
 1

 Copyright © 2018 Pearson Education, Inc.

Chapter 3

MORE FLOW OF CONTROL

1. Solutions for and Remarks on Selected Practice Programs and Programming Projects

In order to preserve flexibility of the text, the author has not dealt with classes in this chapter at all. To help

those who really want to do things with classes, some of the Programming Projects will be carried out using

one or several classes.

Practice Program 1: Rock Scissors Paper

Here each of two players types in one of strings "Rock", "Scissors", or "Paper". After the second player has

typed in the string, the winner of this game is determined and announced.

Rules:

 Rock breaks Scissors

 Scissors cuts Paper

 Paper covers Rock

 If both players give the same answer, then there is no winner.

A nice touch would be to keep and report total wins for each player as play proceeds.

To find the classes, we note first that there are 2 identical players. These players record the character entered,

and keep track of the wins. There is a constructor that sets the total wins to 0. There is a play() member

function that prompts for and gets from the keyboard returns one of the characters 'R', 'P', or 'S' for rock,

paper and scissors. There is an accessor member function for ch and an incrementor member function for

accumulated wins so that a stand alone function int win(ch, ch); can determine who wins and increment the

accumulated wins variable.

(A better solution would make the wins function a friend of class player so that wins can have access

to the each player's private data to determine who wins and update the accumulated wins without the accessor

function ch() and incrementWins() function.)

Note that I have left a bit of debugging code in the program.

class player

{

public function members

 constructors()

Problem Solving with C++ 10th Edition Savitch Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/problem-solving-with-c-10th-edition-savitch-solutions-manual/

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 2

 Copyright © 2018 Pearson Education, Inc.

 play(); // prompts for and gets this player's move

 char ch(); // accessor

 int accumulatedWins(); // accessor

 incrWins(); // increments win count

private data

 character typed in

 accumulatedWins

};

int wins(player user1, player user2);

//player1's character is compared to player2's character using accessor

// functions.

// wins returns

// 0 if there no winner

// 1 if player 1 wins,

// 2 if player 2 wins,

//calls the appropriate incrWins() to update the wins

Note that once the class is defined and the auxiliary function written, the code “almost writes itself.”

//Rock Paper Scissors game

//class/object solution

#include <iostream>

#include <cctype> //for int toupper(int);

using namespace std;

class Player

{

public:

 Player();

 void play(); //prompts for and gets this player's move

 char Ch(); //accessor

 int AccumulatedWins(); //accessor

 void IncrWins(); //increments win count

private:

 char ch; //character typed in

 int totalWins; //total of wins

};

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 3

 Copyright © 2018 Pearson Education, Inc.

Player::Player():totalWins(0)//intializer sets Player::totalWins to 0

{

 //The body is deliberately empty. This is the preferred C++ idiom.

 //This function could be written omitting the initializer, and

 //putting this line in the body:

 //totalWins = 0;

}

void Player::play()

{

 cout << "Please enter either R)ock, P)aper, or S)cissors."

 << endl;

 cin >> ch;

 ch = toupper(ch); //no cast needed, ch is declared to be char

}

char Player::Ch()

{

 return ch;

}

int Player::AccumulatedWins()

{

 return totalWins;

}

void Player::IncrWins()

{

 totalWins++;

}

int wins(Player& user1, Player& user2);

// player1's character is compared to player2's character

// using accessor functions.

// The function wins returns

// 0 if there no winner

// 1 if player 1 wins,

// 2 if player 2 wins,

//calls the appropriate IncrWins() to update the wins

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 4

 Copyright © 2018 Pearson Education, Inc.

int wins(Player& user1, Player& user2) // this must change user1

 // and user2

{

 if(('R' == user1.Ch() && 'S' == user2.Ch())||

 ('P' == user1.Ch() && 'R' == user2.Ch())||

 ('S' == user1.Ch() && 'P' == user2.Ch()))

 {

 // user 1 wins

 user1.IncrWins();

 return 1;

 }

 else if(('R' == user2.Ch() && 'S' == user1.Ch())

 || ('P' == user2.Ch() && 'R' == user1.Ch())

 || ('S' == user2.Ch() && 'P' == user1.Ch()))

 {

 // user2 wins

 user2.IncrWins();

 return 2;

 }

 else

 // no winner

 return 0;

}

int main()

{

 Player player1;

 Player player2;

 char ans = 'Y';

 while ('Y' == ans)

 {

 player1.play();

 player2.play();

 switch(wins(player1, player2))

 {

 case 0:

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 5

 Copyright © 2018 Pearson Education, Inc.

 cout << "No winner. " << endl

 << "Totals to this move: " << endl

 << "Player 1: " << player1.AccumulatedWins()

 << endl

 << "Player 2: " << player2.AccumulatedWins()

 << endl

 << "Play again? Y/y continues other quits";

 cin >> ans;

 cout << "Thanks " << endl;

 break;

 case 1:

 cout << "Player 1 wins." << endl

 << "Totals to this move: " << endl

 << "Player 1: " << player1.AccumulatedWins()

 << endl

 << "Player 2: " << player2.AccumulatedWins()

 << endl

 << "Play Again? Y/y continues, other quits. ";

 cin >> ans;

 cout << "Thanks " << endl;

 break;

 case 2:

 cout << "Player 2 wins." << endl

 << "Totals to this move: " << endl

 << "Player 1: " << player1.AccumulatedWins()

 << endl

 << "Player 2: " << player2.AccumulatedWins()

 << endl

 << "Play Again? Y/y continues, other quits.";

 cin >> ans;

 cout << "Thanks " << endl;

 break;

 }

 ans = toupper(ans);

 }

 return 0;

}

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 6

 Copyright © 2018 Pearson Education, Inc.

A typical run for the class/object solution follows:

Please enter either R)ock, P)aper, or S)cissors.

R

Please enter either R)ock, P)aper, or S)cissors.

S

inside IncrWins()

1

Player 1 wins.

Totals to this move:

Player 1: 1

Player 2: 0

Play Again? Y/y continues, other quits. y

Thanks

Please enter either R)ock, P)aper, or S)cissors.

S

Please enter either R)ock, P)aper, or S)cissors.

P

inside IncrWins()

2

Player 1 wins.

Totals to this move:

Player 1: 2

Player 2: 0

Play Again? Y/y continues, other quits. y

Thanks

Please enter either R)ock, P)aper, or S)cissors.

P

Please enter either R)ock, P)aper, or S)cissors.

S

inside IncrWins()

1

Player 2 wins.

Totals to this move:

Player 1: 2

Player 2: 1

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 7

 Copyright © 2018 Pearson Education, Inc.

Play Again? Y/y continues, other quits.y

Thanks

Please enter either R)ock, P)aper, or S)cissors.

P

Please enter either R)ock, P)aper, or S)cissors.

P

No winner.

Totals to this move:

Player 1: 2

Player 2: 1

Play again? Y/y continues other quits q

Thanks

Practice Program 1. Rock Scissors Paper -- Conventional solution:

Here each of two players types in one of strings "Rock", "Scissors", or "Paper". After the second player has

typed in the string, the winner of this game is determined and announced.

Rules:

 Rock breaks Scissors

 Scissors cuts Paper

 Paper covers Rock

 If both players give the same answer, then there is no winner.

A nice touch would be to keep and report total wins for each player as play proceeds.

This is a conventional solution to the problem.

//conventional solution to the Rock Scissors Paper game

#include <iostream> // stream io

#include <cctype> // for int toupper(int)

using namespace std;

int wins(char ch1, char ch2)

{

 if(('R' == ch1 && 'S' == ch2)||

 ('P' == ch1 && 'R' == ch2)||

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 8

 Copyright © 2018 Pearson Education, Inc.

 ('S' == ch1 && 'P' == ch2))

 return 1; // player 1 wins

 else if(('R' == ch2 && 'S' == ch1)||

 ('P' == ch2 && 'R' == ch1)||

 ('S' == ch2 && 'P' == ch1))

 return 2; // player 2 wins

 else

 return 0; // no winner

}

char play()

{

 char ch;

 cout << "Please enter either R)ock, P)aper, or S)cissors." << endl;

 cin >> ch;

 return toupper(ch); // no cast needed, char is return type

}

int main()

{

 int wins_1 = 0;

 int wins_2 = 0;

 char ch1;

 char ch2;

 char ans = 'Y';

 while ('Y' == ans)

 {

 ch1 = play();

 ch2 = play();

 switch(wins(ch1, ch2))

 {

 case 0:

 cout << "No winner. " << endl

 << "Totals to this move: " << endl

 << "Player 1: " << wins_1 << endl

 << "Player 2: " << wins_2 << endl

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 9

 Copyright © 2018 Pearson Education, Inc.

 << "Play again? Y/y continues other quits";

 cin >> ans;

 cout << "Thanks " << endl;

 break;

 case 1:

 wins_1++;

 cout << "Player 1 wins." << endl

 << "Totals to this move: " << endl

 << "Player 1: " << wins_1 << endl

 << "Player 2: " << wins_2 << endl

 << "Play Again? Y/y continues, other quits. ";

 cin >> ans;

 cout << "Thanks " << endl;

 break;

 case 2:

 wins_2++;

 cout << "Player 2 wins." << endl

 << "Totals to this move: " << endl

 << "Player 1: " << wins_1 << endl

 << "Player 2: " << wins_2 << endl

 << "Play Again? Y/y continues, other quits.";

 cin >> ans;

 cout << "Thanks " << endl;

 break;

 }

 ans = toupper(ans);

 }

 return 0;

}

A typical run follows for the conventional solution is essentially the same as for the ‘class’ based solution.

Practice Problem 2: Credit Account problem. -- class/object solution

Compute interest due, total amount due, and minimum payment for a revolving credit account.

Inputs: account balance

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 10

 Copyright © 2018 Pearson Education, Inc.

Process: Computes interest

 interest according to:

 1.5% on 1st $1000

 1.0% on all over $1000

 adds this to account balance get total due.

 Computes minimum payment according to:

 if amount due < $10,

 minimum payment is total due

 else

 minimum payment is 10% of total due

outputs: Interest due, total amount due, minimum payment

The class is the account.

the public interface has functions:

 constructors

 default constructor

 constructor with parameter balance,

 computes interest, total due, minimum pay

 interestDue() reports interest

 totalDue() reports total amount due

 minPayDue() reports minimum payment due

private data

 balance

 total due

 interest due

 minimum payment

Class-object Implementation:

//Interest

//class-object solution

//Purpose: Compute interest due, total amount due, and minimum payment

//for a revolving credit account.

//

//Inputs: account balance

//

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 11

 Copyright © 2018 Pearson Education, Inc.

//Process: Computes interest

// interest according to:

// 1.5% on 1st $1000 of balance

// 1.0% on all over $1000 of balance

// adds this to account balance get total due.

// Computes minimum payment according to:

// if amount due < $10,

// minimum payment is total due

// else

// minimum payment is 10% of total due

//

//outputs: Interest due, total amount due, minimum payment

#include <iostream>

using namespace std;

const double INTEREST_RATE1 = 0.015;

const double INTEREST_RATE2 = 0.01;

const double MINPAY_FRACTION = 0.10;

class CreditAccount

{

public:

 CreditAccount(); // sets everything to 0

 CreditAccount(double balance);// computes everything needed

 double interestDue();

 double totalDue();

 double minPayDue();

private:

 double balance;

 double interestDue;

 double totalDue;

 double minPay;

};

double CreditAccount::interestDue()

{

 return interestDue;

}

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 12

 Copyright © 2018 Pearson Education, Inc.

double CreditAccount::totalDue()

{

 return totalDue;

}

double CreditAccount::minPayDue()

{

 return minPay;

}

CreditAccount::CreditAccount()

 :balance(0),totalDue(0), interestDue(0), minPay(0)

{

 //Body deliberately left empty.

