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Solutions to Chapter 1

1. The intent of this rather vague problem is to get you to compare the two notions, probability

as intuition and relative frequency theory. There are many possible answers to how to

make the statement "Ralph is probably guilty of theft" have a numerical value in the relative

frequency theory. First step is to define a repeatable experiment along with its outcomes.

The favorable outcome in this case would be ’guilty.’ Repeating this experiment a large

number of times would then give the desired probability in a relative frequency sense. We

thus see that it may entail a lot of work to attach an objective numerical value to such a

subjective statement, if in fact it can be done at all.

One possible approach would be to look through courthouse statistics for cases similar to

Ralph’s, similar both in terms of the case itself and the defendant. If we found a sufficiently

large number of these cases, ten at least, we could then form the probability  = , where

 is the number of favorable (guilty) verdicts, and  is the total number of found cases.

Here we effectively assume that the judge and jury are omniscient.

Another possibility is to find a large number of people with personalities and backgrounds

similar to Ralph’s, and to expose them to a very similar situation in which theft is possible.

The fraction of these people that then steal in relation to the total number of people, would

then give an objective meaning to the phrase "Ralph is probably guilty of theft."

2. Note that  → 3, but 3 6→ , i.e.,  implies 3 but not the other way around. Thus if we

turn over card 2 and find a 3. So what? It was never stated that a 3 →  . Likewise, with

card 3. On the other hand, if we turn over card 4 and find a , then the rule is violated.

Hence, we must turn over card 4 and card 1, of course.

3. First step here is to decide which kind of probability to use. Since no probabilities are

explicitly given, it is reasonable to assume that all numbers are equally likely. Effectively

we assume that the wheel is “fair." This then allows us to use the classical theory along

with the axiomatic theory to solve this problem. Now we must find the corresponding prob-

ability model. We are told in the problem statement that the experiment is “spinning the

wheel." We identify the pointed-to numbers as the outcomes . The sample space is thus

Ω = {1 2 3 4 5 6 7 8 9}The total number of outcomes is then 9. The probability of each
elemental event {} is then taken as  [{}] ,  = 19, as in the classical theory. We are also

told in the problem statement that the contestant wins if an even number shows. The set of

even numbers in Ω is {2 4 6 8} We can write this event as a disjoint union of four singleton
(atomic) events

{2 4 6 8} = {2} ∪ {4} ∪ {6} ∪ {8}
Now we can apply axiom 3 of probability to write

 [{2 4 6 8}] =  [{2}] +  [{4}] +  [{6}] +  [{8}]
=

1

9
+
1

9
+
1

9
+
1

9

=
4

9


We have seen that some ’reasonable’ assumptions are necessary to transform the given word

problem into something that exactly corresponds to a probability model. It turns out that

this is a general problem for such word problems, i.e. problems given in natural English.

Probability Statistics and Random Processes for Engineers 4th Edition Stark Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/probability-statistics-and-random-processes-for-engineers-4th-edition-stark-solutions-manual/


2

4. The experiment involves flipping a fair coin 3 times. The outcome of each coin toss is either

a head or a tail. Therefore, the sample space of the combined experiment that contains all

the possible outcomes of the 3 tosses, is given by

Ω = {  }

Since all the coins are fair, all the outcomes of the experiment are equally likely. The proba-

bility of each singleton event, i.e. an event with a single outcome, is then 1
8
. We are interested

in finding the probability of the event , which is the event of obtaining 2 heads and 1 tail.

There are 3 favorable outcomes for this event given by  = {}. Therefore,
 [] =  [{} ∪ {} ∪ {}] =  [ ] +  [] +  [] = 3

8
. Note that

we are able to write the probability of the event  as the sum of probability of the singleton

events (from Axiom 3) because the singlteon events of any experiment are mutually exclusive.

Why?

5. The experiment contains drawing two balls (with replacement) from an urn containing balls

numbered 1, 2, and 3. The sample space of the experiment is given by

Ω = {11 12 13 21 22 23 31 32 33}

The event of drawing a ball twice is said to occur when one of the outcomes 11, 22, or 33

occurs. Therefore, the event of drawing 2 equal balls , is given by  = {11 22 33} and
 [] =  [{11}]+ [{22}]+ [{33}] Since the balls are drawn at random, it can assumed that
drawing each ball is equally likely. Therefore, the singleton events, or equivalently outcomes

of the experiment, are equally likely. Hence,  [] = 3(1
9
) = 1

3
.

6. Let 1 2     6 represent the six balls. Each outcome will be represented by the two balls

that were drawn. In the first experiment, the balls are drawn without replacement; hence,

the two balls drawn cannot have the same index. Then the sample space containing all the

outcomes is given by

Ω1 = {12 13 14 15 16
21 23 24 25 26

31 32 34 35 36

41 42 43 45 46

51 52 53 54 56

61 62 63 64 65}

This can be written compactly as

Ω1 = {()|1 ≤  ≤ 6 1 ≤  ≤ 6  6= }

If the first ball is replaced before the second draw, then in addition to the outcomes in the

earlier part, there are outcomes where both the two balls drawn are the same. The sample

space for the new experiment is given by

Ω2 = Ω1 ∪ {11 22 33 44 55 66}

This can also be written as Ω2 = {()|1 ≤  ≤ 6 1 ≤  ≤ 6}.
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7. Let  be the height of the man and  be the height of the woman. Each outcome of the

experiment can be expressed as a two-tuple (   ). Thus

(a) The sample space Ω is the set of all possible pairs of heights for the man and woman.

This is given as

Ω = {(   ) :   0   0} 
(b) The event , which is a subset of Ω is given by

 = {(   ) :   0   0    } 

8. The word problem describes the physical experiment of drawing numbered balls from an urn.

We need to find a corresponding mathematical model. First we form an appropriate event

space with meaningful outcomes. Here the physical experiment is ’draw ball from urn,’ so

the outcome in words is ’particular labeled ball drawn,’ which we can identify with its label.

