Quant um Mechani cs 1st Edition Ml ntyre Sol utions Manual

Ch. 2 Solutions

2.1 Let

and write the S eigenvalue equations in matrix notation
p (1) hi
d ]2\ 1 2420 1
Lol
c d -1 221 -1

at+b=+2% c+d=+%

o

Q
S
N—
51—
Vo

which yields

a-b=-1 c—d=+1%
Solve by adding and subtracting the equations to get
a=0 b=L =2 d=0

Hence the matrix representing S, in the §, basis is

Sxﬁﬁ 0 1
201 0
a b

S =

and write the S, eigenvalue equations in matrix notation
a b )L(1)_ 11
c d )2 i 22 i
a b\ 1P 1 )__n1f1
c d )2\ i 22\ i

a+ib=+

Let

which yields

ctid=+it

[T ST

a—ib=- c—id=+i%

Solve by adding and subtracting the equations to get
a=0 b=—-it =it d=0
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Ch. 2 Solutions

Hence the matrix representing S, in the §, basis is

5, =2 0 i
20000

2.2 Solve the secular equation

det|S, — Al|=0
h
-2 >
h =0
- -2
2
Solve to find the eigenvalues
2
- (Ej 0
2
()
2
A=zl
2

which was to be expected, because we know that the only possible results of a
measurement of any spin component are *7/2. Find the eigenvectors. For the positive

eigenvalue:
nfo 1 a |_. hl a
201 0 b 20 b
yields
b=a
The normalization condition yields
laf +af" =1
2
of =1

Choose a to be real and positive, resulting in

a=
b=

sk st
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so the eigenvector corresponding to the positive eigenvalue is

Likewise, the eigenvector for the negative eigenvalue is

o e s )

=—a
The normalization condition yields
2
lal” +lal =
2
of =1
Choose a to be real and positive, resulting in
- L
4=%
—_L
b=- 2

D
»II-
ok

(4

2.3 From Eq. (1.37), we know the §, eigenstates in the S, basis:
[+ =%+, +).)
=%+, - ).)

Let the representation of S, in the §, basis be

and write the S, eigenvalue equations in matrix notation
a b )L(1)_,n1f1
c d )20 1 2420 1
a b \ L[ 1 \__nif1
c d J\2( -1 22 -1
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These yield

at+b=+

ST ST

a—b=-—
Solve by adding and subtracting the equations to get
a=0 b=L =1 d=0

Hence the matrix representing S, in the S, basis is

Now diagonalize:

as expected. Find the eigenvectors:

sl )ale) = e

yielding

Likewise

hlo0 1 1 h 1 h
5( 10 J% ( | j:+§% ( 1 j = SH)=+gk

o 1
2( 1 0

6/11/12
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Ch. 2 Solutions

2.4 The general matrix is

The matrix elements are

S

VR
o Q

lal=(1 o) @ 0l =1 o) ¢ |-a
lal=(1 o) @0 D=0 b f=e
(—|A|+)=(01)‘jz é=(01)‘;=c
(lal==(o 1)) @0 T =0 1) b |=d
Hence we get
| (Al (HAal)
A‘{ (-l <—|A|—>]
2.5 The commutators are
0 —i h

6/11/12



Ch. 2 Solutions

2.6 The spin component operator S, is
S, =Sen
=S, sinfcosp+ S sinfsing+S_cos6

Using the matrix representations for S,, S,, and S, gives

x> Py»

- h
Sniﬁ 01 sin9<:osgz)+E 0 ! sin@sin@ +— L0 cos@

201 0 20 i 0 2L 0 -1

L h cos6 sinf@cos¢—isinOsin¢@

2 sin@cos @ +isinOsin@ —cos6

_ | cos® sin@e
2| sinBe” —cosO

2.7 Diagonalize S,:

g = |l cos® sinfe
" 2| sinBe® —cosO

Lcos@— A LsinBe ™

Lsin@Ge® —LcosO—A

Now diagonalize:

22— (2 cos’0—(4)'sin*0=0 = 2A*-(4)=0 = A==

(ST

as expected. Find the eigenvectors:

6/11/12
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|l cos®  sinGe a :+E a
2| sinBe® —cosO b 2 b

i » 1—cos0
acos@+bsinfe ™ =a = b=ae”? —
sin@
The normalization condition yields
2
2 2 1—=cos@
jal” +lal"| — =1
sinf
| |2 _sin®@  4sin’9cos’ S cos?
- - 20 - 2
2—-2cos0 4sin” 5
yielding
[+) =cosg|+)+e”sing|-)
Likewise

hl cosf sin@e™* a :_E a
2| sinBe” —cosB b 20 b

acos@+bsinfe™ =—a = b=-ae" 1+_C—OSQ
sin@
The normalization condition yields
2 2 1+ cos@ 2
jal” +lal"| — =1
sin@
. 2 Y 29
| |2 __ sin 0 _ 4sin 20208 L gin’ 2
2+2cos0 4cos” ¢
yielding
|-), =sing|+)—e” cos§|-)
2.8 The |+) eigenstate is
[+), =cosg|+)+e?sing|—) = cosZ|+) + ¢ sin Z|-)

The probabilities are
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(L<+| _;<—|)(COS%|+>+ L sin%|—>)‘2

1571'/3

2, =] (+4+),]

+y

2
1 T A Tt O f i I 5r
5|COS§+SIH§SIH—3 —18INng COS 5~

LicosZ
2 8
:%( *Z +sin’ £s1n25—”+sin2§cosz57”+2cos§sin§sin57”)
— 1
=3(

I+2cosgsing sin & ) 0.194

2 =] (-[+),] = (%(+|+4<—|)(cos§|+)+e’5”/3 sinf|-))[
%‘cos +ie”™sinZ|" = L|cosZ —sinZsin L +isinZ cos L zl?
=1(cos’ §+sm2§sm2%”+sm Zcos” 3L — 2cos§s1n§smT)
=1(1-2cosZsinZsin %) = 0.806

2.9 The expectation value of S, is easy to do in Dirac notation:
h

(8.)=(+18.1+) = <|—|+)— (+|+>——

2

The expectation values of S, and S, are easier in matrix notation:

(s0=(10 )g[ (1) (1) ][ (1) ]:g( 10 )[ (1) ]=0h
-0 0 24 )-20 o 0 o

To find the uncertainties, we need the expectation values of the squares:

The uncertainties are

6/11/12
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) (s = Ez_ﬁz_

2

/ h

AS_,/S2 - —
2

h

\/ - 5

2.10 These expectation values are easier in matrix notation:

A - P T e
orgsl 55 3 S e )
U B B = C (I

-0 0805 o BT o S0 60 0 )
UEURE - rd - B O C)
=g 080 S Ble S Sl G0 [
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In the vector model, shown below, the spin is precessing around the y-axis at a constant
angle such the y-component of the spin is constant and x- and z-components oscillate
about zero.

a)

z

A

b)

ol

)

— — — — — — =

- - - - = — N>
X

2.11 The commutators in matrix notation are

6/11/12

3h?
S*.5 ]1=—
[S°,S.] 1

1
0

')

(0
20 1

O =
o
~_
[
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In abstract notation, the commutators are
[S°.8,1=[S:+S.+52.8, |=[$2.8, ]+[ $2.8, ] +[ S2.8, ]
=88, —S,.S;+5.5, -85 +525,-5,8]
=85 -85+55S, -85S +S555 —SS.S.
=0+5,(S,8,—inS,)—(S,S, +ihS.)S, +S.(S.5, +inS,) (8.5, - iS,)S,
=S,S.S,—ihS S —S,S.S, —ihS.S +5.8.8S,+ihS,S, —S.S,S, +ihS,S,

=0
[S°.5,1=[ S} +8;+82.8, |=[ 2.8, |+[ 5.8, |+[ 52.5, ]

=55, -8 S:+5.5 S8, +528 —S,S?

=555 -85S +5 -5 +55.5,-5S.8.

=S,(8,S, +inS.)— (8,8, —ihS,)S, +0+5.(S,S, — ihS,)—(S.S, +irS,)S,

=S.S,S, +ihS .S, ~S.S,S, +ihS.S +S5.SS, ~ihS,S,~S.S,S, ~ihS.S,

=0
[S°.5.1=[S:+5) +52.5, |=[82.5. ]+[ 5.8, |+[ 82.5. ]

=55, -85 +8.5. -85, +528. - 5.2

=555, -55S.+5S5S ~8SS, +5 -8
=S,(8.8,—inS,)— (8,8, +ihS,)S, +S,(S., +ins,)- (8,5, - ins,)S, +0
=SS5, —ihS.S,~S.S.S, ~ihS S +S,S.S, +ihS,S, ~S,S.S, +ihS.S,
=0

Z

2.12 For §_ the diagonalization yields the eigenvalues

7 010
S;=——=| 1 0 1
V2 010
-4 40
R B T N _A(AZ_ﬁ)_L(_lL):O
7 7 7)T R\
0 4 -4

AA-1")=0 = A=1h,0,~-1r

and the eigenvectors

6/11/12
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(o1 0])a a b=aV2
— 1 0 1 =1h| b | = a+c=bV2
V2 01 0

