Instructor's Solutions Manual

for

Bob Dobrow's

Probability with Applications and R

Bob Dobrow, Matthew Rathkey, and Wenli Rui

Dec. 2, 2013

Chapter 1

1.1 (i) An experiment whose outcome is uncertain. (ii) The set of all possible outcomes. (iii) A set of outcomes. (iv) A random variable assigns numerical values to the outcomes of a random experiment.
1.2 (i) Roll four dices. (ii) $\Omega=\{1111,1112, \ldots, 6665,6666\}$. (iii) Event: $\{5555\}$. (iv) Let X denote the number of fives in four dice rolls. Then X is the random variable. The desired probability is $P(X=4)$.
1.3 (i) Choosing toppings. (ii) Let a, b, c denote pineapple, peppers, and pepperoni, respectively. Then $\Omega=\{\emptyset, a, b, c, a b, a c, b c, a b c\}$. (iii) Event: $\{a b, a c, b c\}$. (iv) Let X be the number of toppings. Then X is the random variable. The desired probability is $P(X=2)$.
1.4 (i) Playing Angry Birds until you win. (ii) Let W denote winning, and L denote losing. Then $\Omega=\{W, L W, L L W, \ldots\}$. (iii) Event: $\{X<1000\}$, where X is the number of times you play before you win. (iv) X is the random variable. The desired probability is $P(X<1000)$.
1.5 (i) Harvesting 1000 tomatoes. (ii) Ω is the set of all 1000 -element of sequences consisting of $B^{\prime} s$ (bad) and $G^{\prime} s$ (good). (iii) Event: $\{X \leq 5\}$, where X is the number of bad tomatoes. (iv) X is the random variable. The desired probability is $P(X \leq 5)$.
1.6 (a) $\{13,22,31\}$;
(b) $\{36,45,54,63\}$;
(c) $\{13,23,33,43,53,63\}$;
(d) $\{11,22,33,44,55,66\}$;
(e) $\{31,41,51,52,61,62\}$.
1.7 (a) $\{R=0\}$;
(b) $\{R=1, B=2\}$;
(c) $\{R+B=4\}$;
(d) $\{R=2 B\}$.
1.8 Let B denote a boy and G denote a girl. Then $\Omega=\{G, B G, B B G, \ldots B B B B B B\}$.

The random variable is the number of boys.
1.9 $P\left(\omega_{1}\right)=\frac{24}{41} ; P\left(\omega_{2}\right)=\frac{12}{41} ; P\left(\omega_{3}\right)=\frac{4}{41} ; P\left(\omega_{4}\right)=\frac{1}{41}$.
1.10 Must have $p+p^{2}+p=1$. Solve $p^{2}+2 p=1$. Since $p \geq 0, p=\sqrt{2}-1=0.414$.
1.11 (a) $P(A) \geq 0$, since $P_{1}(A) \geq 0$ and $P_{1}(A) \geq 0$. (b)

$$
\begin{aligned}
\sum_{\omega} P(\omega) & =\sum_{\omega} \frac{P_{1}(\omega)+P_{2}(\omega)}{2} \\
& =\frac{1}{2}\left(\sum_{\omega} P_{1}(\omega)+\sum_{\omega} P_{2}(\omega)\right) \\
& =\frac{1}{2}(1+1)=1 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\sum_{\omega \in A} P(\omega) & =\sum_{\omega \in A} \frac{P_{1}(\omega)+P_{2}(\omega)}{2} \\
& =\frac{1}{2}\left(\sum_{\omega \in A} P_{1}(\omega)+\sum_{\omega \in A} P_{2}(\omega)\right) \\
& =\frac{1}{2}\left(P_{1}(A)+P_{2}(A)\right)=P(A) .
\end{aligned}
$$

1.12

$$
\begin{aligned}
\sum_{\omega} P(\omega) & =\sum_{\omega} a_{1} P_{1}(\omega)+a_{2} P_{2}(\omega)+\cdots+a_{k} P_{k}(\omega) \\
& =a_{1} \sum_{\omega} P_{1}(\omega)+a_{2} \sum_{\omega} P_{2}(\omega)+\cdots+a_{k} \sum_{\omega} P_{k}(\omega) \\
& =a_{1}+a_{2}+\cdots+a_{k} .
\end{aligned}
$$

Thus $a_{1}+a_{2}+\cdots+a_{k}=1$.