 //This is a C++ idiom. See this IRM Chapter 10.

 // This is covered in Appendix 7 of the text

}

CreditAccount::CreditAccount(double balance)

{

 if (balance <= 1000)

 interestDue = balance*INTEREST_RATE1;

 else if (balance > 1000)

 interestDue = 1000*INTEREST_RATE1 + (balance - 1000)*INTEREST_RATE2;

 totalDue = balance + interestDue;

 if (totalDue <= 10)

 minPay = totalDue;

 else

 minPay = totalDue * MINPAY_FRACTION;

}

int main()

{

 cout.setf(ios::showpoint);

 cout.setf(ios::fixed);

 cout.precision(2);

 char ans;

 double balance;

 do

 {

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 13

 Copyright © 2018 Pearson Education, Inc.

 cout << "Enter the account balance, please: " ;

 cin >> balance;

 CreditAccount account(balance);

 cout << "Interest due: " << account.interestDue() << endl

 << "Total due: " << account.totalDue() << endl

 << "Minimum Payment: " << account.minPayDue() << endl;

 cout << "Y/y repeats. any other quits" << endl;

 cin >> ans;

 }

 while('y' ==ans || 'Y' == ans);

}

A typical run for the class/object solution follows:

Enter the account balance, please: 9.00

Interest due: 0.14

Total due: 9.13

Minimum Payment: 9.13

Y/y repeats. any other quits

y

Enter the account balance, please: 9.85

Interest due: 0.15

Total due: 10.00

Minimum Payment: 10.00

Y/y repeats. any other quits

y

Enter the account balance, please: 985.22

Interest due: 14.78

Total due: 1000.00

Minimum Payment: 100.00

Y/y repeats. any other quits

y

Enter the account balance, please: 1000

Interest due: 15.00

Total due: 1015.00

Minimum Payment: 101.50

Y/y repeats. any other quits

y

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 14

 Copyright © 2018 Pearson Education, Inc.

Enter the account balance, please: 2000

Interest due: 25.00

Total due: 2025.00

Minimum Payment: 202.50

Y/y repeats. any other quits

q

Practice Problem 2: Credit Account problem -- Conventional solution

Compute interest due, total amount due, and minimum payment for a revolving credit account.

Inputs: account balance

Process: Computes interest

 interest according to:

 1.5% on 1st $1000

 1.0% on all over $1000

 adds this to account balance get total due.

 Computes minimum payment according to:

 if amount due < $10,

 minimum payment is total due

 else

 minimum payment is 10% of total due

outputs: Interest due, total amount due, minimum payment

data

 balance

 total due

 interest due

 minimum payment

//conventional solution

//

//Purpose: Compute interest due, total amount due, and minimum payment

//for a revolving credit account.

//

//Inputs: account balance

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 15

 Copyright © 2018 Pearson Education, Inc.

//

//Process: Computes interest

// interest according to:

// 1.5% on 1st $1000 of balance

// 1.0% on all over $1000 of balance

// adds this to account balance get total due.

// Computes minimum payment according to:

// if amount due < $10,

// minimum payment is total due

// else

// minimum payment is 10% of total due

//

//Outputs: Interest due, total amount due, minimum payment

#include <iostream>

using namespace std;

const double INTEREST_RATE1 = 0.015;

const double INTEREST_RATE2 = 0.01;

const double MINPAY_FRACTION = 0.10;

double interestDue(double balance)

{

 if (balance <= 1000)

 return balance*INTEREST_RATE1;

 return 1000*INTEREST_RATE1 + (balance - 1000)*INTEREST_RATE2;

}

double minPay(double totalDue)

{

 if (totalDue <= 10)

 return totalDue;

 return totalDue * MINPAY_FRACTION;

}

int main()

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 16

 Copyright © 2018 Pearson Education, Inc.

{

 double balance;

 double interestDue;

 double totalDue;

 double minPay;

 cout.setf(ios::showpoint);

 cout.setf(ios::fixed);

 cout.precision(2);

 char ans;

 do

 {

 cout << "Enter the account balance, please: " ;

 cin >> balance;

 interestDue = interestDue(balance);

 totalDue = balance + interestDue;

 minPay = minPay(totalDue);

 cout << "Interest due: " << interestDue << endl

 << "Total due: " << totalDue << endl

 << "Minimum Payment: " << minPay << endl;

 cout << "Y/y repeats. any other quits" << endl;

 cin >> ans;

 }

 while ('y' ==ans || 'Y' == ans);

}

A typical run for the conventional solution does not differ significantly from the ‘class’ based solution.

Practice Program 3: Astrology Class/Object solution.

Notes:

I have not done a conventional solution. All the bits and pieces necessary to do a conventional solution are

present here. I also have not done the enhancements suggested. I have, however, included comments that

suggest how to carry out these enhancements.

I have used slightly modified new_line and display_line code from the text. Encourage students not to

reinvent the wheel, that is, to use bits and pieces code from the book and other sources as long as copyrights

are not violated.

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 17

 Copyright © 2018 Pearson Education, Inc.

I used a library book on astrology for my reference. A newspaper works as well.

Planning:

Input: user's birthday. Month 1-12, day 1-31

Process: table lookup of signs and horoscopes, with repeat at user's option

Output: Sign of the Zodiac and horoscope for that birthday.

 Hint: user a newspaper horoscope for names, dates and a

 horoscope for each sign.

 Enhancement: If birthday is within 2 days of the adjacent

 sign, announce that the birthdate is on a "cusp" and output

 the horoscope for the adjacent sign also.

Comments and suggestions. Program will have a long multiway

 branch. Store the horoscopes in a file.

Ask your instructor for any special instructions, such as file name or

 location if this is a class assignment.

Planning for the solution:

What are the object and classes?

The Astrological Chart would be the class if we were doing a full chart. We are only selecting the Sun

Sign, but we still let Astro be the class.

Zodiac Sign names and dates:

Aries March 21 - April 19

Taurus April 20 - May 20

Gemini May 21 - June 21

Cancer June 22 - July 22

Leo July 23 - August 22

Virgo August 23 - September 22

Libra September 23 - October 22

Scorpio October 23 - November 21

Sagittarius November 22 - December 21

Capricorn December 21 - January 19

Aquarius January 19 - February 18

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 18

 Copyright © 2018 Pearson Education, Inc.

Pices February 19 - March 20

Horoscope file structure.

The initial <cr> is necessary given this code to prevent output from running on from the first horoscope. (We

did not make use of the sign number.)

<cr>

sign number

horoscope

sign number

horoscope

and so on.

Pseudocode for the class and what member functions do...

class Astro

{

public:

 constructors

 Astro();

 Astro(Date birthday);

 looks up and sets the sign number,

Enhancement:

 sets iscusp to -1 if birthday is within 2 days

 before the adjacent sign, to -1 if within 2 days

 after adjacent sign and 0 if neither.

 member functions

 void horoscope ();

Enhancement:

 if iscusp == -1, report horoscope before the

 current one and the current one.

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 19

 Copyright © 2018 Pearson Education, Inc.

 else if iscusp == 1, report the current horoscope

 and the one following.

 else // iscusp == 0, do the default action:

Unenhanced action:

 Dump the horoscopes from file up to the current one.

 Display current horoscope.

How? # is sentinel for end of a horoscope. Dump horoscopes

 through (signNumber -1) # symbols, using utility

 functions. Display through next # using utility

 functions.

private:

 Day birthday;

 int signNumber;

 void newHoroscope(istream & inStream);

 // display inStream to next # and discard the #

 void displayHoroscope(istream& sourceFile);

 // read and ignore inStream through the next #

//Enhancement:

// int isCusp(};

Planning done, now to the coding. The contents of “horoscope.dat” are listed with the ‘typical run’ at the end

of the following code.

// Requires file "horoscope.dat" having structure

// lines of text

// #

// lines of text

// #

// ...

// lines of text

// #

#include <fstream> //for stream io

#include <stdlib> //for exit()

using namespace std;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 20

 Copyright © 2018 Pearson Education, Inc.

// an enum could have certainly been used here

const int aries = 1;

const int taurus = 2;

const int gemini = 3;

const int cancer = 4;

const int leo = 5;

const int virgo = 6;

const int libra = 7;

const int scorpio = 8;

const int Sagittarius = 9;

const int capricorn = 10;

const int aquarius = 11;

const int pisces = 12;

//const makes certain no error that changes these constants is made.

struct month //no checking is done... Let the user be warned!

{

 int day; // 1..28, or 29 or 30 or 31, depending on month.

 int month; // 1..12

};

class Astro

{

public:

 Astro();

 Astro(month birthday);

// looks up and sets the sign number

//Enhancement: sets iscusp to -1 if birthday is within 2 days

// before the adjacent sign, to -1 if within 2 days

// after adjacent sign and 0 if neither.

 void horoscope ();

//Enhancement: if iscusp == -1,

// dump (signNumber - 2) horoscopes

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 21

 Copyright © 2018 Pearson Education, Inc.

// else if iscusp == 1

// dump (signNumber - 1) horoscopes

// display next two horoscopes.

// return;

// unenhanced action: if we get here, iscusp == 0 so we

// dump (signNumber - 1) horoscopes,

// display next horoscope.

private:

 month birthday;

 int signNumber;

 void newHoroscope(istream & inStream);

 void displayHoroscope(istream& sourceFile);

//Enhancement:

// int isCusp;

};

// dumps all from file through the next #

void Astro::newHoroscope(istream & inStream)

{

 char symbol;

 do

 {

 inStream.get(symbol);

 } while(symbol != '#');

}

//displays all from file through the next #

void Astro::displayHoroscope(istream& sourceFile)

{

 char next;

 sourceFile.get(next);

 while ('#' != next)

 {

 cout << next;

 sourceFile.get(next);

 }

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 22

 Copyright © 2018 Pearson Education, Inc.

}

void Astro::horoscope()

{

 ifstream infile;

 infile.open("horoscope.dat");

 int c;

 // cusp == 0 case: dump signNumber - 1 horoscopes.

 for (int i = 1; i < signNumber; i++)

 newHoroscope(infile);

 displayHoroscope(infile);

 cout << endl;

 //Enhancement, change from //cusp==0 case:

 //so that

 // if (cusp == -1)

 // dump thru (signNumber - 2) horoscopes

 // else if(cusp == 1)

 // dump thru (signNumber - 1) hororscopes

 // from this position,

 // display two horoscopes

 // return

 // this is the cusp = 0 case, as above.