So we select as outcome in our mathematical model, the number on the drawn ball’s face,

i.e. the particular label. The outcomes are thus the integers 1,2,3,4,5,6,7,8, 9, and 10. The

sample space is then Ω = {1 2 3 4 5 6 7 8 9 10} and is the set of all ten outcomes. We
are told that  is ’the event of drawing a ball numbered no greater than 5.’ Thus we define

in our event field  = {1 2 3 4 5} The other event specified in the word problem is  ’the

event of drawing a ball greater than 3 but less than 9.’ In our mathematical event field this

corresponds to  = {4 5 6 7 8} Having constructed our sample space with indicated events,
we can use elementary set theory to determine the following answers:

 = {6 7 8 9 10}   = {1 2 3 9 10}
 = {4 5}  ∪  = {1 2 3 4 5 6 7 8}

  = {1 2 3}  = {6 7 8}
 ∪   = {1 2 3 6 7 8 9 10}
( ) ∪ ( ) = {1 2 3 6 7 8} ( ) ∪ ( ) = {4 5 9 10}

( ∪  ) = {9 10} ( ) = {1 2 3 6 7 8 9 10}
The last part of the problem asks us to ’express these events in words.’ Since we have a

mathematical model, we should really more precisely ask what each of these events corresponds

to in words. We know of course that  corresponds to ’drawing a ball numbered no greater

than 5.’ We can thus loosely write  = {0drawing a ball numbered no greater than 5’},
although in our mathematical model  is just the set of integers {1 2 3 4 5}. So when
we write  ={ ’drawing a ball numbered no greater than 5’}, what we really mean is that

the event  in our mathematical model corresponds to the physical event ’drawing a ball

numbered no greater than 5’ mentioned in the word problem. With this caveat in mind, we

can then write:

 = {0drawing a ball greater than 50}
  = {0drawing a ball not in the range 4-8 inclusive0}
 = {0drawing a ball greater than 3 and no greater than 50}

etc.

9. The sample space containing four equally likely outcomes is given by Ω = {1 2 3 4}. Two
events  = {1 2} and  = {2 3} are given. The required events can be easily obtained
by observation.
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 = set of outcomes in  and not in  = {1}.
 = set of outcomes in  and not in  = {3}.
 = set of outcomes in  and  = {2}.
 ∪ = set of outcomes in  or in  = {1 2 3}.

10.  =  ∪ This can be proved using the distributive law on

 = Ω = ( ∪) =  ∪

 ∪ = ()∪ ()∪ () Here we first write  = ( ∪) and  = (∪)

Then we can write

 ∪ = (( ∪)) ∪ (( ∪))

= ( ∪) ∪ ( ∪)

=  ∪ ∪ ∪

=  ∪ ∪

using the above laws and formulas. Notice that the above two decompositions are into disjoint

sets. From the third axiom of probability, we know that the probability of union of disjoint

sets is the sum of the probabilities of the disjoint sets. Therefore, we can add the probabilities

over the unions.

11. In a given random experiment there are four equally likely outcomes 1 2 3 and 4 Let

the event  , {1 2}
 [] =  [{1 2}] =  [{1}] +  [{2}] = 1

4
+ 1

4
= 1

2
  = {3 4}

 [] =  [{3 4}] =  [{3}] +  [{4}] = 1
4
+ 1

4
= 1

2


Note that we are told that the four outcomes are equally likely. This means that the four

singleton (atomic) events have equal probability.  [] = 1
2
= 1−  [] = 1− 1

2


12. (a) The three axioms of probability are given below

(a) [label=()]

(b) For any event , the probability of the even occuring is always non-negative.

 [] ≥ 0
This ensures that probability is never negative.

(c) The probability of occurence of the sample space event Ω is one.

 [Ω] = 1

This ensures that probability of no event exceeds one. The first two axioms ensures that

the probability is a quantity between 0 and 1, inclusive.

(d) For any two events  that are disjoint, the probability of the union of the events is

the sum of the probabilities of the two events.

 [ ∪] =  [] +  [] when  = 

This axiom tells us that the probability of any event can be obtained by the sum disjoint

events that constitute the event.
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(b) The event  ∪  can be obtained as the disjoint union of the three sets  .

Hence by applying the third axiom of probability, we obtain

 [ ∪] =  [ ∪ ( ∪)]

=  [] +  [ ∪]

=  [] +  [] +  []

Now the event  can be written as the disjoint union of  and  (Axiom 3). Therefore

 [] =  [] +  [] =⇒  [] =  []−  []

Similarly

 [] =  [] +  [] =⇒  [] =  []−  []

Therefore  [ ∪] =  [] + ( []−  []) + ( []−  []) =  [] +  []−  [].

13. We first form our mathematical model by setting outcomes ς = (1 2) where 1 corresponds

to the label on the first ball drawn, and 2 corresponds to the label on the second ball drawn.

We can also write the outcomes as strings ς = 12 The sample space Ω can then be identified

with the 2-D array
11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55



There are thus 25 outcomes in the sample space. Now the word problem statement uses

the phrase ’at random’ to describe the drawing. This is a technical term that can be read

’equally likely.’ Thus all the elementary events {12} in our mathematical model must have
equal probability, i.e.  [{12}] = 125 Armed thusly we can attack the given problem as

follows. Define the event  ={’sum of labels equals five’}, or precisely  = {41 32 23 14}
Then we decompose this event into four singleton events as

 = {41} ∪ {32} ∪ {23} ∪ {14}

Since different singleton events are disjoint, probability adds, and we have

 [] =
1

25
+
1

25
+
1

25
+
1

25

=
4

25


"Dim" ignored that outcome  is different (distinguishable) from outcome . "Dense" talked

about the sums and correctly noted that there were nine of them. However, he incorrectly

assumed that each sum was equally likely. Looking at our sample space above, we can

see that the sum 2 has only one favorable outcome 11, while the sum 6 has five favorable

outcomes, just looking at the anti-diagonals of this matrix.

14. First we show  ∩ ( ∪ ) ⊂ ( ∩) ∪ ( ∩ ).
Let  ∈  ∩ ( ∪ ).
Then  ∈  and  ∈ ( ∪ ).
 ∈  and  ∈  or  ∈ .
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Say if  ∈ . Then  ∈  and  ∈  (Step k)

Thus  ∈ ( ∩).
And therefore  ∈ ( ∩ ) ∪ ( ∩ ). Similar arguments can be made if we consider  ∈ 

in step k, in which case we will show that  ∈ ( ∩ ) and hence  ∈ ( ∩) ∪ ( ∩).
Thus we have shown that  ∩ ( ∪ ) ⊂ ( ∩) ∪ ( ∩).
Now we show that ( ∩) ∪ ( ∩) ⊂  ∩ ( ∪ ).
Suppose  ∈ ( ∩) ∪ ( ∩ ). Then  ∈ ( ∩) or  ∈ ( ∩ ).
Say  ∈ ( ∩)
Then  ∈  and  ∈ .