1.13

$$
\begin{aligned}
\sum_{\omega} Q(\omega) & =\sum_{\omega}[P(\omega)]^{2} \\
& =[P(a)]^{2}+[P(b)]^{2}=1 .
\end{aligned}
$$

Solve $p^{2}+(1-p)^{2}=1$. Then $p=0$ or 1 .
1.14 (a) The number of ways to select a president is 10 . The number of ways to select Tom to be the president is 1 . Thus the desired probability is $1 / 10$. (b) The number of ways to select a president and a treasurer is $10 \times 9=90$. The number of ways to select Brenda to be the president and Liz to be the treasurer is 1 . The desired probability is $1 / 90$.
1.15 The number of 6 -element sequences with first two elements H and last two elements T is $2^{2}=4$. The number of 6 -element sequences of H 's and T 's is $2^{6}=64$. Thus the desired probability is $4 / 64=1 / 16$.
1.16 (a) $\frac{1}{26^{2}+26^{3}+26^{4}+26^{5}}=8.093 \times 10^{-8}$;
(b) $\frac{26^{4}}{26^{2}+26^{3}+26^{4}+26^{5}}=0.037$;
(c) $\frac{26+2 \times 26^{2}+26^{3}}{26^{2}+26^{3}+26^{4}+26^{5}}=0.0015$;
(d) $1-\frac{25^{2}+25^{3}+25^{4}+25^{5}}{26^{2}+26^{3}+26^{4}+26^{5}}=0.171$.
1.17 (a) $6 / 6^{5}=1 / 6^{4}=1.286 \times 10^{-4}$;
(b) $1-(5 / 6)^{5}=0.598$;
(c) $\frac{6 \times 5 \cdots \times 2}{6^{5}}=0.0926$.
1.18 (a) $\frac{3 \times 19 \times 18}{20 \times 19 \times 18}=0.15$;
(b) $\frac{6 \times 18}{20 \times 19 \times 18}=0.0079$;
(c) $\frac{6}{20 \times 19 \times 18}=4.386 \times 10^{-4}$.
1.19 There are k ! orderings of which one is in increasing order. Thus, $1 / k$!.
1.20 (a) 0.2 ; (b) 0.2; (c) 0.6.
1.21 (a) 0.9; (b) 0; (c) 0.1; (d) 0.9 .
1.22 We know

$$
P(A \cup B)=P(A)+P(B)-P(A B)=0.6
$$

and $P\left(A \cup B^{c}\right)=P(A)+P\left(B^{c}\right)-P\left(A B^{c}\right)=0.8$.
Solving for $P(A)$ gives $P(A)=0.4$.
1.23 (i) $A^{c}=\{X<2$ or $X>4\}$; (ii) $B^{c}=\{X<4\} ;$ (iii) $A B=\{X=4\}$; (iv) $A \cup B=\{X \geq 2\}$.
1.24 (i) $\frac{34}{101}=0.337$; (ii) $\frac{12}{101}=0.119$.
1.25 We know

$$
P(A \cup B \cup C)+P(A \cup B \cup C)^{c}=P(A \cup B \cup C)+P\left(A^{c} B^{c} C^{c}\right)=1
$$

Given $P\left(A^{c} B^{c} C^{c}\right)=0$, if follows that $P(A \cup B \cup C)=1$.
We also know

$$
\begin{aligned}
P(A \cup B \cup C) & =P\left(A B^{c} C^{c}\right)+P\left(A^{c} B C^{c}\right)+P\left(A^{c} B^{c} C\right) \\
& +P(A B)+P(B C)+P(A C)-2 P(A B C)=1 .
\end{aligned}
$$

Given

$$
P(A B C)=P\left(A B^{c} C^{c}\right)=P\left(A^{c} B C^{c}\right)=P\left(A^{c} B^{c} C\right)=0 .
$$

