{0}=3$!

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 2.7

Determine the maximum acceleration from rest.

$\varepsilon_{0}:=9 \quad r:=\frac{14}{12} \quad g:=32.2 \quad \mu:=1.0 \quad f_{r l}:=0.01$
$h:=\frac{18}{12} \quad \mathrm{I}_{\mathrm{f}}:=4.3 \quad \mathrm{~L}:=9.2 \quad \mathrm{~W}:=2450$
$R_{r l}:=W \cdot f_{r l} \quad R_{r l}=24.5$
(given)
$M_{\text {ebase }}:=185 \quad M_{\text {emod }}:=215 \quad \eta_{d}:=0.90$
solve for mass factor
$\gamma_{m}:=1.04+0.0025 \cdot \varepsilon_{0}^{2} \quad \gamma_{m}=1.24$
(Eq. 2.20)
$F_{\text {ebase }}:=\frac{M_{\text {ebase }} \cdot \varepsilon_{0} \cdot \eta_{\mathrm{d}}}{r} \quad F_{\text {ebase }}=1284.43$
$F_{\text {max }}:=\frac{\frac{\mu \cdot W \cdot\left(l_{f}-f_{\mathrm{rl}} \cdot h\right)}{L}}{1-\frac{\mu \cdot h}{L}} \quad F_{\text {max }}=1363.41$
since $F_{\text {ebase }}<F_{\text {max }}$, use $F_{\text {ebase }}$ for calculating acceleration with original engine
$a_{\text {base }}:=\frac{F_{\text {ebase }}-R_{\mathrm{rl}}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{W}}{\mathrm{g}}\right)} \quad a_{\text {base }}=13.33 \quad \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
$F_{\text {emod }}:=\frac{M_{\text {emod }} \cdot \varepsilon_{0} \cdot \eta_{d}}{r} \quad F_{\text {emod }}=1492.71$
since $F_{\text {emod }}>F_{\max }$, use $F_{\max }$ for calculating acceleration with modified engine
$\mathrm{a}_{\bmod }:=\frac{\mathrm{F}_{\max }-\mathrm{R}_{\mathrm{rl}}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{W}}{\mathrm{g}}\right)} \quad \mathrm{a}_{\bmod }=14.16 \quad \frac{\mathrm{ft}}{\mathrm{s}^{2}}$

Problem 2.8

Determine the maximum acceleration rate.
$3000 \mathrm{rev} / \mathrm{min}=50 \mathrm{rev} / \mathrm{sec}$
$\mathrm{i}:=0.035 \quad \mathrm{n}_{\mathrm{e}}:=50 \quad \varepsilon_{0}:=3.5 \quad \mathrm{r}:=\frac{15}{12} \quad \mathrm{~g}:=32.2$
(given)
solve for velocity
$\mathrm{V}:=\frac{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{n}_{\mathrm{e}} \cdot(1-\mathrm{i})}{\varepsilon_{0}} \quad \mathrm{~V}=108.3$
$\rho:=0.002378 \quad C_{D}:=0.35 \quad A_{f}:=21$
calculate aerodynamic resistance
$R_{a}:=\frac{P}{2} \cdot C_{D} \cdot A_{f} \cdot V^{2} \quad R_{a}=102.45$
(Eq. 2.3)
calculate rolling resistance
$\mathrm{f}_{\mathrm{rl}}:=0.01\left(1+\frac{\mathrm{V}}{147}\right) \quad W:=3000$
$R_{r l}:=f_{r l} \cdot W \quad R_{r l}=52.1$
calculate mass factor
$\gamma \mathrm{m}:=1.04+0.0025 \cdot \varepsilon_{0}^{2} \quad \gamma \mathrm{~m}=1.07$
$\mathrm{M}_{\mathrm{e}}:=250 \quad \mathrm{n}_{\mathrm{d}}:=0.90$
calculate engine-generated tractive effort
$F_{e}:=\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r} \quad F_{e}=630$
$F_{\text {net }}=F-\sum_{n} R=\gamma / m \cdot m \cdot a$
so $\quad a:=\frac{F_{e}-R_{a}-R_{r l}}{7 \cdot\left(\frac{W}{g}\right)} \quad a=4.77 \quad \frac{f t}{\mathrm{sec}^{2}}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski.
Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 2.9

Determine the drag coefficient.

$$
\begin{aligned}
& M_{e}:=150 \quad \varepsilon_{0}:=3.0 \quad \eta_{d}:=0.90 \quad r:=\frac{15}{12} \\
& i:=0.02 \quad W:=2150 \quad n_{e}:=\frac{4500}{60} \\
& V:=\frac{2 \cdot \pi \cdot r \cdot n_{e} \cdot(1-i)}{\varepsilon_{0}} \quad V=192.4 \\
& F_{e}:=\frac{M_{e} \cdot \varepsilon_{0} \cdot \eta_{d}}{r} \quad F_{e}=324 \\
& f_{r l}:=0.01 \cdot\left(1+\frac{V}{147}\right) \\
& R_{r l}:=f_{r l} \cdot W \\
& P:=0.002378 \quad A_{f}:=19.4 \\
& F_{e}=R_{r l}+\frac{\rho}{2} \cdot C_{D} \cdot A_{f} \cdot V^{2} \\
& C_{D}=0.321!
\end{aligned}
$$

Determine the drag coefficient.

$M_{e}:=200 \quad \varepsilon_{0}:=3.0 \quad n_{d}:=0.90 \quad r:=\frac{14}{12}$
$F_{e}:=\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r} \quad F_{e}=462.9$
$V:=150 \cdot 1.467 \quad W:=2500 \quad f_{r l}:=0.01 \cdot\left(1+\frac{\mathrm{V}}{147}\right)$
$R_{\mathrm{r}}:=\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{W} \quad \mathrm{R}_{\mathrm{rl}}=62.423$
$\mathrm{p}:=0.002378 \quad \mathrm{~A}_{\mathrm{f}}:=25$
set F_{e} equal to the sum of the resistance forces and solve for C_{D}
$F_{e}=R_{r l}+\frac{\rho}{2} \cdot C_{D} \cdot A_{f} \cdot V^{2}$

$$
C_{D}:=\frac{\left.2\left(F_{e}-R_{\mathrm{f}}\right)\right)^{\prime \prime}}{A_{f} \cdot V^{2} \cdot \mathrm{p}}
$$

$C_{D}=0.278$,

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine the maximum grade.
$\mathrm{i}:=0.035 \quad \mathrm{n}_{\mathrm{e}}:=\frac{3500}{60} \quad \varepsilon_{\mathrm{o}}:=3.2 \quad \mathrm{r}:=\frac{14}{12} \quad \underset{\mathrm{w}}{\mathrm{W}}:=2500 \quad \mathrm{lb} \quad$ (given)
assume $F=F_{e}$
calculate velocity
$\mathrm{V}_{\mathrm{M}}:=\frac{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{n}_{\mathrm{e}} \cdot(1-\mathrm{i})}{\varepsilon_{\mathrm{O}}} \quad \mathrm{V}=128.9 \quad \mathrm{ft} / \mathrm{s}$
calculate aerodynamic resistance
$\rho:=0.002378 \quad C_{D}:=0.35 \quad A_{f}:=25$
$\mathrm{R}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{A}_{\mathrm{f}} \cdot \mathrm{V}^{2} \quad \mathrm{R}_{\mathrm{a}}=172.99 \quad \mathrm{lb}$
calculate rolling resistance
$f_{r l}:=0.01\left(1+\frac{V}{147}\right)$
$\mathrm{R}_{\mathrm{rl}}:=\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{W} \quad \mathrm{R}_{\mathrm{rl}}=46.93 \quad \mathrm{lb}$
calculate engine-generated tractive effort
$M_{e}:=200 \quad n_{d}:=0.90$
$F_{e}:=\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r} \quad F_{e}=493.71 \quad \mathrm{lb}$
calculate grade resistance
$R_{g}:=F_{e}-R_{a}-R_{r l}$
$R_{g}=273.79$
solve for G
$\mathrm{G}:=\frac{\mathrm{R}_{\mathrm{g}}}{\mathrm{W}}$
$G=0.1095$
therefore $G=11.0 \%$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Alternative calculation for grade, using trig relationships

$$
\begin{aligned}
& \theta_{\mathrm{g}}:=\operatorname{asin}\left(\frac{R_{g}}{\mathrm{~W}}\right) \\
& \theta_{\mathrm{g}}=0.1097 \quad \text { radians } \\
& \operatorname{deg} \theta_{\mathrm{g}}:=\theta_{\mathrm{g}} \cdot \frac{180}{\pi} \quad \text { convert from radians to degrees } \\
& \operatorname{deg} \theta_{\mathrm{g}}=6.287 \\
& \tan \operatorname{deg}=\text { opposite side/adjacent side } \\
& G:=\tan \left(\theta_{\mathrm{g}}\right) \cdot 100 \quad G=11.02 \quad \%
\end{aligned}
$$

