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Chapter 0

From the Ground Up

0.1 Basic Problems
0.1 (a) i. Re(z) + Im(v) = 8− 2 = 6

ii. |z + v| = |17 + j1| =
√

172 + 1

iii. |zv| = |72− j16 + j27 + 6| = |78 + j11| =
√

782 + 112

iv. ∠z + ∠v = tan−1(3/8)− tan−1(2/9)

v. |v/z| = |v|/|z| =
√

85/
√

73

vi. ∠(v/z) = − tan−1(2/9)− tan−1(3/8)

(b) i. z + v = 17 + j =
√

172 + 1ej tan−1(1/17)

ii. zv = 78 + j11 =
√

782 + 112ej tan−1(11/78)

iii. z∗ = 8− j3 =
√

64 + 9(e−j tan−1(3/8))∗ =
√

73ej tan−1(3/8)

iv. zz∗ = |z|2 = 73

v. z − v = −1 + j5 =
√

1 + 25e−j tan−1(5)

1
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0.2 (a) z = 6ejπ/4 = 6 cos(π/4) + j6 sin(π/4)

i. Re(z) = 6 cos(π/4) = 3
√

2

ii. Im(z) = 6 sin(π/4) = 3
√

2

(b) i. Yes,Re(z) = 0.5(z + z∗) = 0.5(2Re(z)) = Re(z) = 8

ii. Yes, Im(v) = −0.5j(v − v∗) = −0.5j(2jIm(v)) = Im(v) = −2

iii. Yes,Re(z + v∗) = Re(Re(z) +Re(v∗) + Im(z)− Im(v)) = Re(z + v) = 17

iv. Yes, Im(z + v∗) = Im(17 + j5) = Im(z − v) = Im(−9 + j5) = 5

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.3 (a) Representing the complex number z = x+jy = |z|ejθ then |x| = |z|| cos(θ)| and since | cos(θ)| ≤ 1
then |x| ≤ |z|, the equality holds when θ = 0 or when z = x, i.e., it is real.
(b) Adding two complex numbers is equivalent to adding two vectors to create a triangle with two sides
the two vectors being added and the other side the vector resulting from the addition. Unless the two
vector being added have the same angle, in which case |z|+ |v| = |z+v|, it holds that |z|+ |v| > |z+v|.

!z

!v!z + !v

Figure 1: Addition of two vectors illustrating the triangular inequality.

(c) The answer to both is yes. Indeed,

(a) |z + v| =
√

13 ≤ |z|+ |v| =
√

2 +
√

5

(b) |z − v| = | − 1| = 1 ≤ |z|+ |v| =
√

2 +
√

5

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.4 (a) We have

i. cos(θ − π/2) = 0.5(ej(θ−π/2) + e−j(θ−π/2)) = −j0.5(ejθ − e−jθ) = sin(θ)

ii. − sin(θ − π/2) = 0.5j(ej(θ−π/2) − e−j(θ−π/2)) = 0.5j(−j)(ejθ + e−jθ) = cos(θ)

iii. sin(θ + π/2) = (jejθ + je−jθ)/(2j) = cos(θ)

(b) i. cos(2πt) sin(2πt) = (1/4j)(ej4πt − e−j4πt) so that

∫ 1

0

cos(2πt) sin(2πt)dt =
1

4j

ej4πt

4πj
|10 +

1

4j

e−j4πt

4πj
|10 = 0 + 0 = 0

ii. We have
cos2(2πt) =

1

4
(ej4πt + 2 + e−j4πt) =

1

2
(1 + cos(4πt))

so that its integral is 1/2 since the integral of cos(4πt) is over two of its periods and it is zero.

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.5 (a) i. 2 cos(α+ β) = ej(α+β) + e−j(α+β) = (ejαejβ) + (ejαejβ)∗ = 2Re(ejαejβ) and
Re[ejαejβ ] = Re[(cos(α) + j sin(α))(cos(β) + j sin(β))] = cos(α) cos(β)− sin(α) sin(β)
so that

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

ii. 2j sin(α+ β) = ejαejβ − (ejαejβ)∗ = 2jIm[ejαejβ ], and the imaginary is
sin(α) cos(β) + cos(α) sin(β) = sin(α+ β)

(b) ∫ 1

0

ej2πtdt =
ej2πt

j2π
|10 =

ej2π − 1

j2π
= 0

also ∫ 1

0

ej2πtdt =

∫ 1

0

cos(2πt)dt+ j

∫ 1

0

sin(2πt)dt = 0 + j0

since the integrals of the sinusoids are over a period.

(c) i. Yes, (−1)n = (ejπ)n = ejnπ = cos(nπ) + j sin(nπ) = cos(nπ) since sin(nπ) = 0 for any
integer n.

ii. Yes, ej0 = −ejπ and ejπ/2 = −ej3π/2 so they add to zero.