}

Astro::Astro() // I prefer to use the class initializer list

{ // notation. This follows the text

 signNumber = 0;

 // isCusp = 0; // for one of the enhancements I did not do

}

Astro::Astro(month birthday)

//int signNumber(month birthday) // to test this turkey

// looks up and sets the sign number,

{

 switch(birthday.month)

 {

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 23

 Copyright © 2018 Pearson Education, Inc.

 case 1:

 if (birthday.day <= 19) signNumber = capricorn;

 else signNumber = aquarius;

// enhancement code will look like this in all the cases:

// if (17 <= birthday.day && birthday.day < 19)cusp = -1;

// else if (19 < birthday.day && birthday.day <= 21)cusp = -1;

// else cusp = 0;

//

 break;

 case 2:

 if (birthday.day <= 18) signNumber = aquarius;

 else signNumber = pisces;

 break;

 case 3:

 if (birthday.day <=20) signNumber = pisces;

 else signNumber = aries;

 break;

 case 4:

 if (birthday.day <= 19) signNumber = aries;

 else signNumber = taurus;

 break;

 case 5:

 if (birthday.day <= 20) signNumber = taurus;

 else signNumber = gemini;

 break;

 case 6:

 if (birthday.day <= 21) signNumber = gemini;

 else signNumber = cancer;

 break;

 case 7:

 if (birthday.day <= 22) signNumber = cancer;

 else signNumber = leo;

 break;

 case 8:

 if (birthday.day <= 22) signNumber = leo;

 else signNumber = virgo;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 24

 Copyright © 2018 Pearson Education, Inc.

 break;

 case 9:

 if (birthday.day <= 22) signNumber = virgo;

 else signNumber = libra;

 break;

 case 10:

 if (birthday.day <= 22) signNumber = libra;

 else signNumber = scorpio;

 break;

 case 11:

 if (birthday.day <= 21) signNumber = scorpio;

 else signNumber = sagittarius;

 break;

 case 12:

 if (birthday.day <= 21) signNumber = sagittarius;

 else signNumber = capricorn;

 break;

 default: cout << "no such month as " << birthday.month

 << " Aborting " << endl;

 exit(1);

 break;

 }

}

int main()

{

 month birthday;

 cout << "Any non-digit in the month field will terminate the program."

 << endl;

 cout << "Enter birthday in numeric form: month day, as 12 5 : "

 << endl;

 cin >> birthday.month >> birthday.day;

 do

 {

 cout << birthday.month << " " << birthday.day;

 Astro user(birthday);

 user.horoscope();

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 25

 Copyright © 2018 Pearson Education, Inc.

 cout << "Enter birthday in numeric form: month day, as 12 5: " << endl;

 cin >> birthday.month >> birthday.day;

 } while (cin);

}

Test Data and Runs.

Space restrictions prohibit including a complete horoscope here for each Sun Sign. I have created an

abbreviated test file for Horoscopes. (The carriage return at the start of the file is necessary to obtain a

carriage return before the Aries horoscope.)

$cat horoscope.dat

1 Aries

2 Taurus

3 Gemini

4 Cancer

5 Leo

6 Virgo

7 Libra

8 Scorpio

9 Sagittarius

10 Capricorn

11 Aquarius

12 Pisces

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 26

 Copyright © 2018 Pearson Education, Inc.

A shortened typical run with the test data file following:

a.out < data | less

Test data: first entry is the month, second is the day:

cat data

1 19

1 20

1 21

2 18

2 19

 several dates omitted

10 24

11 20

11 21

11 22

12 21

12 22

12 23

Output from this run:

Enter birthday in numeric form: day month, as 12 5:

1 19

10 Capricorn

Enter birthday in numeric form: day month, as 12 5:

1 20

11 Aquarius

Enter birthday in numeric form: day month, as 12 5:

1 21

11 Aquarius

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 27

 Copyright © 2018 Pearson Education, Inc.

Several lines of output have been deleted.

Enter birthday in numeric form: day month, as 12 5:

12 21

9 Sagittarius

Enter birthday in numeric form: day month, as 12 5:

12 22

10 Capricorn

Enter birthday in numeric form: day month, as 12 5:

12 23

10 Capricorn

Enter birthday in numeric form: day month, as 12 5:

Practice Program 4: Modify Horoscope

// Modify Practice Program 3 to request the user's birthday then

// to display the three most compatible astrological signs

// (having the same Element)

//

// Elements are Earth, Air, Fire, and Water,

// Fire signs are Aries, Leo, Sagittarius

// Earth signs are Taurus, Virgo, Capricorn

// Air signs are Gemini, Libra, Aquarius

// Water signs are Cancer, Scorpio, Pisces

//

// Known Bugs:

// Day number is only partially verified. Program aborts if the

// day number > 31. No further checking is done for day input errors

// such as Feb 29 on non-leap-years or April 31.

// Enhancements suggested from #3 are not implemented. Hints

// on how to do the enhancements are given in strategic places

// in comments.

// Program: file: ch3.3.cc

// Requires file "horoscope.dat" having structure

// lines of text

// #

// lines of text

// #

// ...

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 28

 Copyright © 2018 Pearson Education, Inc.

// lines of text

// #

#include <iostream>

#include <fstream> //for stream io

#include <cstdlib> //for exit()

using namespace std;

//using std::cout;

//using std::cin;

//using std::endl;

// an enum could have certainly been used here

// enum Signs {aries = 1, Taurus, gemini, cancer, leo, virgo,

// libra, scorpio, sagittarius, capricorn, aquarius, pisces};

const int aries = 1;

const int taurus = 2;

const int gemini = 3;

const int cancer = 4;

const int leo = 5;

const int virgo = 6;

const int libra = 7;

const int scorpio = 8;

const int sagittarius = 9;

const int capricorn = 10;

const int aquarius = 11;

const int pisces = 12;

//const makes certain no error that changes these constants is made.

struct month //no checking is done... Let the user be warned!

{

 int day; // 1..28, or 29 or 30 or 31, depending on month.

 int monthName; // 1..12

};

class Astro

{

public:

 Astro();

 Astro(month birthday);

// looks up and sets the sign number

//Enhancement: sets iscusp to -1 if birthday is within 2 days

// before the adjacent sign, to -1 if within 2 days

// after adjacent sign and 0 if neither.

 void horoscope ();

//Enhancement: if iscusp == -1,

// dump (signNumber - 2) horoscopes

// else if iscusp == 1

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 29

 Copyright © 2018 Pearson Education, Inc.

// dump (signNumber - 1) horoscopes

// display next two horoscopes.

// return;

// unenhanced action: if we get here, iscusp == 0 so we

// dump (signNumber - 1) horoscopes,

// display next horoscope.

 void DisplayCompatibleSigns();

 // for the current user's birthday,

 // this displays the three signs having

 // the same Element

private:

 month birthday;

 int signNumber;

 void newHoroscope(istream & inStream);

 void displayHoroscope(istream& sourceFile);

//Enhancement:

// int isCusp;

};

// dumps all from file through the next #

void Astro::newHoroscope(istream & inStream)

{

 char symbol;

 if(!inStream)

 {

 cout << "file not open\n";

 abort();

 }

/*

//DEBUGGING

else

 cout << "file opened OK, continuing\n";

char x[80];

cout << "enter anything followed by <cr> to continue\n";

cin >> x;

//END DEBUGGING

*/

 do

 {

 inStream.get(symbol);

 } while(symbol != '#');

}

//displays all from file through the next #

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 30

 Copyright © 2018 Pearson Education, Inc.

void Astro::displayHoroscope(istream& sourceFile)

{

 cout << "Your Sign number and Horoscope is: ";

 char next;

 sourceFile.get(next);

 while ('#' != next)

 {

 cout << next;

 sourceFile.get(next);

 }

}

void Astro::horoscope()

{

 ifstream infile;

 infile.open("horoscope.dat");

 if (!infile)

 {

 cout << "horoscope.dat did not open. Aborting\n";

 abort();

 }

//char c;

/*

infile.get(c);

if (' ' == c)

 cout << "first char in horoscope.dat is a space OK \n";

else

 cout << "first char in horoscope dat is " << c << endl;

*/

 // int c;

 // cusp == 0 case: dump signNumber - 1 horoscopes.

// cout << "signNumber " << signNumber << endl;

 for (int i = 1; i < signNumber; i++)

 newHoroscope(infile);

 displayHoroscope(infile);

// cout << endl;

 //Enhancement, change from //cusp==0 case:

 //so that

 // if (cusp == -1)

 // dump thru (signNumber - 2) horoscopes

 // else if(cusp == 1)

 // dump thru (signNumber - 1) hororscopes

 // from this position,

 // display two horoscopes

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 31

 Copyright © 2018 Pearson Education, Inc.

 // return

 // this is the cusp = 0 case, as above.

}

Astro::Astro() // I prefer to use the class initializer list

{ // notation. This follows the text

 cout << "Astro::Astro()\n";

 signNumber = 0;

 // isCusp = 0; // for one of the enhancements I did not do

}

Astro::Astro(month birthday)

{

 if(birthday.day <=0 || birthday.day > 31)

 {

 cout << "no such day as " << birthday.day << "aborting \n";

 exit(1);

 }

 switch(birthday.monthName)

 {

 case 1:

 if (birthday.day <= 19) signNumber = capricorn;

 else signNumber = aquarius;

// enhancement code will look like this in all the cases:

// if (17 <= birthday.day && birthday.day < 19)cusp = -1;

// else if (19 < birthday.day && birthday.day <= 21)cusp = -1;

// else cusp = 0;

//

 break;

 case 2:

 if (birthday.day <= 18) signNumber = aquarius;

 else signNumber = pisces;

 break;

 case 3:

 if (birthday.day <=20) signNumber = pisces;

 else signNumber = aries;

 break;

 case 4:

 if (birthday.day <= 19) signNumber = aries;

 else signNumber = taurus;

 break;

 case 5:

 if (birthday.day <= 20) signNumber = taurus;

 else signNumber = gemini;

 break;

 case 6:

 if (birthday.day <= 21) signNumber = gemini;

 else signNumber = cancer;

 break;

 case 7:

 if (birthday.day <= 22) signNumber = cancer;

 else signNumber = leo;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 32

 Copyright © 2018 Pearson Education, Inc.

 break;

 case 8:

 if (birthday.day <= 22) signNumber = leo;

 else signNumber = virgo;

 break;

 case 9:

 if (birthday.day <= 22) signNumber = virgo;

 else signNumber = libra;

 break;

 case 10:

 if (birthday.day <= 22) signNumber = libra;

 else signNumber = scorpio;

 break;

 case 11:

 if (birthday.day <= 21) signNumber = scorpio;

 else signNumber = sagittarius;

 break;

 case 12:

 if (birthday.day <= 21) signNumber = sagittarius;

 else signNumber = capricorn;

 break;

 default: cout << "no such month as " << birthday.monthName

 << " Aborting " << endl;

 exit(1);

 break;

 }

}

// for the current user's birthday,

// this displays the three signs having

// the same Element

void Astro::DisplayCompatibleSigns()

{

 cout << "Compatible Signs are: ";

 switch(signNumber)

 {

 case 1: cout << "Leo, Sagittarius"; // Aries

 break;

 case 2: cout << "Virgo, Capricorn"; // Taurus

 break;

 case 3: cout << "Libra, Aquarius"; // Gemini

 break;

 case 4: cout << "Scorpio, Pices"; // Cancer

 break;

 case 5: cout << "Sagittarius, Aries"; // Leo

 break;

 case 6: cout << "Capricorn, Taurs"; // Virgo

 break;

 case 7: cout << "Aquarius, Gemini"; // Libra

 break;

 case 8: cout << "Pices, Cancer "; // Scorpio

 break;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 33

 Copyright © 2018 Pearson Education, Inc.

 case 9: cout << "Aries, Leo"; // Sagittarius

 break;

 case 10:cout << "Taurus, Virgo"; // Capricorn

 break;

 case 11:cout << "Gemini, Libra"; // Aquarius

 break;

 case 12:cout << "Cancer, Scorpio"; // Pices

 break;

 default: cout << "Bad signNumber "

 << signNumber << "aborting\n";

 abort();

 }

 cout << endl;

}

int main()

{

 month birthday;

 cout << "Gives Horoscope and Compatible Signs\n\n"

 << "Any non-digit in the month field terminates the program.\n\n"

 << "Enter birthday in numeric form: month day, as 12 5 : \n";

 cin >> birthday.monthName >> birthday.day;

 do

 {

 cout << "\nYou entered: "

 << "month " << birthday.monthName << " day: " << birthday.day

<< endl;

 Astro user(birthday);

 user.horoscope();

 user.DisplayCompatibleSigns();

 cout << endl;

 cout << "Enter birthday in numeric form: month day, as 12 5: " <<

endl;

 cin >> birthday.monthName >> birthday.day;

 } while (cin);

 return 0;

}

/*

Test Data and Runs.