Or  ∈  and  ∈ ( ∪). Or in other words,  ∈  ∩ ( ∪ ).
Similar arguments can be used to show that if  ∈ ( ∩), then  ∈  ∩ ( ∪).
Thus ( ∩) ∪ ( ∩ ) ⊂  ∩ ( ∪).
Thus we have shown that both sets are contained in each other. Hence  ∩ ( ∪ ) =

( ∩) ∪ ( ∩).
15. We use the set identity Ω = ∪ Since this union is disjoint, by the additivity of probability

(i.e. axiom 3), we get 1 =  [Ω] =  [] + [] which with rearranging becomes the desired

result.

16. (a)  ∩  = {1 2} ∩ {4 5 6} = . Therefore,

 [ ∩] =  []

= 1−  [Ω]

(∵ Ω ∩ Φ =  1 =  [Ω ∪ ] =  [Ω] +  [])

= 1− 1 ( because  [Ω] = 1)
= 0

(b)  [ ∪ ∪] =  [{1 2} ∪ {2 3} ∪ {4 5 6} =  [{1 2 3 4 5 6}] =  [Ω] = 1.

(c) We see that  ∩  =  and so  [] = 0. For  and  to be independent,  [] =

 [] []. Therefore, if either  [] = 0 or  [] = 0 or both are zeros,  and  will be

independent.

17. This problem uses only set theory and just two axioms of probability to get these general

results.

(a) We need to show  [] = 0 We write the disjoint decomposition Ω = Ω ∪  and then
use the additivity of probability (axiom 3) to get

 [Ω] =  [Ω ∪ ]
=  [Ω] +  []

So we must have  [] = 0

(b) Using set theory, we can write the disjoint decomposition

 =   ∪
Then by axiom 3, the additivity of probability, we have

 [] =  [  ∪ ]
=  [ ] +  [ ]
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or what is the same  [ ] =  []−  [ ]

(c) Here we simply note  ∪ = Ω is a disjoint decomposition, so that again by axiom 3,

 [Ω] =  [] +  []

= 1 by axiom 2,

which is the same as  [] = 1−  []

18. The outcome is the result of a probabilistic experiment. An event is a collection (set) of

outcomes. The field of events is the complete collection of events that are relevant for the

given probability problem.

19. We start with the mutually exclusive decomposition

 ∪ =  ∪ ∪

yielding  [ ∪ ] =  [] +  [] +  [] Then consider the two simple disjoint

decompositions

 =  ∪ and  =  ∪
which yield  [] =  [] +  [] and  [] =  [] +  [] Putting them all

together, we have

 [ ∪] =  [] +  [] +  []

= ( []−  []) +  [] + ( []−  [])

=  [] +  []−  []

20. From Eq. 1.4-3, we see that ⊕ = (− )∪ ( −) =  ∪ . We see that   and

 are disjoint, i.e., ( ) ∩ ( ) = . Therefore, the probability of the union of  

and  are the sum of the probabilities of the two events. In other words,

 ( ⊕  ) =  (  ∪ ) =  ( ) +  ( )

21. We have already (Problem 17) seen that we can write  [ ] =  []− [ ] and  [ ] =

 [ ]−  [ ]. Therefore,  ( ⊕  ) =  ( ) +  ( ) =  [] +  [ ]− 2 [ ].

22. (a) For simplicity associate as follows: cat=1, dog=2, goat=3, and pig=4. The outcomes 

then become the integers 1,2,3, and 4. The sample space Ω = {1 2 3 4} For probability
information we are given:

 [{1 2}] = 09  [{3 4}] = 01  [{4}] = 005 and  [{2}] = 05

Now for every event in our field of events, we must be able to specify the probability.

This is equivalent to being able to supply the probability for all the singleton events. To

see if we can do this, we note that singleton events {1} and {3} are missing probabilities,

so we first write

{1} = {1 2}− {2} so that
 [{1}] =  [{1 2}]−  [{2}] = 09− 05 = 04
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Doing the same for the other missing singleton probability  [{3}], we write
{3} = {3 4}− {4} so that

 [{3}] =  [{3 4}]−  [{4}] = 01− 005 = 005
Thus we have enough probability information for all the singleton events, and hence all

16 = 24 subsets of Ω = {1 2 3 4} The appropriate field F of events then consists of

the following events along with their probabilities:

{1}  [{1}] = 04
{2}  [{2}] = 05
{3}  [{3}] = 005
{4}  [{4}] = 005
{1 2}  [{1 2}] = 09
{1 3}  [{1 3}] = 045
{1 4}  [{1 4}] = 045
{2 3}  [{2 3}] = 055
{2 4}  [{2 4}] = 055
{3 4}  [{3 4}] = 01
{1 2 3}  [{1 2 3}] = 095
{1 2 4} {1 2 4}] = 095
{1 3 4}  [{1 3 4}] = 05
{2 3 4}  [{2 3 4}] = 06

{1 2 3 4}(= Ω)  [{1 2 3 4}] = 1 =  [Ω]

  [] = 0

(b) Now the above is not an appropriate field of events if some of the events do not have

known probabilities. So if  [’pig’= {4}] = 005 is removed, then we cannot determine
the probabilities of some of the above events. In particular we cannot find  [{3}] The
alternative then is to treat {3 4}, whose probability is still given, as a singleton and
form a smaller field with just the 8 events formed by unions of {1}, {2}, and {3,4}. The

resulting field, along with its probabilities is as follows:

{1}  [{1}] = 04
{2}  [{2}] = 05
{1 2}  [{1 2}] = 09
{3 4}  [{3 4}] = 01
{1 3 4}  [{1 3 4}] = 05
{2 3 4}  [{2 3 4}] = 06

{1 2 3 4}(= Ω)  [{1 2 3 4}] = 1 =  [Ω]

  [] = 0

23. First we show that  ∪ ( ∩ ) ⊂ ( ∪) ∩ ( ∪ ).
Suppose  ∈  ∩ ( ∪ )
Then  ∈ 

Therefore  ∈ ( ∪), and  ∈ ( ∪)
Hence,  ∈ ( ∪) ∩ ( ∪).
Now we show that ( ∪) ∩ ( ∪) ⊂  ∪ ( ∩ ).
Suppose  ∈ ( ∪) ∩ ( ∪ )



9

Then  ∈ ( ∪) and  ∈ ( ∪)
 ∈  and  ∈ 

If  ∈ , then  ∈  ∪ ( ∩) (because  ⊂ ( ∪ ( ∩)))
If  ∈ , then  ∈  and  ∈ .