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.6 (a) Using Euler’s identity the product

ejαejβ = (cos(α) + j sin(α))(cos(β) + j sin(β))

= [cos(α) cos(β)− sin(α) sin(β)] + j[sin(α) cos(β) + cos(α) sin(β)]

while

ej(α+β) = cos(α+ β) + j sin(α+ β)

so that equating the real and imaginary parts of the above two equations we get the desired trigonometric
identities.

(b) We have

cos(α) cos(β) = 0.5(ejα + e−jα) 0.5(ejβ + e−jβ)

= 0.25(ej(α+β) + e−j(α+β)) + 0.25(ej(α−β) + e−j(α−β))

= 0.5 cos(α+ β) + 0.5 cos(α− β)

Now,

sin(α) sin(β) = cos(α− π/2) cos(β − π/2)

= 0.5 cos(α− π/2 + β − π/2) + 0.5 cos(α− π/2− β + π/2)

= 0.5 cos(α+ β − π) + 0.5 cos(α− β)

= −0.5 cos(α+ β) + 0.5 cos(α− β)

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.7 (a) Replacing zk = |α|1/Nej(φ+2πk)/N in zN we get zNk = |α|ej(φ+2πk) = |α|ej(φ) = α for any value
of k = 0, · · · , N − 1.
(b) Applying the above result we have:

• For z2 = 1 = 1ej2π the roots are zk = 1ej(2π+2πk)/2, k = 0, 1. When k = 0, z0 = ejπ = −1 and
z1 = ej2π = 1.

• When z2 = −1 = 1ejπ the roots are zk = 1ej(π+2πk)/2, k = 0, 1. When k = 0, z0 = ejπ/2 = j,
and z1 = ej3π/2 = −j.

• For z3 = 1 = 1ej2π the roots are zk = 1ej(2π+2πk)/3, k = 0, 1, 2. When k = 0, z0 = ej2π/3; for
k = 1, z1 = ej4π/3 = e−j2π/3 = z∗0 ; and for k = 2, z2 = 1ej(2π) = 1.

• When z3 = −1 = 1ejπ the roots are zk = 1ej(π+2πk)/3, k = 0, 1, 2. When k = 0, z0 = ejπ/3; for
k = 1, z1 = ejπ = −1; and for k = 2, z2 = 1ej(5π)/3 = 1ej(−π)/3 = z∗0

(c) Notice that the roots are equally spaced around a circle of radius r and that the complex roots appear
as pairs of complex conjugate roots.

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.8 (a) We have

i. z3 = −1 = ejπ(2k+1) for k = 0, 1, 2, so roots are zk = ejπ(2k+1)/3, k = 0, 1, 2, i.e., on a
circle of unit radius and separated π/3 with one at −1.

ii. z2 = 1 = ej2πk for k = 0,±1,±2, · · · , so roots are zk = ejπk =, i.e., on a circle of unit
radius and separated π , one at zero and the other at −1

iii. z2 + 3z + 1 = (z + 1.5)2 + (1− 1.52) = 0 so the roots are z1,2 = ±
√

(1.52 − 1)− 1.5

(b) The log (using the Naperian base) of a product is the sum of the logs of the terms in the product,
and the log and the exponential are the opposite of each other so the last term in the equation.
Using the given expression for the log of a complex number (log of real numbers is a special case):

log(−2) = log(2e±jπ) = log(2)± jπ
log(1 + j1) = log(

√
2ejπ/4) = log(

√
2) + jπ/4 = 0.5 log(2) + jπ/4

log(2ejπ/4) = log(2) + jπ/4

(c) z = −1 = 1ejπ thus

i. log(z) = log(1ejπ) = log(1) + jπ = jπ

ii. From above result, elog(z) = ejπ = −1

(d) i. z2/4 = (2ejπ/4)2/4 = 4ejπ/2/4 = j

ii. Yes, (cos(π/4)+j sin(π/4))2 = (z/2)2, and (z/2)2 = (cos(π/4)+j sin(π/4))2 = cos(π/2)+
j sin(π/2) = j

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.9 (a) If w = ez then
log(w) = z = 1 + j1

given that the log and e functions are the inverse of each other.
The real and imaginary of w are

w = ez = e1ej1 = e cos(1)︸ ︷︷ ︸
real part

+j e sin(1)︸ ︷︷ ︸
imaginary part

(b) The imaginary parts are cancelled and the real parts added twice in

w + w∗ = 2Re[w] = 2e cos(1)

(c) Replacing z
w = ez = e1ej1

so that |w| = e and ∠w = 1.
Using the result in (a)

| log(w)|2 = |z|2 = 2

(d) According to Euler’s equation

cos(1) = 0.5(ej + e−j) = 0.5

(
w

e
+
w∗

e

)

which can be verified using w + w∗ obtained above.