Space restrictions prohibit including a complete horoscope here for each

Sun Sign. I have created an abbreviated test file for Horoscopes. (The

carriage return at the start of the file is necessary to obtain a

carriage return before an Aries horoscope.)

$type horoscope.dat

1 Aries

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 34

 Copyright © 2018 Pearson Education, Inc.

2 Taurus

3 Gemini

4 Cancer

5 Leo

6 Virgo

7 Libra

8 Scorpio

9 Sagittarius

10 Capricorn

11 Aquarius

12 Pisces

Test data: first entry is the month, second is the day:

> type data.dat

1 19

1 20

1 21

2 18

2 19

3 3

4 15

4 20

5 17

5 23

10 24

11 20

11 21

11 22

12 21

12 22

12 23

Command to run with the test data file is:

a.out < data | more // Or use your favorite pager.

Output:

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 35

 Copyright © 2018 Pearson Education, Inc.

Gives Horoscope and Compatible Signs

Any non-digit in the month field terminates the program.

Enter birthday in numeric form: month day, as 12 5 :

You entered: month 1 day: 19

Your Sign number and Horoscope is:

10 Capricorn

Compatible Signs are: Taurus, Virgo

Enter birthday in numeric form: month day, as 12 5:

You entered: month 1 day: 20

Your Sign number and Horoscope is:

11 Aquarius

Compatible Signs are: Gemini, Libra

Enter birthday in numeric form: month day, as 12 5:

You entered: month 1 day: 21

Your Sign number and Horoscope is:

11 Aquarius

Compatible Signs are: Gemini, Libra

Enter birthday in numeric form: month day, as 12 5:

You entered: month 2 day: 18

Your Sign number and Horoscope is:

11 Aquarius

Compatible Signs are: Gemini, Libra

Enter birthday in numeric form: month day, as 12 5:

You entered: month 2 day: 19

Your Sign number and Horoscope is:

12 Pisces

Compatible Signs are: Cancer, Scorpio

Enter birthday in numeric form: month day, as 12 5:

You entered: month 3 day: 3

Your Sign number and Horoscope is:

12 Pisces

Compatible Signs are: Cancer, Scorpio

Enter birthday in numeric form: month day, as 12 5:

You entered: month 4 day: 15

Your Sign number and Horoscope is:

1 Aries

Compatible Signs are: Leo, Sagittarius

Enter birthday in numeric form: month day, as 12 5:

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 36

 Copyright © 2018 Pearson Education, Inc.

You entered: month 4 day: 20

Your Sign number and Horoscope is:

2 Taurus

Compatible Signs are: Virgo, Capricorn

Enter birthday in numeric form: month day, as 12 5:

You entered: month 5 day: 17

Your Sign number and Horoscope is:

2 Taurus

Compatible Signs are: Virgo, Capricorn

Enter birthday in numeric form: month day, as 12 5:

You entered: month 5 day: 23

Your Sign number and Horoscope is:

3 Gemini

Compatible Signs are: Libra, Aquarius

Enter birthday in numeric form: month day, as 12 5:

You entered: month 10 day: 24

Your Sign number and Horoscope is:

8 Scorpio

Compatible Signs are: Pices, Cancer

Enter birthday in numeric form: month day, as 12 5:

You entered: month 11 day: 20

Your Sign number and Horoscope is:

8 Scorpio

Compatible Signs are: Pices, Cancer

Enter birthday in numeric form: month day, as 12 5:

You entered: month 11 day: 21

Your Sign number and Horoscope is:

8 Scorpio

Compatible Signs are: Pices, Cancer

Enter birthday in numeric form: month day, as 12 5:

You entered: month 11 day: 22

Your Sign number and Horoscope is:

9 Sagittarius

Compatible Signs are: Aries, Leo

Enter birthday in numeric form: month day, as 12 5:

You entered: month 12 day: 21

Your Sign number and Horoscope is:

9 Sagittarius

Compatible Signs are: Aries, Leo

Enter birthday in numeric form: month day, as 12 5:

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 37

 Copyright © 2018 Pearson Education, Inc.

You entered: month 12 day: 22

Your Sign number and Horoscope is:

10 Capricorn

Compatible Signs are: Taurus, Virgo

Enter birthday in numeric form: month day, as 12 5:

You entered: month 12 day: 23

Your Sign number and Horoscope is:

10 Capricorn

Compatible Signs are: Taurus, Virgo

Enter birthday in numeric form: month day, as 12 5:

x

*/

Practice Program 5: Prime Numbers

//

//

// This program outputs all prime numbers between 3 and 100 using

// a doubly-nested loop.

//

#include <iostream>

using namespace std;

// ====================

// main function

// ====================

int main()

{

 int i,j;

 bool isPrime;

 for (i=3; i<=100; i++)

 {

 // Inner loop checks to see if i is prime. Assume it is and

 // try to find a number that divides into it to determine if it is

 // not prime.

 isPrime = true;

 for (j=2; j<i-1; j++)

 {

 if ((i % j)==0)

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 38

 Copyright © 2018 Pearson Education, Inc.

 {

 isPrime = false;

 }

 }

 if (isPrime)

 {

 cout << i << " is a prime number." << endl;

 }

 }

 return 0;

}

Practice Program 6: Buoyancy

// ***

//

// Write a program that inputs the weight (in pounds) and radius (in

// feet) of a sphere and outputs whether the sphere will sink or float

// in water

//***

// File Name: buoyancy.cpp

// Author:

// Email Address:

// Project Number: 3.15

// Description: Computes the buoyancy of a sphere and determines whether

// or not it will sink or float in water.

// Last Changed: October 5, 2007

#include <iostream>

using namespace std;

int main()

{

 const double SPECIFIC_WEIGHT_OF_WATER = 62.4;

 const double PI = 3.1415;

 double weight, radius, buoyant_force;

 // Prompt the user for the radius and weight

 cout << "Enter the radius of the sphere, in feet: ";

 cin >> radius;

 cout << "Enter the weight of the sphere, in pounds: ";

 cin >> weight;

 // Compute the buoyant force

 buoyant_force = (4.0 / 3.0) * PI * radius * radius * radius *

 SPECIFIC_WEIGHT_OF_WATER;

 // Compare the buoyant force to the weight of the object

 if (buoyant_force < weight)

 {

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 39

 Copyright © 2018 Pearson Education, Inc.

 cout << "The sphere will sink.";

 }

 else

 {

 cout << "The sphere will float.";

 }

}

Practice Program 7 : Same temperature in C and F.

// ***

// Write a program that finds the temperature that is the same in both

// Celsius and Fahrenheit

//***

// File Name: sametemp.cpp

// Author:

// Email Address:

// Project Number: 3.16

// Description: Finds the temperature that is the same in both Celsius and

// Fahrenheit

// Last Changed: October 9, 2007

#include <iostream>

using namespace std;

int main()

{

 // Declare variables to hold the two temperatures

 int celsius = 100;

 int fahrenheit;

 // Compute the fahrenheit value for each Celsius value,

 // stopping when they are equal.

 do

 {

 celsius--;

 // Note that we have to be careful with integer

 // division. This, for example:

 //

 // fahrenheit = (9/5) * celsius + 32;

 //

 // will cause us to loop indefinitely, since (9/5) == 1.

 fahrenheit = (9 * celsius)/5 + 32;

 }

 while (celsius != fahrenheit);

 // Output the solution

 cout << celsius << " degrees Celsius is equal to " << fahrenheit

 << " degrees Fahrenheit." << endl;

 return 0;

}

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 40

 Copyright © 2018 Pearson Education, Inc.

Programming Project 1: Cost of a Long Distance Call

A complete solution is not presented for this problem. I am presenting some notes on how to set up a class

to help solve the problem and part of the code.

A conventional solution should be fairly easy from these notes.

 Pricing rules:

a) A call started between 8:00 AM and 6:00 PM Monday - Friday is billed at $0.40 /minute.

b) A call started before 8:00 AM or after 6:00 PM Monday - Friday is billed at $0.25 /minute.

c) A call started on Saturday or Sunday is billed at $0.15 /minute. Input is day of the week, time

the call starts, and the length of the call in minutes.

 Output is the cost of the call.

 Time: 24hour notation: 13:30 is 1:30 PM.

 Day of week read in as pair of characters:

 Mo Tu We Th Fr Sa Su

 Allow any case what so ever.

 Use an int variable for length of call, and assume that the user rounds up.

 Allow repeat at user option.

Enhancement: After debugging completely, add file read capability for a week's phone calls, and write bill to

another file. The bill should show each call and the charge for each call and the total due for all calls.

Object Solution:

What are the objects? The calls themselves are the central objects, so we create a class Call:

#include <iostream>

using namespace std;

class Call

{

public:

 Call(); // initializes every thing to zero.

 Call(int hour, int minute, int length, char d_1, char d_2);

 // sets the call private data in accord with the parameters

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 41

 Copyright © 2018 Pearson Education, Inc.

 // d1 and d2 are first two letters of the day of the week

 // computes the cost according to the above schedule.

 double cost();

 // reports the cost of this call

//For the proposed enhancement:

//void addToBill();

 // writes call transaction to the file

private:

 double costOfCall; // cost of this call.

 int day; // day the call started

 //internal store is 0..6 where 0 is Su, 1 is Mo etc

 int len; // length of call in minutes

 int hours;

 int minute; // hours:minute is the time the call started.

};

Once this is coded, the main program might be:

int main()

{

 char d1, d2;

 int length;

 int hour;

 int minute;

 Call call;

 while(!cin.eof())

 {

 cout << "Enter the day the call was made, first two initials:"

 << endl;

 cin >> d1 >> d2;

 cout << "Enter the time of the call in the format "

 << "hour minute" << endl;

 cin >> hour >> minute;

 cout << "Enter the length of the call in minutes. " << endl;

 cin >> length;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 42

 Copyright © 2018 Pearson Education, Inc.

 call = Call(hour, minute, length, d1, d2);

 cout << "Cost of the call at time, " << hour << ":" << minute

 << " length " << length << ", on day " << d1 << d2 << " is "

 << call.cost() << endl;

 }

 return 0;

}

Programming Project 4: Blackjack Hand Scoring Program

I have provided three solutions. The first solution is a full blown Class/Object based. The second is more

nearly what the instructor might expect from the student. Since Chapter 4, “More Flow of Control” can be

covered before Chapter 10, “Defining Classes and ADTs,” I have provided a solution without structs in the

next section.

Problem:

Player receives 2 - 5 cards

Cards numbered 2 - 10 are scored at the number on the card, 2 - 10.

Face card, Jack, Queen, King, score 10 points.

Ace: if (score without Ace + 11 <= 21)

Ace scores 11

else

Ace scores 1

Player is asked how many cards, response is some integer 2 - 5.

Player is asked for card values. response is 2 - 9, t, j, q, k, a,

where t = 10, j = jack, q = queen, k = king, a= ace, which are

stored entered into a char variable.

Output is either an integer 2 - 21 or the word BUSTED.

The classes are Card and Hand.

Peculiarity: C++ requires that The Hand::Hand(int, char, char, char, char); constructor

have base class constructor calls for each Card class object in the class Hand. These follow a ":"

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 43

 Copyright © 2018 Pearson Education, Inc.

after the argument list, before the body of the constructor. See the Ellis and Stroustrup, The Annotated C++

Reference Manual, section 12.6.2, page 290, for more details.