Or in other words,  ∈ ( ∩ )
 ∈  ∪ ( ∩ ).
Thus we have shown that both the sets are contained in each other. Therefore, ∪ (∩) =
( ∪) ∩ ( ∪).

24. The probability of  is  [] =  [{1 2}] =  [{1}] + [{2}] = 1
4
+ 1
4
= 1

2
 The event (set)

 in terms of the outcomes is  = {3 4} The probabilty of  is  [] =  [{3 4}] =
 [{3}] +  [{4}] = 1

4
+ 1

4
= 1

2
 Note that we are told that the four outcomes are equally

likely. This means that the four singleton (atomic) events have equal probability. We verify

 [] = 1
2
= 1−  [] = 1− 1

2


25. The composition of the urn is: (), (), (), (), (), (), (), ().  [] = 68,

 [] = 68,  [] =  = 48 is not equal to  [] [] = 916. Therefore  and 

are not independent.

26. Let   = 1 2 represent the outcome of the th toss. Since the tosses are independent:

 [1 2] =  [1] [2] =
1

6
· 1
6

 [1 + 2 = 7|1 = 3] =  [2 = 4|1 = 3]
=

 [1 = 3 2 = 4]

 [1 = 3]

=
 [1 = 3] [2 = 4]

 [1 = 3]

(because tosses are independent)

=
1

6

27. Clearly

 [] =
4

52
and  [] =

26

52
=
1

2


Then  [] =  [{pick one of two red aces in 52 cards}] = 2
52
 Is  [] =  [] []? Now

 [] =
2

52
=

4

52

1

2
=  [] []

so, yes  and  are independent events.

28. Since it is a fair die, the successive tosses are independent with probability  = 16 for each

face. From the provided information, we equivalently want the probability of getting a total

of 5 on the two remaining tosses. This can happen in just 4 equally likely outcomes, i.e.

(4,1), (3,2), (2,3), and (1,4). The desired probability this then 436 = 19.
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29. We can look at the compound outcomes ς = (1 2) as corresponding to the locations in the

9×9 array
11 21 31 41 51 61 · · · 91

12 22 32 42 52 · · · ...

13 23 33 43 · · ·
14 24 34 · · ·
15 25 · · · . . .

16 · · ·
...

. . .
...

19 · · · · · · 99



with 81 equally likely outcomes. We agree to call the sample space for the first experiment

Ω1, the sample space for the second experiment Ω2, and the compound sample space simply

Ω To get the sum Σ , 1 +2 = 7 we need one of the following outcomes

16 25 34 43 52 61 located on a 45◦ diagonal in the above table.

So there are 6 favorable outcomes for the event {Σ = 7} The event {Σ = odd} contains 40
outcomes and the event {Σ = even} contains the remaining 81−40 = 41 even-sum outcomes.
Now the joint event {Σ = 7}∩ {Σ = odd} = {Σ = 7} since the sum 7 is an odd number. We

can now calculate the needed probabilities

 [{Σ = odd}] = 40

81
and  [{Σ = 7}] = 6

81


The answer for the first question is then

 [{Σ = 7}|{Σ = odd}] =  [{Σ = 7}∩{Σ = odd}]
 [{Σ = odd}]  (by definition)

=  [{Σ = 7}] [{Σ = odd}] (by above result)

= 640

The next question is to find  [({1  7} ×Ω2) ∪ (Ω1 × {2  7})|{Σ  10}] For simplicity
of notation, let’s agree to write the compound events {1  7} × Ω2 and Ω1 × {2  7} as
simply {1  7} and {2  7} respectively, for the rest of this calculation. So we must

count the relevant number of outcomes from the above 9×9 array, where the various sums are
found on 45◦ diagonals. For the event {Σ  10} we count 36 outcomes. For the joint event
({1  7}∪{2  7})∩{Σ  10}, we find it easier to consider the set of outcomes that make
up the remainder of the event {Σ  10} i.e. the event {1 ≤ 7}∩{2 ≤ 7}∩{Σ  10} which
is equal, in words, to the event ’1 ≤ 7 and 2 ≤ 7 and Σ  10 ’. We could call this the

complement with respect to {Σ  10} of the event ({1  7}∪{2  7})∩{Σ  10} Anyway,
we find from the 9×9 array that the number of outcomes in {1 ≤ 7}∩{2 ≤ 7})∩{Σ  10}
is composed of the following 10 cases:

P
= 11 = 6 + 5 = 5 + 6 = 7 + 4 = 4 + 7 andP

= 12 = 5 + 7 = 7 + 5 = 6 + 6 and
P
= 13 = 6 + 7 = 7 + 6 and

P
= 14 = 7 + 7

So we subtract these 10 outcomes from the 36 outcomes in the event {Σ  10} to obtain
26 outcomes in the compound event ({1  7} ∪ {2  7}) ∩ {Σ  10} The relevant

probabilities are then

 [{Σ  10}] = 36

81
and  [({1  7} ∪ {2  7}) ∩ {Σ  10}] = 26

81
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The desired conditional probability is then

 [({1  7} ∪ {2  7})|{Σ  10}] = 2681

3681
=
26

36
≈ 072

Finally to compute  [{Σ =odd}|{1  8}] we proceed as follows. For the combined

experiment, we know there is only one possibility for 1  8 and that is 1 = 9, along with

any value for 2 Thus there are 9 outcomes in the compound event {1  8}1, so that it’s
probability is 981 Now the joint event {Σ =odd} ∩ {1  8} = {1 = 9} ∩ {Σ =odd} =
{(9 2) (9 4) (9 6) (9 8)} with four outcomes. Thus since all outcomes are equally likely, we
have

 [{Σ = odd} ∩ {1  8}] = 4

81


The desired conditional probability is then

 [{Σ = odd}|{1  8}] =  [{Σ = odd} ∩ {1  8}]
 [{1  8}]

=
481

981
=
4

9
≈ 044

30. We are given that  [] = 0001, where  is the event ’disease is present.’ Let  denote the

event ’test is positive,’ so that   is the event ’test is negative.’ We are additionally given

 [ |] = 1 and  [ |] = 0005 We are asked to compute  [| ], i.e. the probability that
’disease is present given the test is positive.’ We use Bayes’ rule and Theorem as follows

 [| ] =
 [ ]

 [ ]

=
 [ |] []

 [ |] [] +  [ |] []

=
1× 0001

1× 0001 + 0005× 0999
=

1

1 + 4995
≈ 0167

Thus in only about 17% of the cases will a positive test result actually confirm that you suffer

from the disease. The other 83% of the time you will be needlessly worried!