¢ b=c\2

laf +|of +]c =1 = ' (4+1+4)=1 = b=F,a=1,c=1

D), =30+ 5[0)+3]-1)

A 01 0 a a b=0

ﬁ 1 0 1 b |=0h| b a+c=0
01 0 c c b=0

laf +b] +]c[" =1 = |d (1+1)=1 = a=+%b=0,c=-%

10), = %D -%I-1)

h 0 1 O a a b:—a\/z

2 101 b |==1h b | = a+c=-bV2
01 0 c c be—c2

laf +]b +]c[" =1 = [p['(3+1+%)=1 = b=-%.a=1c=1
=), =31D=F10)+3/-1)

For § the diagonalization yields

7 0 —i O
S =—F/| i 0 —i
y
\/5 0O i O
A 20
L -d # =0 = -A(A-5)-2(-AL)=0
2 NG 7)) R\ TG
0 & -2

AA*-1r)=0 = A=h0,-h

and the eigenvectors

7 0 —-i O a a —ib=a2
ﬁ i 0 —i b |=1a b = ia—ic=bJ2
0 i O c c ib=c2

ST

of + +1ef =1 = B (E41+3)=1 = b=ka=to=-

1), =31 +510)-3]-1)

6/11/12
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lal +[p]" +|c =1 = |a(1+1)=1 = a==%,b=0,c=

10), =510+ %1-1)

l

o S Q

a

=-1n| b

c

=

=

-ib=0

ia—ic=0

ib=0

—ib=—-a\2
la—ic= —b\/E
ib= —c\/i

1
2

=

laf +|b] +]c" =1 = P (3+1+3)=1 = b=-+F.a=1c=-1
-1), =3[D)-%[0)-3[-1)

2.13 The commutators are

h
[5.8,1= =

6/11/12
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1 0 0 5 0 1 0 A 0 1 0 1 0 0
[S.81=n 0 O O |—= 1 O 1 |——=| 1 O 1 |2l O O O
0 0 -1 V2 0 1 0 V2 0 1 0 0 0 -1
72 0 1 0 0 0 O
=—={| 0 0 O |—-| 1 0 -1
V2 0 -1 0 0 0 O
" 01 (1) 1 ihh O I)l O'
V2 0 -1 0 V2 0 ¢ O
= ihS,
2.14 Using the component matrices we find
SZ:Sj+S)2,+SZ2
AP L R S I [ N
=—7= - - i —i |—=| i —i
V2 0 1 0 V2 0 1 0 V2 0 ¢ O V2 0 0
1 0 0 1 0 0
+h 0 0 O (Al 0 O O
0 0 -1 0 0 -1
72 1 00 7 1 00 1 00
=5 0 2 0 +? 0 2 0 |+ 0 0 O
0 0 1 0 0 1 0 0 1
1 00
=20 0 1 0
0 0 1

The eigenvalue equation is
S*|sm)=s(s+1)A*|sm)
For spin-1 this is
S*|tm) =2h*|1m)
Hence the S° operator must be 27> times the identity matrix:

1 00
S*=2r*l 0 1 0
0 0 1
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2.15 a) The possible results of a measurement of the spin component S, are always
+1#%, Of, —1h for a spin-1 particle. The probabilities are

2 =[(1]y, ) =1l 1)+ 20y -&|-1)]
=| 2+ 210y -1 =& =4

% =01y, =OI[ &1 +510)-%[-1)]
=| 2 (0]1)+ 2 (0]0)~ & (0| -1)f =| [

3 2

2, =1y, ) =1 FI0+ 0y -4 -1)]

=l 1+ 351105 110 =5

The three probabilities add to unity, as they must.
b) The possible results of a measurement of the spin component S,  are always
+1#%, Oh, —1h for a spin-1 particle. The probabilities are

2

16

29

) 2
2, =] (1w, ) =|(5 1+ 0]+ 3 -1])(Z 1)+ 210)- (-1
~l Al =42l =4
1 1 2 3i 4 2
=| (0w, =(ﬁ(”‘$<—1|)(E|1>+ﬁ|0>—ﬁ|—1>)
2
= ﬁ%/@+ﬁ429‘ :%
] 2
2, =] (1w, ) = <1|——<o|+2< 1)( 1)+ 0)-&[-1)

|o— 11

-l h-Fm-A = H-V2-3 =%

The three probabilities add to unity, as they must.
c¢) For the first measurement, the expectation value is