Thus, error is minimal when assuming $G=\sin \theta_{\mathrm{g}}$ for small to medium grades

Determine the torque the engine is producing and the engine speed.
$F_{e}-\Sigma R=\gamma_{m} \cdot m \cdot a$
at top speed, acceleration $=0$; thus, $\quad F_{e}-\Sigma R=0$
$\mathrm{V}:=124 \cdot \frac{5280}{3600} \quad \mathrm{~V}=181.867 \mathrm{ft} / \mathrm{s} \quad$ (given)
calculate aerodynamic resistance
$\rho:=0.00206 \quad C_{D}:=0.28 \quad A_{f}:=19.4$
$R_{a}:=\frac{\rho}{2} \cdot C_{D} \cdot A_{f} \cdot V^{2} \quad R_{a}=185.056$
calculate rolling resistance
$\mathrm{f}_{\mathrm{rl}}:=0.01 \cdot\left(1+\frac{\mathrm{V}}{147}\right) \quad \mathrm{f}_{\mathrm{rl}}=0.022$
$\underset{\sim}{W}:=2700$
(given)
$R_{r l}:=f_{r l} \cdot W$
$R_{r l}=60.404$
$R_{g}:=0$
sum of resistances is equal to engine-generated tractive effort, solve for M_{e}
$\mathrm{F}_{\mathrm{e}}:=\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{rl}}+\mathrm{R}_{\mathrm{g}} \quad \mathrm{F}_{\mathrm{e}}=245.46$
$i:=0.03 \quad \eta_{d}:=0.90 \quad \varepsilon \quad$ ma: $:=2.5 \quad r:=\frac{12.6}{12}$
$F_{e}=\frac{M_{e} \cdot \varepsilon_{0} \cdot \eta_{d}}{r}$
$M_{e}:=\frac{F_{e} \cdot r^{\text {■ }}}{\varepsilon_{0} \cdot \eta_{d}}$
(Eq. 2.17)
$M_{e}=114.548 \quad f t-l b$
Knowing velocity, solve for n_{e}
$V=\frac{2 \cdot \pi \cdot r \cdot n_{e} \cdot(1-i)}{\varepsilon_{0}}$
$n_{e}:=\frac{V \cdot \varepsilon_{0}}{2 \cdot \pi \cdot r \cdot(1-i)}$
$n_{e}=71.048 \quad \frac{\text { rev }}{\mathrm{s}} \quad n_{e} \cdot 60=4263 \quad \frac{\text { rev }}{\text { min }}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 2.13

Determine the maximum acceleration from rest.

$W:=2500 \quad \mathrm{~L}:=80 \quad \mathrm{~h}:=20 \quad \mathrm{l}_{\mathrm{f}}:=30$
(given)
$\mu:=0.75 \quad f_{r \mid}:=0.01 \quad g:=32.2$
$F_{\max }:=\frac{\frac{\mu \cdot W \cdot\left(l_{\mathrm{f}}-\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{h}\right)}{\mathrm{L}}}{1-\frac{\mu \cdot h}{L}} \quad F_{\max }=859.62$
For maximum torque, derivative of torque equation equals zero

$$
\frac{d M_{e}}{d n_{e}}=6-0.09 n_{e}=0 \quad n_{e}:=\frac{6}{0.09} \quad n_{e}=66.67
$$

plug this value into torque equation to get value of maximum torque

$$
\begin{aligned}
M_{e}:=6 \cdot n_{e}-0.045 \cdot n_{e}^{2} & M_{e}=200 \\
\varepsilon_{0}:=11 & n_{d}:=0.75
\end{aligned} \quad \mathrm{r}:=\frac{14}{12}
$$

find engine-generated tractive effort from maximum torque

$$
\begin{array}{ll}
F_{e}:=\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r} & F_{e}=1414.29 \\
F_{e}:=\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r} & F_{e}=1414.29 \tag{Eq.2.17}
\end{array}
$$

calculate rolling resistance and mass factor

$$
\begin{align*}
& \mathrm{R}_{\mathrm{rl}}:=\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W} \quad \mathrm{R}_{\mathrm{rl}}=25 \tag{Eq.2.6}\\
& \gamma_{\mathrm{m}}:=1.04+0.0025 \cdot \varepsilon_{0}^{2} \quad \gamma_{\mathrm{m}}=1.34 \tag{Eq.2.20}\\
& \mathrm{~F}_{\max }<\mathrm{F}_{\mathrm{e}} \text { so } \mathrm{F}_{\max } \text { is used }
\end{align*}
$$

calculate acceleration from maximum available tractive effort

$$
\begin{equation*}
\mathrm{a}:=\frac{\mathrm{F}_{\max }-\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{~W}}{\mathrm{~g}}\right)} \quad \mathrm{a}=8.01 \frac{\mathrm{ft}}{\sec ^{2}} \tag{Eq.2.19}
\end{equation*}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine speed of car.

Power $=\left(2 \pi M_{e} \cdot n_{e}\right)=6.28 \cdot\left(6 n_{e}^{2}-0.045 n_{e}^{3}\right)=37.68 n_{e}^{2}-0.2826 n_{e}{ }^{3}$
(Eq. 2.16)
$P\left(n_{e}\right):=37.68 n_{e}{ }^{2}-0.2826 n_{e}{ }^{3}$
To find maximum power take derivative of power equation
$\frac{d}{d n_{e}} P\left(n_{e}\right) \rightarrow 75.36 \cdot n_{e}-.8478 \cdot n_{e}^{2}=0$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{e}}:=\frac{75.36}{0.8478} \quad \mathrm{n}_{\mathrm{e}}=88.89 \\
& \mathrm{i}:=0.035 \quad \varepsilon_{0}:=2 \quad \mathrm{r}:=\frac{14}{12}
\end{aligned}
$$

Calculate maximum velocity at maximum engine power
$\mathrm{V}:=\frac{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{n}_{\mathrm{e}} \cdot(1-\mathrm{i})}{\varepsilon_{\mathrm{o}}}$

$$
\mathrm{V}=314.39 \frac{\mathrm{ft}}{\mathrm{~s}} \quad \frac{\mathrm{~V}}{1.467}=214.3 \frac{\mathrm{mi}}{\mathrm{~h}}
$$