31. Let 1 denote the set of occupations and let 2 denote the set of interests and/or hobbies.

Then

1 = {’office manager’, ’engineer’, ’doctor’, ’teacher’, ...}
2 = {’nat. defense’, ’books’, ’music’, ’cooking’,...}

Let  denote Henrietta’s occupation and  her interests. Then

 [ = ’office manager’  = ’nat. defense’]

=  [ = ’office manager’] [ = ’nat. defense’| = ’office m

≤  [ = ’office manager’]

since 0 ≤  [ =’nat. defense’| =’office manager’] ≤ 1.
1Remember, we decided above to write simply {1  } for the compound event {1  } ×Ω2 This since, in

this problem, we only compute probabilities for events in the compound experiment.
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32. Directly from the problem statement

 [ = 3] = 3 ·  [ = 1]

 [ = 2] = 2 ·  [ = 1]

But we also know  [ = 3] +  [ = 2] +  [ = 1] = 1 which is always true by axiom 2

 [Ω] = 1. Therefore  [ = 1] = 16,  [ = 2] = 13, and  [ = 3] = 12. Using Bayes’

Theorem, we then compute

 [ = 1| = 1] =
 [ = 1| = 1] [ = 1]P3
=1  [ = 1| = ] [ = ]

=
(1− )16

(1− )1
6
+ 

2
1
3
+ 

2
1
2

=
1− 

1− +  + 3
2



33. Let

 , {examinee knows},

 , {examinee guesses}, and

 , {getting right answer} .

Then  [] =   [] = 1−   [|] = 1 and  [|] = 1 So

 [|] =
 [|] []

 []

=
1 · 

 [|] [] +  [|] []
=



+ 1

(1− )

=


+ (1− )


34. There are  contestants and only one most beautiful. Hence

 [{pick most beautiful}] = 1

35. Let

e , {random drawn chip ∈ },e , {random drawn chip ∈ }, ande , {random drawn chip ∈ }.

Also, let  , {random drawn chip is defective} Then

 [] =  [| e] [ e] +  [| e] [ e] +  [| e] [ e]
= 005× 025 + 004× 035 + 002× 040
= 00345
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Hence

 [ e|] =
 [| e] [ e]

 []
=
005× 025
00345


= 0363

 [ e|] =
 [| e] [ e]

 []
=
004× 035
00345


= 0406

 [ e|] =
 [| e] [ e]

 []
=
002× 040
00345


= 0232

36. From the example

 [] ' 


log





We set  ,  and construct the following table.

  []   []

0.0 0.0 0.5 0.346

0.1 0.23 0.6 0.31

0.2 0.32 0.7 0.25

0.3 0.361 0.8 0.18

0.4 0.367 0.9 0.10

The peak is quite shallow, therefore the choice of  is not critical near the peak.

37. (a) If we associate the 103 villagers with  = 103 balls and the  = 30 tents with 30 cells,

this becomes a classical occupancy problem.

(b) The result is given by Eq.1.8-6, which is repeated here asµ
+  − 1



¶
=

µ
30 + 103− 1

103

¶
=

132!

103!29!


(c) The result is µ
 − 1
 − 

¶
=

µ
103− 1
103− 30

¶
=

102!

73!29!


To obtain numerical evaluations of these factorial expressions, one might want to use

Stirling’s formulas:

! ≈ (2)12+12−
38. The most natural set of outcomes here are the strings (or vectors) of length , indicating

where each ball has landed. There are  such strings. They are all equally likely. The

number of favorable outcomes would be ! since there are  choices for the first preselected

location, −1 choices for the second location, etc. The desired probability is then  = !

Now, since the balls are indistinguishable, we could have considered the so-called distinguish-

able outcomes,

µ
+  − 1



¶
in number, however from the description of the experiment in

the problem statement, they would not all be equally likely. So we could not rely on classical

theory then to give us the probabilities of these outcomes.
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39. As in problem 1.38, the number of favorable ways is !. However, the total number of ways

is not  since cells can at most hold one ball. For the first ball, there are  cells; for the

second ball, − 1 cells, etc. Thus
 = (− 1) · · · (−  + 1)

=
!

(− )!


Thus

 =
!³
!

(−)!
´

=
!(− )!

!

=

µ




¶−1


40. (a) Let the tribal leaders be the cells and the rifles be the balls. Then the three tribal leaders

collecting the five rifles is the analog of putting five balls into three cells.

(b) These are the distributions shown in non-bold. There are fifteen such distributions.

(c) Careful here! If we count only the outcomes in bold we shall get the wrong answer i.e.,

6/21=0.286. The reason this answer is wrong is that the outcomes in the columns are

not equally likely. The correct answer is computed using Eq.(1.8-9) i.e.,

41. (a) The probability that a specified number appears on the face of a dice is 1/6. Hence the

probability of getting three specified numbers is or 1 in 216. Hence if you win you should

get $216 for every dollar bet. But the casino payout is only $180:1.

(b) The face value of the first dice is irrelevant. The probability that the second dice matches

the first is 1/6. The probability that the third dice matches the first is 1/6. Hence the

probability of getting three unspecified matches is or 1 in 36.