()= mh®, =1h4+0n%+(-1)his=-ni

For the second measurement, the expectation value is

=Y mhP, =1L +0rL+(-1)hL =0n

m

The histograms are shown below.
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2.16 a) The possible results of a measurement of the spin component S, are always
+1#%, Oh, —1h for a spin-1 particle. The probabilities are

P =‘<1|l//in>2 =

% =[]y, ) =[(0[ &), + 210}, ~51-1), ]

501, +35(0[0), - 55(0[-1),

) 2
= (11, + 210, - 51, ]

|
:%<—1|1>y+i<—1|o> D, \2
%

The three probabilities add to unity, as they must.
b) The possible results of a measurement of the spin component S are always
+1#%, Oh, —1h for a spin-1 particle. The probabilities are

2 . 2
?lv :‘}'<1|l//in> = y<1|[%|1>_y+%|0>y_%|_1>y}

- I, + 35 (1j0), -

O] 1), +2510), = 5[-1), ]

2
& (0f1), +5 (0]0), -4 (0] 9

=29

2
- | =4
y N 29

2

2
?)0)’ = ‘y<O|Win> =

2
— |3
y V29
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2

P, =

() = K—H[%Il)ﬁ%l())y—%I—D,}
(U0, + 35 (-110), ~ (11 |

The three probabilities add to unity, as they must.
c¢) For the first measurement, the expectation value is

(S)=> mh?, =1hi+0nL+(-1)hL=0n

2
) - :i
J29 29

For the second measurement, the expectation value is

(S,)="> mh?, =1h%+0hg+(-1)his=—-hi

The histograms are shown below.

Sy

2.17 a) The possible results of a measurement of the spin component S, are always
+1#%, Oh, —1h for a spin-1 particle. The probabilities are

2
1
1
=l =1 0 0 )&| 2 =\ﬁ1\2:5
5i
2
2 1 ! 15 4
=l =|(0 1 o)kl 2 | =kE2 =5
5i
2
2 ] 2 25
7=l =0 0 1)K 2 | =[xl =5
5i
The expectation value of S, is
1 4 25 24 4
(S)=Pn+P0+?P,(-h)= 30h+%0+%(—h):—%h=_g7l

b) The expectation value of S, is

6/11/12 2-17
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0O 1 0 1
1 7] 1
S V=(y|S, |w)= _5i )—=
(S.)=(wlS.|y) ,—30(12 51)2(1)(1)(1) N 52
l
2
1 h V2
_%\/,(1 2 _51) 14—251 ——O$(2+2(1+51) 5lX2)_Eh

2.18 a) The possible results of a measurement of the spin component S, are always
+1#%, Oh, —1h for a spin-1 particle. The probabilities are

=yl =[Gl - 510} + -1

=[Gt 0} + -] =[] =

% =[0lw,.) =[(0I[ 11— 7o)+ 2|-1)]

= [ (0 =010} + 5011 =~ = %

=[(-1hw ) = [t~ 10+ -
o

=R =0+ i) =

b) After the S, measurement, the system is in the state |—1>. The possible results of a

measurement of the spin component S, are always +1#, Of, =12 for a spin-1 particle.
The probabilities are

7= (1w, ) = |41+ 1+ 1)) = =4
P =] (0w =[5 l- (1)) =] =+
2= | (1w, ) =|(3011- 50l + 1)1 =R =+

¢) Schematic of experiment.

[=—

g

-1
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2.19 The probability is

2 A A 2
2, =[(wilw) =, 1+ (ol % (1)) (1) - Flo)+ £1-1)

B =R o)+ g 1D+ F4 (0I)- 3%, (0]0)+

+L7ﬁy(—1|1)—47£§y —1|0>+47%y<—1|—1>

—i i N2 i —i i\3 J2 i3 2
Rt R E R R E R E A RO E R ET
il i

7V62 J1VeN2 V7 V62

= ei—iv242i-V3-iVB42V2-0+i2V6 +i+ 243

— _1

= 1(64+82 - 443 +86) = 0.524

or in matrix notation

2 : P
A N I S I A
1
=ﬁ(1+2\/5 22 -i\2 —1+2J§) 2
i3
= e+ 22+ 4+ 2i- i3 +i2V6[ =

2

Sl

= |5 + 22 +2i i3 +i246[ =ﬁ{(5+2\/§)2 +(2—\/§+2\/€)2}

(64 + 82 - 443 + 86 ) = 0.524

2.20 Spin 1 unknowns. Follow the solution method given in the lab handout. (i) For

unknown number 1, the measured probabilities are

o)