Problem 2.15

Determine the acceleration for front- and rear-wheel-drive options.
$M_{e}:=95 \quad \varepsilon_{0}:=4.5 \quad \mathrm{n}_{\mathrm{d}}:=0.80 \quad \mathrm{r}:=\frac{13}{12}$
(given)
$R_{a}, R_{r \mid}$, and g_{m} are as before
calculate engine-generated tractive effort
$F_{e}:=\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r} \quad F_{e}=315.692$
$\gamma_{m}:=1.091 \quad W:=3000 \quad R_{a}:=1.32$

$$
\begin{equation*}
\mathrm{R}_{\mathrm{rl}}:=32.99 \quad \mathrm{~g}:=32.2 \tag{given}
\end{equation*}
$$

calculate maximum acceleration

$$
\begin{equation*}
a_{\max }:=\frac{F_{e}-R_{a}-R_{\mathrm{rl}}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{~W}}{\mathrm{~g}}\right)} \quad a_{\max }=2.768 \tag{Eq.2.19}
\end{equation*}
$$

Rear - wheel drive

$$
\begin{align*}
& \mu:=0.2 \quad f_{r l}:=0.011 \quad h:=20 \quad L:=120 \quad I_{\mathrm{f}}:=60 \\
& F_{\max }:=\frac{\frac{\mu \cdot W \cdot\left(l_{\mathrm{f}}-\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~h}\right)}{\mathrm{L}}}{1-\frac{\mu \cdot h}{\mathrm{~L}}} \quad \mathrm{~F}_{\max }=309.207 \tag{Eq.2.14}\\
& a_{\max }:=\frac{F_{\max }-R_{\mathrm{a}}-R_{\mathrm{rl}}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{~W}}{\mathrm{~g}}\right)} \quad a_{\max }=2.704 \frac{\mathrm{ft}}{\sec ^{2}} \quad 2.704<2.768 \tag{Eq.2.19}
\end{align*}
$$

Front - wheel drive

$$
\begin{align*}
& F_{\max }:=\frac{\frac{\mu \cdot \mathrm{W} \cdot\left(\mathrm{l}_{\mathrm{f}}+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~h}\right)}{\mathrm{L}}}{1+\frac{\mu \cdot \mathrm{h}}{\mathrm{~L}}} \quad F_{\max }=291.387 \tag{Eq.2.15}\\
& \mathrm{a}_{\max }=\frac{\mathrm{F}_{\max }-\mathrm{R}_{\mathrm{a}}-\mathrm{R}_{\mathrm{rl}}}{\gamma_{\mathrm{m}} \cdot\left(\frac{\mathrm{~W}}{\mathrm{~g}}\right)} \tag{Eq.2.19}\\
& \mathrm{a}_{\max }=2.529 \quad \frac{\mathrm{ft}}{\mathrm{sec}^{2}} \quad 2.529<2.768
\end{align*}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine weight and torque.
$\mu:=0.8 \quad W_{0}:=2000 \quad \varepsilon_{0}:=10 \quad n_{d}:=0.8$
$\mathrm{I}_{\mathrm{f}}:=55 \quad \mathrm{r}:=\frac{14}{12} \quad \mathrm{f}_{\mathrm{rl}}:=0.01 \quad \mathrm{~h}:=22 \quad \mathrm{~L}:=100$
$F_{e}=\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r}$
$F_{\max }=\frac{\frac{\mu \cdot W_{a} \cdot\left(l_{f}-f_{r \mid} \cdot h\right)}{L}}{1-\frac{\mu \cdot h}{L}}$
$I_{\text {fnew }}=I_{f}-\frac{3 \cdot 1}{20} \cdot M_{e} \quad W_{a}=W_{0}+3 \cdot M_{e}$
setting $F_{e}=F_{\text {max }}$ and solving for M_{e} gives
$\frac{M_{e} \cdot \varepsilon_{0} \cdot n_{d}}{r}=\frac{\mu \cdot\left(W_{0}+3 \cdot M_{e}\right) \cdot\left[\left(1_{f}-\frac{3 \cdot 1}{20} \cdot M_{e}\right)-f_{r l} \cdot h\right]}{L}$
$M_{e}=122.152 \quad \mathrm{f}-\mathrm{lb}$
$W_{a}:=W_{0}+3 \cdot M_{e} \quad W_{a}=2366.5 \quad \mathrm{lb}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 2.17

Determine the difference in minimum theoretical stopping distances with and without aerodynamic resistance considered.

$$
\begin{aligned}
& \rho:=0.0024 \quad C_{D}:=0.45 \quad A_{f}:=25 \quad \mathrm{~V}:=90-1.467 \\
& \mathrm{~g}:=32.2 \quad \gamma_{\mathrm{b}}:=1.04 \quad \mathrm{~W}:=2500 \quad \eta_{\mathrm{b}}:=1.0 \\
& \mathrm{f}_{\mathrm{rl}}:=0.019 \quad \mu:=0.7 \quad \theta:=5.71 \\
& \mathrm{~K}_{\mathrm{a}}:=\frac{\rho}{2} \cdot C_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \quad \mathrm{~K}_{\mathrm{a}}=0.014 \\
& \mathrm{~S}:=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~W}}{2 \cdot \mathrm{~g} \cdot \mathrm{~K}_{\mathrm{a}}} \cdot \ln \left(1+\frac{\mathrm{K}_{\mathrm{a}} \cdot V^{2}}{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}-\mathrm{W} \cdot \sin (\theta \cdot \mathrm{deg})}\right) \quad \mathrm{S}=423.027 \quad \text { (Eiven) } \\
& \text { compared to } \mathrm{S}=444.07 \text { and } \mathrm{S}=457.53 \\
& 444.07-424.64=19.43 \quad \mathrm{ft} \\
& 457.53-424.64=32.89 \quad \mathrm{ft}
\end{aligned}
$$

Determine the initial speed with and without aerodynamic resistance.
$C_{D}:=0.40 \quad A_{f}:=28 \quad \rho:=0.002378 \quad W:=3500$
$\mu:=0.5 \quad \mathrm{f}_{\mathrm{rl}}:=0.015 \quad \eta_{\mathrm{b}}:=0.78 \quad$ (given)
$\mathrm{S}:=250 \quad \mathrm{~g}:=32.2 \quad \gamma_{\mathrm{b}}:=1.04$
$\mathrm{K}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{A}_{\mathrm{f}} \quad \mathrm{K}_{\mathrm{a}}=0.013$
with aerodynamic resistance considered
$S=\frac{\gamma_{b} \cdot W}{2 \cdot g \cdot K_{a}} \cdot \ln \left(1+\frac{K_{a} \cdot V^{2}}{\mu \cdot \eta_{b} \cdot W+f_{r l} \cdot W}\right)$
$\mathrm{V}=80.362 \quad \frac{\mathrm{~V}}{1.467}=54.78$
with aerodynamic resistance ignored
$S=\frac{\gamma_{b} \cdot V^{2}}{2 \cdot g \cdot\left(\eta_{b} \cdot \mu+f_{r l}\right)} \quad V:=\sqrt{\frac{S \cdot 2 \cdot g \cdot\left(\eta_{b} \cdot \mu+f_{r l}\right)}{\gamma_{b}}}$
$\mathrm{V}=79.182 \quad \frac{\mathrm{~V}}{1.467}=53.98 \frac{\mathrm{mi}}{\mathrm{h}}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski.
Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine the unloaded braking efficiency, ignoring aerodynamic resistance.
$\begin{array}{llll}\mu:=0.75 & \mathrm{f}_{\mathrm{rl}}:=0.018 & \gamma_{\mathrm{b}}:=1.04 & \text { (given) } \\ \mathrm{g}=322 & \mathrm{~S}:=200 & \mathrm{~V}=60.1 .467 & \end{array}$
$\mathrm{g}:=32.2 \quad \mathrm{~S}:=200 \quad \mathrm{~V}:=60 \cdot 1.467$
solve Eq. 2.43 for braking efficiency

$$
\begin{aligned}
& \mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~V}^{2}}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}\right)} \quad \eta_{\mathrm{b}}:=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~V}^{2}}{\mathrm{~S} \cdot 2 \cdot \mathrm{~g} \cdot \mu}-\mathrm{f}_{\mathrm{rl}} \\
& \eta_{\mathrm{b}}=0.8101 \\
& \eta_{\mathrm{b}} \cdot 100=81.01 \quad \%
\end{aligned}
$$

Problem 2.20

Determine the braking efficiency.