(c) Let  denote that dice   = 1 2 3 shows a specified number. Then the probability that

(at least) two specified numbers appear is

 [12

3] +  [13


2] +  [32


1] +  [123]

= 3× 5
6
× 1
6
× 1
6
+
1

6
× 1
6
× 1
6

= 00741

or about 1 in 14. So per dollar bet you should get $14 but the casino payout is only $10.

d.-i. The next six parts can be solved by enumeration i.e., counting. However there is a

systematic procedure based on the mathematical operation of convolution that can yield

all of the answers from reading a graph. The details are given in Example 3.3.-5.
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d. Refer to the table below:

We note that there are only three ways of getting a 4: 1+1+2; 1+2+1,2+1+1. Hence

the

probability that the sum equals 4 is 3(6× 6× 6) = 172. Thus the fair payout should
be 1:72 instead of 1:60.

e. The number of ways of getting a 5 is 6: 3+1+1; 1+3+1; 1+1+3; 2+2+1; 2+1+2; 1+2+2.

Hence the probability that the sum equals 5 is 6(6 × 6 × 6) = 136. A fair payout

would be 1:36 instead of 1:30.

f.-i. follow the same enumeration.

j. Let’s think of this a series of throws. The probability that the first throw matches one

of the two specified numbers is 2/6. The probability that the next throw matches a

specified number is 1/6. The last throw should not match either of the numbers. Its

probability is 4/6. In a throw of three dice this can happen in three ways. Hence the

probability is 3× 2
6
× 1

6
× 4

6
= 19 or 1:9. But the payout is only 1:5.

42. For  packets there are  ! ways of arranging themselves, but only one way of doing it

correctly. All the packet arrangements are equally likely. Hence

 [{correct reassembly}] = 1 !

= (3628800)−1 for  = 10,

≈ 276× 10−7

43. For three packets, there are six different arrangements (3 ·2 ·1 = 6), but only one correct one.
Hence on any try

 ,  [{success}] and  ,  [{failure}]
=

1

6
= 1−  =

5

6


For a first correct reassembly on the th try, there must be  − 1 failures followed by on
success on the th try, thus

 () =
1

6

µ
5

6

¶−1
  ≥ 1

We note in passing that this is a valid PMF, i.e. it sums to one over its support [1∞). To
find the smallest  such that

X
=1

1

6

µ
5

6

¶−1
≥ 095

we note that the complementary event is no successes in  trials, with probability 1− ¡5
6

¢


Thus we seek instead the smallest  such that 1−¡5
6

¢ ≤ 1−095 = 005 Thus  ' ln(005)

ln(56)


=

165 So the answer is  = 17.
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44.

X
=0

(; ) =

X
=0

µ




¶
−1

= (+ )

= (+ (1− ))

= 1 = 1

45. (a) The probability that a BM gets destroyed is

1−  [{both AMM miss}] = 1− (02)(02)
= 096

Hence for all BMs to get destroyed, we need six wins in six tries:µ
6

6

¶
(096)6(004)0 = (096)6

' 0783

(b)  [{at least one BM gets through }] = 1−  [{all are destroyed}] ' 1− 0783 = 0217
(c)

 [{exactly one gets through}] =

µ
6

5

¶
(096)5(004)1

= 6(096)5(004)

' 0196

46. We want to compute

 [{only one BM gets through}|{target destroyed}]
=  [{only one BM gets through}|{at least one BM gets through}]
=

 [{only one BM gets through} {at least one BM gets through}]
 [{at least one BM gets through}]

=
 [{only one BM gets through}]

 [{at least one BM gets through}]
=

02

0217
' 0922

47. Let

 = {Event that a chip meets specs}
 = {Event that a chip needs rework} and

 = {Event that a chip is discarded}

We have  [] = 085  [] = 010, and  [] = 005. The multinomial law applies here!
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(a)

 [{all chips meet specs}] =
10!

10!0!0!
(085)10(010)0(005)0

' 0197

(b)

 [{ two or more discards}] = 1−  [{no discards}]−  [{one discard}]
, 2

Now  [{a chip is discarded}] =  [] = 005 so  [] = 095 thus

2 = 1−
µ
10

0

¶
(095)10(005)0 −

µ
10

1

¶
(095)9(005)1

' 1− 0599− 0315 = 0086

(c)

 [{8 meet specs, 1 needs rework, 1 discard}] =
10!

8!1!1!
(085)8(010)1(005)1

= 045(085)8

' 0123

48. Let

 = {Event that call is to report fire emergency}
 = {Event that call is to police} and

 = {Event that call is for ambulance}

We have  [] = 015  [] = 060  [] = 025, and the sequence 02030202030102030202

contains 1 , 6 s and 3 s.

(a)  [] = 0151 × 0606 × 0253 = 11× 10−4
(b) The number of distinguishable sequences is just the multinomial coefficient

10!

6!3!1!
=
10× 9× 8× 7
3× 2× 1 = 840

(c) The probability that the 10 calls involve six calls to the police, three for ambulance and

one to the subdepartment:

10!

6!3!1!
× 0151 × 0606 × 0253 = 0092

49. We use the Poisson approximation to the binomial: Eq. 1.10-2, with  = 1
1000

= 10−3  = 100
and  = 01 Then

 [{at least one diamond is found}] = 1−  [{no diamonds are found}]

' 1− (01)
0

0!
−01

' 1− 09 = 01
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50. Use Eq. (1.10-7) from the text with  = 0, +  = 10, and () as given. This givesZ 10

0

[1− −10]  = 10−1 = 368

Thus,

 [ clicks in 10 seconds ] = −368
1

!
(368)

51. If all the tickets are in one lottery, then  [’win’] = 50
100

= 1
2
 If one ticket in each of 50

lotteries, the the probability of a win in any one lottery is  = 1
100
, but we have 50 chances

to win. Hence  [’at least one win’] = 1−  [’no win’], where

 [’no win’] =

µ
50

0

¶
0(1− )50

=

µ
50

0

¶µ
1

100

¶0
(
99

100
)50


= 0605

Hence, taking one ticket in each of 50 lotteries,  [’at least one win’]

= 1− 0605 = 0395  1

2
.