A
R
P

1 1

1 4 x 4 ly
1 1
2 x 2 ‘{P

Oy

P,

>
Il
Il
Il

S

Il
EN B

EN B

—1x y

Write the unknown state as

6/11/12
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0
0
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lw,)=al1)+b]0)+c|-1)

Equating the predicted S, probabilities and the experimental results gives

‘<1|1/f1 ‘ ‘ (1l{a|1)+b]0)+c|-1) H =|af* =1

— 1
3T = a=;

% = [0 =[(0{alty+b0)+c|-)}f =[p =% = b=e"
2, =[-1ly,) =[-1l{al)+blo)+ |-} = =1 = c=1e
allowing for possible relative phases. So now the unknown state is

vi) =30+ Fe“[0)+5€”|-1)

Equating the predicted S, probabilities and the experimental results gives

7. =] 0wl = B Latl- 131y + e o)+ £ - = | [1-e?)f
:§{1_ezﬁ}{1_e—zﬁ} Li+1-¢? -} = 1{1-cos B} =

=; = cosff=-1= fB=n

Giving the state

v =31+ Fe”[0)-3{-1)
Equating the predicted S, probabilities and the experimental results gives
2 i zoc 2 i i 2
2, = | (U] =[{£(11-F 0= 31 {4+ e [0)- 4D =[i -4+

=H1-ie* Hi+ie ™} =t{1+1-ie™ +ie ™ }=3{1+sma}=1 = sina=1 = a=

Hence the unknown state is

W) =31+ 5 e [0) = 5|-1)=1)+ 5|0) - 3|-1)=|1),

(ii) For unknown number 2, the measured probabilities are

Write the unknown state as

|v.)=a[1)+b[0)+c|-1)

Equating the predicted S, probabilities and the experimental results gives

6/11/12 2-20
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2 =[(1y,) =[1{a[y+5]0)+c|-D} =laf =1 = a=1
2, =[(0]w, )| =[0[{ay+b]0)+c|-DY =pf =1 = b=-Le"
‘/3_1:K—1|1//2>‘ :‘ —1|{a|1 )+b|0)+c|-1) H =|c| =1 = c=1¢"

allowing for possible relative phases. So now the unknown state is
|v>) =311+ Fr€|0)+5e”[-1)
Equating the predicted S, probabilities and the experimental results gives
2 . 2
) = — (1[4 + Fefoy+ P -1 =[5 {1-¢"]
{1 e’ﬁ}{l e‘iﬁ}:§{1+1—eﬁ —e"’ﬁ}zi{l—cosﬂ}:—

7= | (1) =[50 01+ )+ e 0y+3e? |-} =i+ e+ 4]
=%{1+2e’“+eiﬁ}{1+26 “te ’ﬁ} {6+4cosoc+2cos,3+4cos( -B)}
=L{6+4coso+2cosB+4cosacos B+ 4sinasinf}
=L{5+2cosa+4sinasinf} =2

which yields

cosa +2sinasin f=2
2sinasin B =2 —cosa
4sin’ orsin® B=4—4cosar +cos” o
4(1—005206)%=4—4cosa+cosZ(x
4cos’a—4cosa+1=0

2cosa—1=0

— 1 _ T 5n
cosat =5 = 0=3,5%

Equating the predicted S, probabilities and the experimental results gives
2 i 104 i i o i
7, =[] =[{5001- 01 K131+ e o)+ £e? |-} =[r-se ~ o]
= t{1-2ie — P {1+ 2ie™ — e} = L{6+4sina— 2cos B—4sin(o - B)}

=L{6+4sina—2cos f—4sinacos f+4cosasin B}
=L{7+6sino+4cosasinf} =0.87

which gives
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3sino+2cosasin f=3.46 = 24/3
2cososin =23 - 3sino
4cos’ arsin® B=12—12+/3sina +9sin’ o
4(1-sin’ /)2 =12-12+/3sinor + 9sin’ &
sin” ot —+/3sina+2=0

sinoz—§:0

&

sine=% = =

w|a

2 — — 2
A= a=5 = =5

Hence the unknown state is

|V/2>:%|1>+f6% )+ 2el ; -1)= 1>n(9:%’¢:%)

(i11) For unknown number 3, the measured probabilities are

7, =0.0286

Write the unknown state as
lw,)=a|1)+b|0)+c|-1)
Equating the predicted S, probabilities and the experimental results gives