$\mu:=0.60$
$\gamma_{b}:=1.04$
$\mathrm{g}:=32.2$
$S:=590$
$\mathrm{G}:=0.03$
(given)
$\mathrm{V}_{1}:=110 \cdot \frac{5280}{3600} \quad \mathrm{~V}_{1}=161.333$
$\mathrm{V}_{2}:=55 \cdot \frac{5280}{3600} \quad \mathrm{~V}_{2}=80.667$
$f_{r l}:=0.01 \cdot\left(1+\frac{\frac{v_{1}+V_{2}}{2}}{147}\right) \quad f_{r l}=0.018$
(Eq. 2.5)
solve for braking efficiency using theoretical stopping distance equation

$$
\begin{align*}
& S=\frac{\gamma_{b} \cdot\left(v_{1}^{2}-v_{2}^{2}\right)}{2 \cdot g \cdot\left(\eta_{b} \cdot \mu+f_{r l}-G\right)} \quad \eta_{\mathrm{b}}:=\frac{\gamma_{b} \cdot\left(v_{1}{ }^{2}-v_{2}^{2}\right)}{2 \cdot S \cdot g \cdot \mu}-f_{\mathrm{rl}}+G \tag{Eq.2.43}\\
& \eta_{\mathrm{b}}=0.9102 \quad \eta_{\mathrm{b}} \cdot 100=91.02 \quad \%
\end{align*}
$$

Problem 2.21

Determine the maximum amount of cargo that can be carried.

$V_{1}:=75 \cdot 1.467 \quad V_{1}=110.025 \quad \mathrm{f} / \mathrm{s} \quad V_{2}:=0 \quad$ (vehicle is assumed to stop)
$\mu:=0.95 \quad \mathrm{G}:=-0.04 \quad \mathrm{~g}:=32.2 \quad$ (given)
$\gamma_{b}:=1.04 \quad \eta_{\mathrm{b}}:=0.80 \quad \mathrm{~S}:=300$
$V_{\mathrm{avg}}:=\frac{\vee_{1}+\vee_{2}}{2} \quad \vee_{\mathrm{avg}}=55.013$
$f_{r l}:=0.01 \cdot\left(1+\frac{V_{\text {avg }}}{147}\right) \quad f_{r l}=0.0137$
solve for additional vehicle weight using theoretical stopping distance equation, ignoping aerodynamic resistance

$$
\begin{equation*}
\mathrm{s}=\frac{\mathrm{r}_{\mathrm{b}} \cdot \mathrm{v}_{1}^{2}}{2 \cdot \mathrm{~g} \cdot\left[\left(r_{\mathrm{b}}-\frac{\mathrm{W}}{100 \cdot 100}\right) \cdot \mu+\mathrm{f}_{\mathrm{rl}}+\mathrm{G}\right]} \tag{Eq.2.43}
\end{equation*}
$$

$\mathrm{W}=864.2 \quad \mathrm{lb}$

Problem 2.22

Determine the speed of the car when it strikes the object.
$C_{D}:=0.5 \quad A_{f}:=25 \quad W:=3500 \quad \rho:=0.002378$
$S:=150 \quad \mu:=0.85 \quad \mathrm{~g}:=32.2 \quad \gamma_{\mathrm{b}}:=1.04$
(given)
$\mathrm{f}_{\mathrm{r} \mid}:=0.018 \quad \eta_{\mathrm{b}}:=0.80$
$V_{1}:=80 \cdot 1.467 \quad V_{1}=117.36$
$\mathrm{K}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{A}_{\mathrm{f}} \quad \mathrm{K}_{\mathrm{a}}=0.015$
(Eq. 2.37)

How fast will the car be travelling when it strikes the object on a level surface?

$$
\begin{align*}
& \mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~W}}{2 \cdot \mathrm{~g} \cdot \mathrm{~K}_{\mathrm{a}}} \cdot \ln \left[\frac{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{K}_{\mathrm{a}} \cdot \mathrm{~V}_{1}{ }^{2}+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}}{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{K}_{\mathrm{a}} \cdot\left(\mathrm{~V}_{2}^{2}\right)+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}}\right] \tag{Eq.2.39}\\
& \mathrm{V}_{2}=82.967 \quad \frac{\mathrm{~V}_{2}}{1.467}=56.56 \quad \frac{\mathrm{mi}}{\mathrm{~h}}
\end{align*}
$$

How fast will the car be travelling when it strikes the object on a 5% grade?

$$
\begin{align*}
& G:=0.05 \\
& S=\frac{\gamma_{b} \cdot W}{2 \cdot g \cdot K_{a}} \cdot \ln \left[\frac{\eta_{b} \cdot \mu \cdot W+K_{a} \cdot V_{1}^{2}+f_{\mathrm{fl}} \cdot \mathrm{~W}+\mathrm{G} \cdot \mathrm{~W}}{\eta_{\mathrm{b}} \cdot \mu \cdot W+K_{a} \cdot\left(\mathrm{~V}_{2}^{2}\right)+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}+\mathrm{G} \cdot \mathrm{~W}}\right] \tag{Eq.2.39}\\
& \mathrm{V}_{2}=80.176 \quad \frac{\mathrm{~V}_{2}}{1.467}=54.65 \quad \frac{\mathrm{mi}}{\mathrm{~h}}
\end{align*}
$$

Problem 2.23

Determine the speed of the car just before it impacted the object.
$\mathrm{V}_{1}:=75 \cdot \frac{5280}{3600} \quad \mathrm{~V}_{1}=110 \quad \gamma_{\mathrm{b}}:=1.04 \quad \mathrm{~g}:=32.2 \quad$ (given)
$\eta_{\mathrm{b}}:=0.90 \quad \mathrm{f}_{\mathrm{rl}}:=0.015$
$\mu_{\mathrm{m}}:=0.6 \quad \mu_{\mathrm{s}}:=0.3$
(Table 2.4)
$\mathrm{S}_{\mathrm{al}}:=200 \quad \mathrm{~S}_{\text {skid }}:=100$
(given)

Find velocity of the car when it starts to skid

$$
\begin{align*}
& \mathrm{S}_{\mathrm{al}}=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{v}_{1}{ }^{2}-\mathrm{v}_{2}{ }^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{m}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)} \tag{Eq.2.43}\\
& \mathrm{v}_{2}:=\sqrt{\mathrm{v}_{1}{ }^{2}-\frac{2 \cdot \mathrm{~S}_{\mathrm{a}} \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{m}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)}{\gamma_{\mathrm{b}}}} \\
& \mathrm{v}_{2}=74.82 \quad \mathrm{~V}_{2} \cdot \frac{3600}{5280}=51.014 \quad \frac{\mathrm{mi}}{\mathrm{~h}}
\end{align*}
$$

Vehicle's velocity at start of skid is $\quad V_{1}:=74.82$
Find velocity when the vehicle strikes the object

$$
\begin{align*}
& \mathrm{S}_{\text {skid }}=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{v}_{1}{ }^{2}-\mathrm{v}_{2}{ }^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{s}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)} \tag{Eq.2.43}\\
& \mathrm{V}_{2}:=\sqrt{\mathrm{V}_{1}{ }^{2}-\frac{2 \cdot \mathrm{~S}_{\text {skid }} \cdot \mathrm{g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{s}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)}{\gamma_{\mathrm{b}}}} \\
& \mathrm{~V}_{2}=63.396 \\
& \mathrm{~V}_{2} \cdot \frac{3600}{5280}=43.22 \quad \frac{\mathrm{mi}}{\mathrm{~h}}
\end{align*}
$$

Problem 2.24

Determine if the driver should appeal the ticket.