//Black Jack hand scoring

#include <iostream>

#include <cstdlib>

#include <cctype>

using namespace std;

class Card

{

public:

 Card(char); // sets card value

 int Value(); // returns integer value of this card

 int cardIsAce();

private:

 int value;

};

int Card::cardIsAce()

{

 if(11 == Value())

 return 1;

 return 0;

}

class Hand

{

public:

 // computes value of hand and stores it

 Hand(int numberOfCards, char c1, char c2, char c3, char c4, char c5);

// reports value of hand to screen: 2-21 or busted.

void reportValue();

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 44

 Copyright © 2018 Pearson Education, Inc.

private:

 int numberOfCards;

 int value; // if 0, "busted" is reported

 Card card1;

 Card card2;

 Card card3;

 Card card4;

 Card card5;

};

int main()

{

 char v1, v2, v3, v4, v5;

 char ans;

 do

 {

 v1 = v2 = v3 = v4 = v5 = 0;

 int n;

 cout << "Enter a number of cards you have to enter " << endl;

 cin >> n;

 cout << n << endl;

 cout << "Now enter the value of the cards, 2-9, t, j, q, k, a"

 << endl;

 switch (n)

 {

 case 2:

 cin >> v1 >> v2;

 cout << v1 << " " << v2 << endl;

 break;

 case 3:

 cin >> v1 >> v2 >> v3;

 cout << v1 << " " << v2 << " "

 << v3 << endl;

 break;

 case 4:

 cin >> v1 >> v2 >> v3 >> v4;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 45

 Copyright © 2018 Pearson Education, Inc.

 cout << v1 << " " << v2 << " "

 << v3 << " " << v4 << endl;

 break;

 case 5:

 cin >> v1 >> v2 >> v3 >> v4 >> v5;

 cout << v1 << " " << v2 << " " << v3 << " "

 << v4 << " " << v5 << endl;

 break;

 default:

 cout << "wrong number of cards - all assigned 0 "

 << endl;

 break;

 }

 Hand hand(n, v1, v2, v3, v4, v5);

 hand.reportValue();

 cout << endl;

 cout << "Y/y repeats, any other character quits" << endl;

 cin >> ans;

 cout << endl;

 } while ('y' == ans || 'Y' == ans);

 return 0;

}

Card::Value()

{

 return value;

}

Card::Card(char ch)

{

 if (isdigit(ch))

 {

 value = ch - '0';

 return;

 }

 else

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 46

 Copyright © 2018 Pearson Education, Inc.

 switch(ch)

 {

 case 't':

 case 'j':

 case 'q':

 case 'k':

 value = 10;

 break;

 case 'a':

 value = 11;

 break;

 case 0:

 value = 0;

 break; // there is no card present.

 default:

 cout << ch << " is not a card value! Aborting "

 << endl;

 exit(1);

 }

}

void Hand::reportValue()

{

 cout << "The value of your hand = " << value;

 if(0==value || value > 21)

 cout << " = Busted" << endl;

}

Hand::Hand(int n, char ch1, char ch2, char ch4, char ch5, char ch6)

:card1(ch1), card2(ch2), card3(ch4), card4(ch5), card5(ch6)

 // These call a constructor for each of the private members of Hand

{

 numberOfCards = n;

 value = card1.Value() + card2.Value() + card3.Value() +

 card4.Value() + card5.Value();

 if (value <= 21)

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 47

 Copyright © 2018 Pearson Education, Inc.

 return;

 else if (card1.cardIsAce())

 value = value - 10; //drop one ace to 1

 if (value <= 21)

 return;

 else if (card2.cardIsAce())

 value = value - 10; // drop another ace to 1

 if (value <= 21)

 return;

 else if (card3.cardIsAce())

 value = value - 10; // drop another ace to 1

 if (value <= 21)

 return;

 else if (card4.cardIsAce())

 value = value - 10; // drop another ace to 1

 if (value <= 21)

 return;

 else if (card5.cardIsAce())

 value = value - 10; // drop another ace to 1

 if (value <= 21)

 return;

}

A run follows.

Here is the data used:

cat blackjack.hands

5

2 3 4 5 6

y

5

4 5 6 7 8

y

4

t a a q 2

y

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 48

 Copyright © 2018 Pearson Education, Inc.

3

a t q

y

2

a t

q

And a typical run is:

Enter a number of cards you have to enter

5

Now enter the value of the cards, 2-9, t, j, q, k, a

2 3 4 5 6

The value of your hand = 20

Y/y repeats, any other character quits

Enter a number of cards you have to enter

5

Now enter the value of the cards, 2-9, t, j, q, k, a

4 5 6 7 8

The value of your hand = 30 = Busted

Y/y repeats, any other character quits

Enter a number of cards you have to enter

4

Now enter the value of the cards, 2-9, t, j, q, k, a

t a a q

The value of your hand = 22 = Busted

Y/y repeats, any other character quits

Enter a number of cards you have to enter

3

Now enter the value of the cards, 2-9, t, j, q, k, a

a t q

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 49

 Copyright © 2018 Pearson Education, Inc.

The value of your hand = 21

Y/y repeats, any other character quits

Enter a number of cards you have to enter

2

Now enter the value of the cards, 2-9, t, j, q, k, a

a t

The value of your hand = 21

Y/y repeats, any other character quits

Blackjack Hand Scoring: Solution using structs.

Player receives 2 - 5 cards

Cards numbered 2 - 10 are scored at the number on the card, 2 - 10.

Face card, Jack, Queen, King, score 10 points.

Ace: if (score without Ace + 11 <= 21)

 Ace scores 11

 else

 Ace scores 1

Player is asked how many cards, response is some integer 2 - 5.

Player is asked for card values. response is 2 - 9, t, j, q, k, a,

 where t = 10, j = jack, q = queen, k = king, a= ace, which are

 stored entered into a char variable.

Output is either an integer 2 - 21 or the word BUSTED.

//Black Jack hand scoring - using structs

#include <iostream>

#include <cstdlib>

#include <cctype>

using namespace std;

struct Card

{

 char face;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 50

 Copyright © 2018 Pearson Education, Inc.

 int value;

};

struct Hand

{

 int numberOfCards;

 int value; // if 0, "busted" is reported

 Card card1;

 Card card2;

 Card card3;

 Card card4;

 Card card5;

};

void setHandValue(Hand&);

void reportValue(Hand);

// strictly a debugging aid! It was very useful!

void dumpHand (Hand hand)

{

 cout << "current hand has " << hand.numberOfCards

 << " cards. They are: "

 << hand.card1.face << " " << hand.card1.value << " "

 << hand.card2.face << " " << hand.card2.value << " "

 << hand.card3.face << " " << hand.card3.value << " "

 << hand.card4.face << " " << hand.card4.value << " "

 << hand.card5.face << " " << hand.card5.value << endl;

}

int main()

{

 char ans;

 Hand hand;

 int n;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 51

 Copyright © 2018 Pearson Education, Inc.

 do

 {

 hand.card1.face = hand.card2.face = hand.card3.face

 = hand.card4.face = hand.card5.face = 0;

 hand.card1.value = hand.card2.value = hand.card3.value

 = hand.card4.value = hand.card5.value = 0;

 cout << "Enter a number of cards you have to enter " << endl;

 cin >> n;

 hand.numberOfCards = n;

 cout << "number of card = " << n << endl;

 cout << "Enter the face of the cards, 2-9, t, j, q, k, a"

 << endl;

 switch (n)

 {

 case 2:

 cin >> hand.card1.face >> hand.card2.face;

 cout << hand.card1.face << " "

 << hand.card2.face << endl;

 break;

 case 3:

 cin >> hand.card1.face >> hand.card2.face

 >> hand.card3.face;

 cout << hand.card1.face << " "

 << hand.card2.face << " "

 << hand.card3.face << endl;

 break;

 case 4:

 cin >> hand.card1.face >> hand.card2.face

 >> hand.card3.face >> hand.card4.face;

 cout << hand.card1.face << " "

 << hand.card2.face << " "

 << hand.card3.face << " "

 << hand.card4.face << endl;

 break;

 case 5:

 cin >> hand.card1.face >> hand.card2.face

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 52

 Copyright © 2018 Pearson Education, Inc.

 >> hand.card3.face >> hand.card4.face

 >> hand.card5.face;

 cout << hand.card1.face << " "

 << hand.card2.face << " "

 << hand.card3.face << " "

 << hand.card4.face << " "

 << hand.card5.face << endl;

 break;

 default:

 cout << "bad number of cards - all assigned 0 "

 << endl;

 break;

 }

 setHandValue(hand);

 reportValue(hand);

 cout << endl;

 cout << "Y/y repeats, any other character quits" << endl;

 cin >> ans;

 cout << endl;

 } while ('y' == ans || 'Y' == ans);

 return 0;

}

void setValueCard (Card& card)

{

 if (isdigit (card.face))

 {

 card.value = card.face - '0';

 return;

 }

 else

 { card.face = tolower(card.face);

 switch(card.face)

 {

 case 't':

 case 'j':

 case 'q':

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 53

 Copyright © 2018 Pearson Education, Inc.

 case 'k':

 card.value = 10;

 break;

 case 'a':

 card.value = 11;

 break;

 case 0:

 card.value = 0; break; // there is no card present.

 default:

 cout << card.face

 << " is not a card face! Aborting " << endl;

 exit(1);

 }

 }

}

void reportValue(Hand hand)

{

 cout << "The value of your hand = " << hand.value << endl;

 if(0==hand.value || hand.value > 21)

 cout << " = Busted" << endl;

}

void setHandValue(Hand& hand)

{

 setValueCard(hand.card1);

 setValueCard(hand.card2);

 setValueCard(hand.card3);

 setValueCard(hand.card4);

 setValueCard(hand.card5);

 hand.value = hand.card1.value + hand.card2.value +

 hand.card3.value + hand.card4.value + hand.card5.value;

 if (hand.value <= 21)

 return;

 else if (hand.card1.face == 'a')

 hand.value = hand.value - 10; //count one ace as 1

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 54

 Copyright © 2018 Pearson Education, Inc.

 if (hand.value <= 21)

 return;

 else if (hand.card2.face == 'a')

 hand.value = hand.value - 10; // count another ace as 1

 if (hand.value <= 21)

 return;

 else if (hand.card3.face == 'a')

 hand.value = hand.value - 10; // count another ace as 1

 if (hand.value <= 21)

 return;

 else if (hand.card4.face == 'a')

 hand.value = hand.value - 10; // count another ace as 1

 if (hand.value <= 21)

 return;

 else if (hand.card5.face == 'a')

 hand.value = hand.value - 10; // count another ace as 1

}

A run for this solution is essentially the same as for the object based solution, so I am omitting the ‘typical

run.’

Blackjack Hand Score - conventional solution

This is a solution derived from the immediately preceding solution.