\<1|W3\ \1|{a|1 +b|0)+c|- 1}\ =laf =t = a=+

3
2, =[(0fw.) =[olaly+bj0)+c|-D} =|pf =1 = b=Le®
=1l =[-1l{aln +plo)+ -} =[] =5 = c=e’
allowing for possible relative phases. So now the unknown state is
W)= [0+ Fe|0)+ e |-1)
Equating the predicted S, probabilities and the experimental results gives
01w =[Gl 1l {1 + e o)+ e |- = {1-e# )

:%{l—eiﬁ}{l—e"'ﬁ}:g{l+l—e —e }:g{l—COSﬁ}Z%

= cosff=-1= fB=mn

‘(pO x =

Equating the predicted S, probabilities and the experimental results gives
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= |, (1l ) =[{2 1= 01~ 21} LI+ o)~ |-y} =
:%{1—%eia}{l+ﬁe’i“}:%{ +\/_sm0¢} 0.0286

= sina=-1 = a=3L

Hence the unknown state is

v)=%-£10)-%I-1) {#|m),}
(iv) For unknown number 4, the measured probabilities are
P
P
P, =

L
2

0
1
2

(=}
Il

SN

1
4 7)ly
1
2

RS
[

. P
P

1
—~ly 4

S}
I

ENE

1x

Write the unknown state as
lw,)=all)+b|0)+c|-1)

Equating the predicted S, probabilities and the experimental results gives

2 =|(1y,) =|1{a[)+b]0)+c[-D)) =laf =1 = a=L

2, =[(0]w, ) =[0{a[y+5]0)+c|-D} =pf =0 = b=0

ﬂ1=\ Ay ) =fal{aly+bloy+el D =l =4 = o=
allowing for possible relative phases. So now the unknown state is
v =%0+5e’-1)

Equating the predicted S, probabilities and the experimental results gives

=[.Colwa) =f{1= k{1 +e"ﬁ|—1>H2 ==}
=t{1-e?Hi-e?}=1{1+1-¢" -} =4{1-cos B} =4

4
= cosff=0 = f=%3¢
Giving

v.)=%1nil-1)}
with no more info from S, S, S, measurements. In the SPINS program choose n at
angles 0 =90°, ¢ =45°, 225" to see that the unknown state is

Y= 35 {0 =10 =10) 0 =[0pss
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2.21. The spin-1 interferometer had an S, SG device, an S, deveice, and an S, SG
device. The S, eigenstates are |1),|0),|-1). The S, eigenstates are

1), =10+ l0)+ 311

1 1
0), = $|l>—f|—1>
1), =510 -510)+ 11

Let |wi> be the quantum state after the i Stern-Gerlach device. The first SG device
transmit particles with S, =+7, so the state |l//1> is

ly)=1).

The second SG device transmits particles in 1, 2, or 3 of the S, eigenstates

1) ,|0) ,|-1) . To find |y, ), we use the projection postulate:
P
|l//2> — n Wl)
(wilB|w.)

where P, is the projection operator onto the measured states. For example, if the second
SG device transmits particles with S =+7, we get

_Rdw) D QI
|W2> \/(Wl I l//1> \/<1||1>xx<1||1> |1>x

as expected. In matrix notation, the S, eigenstates are

1/2 1/\V2 1/2
D= /N2 0),=] 0 -1, = -1/N2
1/2 -1/2 1/2

and the projection operators are

6/11/12 2-24



Ch. 2 Solutions

7 VAN A/
Ro=I), (12| o (% Ve A)=| Jn % Sa
/4 Vi Jm Y
/i %0 H
R.=l0), 01| 0 |( /% 0 Y )= 0 0 0
/i 70
% o e N
Po=l-0, (U2 Vo (4 Ve %K) Ha A K
/ Ko Sha N

The probability of measuring a result after the third SG device is P = Kl//2|l//3>‘2. We
want to calculate the three probabilities

7 =[1lw)
P = ‘<0|V/2>‘2
P, = K_l | v, >‘2

for all possible (7) cases of 1 beam, 2 beams, or 3 beams from SG2.
(1) When the second SG device transmits particles with S, =+17 only:

|w2>: P, W1> _ P1x|1>
Jw B v AR
Vi S N 1 b/
PIN=El Jn A Ja || 0 |=| Sa
VA A/ 0 VA
2
P.)=(1 0 0) Ka |=V4
u
. VA VA
|W2>:ﬁ /?ﬁ = /l/ﬁ

which is |1) as expected. The three probabilities are
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1
2
A=ty =10 o) % | =3
%
2
1
2 : 1
7=lolv) =0 1 0) & | =5
%
2
1
2 . 1
?—1=‘<_1|V/2>‘ =( 00 l) % :Z
1
2

(i) When the second SG device transmits particles with S =07, |l//2>=|0> and the
three probabilities are