$\mu:=0.6$ (for good, wet pavement, and slide value because of skidding)
$\gamma_{b}:=1.04 \quad$ g $:=32.2$
$\mathrm{V}_{2}:=40 \cdot \frac{5280}{3600} \quad \mathrm{~V}_{2}=58.667$
(given)
$\eta_{\mathrm{b}}:=0.95 \quad \underset{M}{S}:=200 \quad \mathrm{f}_{\mathrm{rl}}:=0.015$
Solve for the initial velocity of the car using theoretical stopping distance

$$
\begin{equation*}
S=\frac{\gamma_{b} \cdot\left(v_{1}^{2}-v_{2}^{2}\right)}{2 \cdot g \cdot\left(\eta_{b} \cdot \mu+f_{r l}-0.04\right)} \quad v_{1}:=\sqrt{\frac{2 \cdot S \cdot g \cdot\left(\eta_{b} \cdot \mu+f_{r l}-0.04\right)}{\gamma_{b}}+v_{2}^{2}} \tag{Eq.2.43}
\end{equation*}
$$

1.

$$
\begin{aligned}
& V_{1}=100.952 \\
& v_{1} \cdot \frac{3600}{5280}=68.83 \quad \frac{\mathrm{mi}}{\mathrm{~h}}
\end{aligned}
$$

No, the driver should not appeal the ticket as the initial velocity was higher than the speed limit, in addition to the road being wet.

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.
$\eta_{\mathrm{b}}:=0.90 \quad \gamma_{\mathrm{b}}:=1.04 \quad \mathrm{f}_{\mathrm{rl}}:=0.013 \quad$ (given)
$\mathrm{V}:=70 \cdot \frac{5280}{3600} \quad \mathrm{~V}=102.667 \quad \mathrm{ft} / \mathrm{s}$
$S:=150 \quad \mathrm{~g}:=32.2$
$\mu_{\text {dry }}:=1.0 \quad \mu_{\text {wet }}:=0.9$
$\mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{V}_{1}{ }^{2}-0\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\text {wet }}+\mathrm{f}_{\mathrm{rl}}-0.03\right)} \quad \mathrm{V}_{1}:=\sqrt{\frac{2 \cdot \mathrm{~S} \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\text {wet }}+\mathrm{f}_{\mathrm{rl}}-0.03\right)}{\gamma_{\mathrm{b}}}}$
$\mathrm{V}_{1}=85.824 \quad \mathrm{~V}_{1} \cdot \frac{3600}{5280}=58.516 \mathrm{ft} / \mathrm{s}$
Using this as final velocity, solve for distance to slow to this velocity

$$
\mathrm{S}=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{~V}^{2}-\mathrm{V}_{1}^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu_{\mathrm{dry}}+\mathrm{f}_{\mathrm{rl}}-0.03\right)}
$$

$$
S=58.062
$$

Add this distance to the 150 ft of wet pavement, $\quad 150+\mathrm{S}=208.06 \mathrm{ft}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 2.26

Determine the braking efficiency of car 1.

$\gamma_{b}:=1.04 \quad \mathrm{~g}:=32.2 \quad \mathrm{~V}:=60 \cdot 1.467 \quad \mathrm{~V}=88.02 \mathrm{ft} / \mathrm{s}$
(given)
$\mathrm{t}_{\mathrm{r} 1}:=2.5 \quad \mathrm{t}_{\mathrm{r} 2}:=2.0 \quad \eta_{\mathrm{b} 2}:=0.75 \quad \mu:=0.80$
$f_{r l}:=0.01\left(1+\frac{V}{2 \cdot 147}\right) \quad f_{r l}=0.013$

Total stopping distance is perception/reaction distance plus braking distance
Set stopping distance of two cars equal to each other and solve for $\eta_{\mathrm{b} 1}$

$$
\begin{aligned}
& \mathrm{V} \cdot \mathrm{t}_{\mathrm{r} 1}+\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~V}^{2}}{2 \cdot \mathrm{~g}} \cdot\left(\frac{1}{\eta_{\mathrm{b} 1} \cdot \mu+\mathrm{f}_{\mathrm{rl}}}\right)=\mathrm{V} \cdot \mathrm{t}_{\mathrm{r} 2}+\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~V}^{2}}{2 \cdot \mathrm{~g}} \cdot\left(\frac{1}{\eta_{\mathrm{b} 2} \cdot \mu+\mathrm{f}_{\mathrm{rl}}}\right) \\
& \eta_{\mathrm{b} 1}: \operatorname{Find}\left(\eta_{\mathrm{b} 1}\right) \quad \eta_{\mathrm{b} 1} \cdot 100=96.06 \quad \%
\end{aligned}
$$

Determine the student's associated perception reaction time.

Problem 2.27

$\mathrm{V}_{1}:=55 \cdot 1.467$	$\mathrm{~V}_{1}=80.685 \quad \mathrm{ft} / \mathrm{s}$
$\mathrm{V}_{2}:=35 \cdot 1.467$	$\mathrm{~V}_{2}=51.345 \quad \mathrm{ft} / \mathrm{s}$
$\mathrm{g}:=32.2 \quad \mathrm{G}:=0$	$\mathrm{a}:=11.2 \quad \mathrm{ft} / \mathrm{s}^{2}$

(given)

Solve for distance to slow from $55 \mathrm{mi} / \mathrm{h}$ to $35 \mathrm{mi} / \mathrm{h}$

$$
\begin{align*}
& \mathrm{d}:=\frac{\left(\mathrm{V}_{1}\right)^{2}-\left(\mathrm{V}_{2}\right)^{2}}{2 \cdot \mathrm{a}} \tag{Eq.2.45}\\
& \mathrm{~d}=172.94 \mathrm{ft}
\end{align*}
$$

Subtract this distance from total distance to sign (600 ft) to find perception/reaction time

$$
\begin{align*}
& d_{s}:=600 \\
& d_{r}:=d_{s}-d \quad d_{r}:=600-d \quad d_{r}=427.06 \\
& t_{r}:=\frac{d_{r}}{V_{1}} \quad \begin{array}{l}
t_{r}=5.29 \\
\text { sec }
\end{array} \tag{Eq.2.49}
\end{align*}
$$

Comment on the student's claim.

Method 1:
$\mathrm{V}_{1}:=70 \cdot 1.467 \quad \mathrm{~V}_{1}=102.69 \mathrm{ft} / \mathrm{s}$
(given)
$g:=32.2 \quad a:=11.2$

Find practical stopping distance
$d:=\frac{V_{1}{ }^{2}}{2 \cdot a} \quad d=470.77$
Subtract this distance from the total sight distance and solve for perception/reaction time
$d_{s}:=590$
$d_{r}:=d_{s}-d \quad d_{r}=119.23$
$t_{r}:=\frac{d_{r}}{V_{1}} \quad t_{r}=1.16 \mathrm{sec}$
This reaction time is well below the design value;
therefore, the student's claim is unlikely
Method 2:
$\mathrm{V}_{1}:=70 \cdot 1.467$
$\mathrm{g}:=32.2 \quad \mathrm{a}:=11.2 \quad \mathrm{G}:=0 \quad \mathrm{t}_{\mathrm{r}}:=2.5$
Stopping sight distance $=$ practical stopping distance plus perception/reaction distance
$\mathrm{SSD}:=\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot \mathrm{~g} \cdot\left[\left(\frac{\mathrm{a}}{\mathrm{g}}\right)+\mathrm{G}\right]}+\mathrm{V}_{1} \cdot \mathrm{t}_{\mathrm{r}} \quad \mathrm{SSD}=727.49 \mathrm{ft}$
$590 \mathrm{ft}<730 \mathrm{ft}$ (required from Table 3.1) therefore 590 ft is not enough for $70 \mathrm{mi} / \mathrm{h}$ design speed.