Then $P(B C)+P(A B)+P(A C)=1$.
Thus $P(B)=P\left(A^{c} B C^{c}\right)+P(A B)+P(B C)-P(A B C)=0.8$.
1.26 (a) h; (b) $a+c+f$; (c) $d+e+b$; (d) g; (e) $1-h$; (f) $b+d+e+g$; (g) $a+c+f+h$;
(h) $1-g$.
1.27 (i) $1 / 8$; (ii) $5 / 8$; (iii) $1 / 8$.
$1.28 P(X=k)=(2 k-1) / 36$ for $k=1, \ldots, 6$.
1.29 (a) $\Omega=\{(1,1),(1,5),(1,10),(1,25),(5,1), \ldots,(25,25)\}$.
(b) $P(X=1)=1 / 16 ; P(X=5)=3 / 16 ; P(X=10)=5 / 16 ; P(X=25)=7 / 16$.
(c) $P($ Judith $>\mathrm{Joe})=P(\{(5,1),(10,5),(10,1),(25,10),(25,5),(25,1)\})=3 / 8$.
1.30 $P($ At least one 2$)=1-P($ No 2 's $)=1-(3 / 4)^{5}=0.7627$.
1.31 (a) Use geometric series fomular,

$$
\sum_{k=0}^{\infty} Q(k)=\sum_{k=0}^{\infty} \frac{2}{3^{k+1}}=\frac{2}{3}\left(\frac{1}{1-1 / 3}\right)=1 .
$$

(b) $P(X>2)=1-P(X \leq 2)=1-\frac{2}{3}-\frac{2}{9}-\frac{2}{27}=1 / 27$.
$1.32 c=e^{-3}=0.498$.
1.33 (a) $A \cup B \cup C$
(b) $A^{c} B C^{c}$
(c) $A B^{c} C^{c} \cup A^{c} B C^{c} \cup A^{c} B^{c} C \cup A^{c} B^{c} C^{c}$
(d) $A B C$
(e) $A^{c} B^{c} C^{c}$.
1.34 (a) $p /(1-p)=1 / 16$. Thus, $1-p=16 / 17$. (b) $p /(1-p)=2 / 9$ so $p=2 / 11$.
$1.351-(1 / 5+1 / 4+1 / 3)+(1 / 10+1 / 10+1 / 10)=31 / 60$.
1.36 (a) $P(A \cup B \cup C)=0.95$; (b) $P\left(A B^{c} C^{c} \cup A^{c} B C^{c} \cup A^{c} B^{c} C \cup A^{c} B^{c} C^{c}\right)=0.5$; (c) $P(A B C)=0.05$; (d) $P\left(A^{c} B^{c} C^{c}\right)=0.05$; (e) $P\left(A B C^{c} \cup A B^{c} C \cup A^{c} B^{c} C \cup A B C\right)=0.5$; (f) $P\left((A B C)^{c}\right)=0.95$.
1.37 By inclusion-exclusion as in Example 1.20:

$$
\begin{aligned}
P\left(D_{4} \cup D_{7} \cup D_{10}\right)= & P\left(D_{4}\right)+P\left(D_{7}\right)+P\left(D_{10}\right) \\
& -P\left(D_{28}\right)-P\left(D_{20}\right)-P\left(D_{70}\right)+P\left(D_{140}\right) \\
= & \frac{1}{5000}[1250+714+500-178-250-71+35]=\frac{2}{5}
\end{aligned}
$$

1.38 (a) By inclusion exclusion: $1 / 4+1 / 4-1 / 16=3 / 16$.
(b) By inclusion-exclusion: $1 / 4+1 / 4+1 / 4-(1 / 16+1 / 16+1 / 16)+1 / 64=37 / 64$.
1.39 Let $C=A B^{c} \cup A^{c} B$.

We have

$$
\begin{aligned}
& P(A \cup B)=P\left(A B^{c} \cup A^{c} B \cup A B\right)=P(C)+P(A B) \\
& P(A \cup B)=P(A)+P(B)-P(A B)
\end{aligned}
$$

Solving for $\mathrm{P}(\mathrm{C})$ gives the result.
1.40 Let $D=A B^{c} C^{c} \cup A^{c} B^{c} C \cup A B^{c} C^{c}$ be the event that exactly one event occurs. We have

$$
\begin{aligned}
P(A \cup B \cup C) & =P(D)+P\left(A B C^{c}\right)+P\left(A B^{c} C\right)+P\left(A^{c} B C\right)+P(A B C) \\
& =P(D)+(P(A B)+P(A C)+P(B C)-3 P(A B C))+P(A B C)
\end{aligned}
$$

Also,

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A B)-P(A C)-P(B C)+P(A B C)
$$