2

7=[1lv) =[(1 0 o)

S o S
I

2

5]
I
T~
=
<
S}
=
L)
I
—_
()
.
o
SN—
S o S
I
o

S
Il
N
il
<
|5}
>~
[}
1]
——~
S
(@)
[E—
SN—
s o sk
|

(ii1) When the second SG device transmits particles with S, =17, |1//2> = |—1> and the
three probabilities are
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(iv) When the second SG device transmits particles with S =+7 and S, =07 in a

coherent beam

-l (52 )
Jwl(B +B)lw)  Jal(P.+B)I)
%0 4 1 1/2

R.)= 0 0 0 || 0 |5 o0
w04 0 ~1/2
1/4 1/2 3/4
(P.+PI=| 1/2v2 |+ o |=| 1/2v2
1/4 -1/2 —1/4
3/4
(R, +R)=(1 0 0) 1/2v2 |=3/4
~1/4
3/4 J3/2
)= 12v2 |=| 16
V3 —~1/4 ~1/24/3

The three probabilities are
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2

J3/2
R=filva =10 o) W | =3
~1/2/3

J3/2
A =[olw.) =0 1 0) 1/N6 | =
~1/2/3

J3/2
P =[-1lw.) =0 o 1) 1/¥6 :é
~1/23

(v) When the second SG device transmits particles with S, =+# and S, =-1% in a
coherent beam

2

2

ly,)= (PP )y _ (AP
JW(B APl (B, +P )l
Yo Ne M 1 1/4
P.D=| Vs K Js { 0 J= -1/22
o s K 0 1/4

1/4 1/4 1/2
(B, +P))=| 1/2v2 |+| -1/2v2 |=] o
1/4 1/4 1/2

1/2
(B +P)N=(1 0 0) o |=12

1/2

1/2 1/\2

0o |=| o
1/2 /2

)=

EH
[\S]

The three probabilities are
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2

1/V2
2=ty =1 00) o |-=
1/\2

2

1/\2
A=[ow.)=[(0 1 0) o |=0

1/\2

1/\2
2 =(-1lv.)=[(0 0o 1) o =2
1/\2

N | —

2

(vi) When the second SG device transmits particles with S =07 and S, =-17 in a
coherent beam

ly,) = (R + P, )|w) _ (R, +P,)I)
Jwl(B+P )l (B +P )N
1/2 1/4 3/4
(rorp )= o |+ aavE || e
-1/2 1/4 ~1/4
3/4
(B.+P)=(1 0 0 ) -1/2v2 |=34
—1/4
3/4 J3/2
)= | 1242 |=| -G
V4 —1/4 ~1/24/3

The three probabilities are
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J3/2
Ak =1 0 o) e | -2
~1/2/3

J3/2
7>0:K0|q/2)\2:( o1 0) -1/\V6 :%
~1/2/3

J3/2
o=l = 0 0 1)) e | -
~1/23

(vil) When the second SG device transmits particles with S =+, S =07, and
S, =—1h in a coherent beam.

(RX+E))C+P4X) lVl) _ ([)lx+RJx+Pflx)|1>

lv=)= Jwl(B+ R +P ) IR +R+P)

)

/4 -1/242 1/4 . 1/4
P 0= —1/242 2 -1/22 || o |=| -1/2v2
/4 -1/242 14 0 1/4
1/4 1/2 1/4 1
(Po+ R +PL)ID=| 1/2v2 |+ 0 |+] —1/2v2 |=| 0
1/4 -1/2 1/4 0
1
(R +R+P)D=(1 0 0 ) 0 |=1
0

)=

oS O =

which is |1) as expected. The three probabilities are
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0
2, ==y, =[(1 0 o) o | =0
1

The cumulated results are

|W2> 7')1 7)0 ?71

1), i 7 %

10), 3 0 1
-1), i 7 %
1), &0), rEE
). &-1), |3 0 3
0). &|-1), |+ & &
1) &[0) &|-1) |1 0 0

2.22 a) The probability of measuring spin up at the 2" Stern-Gerlach analyzer and spin
down at the 3" Stern-Gerlach analyzer is the product of the individual probabilities:

(HOL,

2

P =? .7 =

+o+n——z +o+n’ +n——z

The |+>n eigenstate is
[+) =cos&|+)+e”sing|-)
so the probability is

Psoroe =[(cos 8|+ e sin g (=)} [~ (cos & +)+ ¢ sin ] ))f
= cos’ &sin’ ¢ = 1sin’ 6
b) To maximize the probability requires that 8 = r/2, and the probability is

—lgn2z_1
?+H+n%—z_4Sln 27 4

c) If the 2™ Stern-Gerlach analyzer is removed, then the probability is
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+o-2

=Kl =0

because the two states are orthogonal.