//Blackjack Hand Score - conventional solution

#include <iostream>

#include <cstdlib>

#include <cctype>

using namespace std;

void setHandValue(int& handValue,

 char card1Face, char card2Face,

 char card3Face, char card4Face, char card5Face,

 int& card1Value, int& card2Value, int& card3Value,

 int& card4Value, int& card5Value

);

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 55

 Copyright © 2018 Pearson Education, Inc.

void reportValue(int handValue);

// strictly a debugging aid! It was very useful!

void dumpHandValue(int& handValue, int numberOfCards,

 char card1Face, char card2Face,

 char card3Face, char card4Face, char card5Face,

 int& card1Value, int& card2Value, int& card3Value,

 int& card4Value, int& card5Value)

{

 cout << "current hand has " << numberOfCards

 << " cards. They are: "

 << card1Face << " " << card1Value << " "

 << card2Face << " " << card2Value << " "

 << card3Face << " " << card3Value << " "

 << card4Face << " " << card4Value << " "

 << card5Face << " " << card5Value << endl;

}

int main()

{

 int numberOfCards;

 int handValue; // if 0, "busted" is reported

 char card1Face, card2Face, card3Face, card4Face, card5Face;

 int card1Value, card2Value, card3Value, card4Value, card5Value;

 char ans;

 int n;

 do

 {

 card1Face = card2Face = card3Face

 = card4Face = card5Face = 0;

 card1Value = card2Value = card3Value

 = card4Value = card5Value = 0;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 56

 Copyright © 2018 Pearson Education, Inc.

 cout << "Enter a number of cards you have to enter "

 << endl;

 cin >> n;

 numberOfCards = n;

 cout << "number of card = " << n << endl;

 cout << "Enter the face of the cards, 2-9, t, j, q, k, a"

 << endl;

 switch (n)

 {

 case 2:

 cin >> card1Face >> card2Face;

 cout << card1Face << " "

 << card2Face << endl;

 break;

 case 3:

 cin >> card1Face >> card2Face

 >> card3Face;

 cout << card1Face << " "

 << card2Face << " "

 << card3Face << endl;

 break;

 case 4:

 cin >> card1Face >> card2Face

 >> card3Face >> card4Face;

 cout << card1Face << " "

 << card2Face << " "

 << card3Face << " "

 << card4Face << endl;

 break;

 case 5:

 cin >> card1Face >> card2Face

 >> card3Face >> card4Face

 >> card5Face;

 cout << card1Face << " "

 << card2Face << " "

 << card3Face << " "

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 57

 Copyright © 2018 Pearson Education, Inc.

 << card4Face << " "

 << card5Face << endl;

 break;

 default:

 cout << "bad number of cards - all assigned 0 "

 << endl;

 break;

 }

 setHandValue(handValue,

 card1Face, card2Face, card3Face,

 card4Face, card5Face,

 card1Value, card2Value, card3Value,

 card4Value, card5Value);

 reportValue(handValue);

 cout << endl;

 cout << "Y/y repeats, any other character quits" << endl;

 cin >> ans;

 cout << endl;

 } while ('y' == ans || 'Y' == ans);

 return 0;

}

void setValueCard (char face, int& value)

{

 if (isdigit (face))

 {

 value = face - '0';

 return;

 }

 else

 { face = tolower(face);

 switch(face)

 {

 case 't':

 case 'j':

 case 'q':

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 58

 Copyright © 2018 Pearson Education, Inc.

 case 'k': value = 10;

 break;

 case 'a': value = 11;

 break;

 case 0: value = 0; break; // there is no card present.

 default: cout << face

 << " is not a card face! Aborting " << endl;

 exit(1);

 }

 }

}

void reportValue(int handValue)

{

 cout << "The value of your hand = " << handValue << endl;

 if(0==handValue || handValue > 21)

 cout << " = Busted" << endl;

}

void setHandValue(int& handValue,

 char card1Face, char card2Face,

 char card3Face, char card4Face, char card5Face,

 int& card1Value, int& card2Value, int& card3Value,

 int& card4Value, int& card5Value

)

{

 setValueCard(card1Face, card1Value);

 setValueCard(card2Face, card2Value);

 setValueCard(card3Face, card3Value);

 setValueCard(card4Face, card4Value);

 setValueCard(card5Face, card5Value);

 handValue = card1Value + card2Value +

 card3Value + card4Value + card5Value;

 if (handValue <= 21)

 return;

 else if (card1Face == 'a')

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 59

 Copyright © 2018 Pearson Education, Inc.

 handValue = handValue - 10; //count one ace as 1

 if (handValue <= 21)

 return;

 else if (card2Face == 'a')

 handValue = handValue - 10; // count another ace as 1

 if (handValue <= 21)

 return;

 else if (card3Face == 'a')

 handValue = handValue - 10; // count another ace as 1

 if (handValue <= 21)

 return;

 else if (card4Face == 'a')

 handValue = handValue - 10; // count another ace as 1

 if (handValue <= 21)

 return;

 else if (card5Face == 'a')

 handValue = handValue - 10; // count another ace as 1

 if (handValue <= 21)

 return;

}

The run is identical to the struct solution.

Programming Project 6: Fibonacci numbers

There is no real advantage to ‘class-ifying’ this solution. We do a conventional solution here.

The Fn are defined as follows:

F0 = 1;

F1 = 1;

Fn+2 = Fn + Fn+1; n = 0, 1, 2 ...

This means that once you have two preceding members, each member is the sum of the previous two, and the

two that don't have predecessors are 1. The values are 1 1 2 5 8 13 etc.

The Program:

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 60

 Copyright © 2018 Pearson Education, Inc.

This program takes as input some initial amount of 'green crud' and some number of days. Then, assuming

that green crud can reach reproductive maturity in 5 days. Assume that all the reproduction happens on day 5

of the interval between reproduction. Output is the amount of "green crud" after the number of days entered.

Allow arbitrary repeats.

//compute Fibonacci numbers iteratively.

#include <iostream>

#include <cctype>

using namespace std;

int NthFib(int n)

{

 int f0, f1, f2 ;

 f0 = f1 = 1;

 if (1 == n || 0 == n)

 return 1;

 for (int i = 1; i < n; i++)

 {

 f2 = f1 + f0;

 f0 = f1; // never need f0 again, make new f1 old f0

 f1 = f2; // new f1 is old f2

 }

 return f2;

}

int main()

{

 int n;

 char ans;

 double amount;

 do

 {

 cout << "Please enter the initial number of pounds of green crud: "

 << endl;

 cin >> amount;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 61

 Copyright © 2018 Pearson Education, Inc.

 cout << amount << endl;

 cout << "Enter the number of days the green crud has to reproduce: "

 << endl;

 cin >> n;

 cout << n << endl;

 cout << "After " << n << " days, there should be "

 << NthFib(n/5)*amount << " pounds of green crud scumming "

 << "the pond." << endl;

 cout << "enter Y/y to continue, anything else quits " << endl;

 cin >> ans; ans = tolower(ans);

 } while ('y' == ans);

 return 0;

}

The data used follows:

10

5

y

10

9

y

 Several data were removed here for lack of space.

10

20

n

Output from the program was:

Please enter the initial number of pounds of green crud:

10

Enter the number of days the green crud has to reproduce:

5

After 5 days, there should be 10 pounds of green crud scumming the pond.

enter Y/y to continue, anything else quits

Please enter the initial number of pounds of green crud:

10

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 62

 Copyright © 2018 Pearson Education, Inc.

Enter the number of days the green crud has to reproduce:

9

After 9 days, there should be 10 pounds of green crud scumming the pond.

enter Y/y to continue, anything else quits

Please enter the initial number of pounds of green crud:

10

 Several data were omitted for lack of space.

Please enter the initial number of pounds of green crud:

10

Enter the number of days the green crud has to reproduce:

20

After 20 days, there should be 50 pounds of green crud scumming the pond.

enter Y/y to continue, anything else quits

Programming Project 7 : Exponential Function and Polynomial Approximation

The instructor should not expect this solution from the student without a generous collection of hints. The text

author (Prof. Savitch) suggested that instructors should either give a substantial body of hints or accept the

straight forward solution and present this as an elegant solution that avoids the round off and truncation error

that the obvious solution has.

The first n terms of the power series expansion for e
x are

ex = 1 + x + x2/2! + x3/3! + ...+ xn/n!

The problem is to evaluate the partial sums of this for each power of x, 1 through 100 and a user chosen value

of x.

input: x and n, n takes on each of the values 1..100

output: sum of the n terms of the above polynomial, and exp(x) from the math library.

Notice that the power series through terms in x
4 ,

p(x) = 1 + x + x2/2! + x3/3! + x4/4!

may be rewritten:

p(x) = 1 + x(1 + x/2(1 + x/3(1 + x/4)))

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 63

 Copyright © 2018 Pearson Education, Inc.

Now let T4 = 1 + x/4

 T3 = 1 + x/3(1 + x/4)

 T2 = 1 + x/2(1 + x/3(1 + x/4))

and T1 = 1 + x(1 + x/2(1 + x/3(1 + x/4)))

This suggests the recurrence relation

 T4 = 1 + x/4;

 Ti-1 = 1 + x/(i-1) Ti;

Then a for loop gives

 T = 1 + x/4;

 for (i = 4; i > 0; i--)

 {

 TL1 = 1 + x/(i-1)T;

 T = TL1;

 }

If you unroll the loop, you get, successively

 T = 1 + x/4;

 TL1 = 1 + x/3 T = 1 + x/3 (1+x/4)

 T = TL1

 TL1 = 1 + x/2 T = 1 + x/2 (1 + x/3 (1 + x/4))

 T = TL1

 TL1 = 1 + x T = 1 + x (1 + x/2 (1 + x/3 (1 + x/4)))

Ah ha! We have something! The general technique to sum the series then should be, for each n, and arbitrary

x:

 T = 1 + x/n;

 for (i = n; i > 0; i--)

 {

 TL1 = 1 + x/(i-1)T;

 T = TL1;

 }

Let's try it!

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 64

 Copyright © 2018 Pearson Education, Inc.

//sum series for exponential

#include <iostream>

#include <cmath>

using namespace std;

double poly(int n, double x)

{

 double TL1;

 double T = 1 + x/n;

 for (int i = n; i >= 2; i--)

 {

 TL1 = 1 + x/(i-1) * T;

 T = TL1;

 }

 return T;

}

int main()

{

 char ans;

 double x;

 cout << "To try the iterative scheme for McClaurin expansion "

 << "of exp(x)"

 << endl;

 cout.setf(ios::fixed);

 cout.setf(ios::showpoint);

 cout.precision(16);

 do

 {

 cout << "Enter a value of x " << endl;

 cin >> x ; cout << "value of x = " << x << endl;

 for (int i = 1; i <= 100; i++)

 cout << poly(i, x) << endl;

 cout << exp(x) << endl;

 cout << "Another x? Y/y, other quits" << endl;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 65

 Copyright © 2018 Pearson Education, Inc.

 cin >> ans;

 }while('y' == ans || 'Y' == ans);

 return 0;

}

/

Data used for the typical run:

cat data

1

y

2

y

3

y

10

y

20

y

-1

n

I did my runs under Linux in this fashion, because it allows me to see the how the individual output numbers

change with each iteration.

a.out < data | less

The output is as follows. I edited the output to delete much boring output

To try the iterative scheme for McClaurin expansion of exp(x)

Enter a value of x

value of x = 1.0000000000000000

2.0000000000000000

2.5000000000000000

2.6666666666666665

2.7083333333333335

2.7166666666666668

2.7180555555555554

2.7182539682539684

[snip]

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 66

 Copyright © 2018 Pearson Education, Inc.

2.7182818284589945

2.7182818284590424

2.7182818284590451

2.7182818284590451

2.7182818284590451

...

 a lot of entries that are the same

...

2.7182818284590451

2.7182818284590451

2.7182818284590451

Another x? Y/y, other quits

Enter a value of x

value of x = 2.0000000000000000

3.0000000000000000

5.0000000000000000

6.3333333333333339

7.0000000000000000

7.2666666666666666

7.3555555555555552

7.3809523809523805

7.3873015873015868

[snip]

7.3890460157126823

7.3890545668323444

7.3890558823892158

7.3890560989306504

...

 A lot of entries that are the same

...