Solving for $\mathrm{P}(\mathrm{D})$ gives the result.

```
1.41 n <- }1000
    simlist <- vector(length=n)
    for (i in 1:n): {
    trial <- sample(0:1, 4, replace=TRUE)
    success <- if (sum(trial) == 1) 1 else 0
    simlist[i] <-success
    }
    mean(simlist)
```

```
1.42 simdivis<- function() {
    num <- sample(1:5000, 1)
    if(num%%4==0 || num%%%==0 || num%%%10==0) 1 else 0
    }
    simlist <- replicate(1000, simdivis())
    mean(simlist)
\(1.43 \mathrm{n}<-10000\)
    simlist <- vector(length=n)
    for (i in 1:n): {
    trial <- sample(1:6, 2, replace=TRUE)
    success <- if (sum(trial) >= 8) 1 else 0
    simlist[i] <-success
    }
    mean(simlist)
\(1.44 \mathrm{n}<-10000\)
simlist <- vector (length=n)
for (i in 1:n): \{
trial <- sample(1:4, 1, replace=TRUE)
success <- if (trial >= 2) 1 else 0
simlist[i] <-success
\}
mean(simlist)
```


Chapter 2

2.2 We know

$$
P(A B)=P(A \mid B) P(B)=(0.5)(0.3)=0.15
$$

Thus, $P(A \cup B)=P(A)+P(B)-P(A B)=0.3+0.3-0.15=0.45$.
2.3

$$
P(A \mid B)=\frac{P(A B)}{P(B)}=\frac{P(A)+P(B)-P(A B)}{P(B)}=\frac{2 p_{1}-p_{2}}{p_{1}}
$$

2.4 (a)

$$
\begin{aligned}
P(H H H \mid \text { First coin is } H) & =\frac{P(H H H \text { and First coin is } H)}{P(\text { First coin is } H)} \\
& =\frac{P(H H H)}{P(\text { First coin is } H)}=\frac{1 / 8}{1 / 2}=1 / 4 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(H H H \mid \text { One of the coins is } H) & =\frac{P(H H H \text { and one of the coins is } H)}{P(\text { One coin is } H)} \\
& =\frac{P(H H H)}{P(\text { One coin is } H)}=\frac{1 / 8}{7 / 8}=\frac{1}{7} .
\end{aligned}
$$

2.5 (a) 0 ; (b) 1 ; (c) $P(A) / P(B)$; (d) 1.
2.6 (1) We know

$$
\begin{aligned}
& P(A>B \mid A=3)=\frac{P(A>B \text { and } A=3)}{P(A=3)}=1 / 3 \\
& P(A>B \mid A=5)=\frac{P(A>B \text { and } A=5)}{P(A=5)}=2 / 3 \\
& P(A>B \mid A=7)=\frac{P(A>B \text { and } A=7)}{P(A=7)}=2 / 3 .
\end{aligned}
$$

Then

$$
\begin{aligned}
P(A>B) & =P(A>B \mid A=3) P(A=3) \\
& +P(A>B \mid A=5) P(A=5) \\
& +P(A>B \mid A=5) P(A=5)=5 / 9
\end{aligned}
$$

which is greater than $1 / 2$.
(2) Similarly,

$$
\begin{aligned}
P(B>C)= & P(B>C \mid B=2) P(B=2) \\
& +P(B>C \mid B=4) P(B=4) \\
& +P(B>C \mid B=9) P(B=9)=5 / 9
\end{aligned}
$$

And

$$
\begin{aligned}
P(C>A)= & P(C>A \mid C=1) P(C=1) \\
& +P(C>A \mid C=6) P(C=6) \\
& +P(C>A \mid C=8) P(C=8)=5 / 9
\end{aligned}
$$

2.7 (a) False.
(b) True.

$$
\begin{aligned}
P(A \mid B)+P\left(A^{c} \mid B\right) & =\frac{P(A B)}{P(B)}+\frac{P\left(A^{c} B\right)}{P(B)} \\
& =\frac{P(A B)+P\left(A^{c} B\right)}{P(B)}=1
\end{aligned}
$$

2.8

$$
P(\mathrm{C}-\mathrm{H}-\mathrm{A}-\mathrm{N}-\mathrm{C}-\mathrm{E})=\left(\frac{6}{15}\right)\left(\frac{3}{14}\right)\left(\frac{3}{13}\right)\left(\frac{3}{12}\right)\left(\frac{5}{11}\right)\left(\frac{3}{10}\right)=\frac{27}{40040}=0.000674
$$