Determine the grade of the road.
Problem 2.29
$\mathrm{V}_{1}:=55 \cdot 1.467 \quad \mathrm{~V}_{1}=80.69 \quad \mathrm{ft} / \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}:=2.5 \quad \mathrm{~d}_{\mathrm{s}}:=450$
Solve for distance travelled during braking (total distance minus perception/reaction)
$d_{r}:=V_{1} \cdot t_{r} \quad d_{r}=201.71$
$d:=d_{s}-d_{r} \quad d=248.29$
$a:=11.2 \quad \mathrm{~g}:=32.2$
(given)
Using practical stopping distance formula and solve for grade

$$
\begin{align*}
& d=\frac{\left(V_{1}\right)^{2}}{2 \cdot g \cdot\left(\frac{a}{g}+G\right)} \quad G:=\frac{V_{1}^{2}}{2 \cdot d \cdot g}-\frac{a}{g} \tag{Eq.2.47}\\
& G=0.059 \quad G \cdot 100=5.93 \quad \%
\end{align*}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine the driver's perception/reaction time before and after drinking.
$V_{1}:=55 \cdot 1.467 \quad \mathrm{f} / \mathrm{s} \quad \mathrm{g}:=32.2 \quad \mathrm{a}:=11.2 \quad$ (given)
while sober, $d_{s}:=520$
solve for perception/reaction time using total stopping distance formula

$$
\begin{equation*}
d:=\frac{V_{1}^{2}}{2 \cdot a} \tag{Eq.2.46}
\end{equation*}
$$

substituting Eqs. 2.46 and 2.50 into Eq. 2.49 gives

$$
\begin{equation*}
t_{\mathrm{r}}:=\frac{d_{\mathrm{s}}}{\mathrm{~V}_{1}}-\frac{\mathrm{V}_{1}}{2 a} \quad \mathrm{t}_{\mathrm{r}}=2.84 \quad \mathrm{sec} \tag{Eq.2.50}
\end{equation*}
$$

after drinking, driver strikes the object at $\mathrm{V}_{2}:=35.1 .467 \mathrm{f} / \mathrm{s}$
solve for perception/reaction time using total stopping distance formula

$$
\begin{equation*}
t_{r}:=\frac{d_{s}}{V_{1}}-\frac{v_{1}^{2}-v_{2}^{2}}{2 a \cdot V_{1}} \quad t_{r}=4.3 \quad \mathrm{sec} \tag{Eq.2.50}
\end{equation*}
$$

Multiple Choice Problems

Determine the minimum tractive effort.

Problem 2.31

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{D}}:=0.35 \quad \mathrm{~A}_{\mathrm{f}}:=20 \quad \mathrm{ft}^{2} \quad \rho:=0.002045 \frac{\text { slugs }}{\mathrm{ft}^{3}} \\
& \mathrm{~V}:=70 \cdot\left(\frac{5280}{3600}\right) \quad \\
& \mathrm{N}_{\mathrm{W}} \\
& \mathrm{G}:=0.05
\end{aligned}
$$

grade resistance
$\mathrm{R}_{\mathrm{g}}:=2000 \mathrm{G}$
$\mathrm{R}_{\mathrm{g}}=100 \mathrm{lb}$
aerodynamic resistance

$$
\begin{equation*}
\mathrm{R}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \cdot \mathrm{~V}^{2} \quad \mathrm{R}_{\mathrm{a}}=75.44 \mathrm{lb} \tag{Eq.2.3}
\end{equation*}
$$

rolling resistance

$$
\begin{array}{ll}
\mathrm{f}_{\mathrm{rl}}:=0.01 \cdot\left(1+\frac{\mathrm{V}}{147}\right) & \mathrm{f}_{\mathrm{rl}}=0.02 \\
\mathrm{R}_{\mathrm{rl}}:=\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W} & \mathrm{R}_{\mathrm{rl}}=33.97 \mathrm{lb} \tag{Eq.2.6}
\end{array}
$$

summation of resistances

F: $=\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{rl}}+\mathrm{R}_{\mathrm{g}} \quad \mathrm{F}=209.41 \mathrm{lb}$

Alternative Answers:

1) Using mi/h instead of ft/s for velocity
$\mathrm{V}:=70 \frac{\mathrm{mi}}{\mathrm{h}}$
wwh : $=0.01\left(1+\frac{\mathrm{V}}{147}\right) \quad \mathrm{f}_{\mathrm{rl}}=0.01$
$\mathrm{R}_{\text {arh }}:=\mathrm{f}_{\mathrm{rl}} \mathrm{W} \quad \mathrm{R}_{\mathrm{rl}}=29.52 \mathrm{lb}$
${\underset{\text { main }}{ }:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{A}_{\mathrm{f}} \cdot \mathrm{V}^{2} \quad \mathrm{R}_{\mathrm{a}}=35.07 \quad \mathrm{lb}, ~}_{\text {l }}$
$\underset{\mathrm{m}}{\mathrm{F}}:=\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{rl}}+\mathrm{R}_{\mathrm{g}} \quad \mathrm{F}=164.6 \mathrm{lb}$
2) not including aerodynamic resistance
$\mathrm{V}:=70 \cdot \frac{5280}{3600}$
$\underset{\mathrm{m}}{\mathrm{F}}:=\mathrm{R}_{\mathrm{rl}}+\mathrm{R}_{\mathrm{g}} \quad \mathrm{F}=129.52 \mathrm{lb}$
3) not including rolling resistance
$\underset{\text { F }}{\mathrm{F}}:=\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{g}} \quad \mathrm{F}=135.07 \mathrm{lb}$

Determine the acceleration.

Problem 2.32

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{V}}=20 \cdot \frac{5280}{3600} \\
& \mathrm{~V}=29.33 \quad \frac{\mathrm{ft}}{\mathrm{~s}} \\
& \mu:=1 \\
& C_{d}:=0.3 \\
& h:=20 \quad \text { in } \\
& \mathrm{W}_{\mathrm{w}}:=2500 \mathrm{lb} \\
& \mathrm{~L}:=110 \text { in } \\
& \mathrm{l}_{\mathrm{f}}:=50 \quad \text { in } \\
& \mathrm{M}_{\mathrm{e}}:=95 \quad \mathrm{ft}-\mathrm{lb} \\
& \varepsilon_{0}:=4.5 \\
& \eta_{d}:=0.90 \\
& \text { (given) }
\end{aligned}
$$

aerodynamic resistnace

$$
\begin{equation*}
\mathrm{R}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{~A}_{\mathrm{f}} \cdot \mathrm{~V}^{2} \quad \mathrm{R}_{\mathrm{a}}=5.28 \quad \mathrm{lb} \tag{Eq.2.3}
\end{equation*}
$$

rolling resistance

$$
\begin{align*}
& \mathrm{f}_{\mathrm{rl}}:=0.01\left(1+\frac{\mathrm{V}}{147}\right) \tag{Eq.2.5}\\
& \mathrm{R}_{\mathrm{rl}}:=0.01 \cdot\left(1+\frac{\mathrm{V}}{147}\right) \cdot 2500 \tag{Eq.2.6}
\end{align*} \quad \mathrm{R}_{\mathrm{rl}}=29.99 \quad \mathrm{lb}
$$

engine-generated tractive effort

$$
\begin{equation*}
\mathrm{F}_{\mathrm{e}}:=\frac{\mathrm{M}_{\mathrm{e}} \cdot \varepsilon_{\mathrm{o}} \cdot \eta_{\mathrm{d}}}{\mathrm{r}} \quad \mathrm{~F}_{\mathrm{e}}=329.79 \quad \mathrm{lb} \tag{Eq.2.17}
\end{equation*}
$$

mass factor

$$
\begin{aligned}
& \gamma_{\mathrm{m}}:=1.04+0.0025 \varepsilon_{\mathrm{o}}^{2} \\
& \mathrm{l}_{\mathrm{r}}:=120-\mathrm{l}_{\mathrm{f}}
\end{aligned}
$$

acceleration

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{max}}:=\frac{\frac{\mu \cdot \mathrm{W} \cdot\left(\mathrm{l}_{\mathrm{r}}+\mathrm{f}_{\mathrm{rl}} \mathrm{~h}\right)}{\mathrm{L}}}{1+\frac{\mu \cdot \mathrm{h}}{\mathrm{~L}}} & \mathrm{~F}_{\mathrm{max}}=1350.77 \mathrm{lb} \\
\mathrm{a}:=\frac{\mathrm{F}_{\mathrm{e}}-\mathrm{R}_{\mathrm{a}}-\mathrm{R}_{\mathrm{rl}}}{\gamma_{\mathrm{m}} \cdot\left(\frac{2500}{32.2}\right)} & \mathrm{a}=3.48 \frac{\mathrm{ft}}{2} \tag{Eq.2.19}
\end{array}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Alternative Answers:

1) Use a mass factor of $1.04 \quad$ यnax: $=1.04 \quad \underset{m}{\mathrm{a}}:=\frac{\mathrm{F}_{\mathrm{e}}-\mathrm{R}_{\mathrm{a}}-\mathrm{R}_{\mathrm{rl}}}{\gamma_{\mathrm{m}} \cdot\left(\frac{2500}{32.2}\right)} \quad \mathrm{a}=3.65 \quad \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
2) Use $F_{\max }$ instead of $F_{e} \quad \lambda_{\text {wana }}:=1.091 \quad \underset{\mathrm{~m}}{\mathrm{a}}:=\frac{\mathrm{F}_{\max }-\mathrm{R}_{\mathrm{a}}-\mathrm{R}_{\mathrm{rl}}}{\gamma_{\mathrm{m}} \cdot\left(\frac{2500}{32.2}\right)}$
$a=15.53 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
3) Rear wheel instead of front wheel drive

$$
\mathrm{F}_{\text {maxa }}:=\frac{\frac{\mu \cdot \mathrm{W} \cdot\left(\mathrm{l}_{\mathrm{f}}-\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~h}\right)}{\mathrm{L}}}{1-\frac{\mu \cdot \mathrm{h}}{\mathrm{~L}}} \quad \mathrm{~F}_{\max }=1382.22 \quad \underset{m}{\mathrm{M}}:=\frac{\mathrm{F}_{\mathrm{max}-R_{a}-R_{\mathrm{rl}}}^{\gamma_{\mathrm{m}} \cdot\left(\frac{2500}{32.2}\right)} \quad \mathrm{a}=15.9 \quad \frac{\mathrm{ft}}{\mathrm{~s}^{2}}}{2}
$$

$\mathrm{V}:=65 \cdot \frac{5280}{3600} \frac{\mathrm{ft}}{\mathrm{s}} \quad \mu:=0.90$
$\mathrm{L}_{\mathrm{M}}:=120$ in $\quad \mathrm{l}_{\mathrm{f}}:=50$ in (given)
$\mathrm{h}:=20 \quad$ in $\quad \mathrm{l}_{\mathrm{r}}:=\mathrm{L}-\mathrm{l}_{\mathrm{f}} \quad$ in
determine the coefficient of rolling resistance
$\mathrm{f}_{\mathrm{rl}}:=0.01 \cdot\left(1+\frac{\mathrm{V}}{147}\right) \quad \mathrm{f}_{\mathrm{rl}}=0.02$
determine the brake force ratio
$\mathrm{BFR}_{\text {frmax }}:=\frac{\mathrm{l}_{\mathrm{r}}+\mathrm{h} \cdot\left(\mu+\mathrm{f}_{\mathrm{rl}}\right)}{\mathrm{l}_{\mathrm{f}}-\mathrm{h} \cdot\left(\mu+\mathrm{f}_{\mathrm{rl}}\right)} \quad \quad \mathrm{BFR}_{\text {frmax }}=2.79$
calculate percentage of braking force allocated to rear axle
$\mathrm{PBF}_{\mathrm{r}}:=\frac{100}{1+\mathrm{BFR}_{\text {frmax }}} \quad \quad \mathrm{PBF}_{\mathrm{r}}=26.39 \%$
(Eq. 2.32)

Alternative Answers:

1) Use front axle equation

$$
\begin{equation*}
\operatorname{PBF}_{\mathrm{f}}:=100-\frac{100}{1+\mathrm{BFR}_{\mathrm{frmax}}} \quad \quad \mathrm{PBF}_{\mathrm{f}}=73.61 \% \tag{Eq2.31}
\end{equation*}
$$

2) Use incorrect brake force ratio equation

BFR $_{\text {sumax }}:=\frac{\mathrm{l}_{\mathrm{r}}-\mathrm{h} \cdot\left(\mu+\mathrm{f}_{\mathrm{rl}}\right)}{\mathrm{l}_{\mathrm{f}}+\mathrm{h} \cdot\left(\mu+\mathrm{f}_{\mathrm{r}}\right)} \quad \quad \mathrm{BFR}_{\mathrm{frmax}}=0.76$
$\mathrm{PBF}_{\mathrm{MNa}}:=\frac{100}{1+\mathrm{BFR}_{\text {frmax }}} \quad \quad \mathrm{PBF}_{\mathrm{r}}=56.94 \%$
3) Switch I_{f} and I_{r} in brake force ratio equation

$$
\begin{array}{ll}
\mathrm{BER}_{\text {fromax }}:=\frac{\mathrm{l}_{\mathrm{f}}+\mathrm{h} \cdot\left(\mu+\mathrm{f}_{\mathrm{rl}}\right)}{\mathrm{l}_{\mathrm{r}}-\mathrm{h} \cdot\left(\mu+\mathrm{f}_{\mathrm{rl}}\right)} & \mathrm{BFR}_{\text {frmax }}=1.32 \\
\mathrm{PBF}_{\mathrm{Mn}}:=\frac{100}{1+\mathrm{BFR}_{\mathrm{frmax}}} & \mathrm{PBF}_{\mathrm{r}}=43.06 \%
\end{array}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{D}}:=0.59 & \mathrm{~V}_{\mathrm{N}}:=80 \cdot \frac{5280}{3600} \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{~A}_{\mathrm{f}}:=26 \mathrm{ft}^{2} & \mu:=0.7 \\
\gamma_{\mathrm{b}}:=1.04 & \eta_{\mathrm{b}}:=0.75
\end{array} \quad \text { (given) }
$$

Coefficient of Rolling Resistance

$$
\begin{equation*}
\mathrm{f}_{\mathrm{rl}}:=0.01 \cdot\left(1+\frac{\frac{\mathrm{V}}{2}}{147}\right) \quad \mathrm{f}_{\mathrm{rl}}=0.014 \tag{Eq.2.5}
\end{equation*}
$$

\square

Theoretical Stopping Distance

$$
\begin{equation*}
\mathrm{S}:=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{~V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}\right)} \quad \mathrm{S}=412.8 \frac{\mathrm{~s}^{2}}{\mathrm{ft}} \tag{Eq.2.43}
\end{equation*}
$$

Alternative Answers:

1) Not dividing the velocity by 2 for the coeffeicent of rolling resistance
$\mathrm{f}_{\text {wh }}:=0.01 \cdot\left(1+\frac{\mathrm{V}}{147}\right)$

$$
\mathrm{S}_{\mathrm{M}}:=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{~V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}\right)} \quad \mathrm{S}=409.8 \frac{\mathrm{~s}^{2}}{\mathrm{ft}}
$$

2) Using mi/h instead of ft/s for the velocity

$$
\begin{aligned}
& \mathrm{V}_{2 \mathrm{~s}}:=80 \quad \mathrm{~V}_{2 \mathrm{c}}:=0 \quad \stackrel{\mathrm{~V}}{\mathrm{~m}}:=80 \\
& \mathrm{f}_{\text {whl }}:=0.01 \cdot\left(1+\frac{\frac{\mathrm{V}}{2}}{147}\right) \\
& \mathrm{S}_{\mathrm{m}}:=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{~V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}\right)} \quad \mathrm{S}=192.4 \frac{\mathrm{~s}^{2}}{\mathrm{ft}}
\end{aligned}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.
3) Using $\gamma=1.0$ value

$$
\begin{aligned}
& \chi_{\mathrm{m}}:=\frac{\gamma_{\mathrm{b}} \cdot\left(\mathrm{~V}_{1}{ }^{2}-\mathrm{V}_{2}{ }^{2}\right)}{2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}\right)} \quad \mathrm{S}=397.9 \frac{\mathrm{~s}^{2}}{\mathrm{ft}}
\end{aligned}
$$

Determine the stopping sight distance.