7.3890560989306504

7.3890560989306504

7.3890560989306504

7.3890560989306504

Another x? Y/y, other quits

Enter a value of x

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 67

 Copyright © 2018 Pearson Education, Inc.

value of x = 3.0000000000000000

4.0000000000000000

8.5000000000000000

13.0000000000000000

16.3750000000000000

18.4000000000000021

19.4124999999999979

19.8464285714285680

20.0091517857142840

20.0633928571428584

20.0796651785714282

20.0841030844155810

20.0852125608766237

[snip]

20.0855369231876679

20.0855369231876679

...

 A lot of entries that are the same

...

20.0855369231876679

20.0855369231876679

20.0855369231876679

20.0855369231876679

20.0855369231876679

20.0855369231876679

Another x? Y/y, other quits

Enter a value of x

value of x = 10.0000000000000000

11.0000000000000000

61.0000000000000000

227.6666666666666288

644.3333333333332575

1477.6666666666665151

2866.5555555555556566

4850.6825396825388452

7330.8412698412703321

10086.5731922398590541

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 68

 Copyright © 2018 Pearson Education, Inc.

12842.3051146384495951

15347.5159531826211605

17435.1916519694314047

19041.0960356515934109

20188.1705954245626344

20952.8869686065518181

21430.8347018452841439

21711.9804272798355669

21868.1724969657007023

21950.3788494319414895

21991.4820256650637020

22011.0549667284540192

22019.9517581209111086

22023.8199282915375079

22025.4316658626339631

22026.0763608910710900

22026.3243205173966999

22026.4161574160316377

[snip]

22026.4657948067033431

22026.4657948067142570

22026.4657948067142570

...

 A lot of entries that are the same

...

22026.4657948067142570

22026.4657948067142570

22026.4657948067142570

22026.4657948067142570

22026.4657948067142570

22026.4657948067178950

Another x? Y/y, other quits

Enter a value of x

value of x = 20.0000000000000000

21.0000000000000000

221.0000000000000000

1554.3333333333334849

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 69

 Copyright © 2018 Pearson Education, Inc.

8221.0000000000000000

34887.6666666666715173

123776.5555555555474712

377744.8095238095265813

1012665.4444444443797693

2423600.1887125223875046

5245469.6772486772388220

10376141.4745871406048536

18927261.1368179135024548

32082829.8479421846568584

50876499.4352625608444214

75934725.5516897439956665

107257508.1972236931324005

144107840.7213812768459320

[snip - About a half page of data omitted]

485165195.2878378033638000

485165195.3658750653266907

485165195.3942522406578064

[snip]

485165195.4097895622253418

485165195.4097899794578552

485165195.4097902774810791

485165195.4097902774810791

485165195.4097902774810791

...

[snip]

...

485165195.4097902774810791

485165195.4097902774810791

485165195.4097902774810791

485165195.4097902774810791

485165195.4097902774810791

Another x? Y/y, other quits

Enter a value of x

value of x = -1.0000000000000000

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 70

 Copyright © 2018 Pearson Education, Inc.

0.0000000000000000

0.5000000000000000

0.3333333333333333

0.3750000000000000

0.3666666666666667

0.3680555555555556

0.3678571428571429

0.3678819444444444

0.3678791887125221

[snip]

0.3678794411714421

0.3678794411714423

0.3678794411714423

...

 A lot of entries that are the same.

...

0.3678794411714423

0.3678794411714423

0.3678794411714423

Another x? Y/y, other quits

Programming Project 8: Approximation PI Using an Alternating Harmonic Series

// Pi can be approximated by the series

// pi = 4*(1 - 1/3 + 1/5 - 1/7 + 1/9 ... + ((-1)^n)/(2n+1))

// where the caret ^n means raised to the power n.

//

// The program requires input that sepcifies the number

// of terms to sum.

//

// Technique uses a variable sum of type double inside

// a loop.to sum the general term, where account is

// taken of the sign change on each term and taking

// truncating int arithmetic.carefuly into account

//

// Note that this is a slowly converging series,

// consequently round-off may "eat" the computation

// before the series can give useful information.

//

// Posible Improvement:

//

// Even values of N produce values than PI and odd values

// produce values over PI. One approach is to average these

// two. One could then place that idea in the computation to

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 71

 Copyright © 2018 Pearson Education, Inc.

// get faster, better results.

#include <iostream>

int main()

{

 using std::cout;

 using std::cin;

 using std::endl;

 int N;

 char ans = 'y';

 do

 {

 double sum = 0;

 cout << "Enter the number of terms you want summed.\n";

 cin >> N;

 cout << "You requested that I sum " << N << " terms\n";

 for (int i = 0; i < N; i++)

 {

 if(i%2)

 sum += -1.0/(2*i+1);

 else

 sum += 1.0/(2*i+1);

 }

 sum *= 4;

 cout << "4 * sum of " << N << " terms is \n";

 cout << sum << endl;

 cout << "Y or y continues, anything else quits\n";

 cin >> ans;

 }while(ans == 'y' || ans == 'Y');

 return 0;

}

/*

Typical run

Enter the number of terms you want summed.

10

You requested that I sum 10 terms

4 * sum of 10 terms is

3.04184

Y or y continues, anything else quits

y

Enter the number of terms you want summed.

15

You requested that I sum 15 terms

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 72

 Copyright © 2018 Pearson Education, Inc.

4 * sum of 15 terms is

3.20819

Y or y continues, anything else quits

y

Enter the number of terms you want summed.

16

You requested that I sum 16 terms

4 * sum of 16 terms is

3.07915

Y or y continues, anything else quits

y

Enter the number of terms you want summed.

17

You requested that I sum 17 terms

4 * sum of 17 terms is

3.20037

Y or y continues, anything else quits

Enter the number of terms you want summed.

18

You requested that I sum 18 terms

4 * sum of 18 terms is

3.08608

Y or y continues, anything else quits

n

Press any key to continue

 */

Programming Project 9 : Monty Hall Game Show Problem

// ***

// Chapter 3 Programming Project 9

//

// This program simulates the Monty Hall game show problem.

// The three doors are represented by the numbers 0, 1, and 2.

// A random number is selected for the prize, contestant selection,

// and the door to reveal. We compute a valid door for the host to

reveal

// and for the contestant to switch to. Then we tally the number of wins

// when switching or staying with the original pick.

//

// We will win with probability 2/3 if we switch, and probability of 1/3

// if we stay.

//

#include <iostream>

#include <cstdlib> // Needed for random numbers

using namespace std;

// ====================

// main function

// ====================

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 73

 Copyright © 2018 Pearson Education, Inc.

int main()

{

 int i;

 int numWinsStay = 0;

 int numWinsSwitch = 0;

 int prizeDoor, choiceDoor, switchDoor, revealDoor;

 // Run simulation 10,000 times

 for (i=0; i<10000; i++)

 {

 prizeDoor = rand() % 3; // Pick door with prize behind it

 choiceDoor = rand() % 3; // Door of contestant's pick

 // Find a door to reveal that is not the prize and not the

contestant's

 // choice

 revealDoor = 0;

 while ((revealDoor == prizeDoor) || (revealDoor == choiceDoor))

 {

 revealDoor++;

 }

 // Find a door if the contestant switches

 switchDoor = 0;

 while ((switchDoor == choiceDoor) || (switchDoor == revealDoor))

 {

 switchDoor++;

 }

 // See if we would have won and increment counters

 if (choiceDoor == prizeDoor)

 {

 numWinsStay++;

 }

 else if (switchDoor == prizeDoor)

 {

 numWinsSwitch++;

 }

 }

 cout << "If you switch, you will win " << (numWinsSwitch / 100) << "%"

 << " of the time. " << endl;

 cout << "If you stay, you will win " << (numWinsStay / 100) << "%"

 << " of the time. " << endl;

 return 0;

}

Programming Project 10 : BMR Calculator

// ***

// Re-do the BMR calculator from Chapter 2 with an activity level

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 74

 Copyright © 2018 Pearson Education, Inc.

// calculation.

//***

#include <iostream>

using namespace std;

int main()

{

 const int CALORIES_PER_CANDYBAR = 230;

 int pounds;

 int feet, inches;

 int age;

 char sex;

 double bmr;

 char activity;

 cout << "Enter your weight in pounds." << endl;

 cin >> pounds;

 cout << "Enter your height in feet and inches (use the format 'feet

inches', e.g. '5 10' for 5 feet and 10 inches)." << endl;

 cin >> feet;

 cin >> inches;

 cout << "Enter your age in years." << endl;

 cin >> age;

 cout << "Enter M for male or F for female." << endl;

 cin >> sex;

 cout << "Are you: " << endl;

 cout << "A. Sedentary" << endl;

 cout << "B. Somewhat Active (Exercise occasionally)" << endl;

 cout << "C. Active (Exercise 3-4 days per week)" << endl;

 cout << "D. Highly Active (Exercise every day)" << endl;

 cin >> activity;

 if (sex == 'M')

 {

 bmr = 66 + (6.3 * pounds) + (12.9 * (feet*12 + inches)) -

 (6.8 * age);

 }

 else

 {

 bmr = 655 + (4.3 * pounds) + (4.7 * (feet*12 + inches)) -

 (4.7 * age);

 }

 // Adjust for activity level

 /*

 a. Sedentary

 b. Somewhat active (exercise occasionally)

 c. Active (exercise 3-4 days per week)

 d. Highly active (exercise every day)

 If the user answers “Sedentary” then increase the calculated BMR by 20

 percent.

 If the user answers “Somewhat active” then increase the calculated BMR by

 30 percent.

 If the user answers “Active” then increase the calculated BMR by 40

 percent.

 Finally, if the user answers “Highly active” then increase the calculated

 BMR by 50 percent.

 */

 if (activity == 'A')

 bmr *= 1.2;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 75

 Copyright © 2018 Pearson Education, Inc.

 else if (activity == 'B')

 bmr *= 1.3;

 else if (activity == 'C')

 bmr *= 1.4;

 else if (activity == 'D')

 bmr *= 1.5;

 cout << "You need to eat " << (bmr/CALORIES_PER_CANDYBAR) << " candy bars

to maintain your weight." << endl;

 char ch;

 cin >> ch;

 return 0;

}

Programming Project 11: Defective Keypad.

Notes: This program requires searching through number ranges for numbers

that don’t contain certain digits. This may be worth revisiting in

Chapter 4 after discussing functions since that can eliminate a

significant amount of duplicate code.

// ***

// Chapter 3 Programming Project 11

//

// Search for the closest temperature on a defective keypad.