2.9 The desired probability is 4 times the probability of a flush in one particular suit. This gives

$$
4\left(\frac{13}{52}\right)\left(\frac{12}{51}\right)\left(\frac{11}{50}\right)\left(\frac{10}{49}\right)\left(\frac{9}{48}\right)=0.001981
$$

2.10 By the tree diagram, the probability that the final ball is white is $2 / 15+2 / 15=4 / 15$.
2.11 (a) $p_{1}=P(A B \mid A)=P(A B) / P(A)$; (b) $p_{2}=P(A B \mid A \cup B)=P(A B) / P(A \cup B)$, since $A B \subseteq A \cup B$.
(c) Since $P(A) \leq P(A \cup B)$,

$$
p_{1}=\frac{P(A B)}{P(A)} \geq \frac{P(A B)}{P(A \cup B)}=p_{2}
$$

2.12

$$
\begin{aligned}
P(A B C) & =P(B \mid A C) P(A C)=P(B \mid A C) P(C \mid A) P(A) \\
& =\left(1-P\left(B^{c} \mid A C\right)\right) P(C \mid A) P(A)=(2 / 3)(1 / 4)(1 / 2)=\frac{1}{12} .
\end{aligned}
$$

2.13

$$
\begin{aligned}
P(A \cup B \mid C) & =\frac{P((A \cup B) C)}{P(C)}=\frac{P(A C \cup B C)}{P(C)} \\
& =\frac{P(A C)}{P(C)}+\frac{P(B C)}{P(C)}-\frac{P(A B C)}{P(C)} \\
& =P(A \mid C)+P(B \mid C)-P(A B \mid C)
\end{aligned}
$$

2.14 We want

$$
P(B)=1-\prod_{i=1}^{k-1}\left(1-\frac{i}{687}\right) \geq 0.5 .
$$

For $k=31, P(B)=0.497$; for $k=32, P(B)=0.520$. Thus $k=32$.
2.15 Apply the "birthday problem" with 5,000 "days" and 100 "people in the room." The desired probability is $1-\frac{5000 \times 4999 \cdots \times 4901}{5000 \times 5000 \cdots \times 5000}=0.63088$.
2.16 (a) Let H be the event that the selected card is a heart. Let M be the event that the missing card is heart.

$$
\begin{aligned}
P(H) & =P(H \mid M) P(M)+P\left(H \mid M^{c}\right) P\left(M^{c}\right) \\
& =\left(\frac{12}{51}\right)\left(\frac{1}{4}\right)+\left(\frac{13}{51}\right)\left(\frac{3}{4}\right)=\frac{1}{4} .
\end{aligned}
$$

(b) The selected card is equally likely to be one of the four suits. Thus $P(H)=1 / 4$.
2.17 (i)

The probability that Gummi Bears is chosen is $3 / 10+1 / 6=7 / 15$.
(ii) Let G be the event that Gummi Bears is chosen. Let A be the event that the first bag is chosen and B be the event that the second bag is chosen.

$$
\begin{aligned}
P(G) & =P(G \mid A) P(A)+P(G \mid B) P(B) \\
& =\left(\frac{3}{5}\right)\left(\frac{1}{2}\right)+\left(\frac{2}{6}\right)\left(\frac{1}{2}\right)=7 / 15=0.467 .
\end{aligned}
$$

2.18 (b)

$$
\begin{aligned}
P(A) & =P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+P\left(A \mid B_{3}\right) P\left(B_{3}\right)+P\left(A \mid B_{4}\right) P\left(B_{4}\right) \\
& =(1)\left(\frac{1}{16}\right)+\left(\frac{6}{9}\right)\left(\frac{9}{16}\right)+\left(\frac{2}{5}\right)\left(\frac{5}{16}\right)+0=\frac{9}{16} .
\end{aligned}
$$

2.19

$$
P\left(A \mid B^{c}\right)=\frac{P\left(A B^{c}\right)}{P\left(B^{c}\right)}=\frac{P(A)-P(A B)}{1-P(B)} .
$$