52. If 50 tickets in one lottery, then [1] = 1 = 100 · (12) = 50. If one ticket in each of 50

lotteries, we would have

[50] =

50X
=1

100

µ
50



¶µ
1

100

¶µ
99

100

¶50−
=

50

100
100

Ã
49X
0=0

µ
49

0

¶µ
1

100

¶0 µ
99

100

¶49−0!
 with 0 = − 1

=
50

100
100× 1 since the sum in parentheses is 1,

= 50

53. (a) A closed circuit can occur as

(24 ∪35)16 = 1246 ∪1356
(b) Now in general  [ ∪] =  [] +  []− ] thus

 [{at least one closed path}] =  [1246] +  [1356]−  [123456]

= 24 − 6

= 24(1− 1
2
2)

54. (a) Events associated with disjoint time intervals, under Poisson law, are independent. The

number of cars arriving at a tollbooth in the time interval (0  ) at a rate of  per minute

is such that  [ cars arrive in (0  )] = − [ ]


!
. Let us define the events:

 , { 1 cars arrive in (0 1)},
 , { 2 cars arrive in (1  )}, and
 , { 1 + 2 cars arrive in (0  )}.
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We are asked to find  [|]. From the definition of conditional probability, we know

that this equals
 []

 []
. The event  is the event that 1 cars arrive in (0 1) and

1+2 cars arrive in (0  ). This is the same as saying that 1 cars arrive in (0 1) and

2 cars arrive in (1  ), which is nothing but the event . Therefore,  = . But

from the Poisson law (given), we know that  [] =  [] [], because  and  are

events on disjoint time intervals. Therefore,

 [|] =
 []

 []
=

 []

 []
=

 [] []

 []

=

(1)
1−1
1!

((−1))2−(−1)
2!

( )1+2−
(1+2)!

=
11 ( − 1)

2

1+2

(1 + 2)!

1!2!


and that is independent of .

b. Substituting  = 2, 1 = 1, and 1 = 2 = 5, we get

 [5 cars in (0 1)|10 cars in (0 2)] = 10!

5!5!

1

210
≈ 025

.

55. The probability of a patient dying without the monitoring system is:

 = 012 = 005

The probability of a patient dying with the monitoring system is:

 () =  () () = 005× 01 = 0005
 and  are independent events.

Thus, Prof. X’s argument is wrong.

56. (a) At each attempt, the probability of successful transmission is   The repeated exper-

iments are Bernoulli trials. Now the event () ={at least one successful transmission

occurs in  attempts}. Also define  () , {no successful transmission occurs in 

attempts}. Then these events are mutually exclusive, so

 () ,  [()] = 1−  [ ()]

= 1−
µ



0

¶
( )0(1− )

= 1− (1− )

(b) For an individual receiver, we need the probability of at least one successful transmission

in  attempts (trials). This is just the answer to part a, with  substituted for  

i. e. 1− (1− )  Next consider the event () ,{For every receiver, at least one
successful transmission occurs in  attempts}. We have

() ,  [()] = [1− (1− )] 
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since there are  independent receivers.

If  = 09 = 5 and  = 2, then,

 (2) ≈ 0832 and (2) ≈ 0951

57. The sample space for the compound experiment is

Ω = {(1 2  100) : 2 ≤  ≤ 12 1 ≤  ≤ 100}
For the individual experiment with the two die, we can write the sample space as the locations

(1 2) in the 6×6 table
(1 2) 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

,

where we have entered in each cell the sum of the die’s upward faces. Now we set the event

 ,{the sum is 7} and find  [] = 636 = 16 ,  As for the compound experiment

consisting of  = 100 tries, it is seen to be Bernoulli trials with  = 100 and  = 16. So the

answer for ’10 seven’s in 100 tries’ is (7; 100 16) =

µ
100

10

¶
10(1− )90 We can evaluate

this simply using the Poisson approximation with  =  = 1006. Then

 [10 seven’s in 100 tries] ≈ 10−

10!

=
(1006)10 −1006

10!
≈ 00264

58. b) We do part (b) first. From the landlord’s viewpoint, the following applies. If lease

includes free repairs, then the cost of the two "Cloggers" versus one "NeverFail" is the same,

so it doesn’t matter. If repairs are not free and are the same for the "Cloggers" as for the

"NeverFail," then clearly the "NeverFail" is the cheaper to lease.

a) From the tenants’ point of view:

 [{at least one "Clogger" on}] = 1−  [{both fail}]
= 1− (04)2
= 084 while

 [{"NeverFail" on}] = 080

 084

Therefore, the two "Cloggers" are better since at least one of them will be working 84% of

the time.
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59. This problem typifies the faulty reasoning exhibited by many people not familiar with prob-

ability and, in particular, the idea of independent events. While it is true that  [{2 bombs
on board}] = 10−4, the issue is  [{terrorist bomb on board}|{"nervous" has a bomb on
board}] =  [{terrorist bomb on board}] = 10−2 since the events  = [{terrorist bomb on
board}] and  = [{"nervous" has a bomb on board}] are independent. Hence  [|] =  [];

therefore, no protection!

60. Let  = {event of successful transmission on short path}; = {event of successful transmis-
sion on a long path}. Then  [{successful transmission}] = 1− [ ] and  [] = 1− 3

while  [ ] = 1− 5, where  , 1−  Therefore

 [{successful transmission}] = 1−  [ ]

= 1− (1− 3)(1− 5)

= 3 + 5 − 8

61. In this case the telephone company might find the union directive unreasonable. Here is

why:

 [overtime] =

∞X
=5761

(720× 8)
!

−720×8

≈ 1√
2

Z 2

1

−
1
2
2

(by the Gaussian approximation to Poisson),

where

1 =
5761− 5760− 05√

5760
and 2 =

∞− 5760 + 05√
5760

.

Hence

 [overtime] ≈ 1√
2

Z ∞

0

−
1
2
2

= erf(∞) = 1

2


So approximately half the time, Curtis will collect overtime.

62. The sample space for the compound experiment is

Ω = {(1 2  80) : 2 ≤  ≤ 4 1 ≤  ≤ 80}

For the individual experiment with the two die, we can write the sample space as the locations

(1 2) in the 2×2 table
(1 2) 1 2

1 2 3

2 3 4

,

where we have entered in each cell the sum of the coin’s upward sides. Now we set the event

 ,{the sum is 2} and find  [] = 14 ,  As for the compound experiment consisting of

 = 80 tries, it is seen to be Bernoulli trials with  = 80 and  = 14. So the answer for ’10
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two’s in 80 tries’ is (10; 80 14) =

µ
80

10

¶
10(1− )70 We can evaluate an approximation

simply using the Poisson approximation with  =  = 804 = 20. Then

 [́10 two’s in 80 tries] ≈ 10−

10!