Problem 2.35

$$
\begin{aligned}
& \mathrm{V}:=45 \cdot \frac{5280}{3600} \\
& \mathrm{ft} / \mathrm{s} \\
& \mathrm{a}:=11.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \\
& \mathrm{t}_{\mathrm{r}}:=2.5 \\
& \mathrm{~s}
\end{aligned} \quad \mathrm{~g}:=32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \quad \text { (assumed) } \quad \text { (given) }
$$

Braking Distance

$$
\begin{equation*}
\mathrm{d}:=\frac{\mathrm{V}^{2}}{2 \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{a}}{\mathrm{~g}}\right)} \quad \mathrm{d}=194.46 \mathrm{ft} \tag{Eq.2.47}
\end{equation*}
$$

Perception/Reaction Distance

$$
\mathrm{d}_{\mathrm{r}}:=\mathrm{V} \cdot \mathrm{t}_{\mathrm{r}} \quad \mathrm{~d}_{\mathrm{r}}=165.00 \mathrm{ft}
$$

Total Stopping Distance

$$
\mathrm{d}_{\mathrm{s}}:=\mathrm{d}+\mathrm{d}_{\mathrm{r}} \quad \mathrm{~d}_{\mathrm{s}}=359.46 \mathrm{ft}
$$

Alternative Answers:

1) just the braking distance value
$\mathrm{d}=194.46 \quad \mathrm{ft}$
2) just the perception/reaction distance value
$\mathrm{d}_{\mathrm{r}}=165.00 \quad \mathrm{ft}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.
3) use the yellow signal interval deceleration rate
$\mathrm{a}:=10.0$
$\mathrm{d}:=\frac{\mathrm{v}^{2}}{2 \cdot g \cdot\left(\frac{\mathrm{a}}{\mathrm{g}}\right)} \quad \mathrm{d}=217.80 \mathrm{ft}$
$\mathrm{MMSV}^{\mathrm{d}}:=\mathrm{d}+\mathrm{d}_{\mathrm{r}} \quad \mathrm{d}_{\mathrm{S}}=382.80 \quad \mathrm{ft}$

Determine the vehicle speed.

$$
\begin{array}{lll}
\mathrm{C}_{\mathrm{D}}:=0.35 & \mathrm{G}:=0.04 & \gamma_{\mathrm{b}}:=1.04 \\
\mathrm{~A}_{\mathrm{f}}:=16 \mathrm{ft}^{2} & \mathrm{~S}:=150 \mathrm{ft} & \eta_{\mathrm{b}}:=1 \\
\mathrm{~W}_{\mathrm{M}}:=2500 \mathrm{lb} & \rho:=0.002378 \frac{\text { slugs }}{\mathrm{ft}^{3}} & \mu:=0.8 \\
\mathrm{~V}_{1}:=88 \cdot \frac{5280}{3600} & \frac{\mathrm{ft}}{\mathrm{~s}} & \underset{\mathrm{~cm}}{\mathrm{~S}}:=32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}}
\end{array}
$$

Problem 2.36

$$
\mathrm{K}_{\mathrm{a}}:=\frac{\rho}{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{f}} \quad \mathrm{~K}_{\mathrm{a}}=0.007
$$

Given

$$
\begin{aligned}
& \mathrm{V}_{2}:=0 \\
& \mathrm{~S}=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~W}}{2 \cdot \mathrm{~g} \cdot \mathrm{~K}_{\mathrm{a}}} \cdot \ln \left[\frac{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{K}_{\mathrm{a}} \cdot \mathrm{~V}_{1}^{2}+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}+\mathrm{W} \cdot \mathrm{G}}{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{K}_{\mathrm{a}} \cdot\left(\mathrm{~V}_{2}^{2}\right)+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}+\mathrm{W} \cdot \mathrm{G}}\right] \\
& \mathrm{V}_{2 \mathrm{~A}}:=\operatorname{Find}\left(\mathrm{V}_{2}\right) \\
& \mathrm{V}_{2}=91.6 \quad \frac{\mathrm{~V}_{2}}{1.467}=62.43 \quad \frac{\mathrm{mi}}{\mathrm{~h}}
\end{aligned}
$$

Alternative Answers:

1) Use 0\% grade

$$
G:=0.0
$$

Given

$$
\begin{aligned}
& \mathrm{V}_{2}:=0 \\
& \mathrm{~S}=\frac{\gamma_{\mathrm{b}} \cdot \mathrm{~W}}{2 \cdot \mathrm{~g} \cdot \mathrm{~K}_{\mathrm{a}}} \cdot \ln \left[\frac{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{K}_{\mathrm{a}} \cdot \mathrm{~V}_{1}^{2}+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}+\mathrm{W} \cdot \mathrm{G}}{\eta_{\mathrm{b}} \cdot \mu \cdot \mathrm{~W}+\mathrm{K}_{\mathrm{a}} \cdot\left(\mathrm{~V}_{2}^{2}\right)+\mathrm{f}_{\mathrm{rl}} \cdot \mathrm{~W}+\mathrm{W} \cdot \mathrm{G}}\right]
\end{aligned}
$$

$$
\mathrm{V}_{2 \mathrm{~s}}:=\operatorname{Find}\left(\mathrm{V}_{2}\right)
$$

$$
\mathrm{V}_{2}=93.6 \quad \frac{\mathrm{~V}_{2}}{1.467}=63.78 \quad \frac{\mathrm{mi}}{\mathrm{~h}}
$$

2) Ignoring aerodynamic resistance

$$
\begin{aligned}
& \mathrm{G}:=0.04 \\
& \mathrm{~V}_{2 \mathrm{a}}:=\sqrt{\mathrm{V}_{1}^{2}-\frac{\mathrm{S} \cdot 2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}+\mathrm{G}\right)}{\gamma_{\mathrm{b}}}} \quad \mathrm{~V}_{2}=93.3 \\
& \frac{\mathrm{~V}_{2}}{1.467}=63.6 \quad \frac{\mathrm{mi}}{\mathrm{~h}}
\end{aligned}
$$

(Eq 2.43) rearranged to solve for V_{2}
3) Ignoring aerodynamic resistance and using G $=0$

$$
\begin{aligned}
& G:=0 \\
& \text { mind }_{2}:=\sqrt{\mathrm{V}_{1}{ }^{2}-\frac{\mathrm{S} \cdot 2 \cdot \mathrm{~g} \cdot\left(\eta_{\mathrm{b}} \cdot \mu+\mathrm{f}_{\mathrm{rl}}+\mathrm{G}\right)}{\gamma_{\mathrm{b}}}} \quad \mathrm{~V}_{2}=95.2 \\
& \frac{\mathrm{~V}_{2}}{1.467}=64.9 \quad \frac{\mathrm{mi}}{\mathrm{~h}}
\end{aligned}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