2.20 After adding a white counter there are three equally likely states: (i) The bag initially contains a black counter B_{1}. A white counter W_{2} is put into the bag and W_{2} is picked at the first draw; (ii) The bag initially contains a white counter W_{1}. A white counter W_{2} is put into the bag and W_{2} is picked at the first draw; and (iii) The bag initially contains a white counter W_{1}. A white counter W_{2} is put into the bag and W_{1} is picked at the first draw. Thus the probability that the second draw is a white counter is $2 / 3$.
2.22 Let A be the event that $H H$ first occurs, B be the event that $H T$ first occurs, H be the event that the first coin flip is a head, and T be the event that the first coin flip is a tail. Then,

$$
P(B)=P(B \mid H) P(H)+P(B \mid T) P(T)=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+P(B) \frac{1}{2}
$$

That is, $P(B)=1 / 2$.
2.23 Let A be the event that the youth is a smoker. Let B be the event that at least one parent is a smoker. We are given $P(A)=0.2, P(B)=0.3$, and $P(A \mid B)=0.35$. Then

$$
\begin{aligned}
P\left(A \mid B^{c}\right) & =\frac{P\left(A B^{c}\right)}{P\left(B^{c}\right)}=\frac{P(A)-P(A B)}{1-P(B)}=\frac{P(A)-P(A \mid B) P(B)}{1-P(B)} \\
& =\frac{0.2-(0.35)(0.3)}{0.7}=\frac{19}{140}=0.136 .
\end{aligned}
$$

2.24 Let B be the event that a woman has breast cancer, + be the event that a mammogram gives a positive result, and - be the event that a mammogram gives a negative result. We are given $P(B)=0.0238, P(+\mid B)=0.85$, and $P\left(+\mid B^{c}\right)=0.05$. By Bayes Formula,

$$
\begin{aligned}
P(B \mid+) & =\frac{P(+\mid B) P(B)}{P(+\mid B) P(B)+P\left(+\mid B^{c}\right) P\left(B^{c}\right)} \\
& =\frac{(0.85)(0.0238)}{(0.85)(0.0238)+(0.05)(0.9762)}=0.293
\end{aligned}
$$

2.25 Let L be the event that a person is a liar, + be the event that a polygraph test concludes lying, and - be the event that a polygraph test concludes not lying.
We know

$$
P\left(-\mid L^{c}\right)=0.9 \text { and } P(+\mid L)=0.9
$$

(a) Given $P(L)=0.05$,

Thus

$$
\begin{aligned}
P(L \mid+) & =\frac{P(+\mid L) P(L)}{P(+\mid L) P(L)+P\left(+\mid L^{c}\right) P\left(L^{c}\right)} \\
& =\frac{P(+\mid L) P(L)}{P(+\mid L) P(L)+\left(1-P\left(-\mid L^{c}\right)\right) P\left(L^{c}\right)} \\
& =0.321
\end{aligned}
$$

(b) Want $P(L \mid+) \geq 0.8$.

From (a), we know

$$
P(L \mid+)=\frac{P(+\mid L) P(L)}{P(+\mid L) P(L)+\left(1-P\left(-\mid L^{c}\right)\right) P\left(L^{c}\right)} \geq 0.8
$$

Since $P(+\mid L)=P\left(-\mid L^{c}\right)$, solving for $P(+\mid L)$, we get $P(+\mid L) \geq 0.987$. The polygraph must be 98.7% reliable.
2.26 Let B be the event that the cab is blue. Let b be the event that a witness asserts the cab is blue.
Given $P(b \mid B)=P\left(b^{c} \mid B^{c}\right)=0.8$ and $P(B)=0.05$,

Thus

$$
\begin{aligned}
P(B \mid b) & =\frac{P(b \mid B) P(B)}{P(b \mid B) P(B)+P\left(b \mid B^{c}\right) P\left(B^{c}\right)} \\
& =\frac{P(b \mid B) P(B)}{P(b \mid B) P(B)+\left(1-P\left(b^{c} \mid B^{c}\right)\right) P\left(B^{c}\right)} \\
& =0.174
\end{aligned}
$$

2.27 Let A be the event that the fair die is chosen, B be the event that the die with all $5^{\prime} s$ is chosen, and C be the event that the die with three $5^{\prime} s$ and three $4^{\prime} s$ is chosen.

$$
\begin{aligned}
P(A \mid 5) & =\frac{P(5 \mid A) P(A)}{P(5 \mid A) P(A)+P(5 \mid B) P(B)+P(5 \mid C) P(C)} \\
& =\frac{(1 / 6)(1 / 3)}{(1 / 6)(1 / 3)+(1)(1 / 3)+(1 / 2)(1 / 3)}=\frac{1 / 18}{10 / 18}=\frac{1}{10}
\end{aligned}
$$