=
(20)10 −20

10!
≈ 00058

Incidently the exact answer for the binomial (10; 80 14) is 00028. The Poisson approxi-

mation is only marginal here since  = 14 is not really  1

63. Since arrivals in disjoint intervals are independent under the Poisson law, it follows that we

equivalently want the probability of 5 cars arriving in the second 2 minutes. This is given as

 [5 cars in 2 minutes] =
(2)5

5!
−2

64. Unfortunately, very small. The reader should recognize that this is an occupancy problem

with the candies being the "balls" and the students being the "cells." The appropriate formula

is Eq. 1.8-9, which gives the probability that no cell is empty. Hence, with  = 15  = 10

 [{no student is without a candy}] =

10X
=0

µ
10



¶
(−1)(1− 

10
)15

≈ 005

A MATLAB function to do this problem is as follows:

function [tries,prob] = occupancy(balls,cells)

% Here #balls=r and #cells=n. This function then

% calculates the answer to the occupancy problem in

% Example 1.8-5, specifically Eq. 1.8-9. This function

% is used in the solution to Problem 1.64 .

%

tries=1:balls; prob=zeros(1,balls);

c=zeros(1,cells); d=zeros(1,cells);

term=zeros(1,cells);

for m=1:balls

for k=1:cells

c(k)=((-1)^k)*prod(1:cells)/(prod(1:k)*prod (1:cells-k));

d(k)=(1-(k/cells))^m;

term(k)=c(k)*d(k);

end

prob (m)=1+sum(term);

end

plot(tries,prob)

xlabel(’number of balls r’);

ylabel(’P[E^c]’);

title(’probability that no cell is empty’);

end
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Two example runs follow. The first is for  = 15  = 10, yielding the answer to this problem

at  = 10. The second run is for a larger case with  = 100 and  = 20.

65. These are repeated Bernoulli trials resulting in the Binomial distribution with  = 1000 and

 = 0001. Let  be the individual random variables, taking on value 1 for an erroneous

line and 0 for an error-free line. Then we can write the sum or total of the errors as

 =

X
=1



Then  is Binomial with  =  = 1 and 2 =  = 0999 We can use the Poisson

approximation to the Binomial with  =  = 1 here. Then

 [2 ≤  ≤ 1000] = 1− (0)− (1)

≈ 1− − − −

= 1− 2−1

= 0264

The CLT approximation gives a Normal distribution with mean  = 1 and  =
√
0999 =

09995 However, it is not as accurate here since the mean  is only approximately one stan-

dard deviation away from 0, the minimum value of a Bernoulli random variable. Calculating

the CLT approximate answer, we find

 [2 ≤  ≤ 1000] ≈ 1√
2 × 0999

Z 1000

2


− 1
2


−1√
0999

2


≈ 1√
2

Z +∞

10005

−
1
2
2

= 05− erf (10005)

= 05− 0341
= 0159 not very accurate here.

66. This is a classic problem and the solution is unexpected. Let  = {event that no two people
have their birthdays on the same date} Let  = {event that at least two people have their
birthdays on the same date}. Then  =  and

 [] =  []

= 1−  []
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where

 [] =
no. of ways  can occur

no. of all possible outcomes

=





where  = 365(365− 1)(365− 2) · · · (365− (− 1)) and  = (365)
2 Thus

 [] =




= 1

µ
1− 1

365

¶µ
1− 2

365

¶


µ
1− − 1

365

¶
=
1

2
?

Taking logarithms, we have

ln 1 + ln

µ
1− 1

365

¶
+ ln

µ
1− 2

365

¶
+ · · ·+ ln

µ
1− − 1

365

¶
= −07?

Then, upon using ln(1− ) '  for  small, when 365 is small, we get

−
µ
1 + 2 + · · ·+ (− 1)

365

¶
= −(− 1)

2(365)

' −07

So we must set
(− 1)
2(365)

= 07

and solve for , resulting in the quadratic equation

2 − − 511 = 0

whose positive root is  = 226. Rounding up to the next integer, we get the answer at just

23 people necessary for the probability to be one-half or greater that at least two people will

have their birthday on the same date.

67. By the problem statement, we have a Binomial probability law (; ) with  = 10 and

 =  [defect] = 002. So the probability of more than one defect in the sample is given as

 [more than 1 defect] =

10X
=2

(; 10 002)

= 1−
1X

=0

(; 10 002)

= 1− (098)10 −
µ
10

1

¶
(002)(098)9

= 1− (098)10 − 02(098)9
= 1− 118(098)9
= 00162
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68. The programming of this problem is quite simple as it requires applying a random number

generator  times for each realization ... that’s basically it. The hard part is the search for

a percolating path. The lattice contains both branches and loops. Thus it is netither tree,

nor graph. The first decision is to define a conducting path, and there are two choices:

conduction allowed conduction allowed

through diagonal elements only through hor. and vert. elements

Two choices for conducting paths.

The time-consuming part is the search. Thus if you come to a node (junction) and the path

you choose doesn’t lead anywhere, you must be careful to return to the note and try the other

path.

An Example.

A possible path is 1ABCE2. Note the dead-end at D and the possibility of endless looping if

you are not careful. Since  ≤ 50 relatively simple search techniques should work. A good
MS thesis. Good luck!
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69. Let:

 = {door picked by you}
 = {door picked by MC}
 = {remaining door} and
 = {door that leads to Rexis}

Then  = {door picked by you leads to Rexis},  = {door picked by MC leads to Rexis},
and  = {remaining door leads to Rexis}. Then

 [ =
1

3
and  [ ∪ ] = 2

3


But, since  ∩  = 

 [] +  [] =  [ ∪ ]
=

2

3


and the MC always chooses the wrong door, so that  [] = 0 and hence  [] = 2
3


Therefore, you should switch to door C, as it will double your probability of winning the

Rexis!

70. (a) This is Bernoulli trials. Thus 1[] =
¡
10
4

¢ ¡
1
2

¢10
and 2[] =

¡
10
4

¢
4(1− )6

(b) The likelihood ratio is given as

 = 1[]2[]

=

µ
10

4

¶µ
1

2

¶10


µ
10

4

¶
4(1− )6

=

µ
1

2

¶10
−4(1− )−6

=

µ
1

2

¶4µ
1

2(1− )

¶6
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