//***

#include <iostream>

using namespace std;

int main()

{

 int temp;

 int onesDigit, tensDigit, hundredsDigit;

 bool contains147;

 cout << "Enter the desired temperature." << endl;

 cin >> temp;

 int lowerTemp = temp;

 // Determine if the temperature has a 1, 4, or 7

 onesDigit = lowerTemp % 10;

 tensDigit = (lowerTemp / 10) % 10;

 hundredsDigit = (lowerTemp / 100) % 10;

 if ((onesDigit==1) || (onesDigit==4) || (onesDigit==7) ||

 (tensDigit==1) || (tensDigit==4) || (tensDigit==7) ||

 (hundredsDigit==1) || (hundredsDigit==4) ||

(hundredsDigit==7))

 contains147 = true;

 else

 contains147 = false;

 while (contains147)

 {

 lowerTemp--;

 onesDigit = lowerTemp % 10;

 tensDigit = (lowerTemp / 10) % 10;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 76

 Copyright © 2018 Pearson Education, Inc.

 hundredsDigit = (lowerTemp / 100) % 10;

 if ((onesDigit==1) || (onesDigit==4) || (onesDigit==7) ||

 (tensDigit==1) || (tensDigit==4) || (tensDigit==7) ||

 (hundredsDigit==1) || (hundredsDigit==4) ||

(hundredsDigit==7))

 contains147 = true;

 else

 contains147 = false;

 }

 int upperTemp = temp;

 // Determine if the temperature has a 1, 4, or 7

 onesDigit = upperTemp % 10;

 tensDigit = (upperTemp / 10) % 10;

 hundredsDigit = (upperTemp / 100) % 10;

 if ((onesDigit==1) || (onesDigit==4) || (onesDigit==7) ||

 (tensDigit==1) || (tensDigit==4) || (tensDigit==7) ||

 (hundredsDigit==1) || (hundredsDigit==4) ||

(hundredsDigit==7))

 contains147 = true;

 else

 contains147 = false;

 while (contains147)

 {

 upperTemp++;

 onesDigit = upperTemp % 10;

 tensDigit = (upperTemp / 10) % 10;

 hundredsDigit = (upperTemp / 100) % 10;

 if ((onesDigit==1) || (onesDigit==4) || (onesDigit==7) ||

 (tensDigit==1) || (tensDigit==4) || (tensDigit==7) ||

 (hundredsDigit==1) || (hundredsDigit==4) ||

(hundredsDigit==7))

 contains147 = true;

 else

 contains147 = false;

 }

 // See which one is closer to desired temp and output it

 cout << lowerTemp << endl;

 cout << upperTemp << endl;

 char ch;

 cin >> ch;

 return 0;

}

Programming Project 13: Holy Digits Batman!

// ***

// Chapter 3 Programming Project 13

//

// Find the address where the Riddler is planning his next caper.

//***

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 77

 Copyright © 2018 Pearson Education, Inc.

#include <iostream>

using namespace std;

int main()

{

 int ones, tens, hundreds, thousands;

 // Loop through all possible values and output them when

 // we meet the conditions in the problem

 for (ones = 0; ones < 10; ones++)

 for (tens = 0; tens < 10; tens++)

 for (hundreds = 0; hundreds < 10; hundreds++)

 for (thousands = 0; thousands < 10; thousands++)

 {

 // Digits different

 if ((ones != tens) && (ones != hundreds) && (ones != thousands)

&&

 (tens != hundreds) && (tens != thousands) &&

 (hundreds != thousands) &&

 (thousands*3 == tens)) // thousands digits 3 times the tens

 {

 int num = ones + 10*tens + 100*hundreds + 1000*thousands;

 // Check if odd

 if (num % 2 == 1)
 {

 // Check if sum is 27

 if (ones+tens+hundreds+thousands == 27)

 {

 cout << "The address is " << num << endl;

 }

 }

 }

 }

 return 0;

}

2. Outline of Topics in the Chapter

3.1 Using Boolean Expressions

Evaluating Boolean Expressions

Functions That Return a Boolean Value

Enumeration Types (Optional)

3.2 Multiway Branches

Nested Statements

Multiway if-else-Statements

The switch-Statement

Using switch-Statements for Menus

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 78

 Copyright © 2018 Pearson Education, Inc.

Blocks

3.3 More About C++ Loop Statements

The while-Statements Reviewed

Increment and Decrement Operators Revisited

The for-Statement

What Kind of Loop to Use

The break-Statement

3.4 Designing Loops

Loops for Sums and Products

Ending a Loop

Nested Loops

Debugging Loops

3. General Comments on the Chapter

Note that Chapter 3 can be covered prior to Chapter 10, in spite of this writers’ (I hope not too obvious) bias

toward in order traversal. (All puns intended! :)

We need a bit more sophistication in the control constructs we can use. This chapter completes (very nearly)

the study of C++ control constructs. The only ones missing are the goto, which Boehm and Jacopini proved

is unnecessary, and exceptions, which we will treat in Chapter 16.

The ISO C++ Standard provides for a Boolean data type, which it has named 'bool' with values false

and true. This change breaks any code that defines bool, true, or false in lower case.

The bool type was implemented with surprising speed. All compilers known to this author implement the

bool type.

Here is my reading of the ISO/ANSI Standard on the bool type.

The C++ Standard on the bool data type

A data type is a collection of values with allowable operations. C++ historically has followed the path that C

has followed, where Boolean expressions evaluate to int values. The C++ Standards committee has adopted

the Boolean type. The name of the type is bool, and the values are true and false.

The ANSI/ISO C++ Standard reserves bool for the type name and false and true for Boolean literals.

An integer, floating point, or pointer expression can be converted to an r-value of type bool. A zero value or

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 79

 Copyright © 2018 Pearson Education, Inc.

null pointer value is converted to false, any other value is converted to true. The bool value false

may be converted to 0. The bool value true may be converted to 1.

The Boolean, or more properly, Boolean operators && (and), ||(or) operators take Boolean arguments.

The standard provides the alternate keywords and and or for use instead of && and || respectively. The

relational operators (<, >, <=, >=), the equality and inequality operators (==, !=), and the unary

operator ! return values of type bool, that value being either false or true.

The if, while, for, or do-while condition is any expression (do other possibilities exist?) that

expression may be converted to a bool type.

3.1 Using Boolean Expressions

C++ Boolean expressions use short-circuit evaluation. Occasionally, I have forgotten and have been bitten by

this, so I suggest that this be discussed.

Programming Tip: With early compilers, you may define TRUE and FALSE.

In the past, C++ used integers 1 and 0 as the values of true and false respectively. For use with these

compilers, the text suggests in Appendix 10 you make the definitions:

 const int TRUE = 1;

 const int FALSE = 0;

 typedef int BOOL;

or

 const int true = 1;

 const int false = 0;

 typedef int bool;

Either of these will result in code that works fine with most compilers that do not have not implemented the

bool type. This will also result in code that is portable to compilers that implement the bool type provided

you either (1) do not define the lower case versions of Boolean, true, or false, and typedef bool to

int, or (2) do define the lowercase versions of these but comment out these definitions for use with later

compilers. (The text discusses typedef in Chapter 9.)

3.2 Multiway Branching

We needed this in the class Month in the last chapter. The text discusses nested if else statements, and

gives an example,

if (count > 0)

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 80

 Copyright © 2018 Pearson Education, Inc.

 if (score > 5)

 cout << "count > 0 and score > 5 \n";

 else

 cout << "count > 0 and score <= 5 \n";

This of course works as the indentation suggests. However, the compiler is only interested in the sequence of

tokens, or keywords, identifiers, punctuation and white space.

if (count > 0) if (score > 5) cout << "count > 0 and score > 5\n";

else cout << "count > 0 and score <= 5 \n";

If the code were laid out like this, the compiler would not care. It would compile exactly the same.

Consequently, there is a rule for the compiler to decide. The text calls this the dangling else problem. It is a

problem only for the human reader of the code. The language specifies which if the lonely else matches,

and the compiler complies with this rule. The rule is: an else matches the nearest unmatched if preceding

the else. Unfortunately, it is the human reader that we must worry about.

The text recommends that you use braces to group the if-else combinations to guarantee that what you

want is what you get. The importance of using braces to force the else to match the if you want is well

illustrated by the code in Display 3.4 of the text.

Multiway if-else-Statements and The switch-Statement

The switch corresponds to the 'case' statement in Pascal and Modula, and to some extent to the computed

GOTO in FORTRAN. The code generated by the switch construct computes the address of the label to be

selected is, then generates a machine code to branch directly to that address. The switch generates far more

efficient code than the semantically equivalent nested if-else statement..

The syntax of the C-C++ switch statement is just a bit ugly. It doesn't allow ranges in the case values, but

it doesn't care what the order of the case values is. The case values must be distinct, i.e., no two can be the

same. We give the g++ and BCC compiler messages for the error of two case constants with the same value

at the end of the next code. The commented numbers are line numbers to find the errors easily.

/*1*/ //File: case.cc Purpose: To obtain error messages for

/*2*/ //switch statement with two identical case constants

/*3*/

/*4*/ void switchSameValue()

/*5*/ {

/*6*/ int x = 3, y = 4;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 81

 Copyright © 2018 Pearson Education, Inc.

/*7*/ switch (x)

/*8*/ {

/*9*/ case 1: y++; break;

/*10*/ case 2: y = y + 2; break;

/*11*/ case 3: y = y + 3; break;

/*12*/ case 1: y = 4; break;

/*13*/ default: y = 0; break;

/*14*/ }

/*15*/ }

g++ -W -Wall --pedantic -c case.cpp

In function `void switchSameValue()':

12: duplicate case value `1'

9: previously used here

Borland C++ 5.4 for Win32

bcc32 -c case.cpp:

12: Duplicate case in function switchSameValue()

12: Expression syntax in function switchSameValue()

GNU's g++ tries to mark both places the error could be.

For my students, I add one rule to the author's indenting and break usage rules: I insist on a break; at the

end of the last case, whether it is a default or just another case value. The reason is that since the case

values are not required to be in any particular order, maintenance programmers will frequently add a case to

the end of a switch statement. The absence of a break may be noticed -- some of the time. If the absence

of a break is not noticed, and the case is added, when the old last case is encountered, the execution will

"fall through" to the new case, producing interesting results.

To put a break there is to protect oneself and the programmer who follows the current programmer in

working on this body of code.

3.3 More About C++ Loop Statements

The text identifies the for statement as especially for counter controlled loops. This is common practice in C

and C++ programs. The three parameters of the for statement are identified as Initialization_Action,

Boolean_Expression and Update_Action. The language makes no restriction on the use of these expressions.

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 82

 Copyright © 2018 Pearson Education, Inc.

Any expression can be used in the 'Initialization_Action', the Boolean_Expression', or the Update_Action

fields. (The Boolean_Expression must, of course, either return a bool value or be able to be converted to

type bool.) These expressions execute whatever is in the Initialization_Action field, then repeatedly

executes the body then the Update_Action, then the Boolean_Expression, until the Boolean_Expression field

evaluates to false. The loop stops at that point.

While C++ puts few requirements on these fields, the need for discipline suggests that we should not be quite

so loose. One way is to use the for loop for counter controlled loops, as the text suggests.

Here are some idiomatic ways that a for loop is used.

 for(; while_control;)

 {

 // body

 }

or as do-while, using the comma expression:

 for (; body, while_control;)

 ; //left deliberately empty

or as an infinite loop. To escape from this loop, a break controlled by an if is used:

 for (; :)

 {

 // body

 }

Any of these fields can be empty. If the Boolean expression is empty, the value is take to be true.

Incidentally, this is not true for either the while or the do-while condition expressions. I mention this

generality of the for loop because the student will frequently see these idioms.

This for statement is semantically almost exactly equivalent to the following while:

 for(initialization; condition; update)

 body;

is equivalent to the while loop

 initialization;

 while(condition)

 {

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 10e Chapter 3

 83

 Copyright © 2018 Pearson Education, Inc.

 body;

 update;

 }

Here is an exception to the exact equivalence of the for and a while:

When a while loop body contains a C++ continue; the continue statement stops the current iteration

of the a while loop, returning to the condition. If the condition evaluates to true the body is executed

again.

As said above, the while is equivalent to a for loop and it behaves in every respect as the for loop except

when a continue is encountered. If a continue is encountered in a for statement, the update

expression is executed prior to execution of the condition, then if successful, the body is executed again, if

not the loop ends.

In spite of the fact that we do not treat the continue statement in this course, some students will run into

the continue statement in idiomatic C and C++ code, so I mention it here for completeness.

You may wish to mention the ranged-for loop with C++11 but it is not useful until arrays are covered in

Chapter 7.

Problem Solving with C++ 10th Edition Savitch Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/problem-solving-with-c-10th-edition-savitch-solutions-manual/