2.23 (a) The commutator is

a 0 0 b, 0 0 b, 0 0 a 0 0
[A,B]=AB-BA=| 0 a, O 0 0 b |-| 0 0 b 0 a, 0
0 0 a 0 b, O 0 b, O 0 0 a
ab, 0 0 ab, 0 0
=l 0 0 ab, |-| O 0 ayb,
0 ab, O 0 ab, O
0 0 0
= 0 0 bz(az as) #0
0 bz(a3—a2) 0

so they do not commute.
(b) A is already diagonal, so the eigenvalues and eigenvectors are obtained by inspection.
The eigenvalues are

a,,a,,d,
and the eigenvectors are
1 0 0
a)=[=| 0 |, a)=[2)=] 1 | |a)=[3)= o
0 0 1
For B, diagonalization yields the eigenvalues
b-A 0 0
0 -1 b, |=0 = (-1)(A*-b])=0
0 b, —-A
= A=b,,b,,—D,

and the eigenvectors
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b, 0 0 bu=bu
0 0 b, v |=b| v = bw=by = w=v=0
0 b, O w w b,y=bw

2

|u|2+|v|2+|w|2=1 = |u|2=1 = u=1Lv=0w=0 = |b1>=|l>i 0

0
by 0 0 bu=b,u
0 0 b, v |=by| v = bw=by = u=0, w=v
0 b O w w b,y=b,w

(by|byy=1 = Pp[+w[ =1 = u=0v==Lw==L = |b)==L(2)+]3))=

Sk sk o

b 0 0 u u bu=-b,u
0 0 b, v |==b| v = bw=-by = u=0, w=-v
0 b, 0 || w w b,y =—b,w
0
(~b,|-b)=1 = M +w[ =1 = u=0y=L,w=-L1 = |-b,)=L(2)+[3)2| F
1
2

¢) If B is measured, the possible results are the allowed eigenvalues b,,b,,—b,. If the
1nitial state is |1//,.> = 2), then the probabilities are

(pb, = ‘<b1 |l//i>‘2 = |<1|2>|2 =0
P, = Kb2|ll/i>‘2 = %((2|+(3|)|2)‘2 =1

2

P, = K_b2|l//i>‘2 = ‘%(<2| - <3|)|2>‘ 7

If A is then measured, the possible results are the allowed eigenvalues a,,a,,a,. If b, was
the first result, then the new state is |b2> and when A is measured the subsequent

probabilities are
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2

2, =[(a,|b,)" =[(11%(2)+[3)[ =0
2, =[a|b,) =25 (2)+3) =+
2, =|(a |0, =315 (12)+/3) =1

If -b, was the first result, then the new state is |—b2> and when A is measured the
subsequent probabilities are

2, \<a1|—b2>\2=\< =(2)-13) =0

P,

(s |-, =[2l%(12)-13)] =4
?, =|(a,|~b,) \3|f|2—|3\=i

d) If two operators do not commute, then the corresponding observables cannot be
measured simultaneously. Part (a) tells us that the operators A and B not commute. Part
(c) tells us that measurement B "disturbs" the measurement of A so the two measurements
are not compatible (cannot be made simultaneously).

2.24 (a) The eigenvalue equations for the S, operator and the four eigenstates are
S.[+5)=+31]+3)
S |+4)=+1n|+1)
S.|-1)=-3h]-1)
Sc[=3)==31|-3)

z
(b) The matrix representations of the S, eigenstates are the unit vectors

+1)=

|
0=
~—
Il
S = O O
|
S [
~——
Il
- O O O

S O O =
S O = O

(c) The matrix representation of the S, operator has the eigenvalues along the diagonal:

(d) The eigenvalue equations for the S* operator follow from the general equation
Sz|smx>=s(s+1)h2|sms>
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S| +3)= 5 7]+)
S| +)= 7))
$|-4)= 7))
$|-3)=7]-3)

where we have suppressed the s label.
(e) The matrix representation of the S* operator has the eigenvalues along the diagonal:

B 0 0 0
g © L 0 0
0o 0 &n* 0
o 0 0

2.25 The projection operators P, and P_ are represented by the matrices

pef 1 0] p 00
00 0 I

The Hermitian adjoints of these matrices are obtained by transposing and complex

conjugating them, yielding
P 1 0 P 0 0
Loo) T Lo1

Since the Hermitian adjoints are equal to the original matrices, these operators are
Hermitian.
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