2.28 (a)
n <- 10000
simlist <- vector (length=n)
for (i in 1:n)\{
trial <- sample(1:365, 23, replace=T)
success <- if (2 2% in $\backslash \%$ table(trial)) 1 else 0
simlist[i] <- success
\}
mean(simlist)
(b) $k=47$, (c) 0.967 , (d) $k=28$.
2.29 n <- 1000
simlist1 <- vector (length=n)
simlist2 <- vector (length=n)
simlist3 <- vector (length=n)
for (i in 1:n)\{
trialA <- sample $(c(3,3,5,5,7,7), 1$, replace=T)
trialB <- sample (c (2,2,4,4,9,9), 1, replace=T)
trialC <- sample $(c(1,1,6,6,8,8)$, 1 , replace=T)
success1 <- if (trialA >trialB) 1 else 0
success2 <- if (trialB >trialC) 1 else 0
success3 <- if (trialC >trialA) 1 else 0
simlist1[i] <-success1
simlist2[i] <-success2
simlist3[i] <-success3
\}
mean(simlist1); mean(simlist2) ; mean(simlist3)
2.30 n <- 1000
envelopes <- c("A", "B", "C", "D")

```
noswitchwin<-vector(length=n)
switchwin<-vector(length=n)
for (i in 1:n){
    win <- sample(envelopes,1)
    pick <- sample(envelopes,1)
    remove <- sample(envelopes[which(envelopes!= pick
            & envelopes!= win)], 2)
        switchyes <- envelopes[which(envelopes!= pick&envelopes!=
                remove[1]&envelopes!= remove[2])]
    noswitch <- if (pick==win) 1 else 0
    switch <- if (switchyes==win) 1 else 0
    noswitchwin[i] <- noswitch
    switchwin[i] <- switch
}
mean(noswitchwin); mean(switchwin)
```

After I choose an envelope, the probability that it contains the bill is $1 / 4$. The probability that the bill is in one of the other three envelopes is $3 / 4$. After two empty envelopes are removed, the probability that my envelope contains the bill has not changed, so the probability that the one on the table contains the bill is $3 / 4$. Thus I should switch.

Chapter 3

3.1

$$
\begin{aligned}
P\left(A^{c} B^{c}\right) & =1-P(A \cup B)=1-P(A)-P(B)+P(A B) \\
& =P\left(A^{c}\right)-P(B)+P(A) P(B)=P\left(A^{c}\right)-P(B)(1-P(A)) \\
& =P\left(A^{c}\right)-P(B) P\left(A^{c}\right)=P\left(A^{c}\right) P\left(B^{c}\right) .
\end{aligned}
$$

Thus A^{c} and B^{c} are independent.
3.2 (a) $P(A B C)=P(A) P(B) P(C)=(1 / 3)(1 / 4)(1 / 5)=1 / 60$.
(b) $P(A$ or B or $C)=1-P\left(A^{c} B^{c} C^{c}\right)=1-P\left(A^{c}\right) P\left(B^{c}\right) P\left(C^{c}\right)=3 / 5$.
(c) $P(A B \mid C)=P(A B)=P(A) P(B)=1 / 12$.
(d) $P(B \mid A C)=P(B)=1 / 4$.
(e)

$$
\begin{aligned}
& P\left(A B^{c} C^{c} \cup A^{c} B C^{c} \cup A^{c} B^{c} C \cup A^{c} B^{c} C^{c}\right) \\
& =P\left(A B^{c} C^{c}\right)+P\left(A^{c} B C^{c}\right)+P\left(A^{c} B^{c} C\right) \\
& +P\left(A^{c} B^{c} C^{c}\right)=P(A) P\left(B^{c}\right) P\left(C^{c}\right)+P\left(A^{c}\right) P(B) P\left(C^{c}\right) \\
& +P\left(A^{c}\right) P\left(B^{c}\right) P(C)+P\left(A^{c}\right) P\left(B^{c}\right) P\left(C^{c}\right)=5 / 6
\end{aligned}
$$

3.3 Let B denote the event that a tree is infected with bark disease and R denote the event that a tree is infected with root rot.