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.10 (a) Shifting to the right a cosine by a fourth of its period we get a sinusoid, thus

sin(Ω0t) = cos(Ω0(t− T0/4)) = cos(Ω0t− Ω0T0/4) = cos(Ω0t− π/2)

since Ω0 = 2π/T0 or Ω0T0 = 2π.

(b) The phasor that generates a sine is Ae−jπ/2 since

y(t) = Re[Ae−jπ/2ejΩ0t] = Re[Aej(Ω0t−π/2)] = A cos(Ω0t− π/2)

which equals A sin(Ω0t).

(c) The phasors corresponding to −x(t) = −A cos(Ω0t) = A cos(Ω0t+ π) is Aejπ . For

−y(t) = −A sin(Ω0t) = −A cos(Ω0t− π/2) = A cos(Ω0t− π/2 + π) = A cos(Ω0t+ π/2)

the phasor is Aejπ/2. Thus, relating any sinusoid to the corresponding cosine, the magnitude and
angle of this cosine gives the magnitude and phase of the phasor that generates the given sinusoid.

(d) If z(t) = x(t) + y(t) = A cos(Ω0t) + A sin(Ω0t), the phasor corresponding to z(t) is the sum
of the phasors Aej0, corresponding to A cos(Ω0t), with the phasor Ae−jπ/2, corresponding to
A sin(Ω0t), which gives

√
2Ae−jπ/4 (equivalently the sum of a vector with length A and angle 0

with another vector of length A and angle −π/2). We have that

z(t) = Re
[√

2Ae−jπ/4ejΩ0t
]

=
√

2A cos(Ω0t− π/4)

(e) i. Phasor 4ejπ/3

ii. −4 sin(2t+ π/3) = 4 cos(2t+ π/3 + π/2) with phasor 4ej5π/6

iii. We have

4 cos(2t+ π/3)− 4 sin(2t+ π/3) = Re[(4ejπ/3 + 4ej(π/2+π/3))ej2t]

= Re[4ejπ/3 (1 + ejπ/2)︸ ︷︷ ︸√
2ejπ/4

ej2t]

= Re[4
√

2ej7π/12ej2t]

so that the phasor is 4
√

2ej7π/12

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.11 (a) Assuming a maximum frequency of 22.05 kHz for the acoustic signal, the numbers of bytes (8 bits
per byte) for two channels (stereo) and a 75 minutes recording is greater or equal to: 2 × 22, 050
samples/channel/second × 2 bytes/sample × 2 channels × 75 minutes × 60 seconds/minute = 7.938×
108 bytes. Multiplying by 8 we get the number of bits. CD quality means that the signal is sampled at
44.1 kHz and each sample is represented by 16 bits or 2 bytes.

(b) The raw data would consist of 8 (bits/sample) ×10, 000 (samples/sec)=80, 000 bits/sec. The vocoder
is part of a larger unit called a digital signal processor chip set. It uses various procedures to reduce the
number of bits that are transmitted while still keeping your voice recognizable. When there is silence it
does not transmit, letting another signal use the channel during pauses.

(c) Texting between cell phones is possible by sending short messages (160 characters) using the short
message services (SMS). Whenever your cell-phone communicates with the cell phone tower there is an
exchange of messages over the control channel for localization, and call setup. This channel provides
a pathway for SMS messages by sending packets of data. Except for the cost of storing messages, the
procedure is rather inexpensive and convenient to users.

(d) For CD audio the sampling rate is 44.1 kHz with 16 bits/sample. For DVD audio the sampling rate is
192 kHz with 24 bits/sample. The sampling process requires getting rid of high frequencies in the signal,
also each sample is only approximated by the binary representation, so analog recording could sound
better in some cases.

(e) The number of pixels processed every second is: 352× 240 pixels/frame ×60 frames/sec.
The number of bits available for transmission every second is obtained by multiplying the above answer
by 8 bits/pixel. There many compression methods JPEG, MPEG, etc.

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.12 (a) If α = 1 then

S =

N−1∑

n=0

1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
N times

= N

(b) The expression

S(1− α) = S − αS
= (1 + α+ · · ·+ αN−1)− (α+ α2 + · · ·+ αN−1 + αN )

= 1− αN

as the intermediate terms cancel. So that

S =
1− αN
1− α , α 6= 1

Since we do not want the denominator 1− α to be zero, the above requires that α 6= 1. If α = 1 the sum
was found in (a). As a finite sum, it exists for any finite values of α.
Putting (a) and (b) together we have

S =

{
(1− αN )/(1− α) α 6= 1
N α = 1

(c) If N is infinite, the sum is of infinite length and we need to impose the condition that |α| < 1 so that
αn decays as n→∞. In that case, the term αN → 0 as N →∞, and the sum is

S =
1

1− α |α| < 1

If |α| ≥ 1 this sum does not exist, i.e., it becomes infinite.
(d) The derivative becomes

S1 =
dS

dα
=

∞∑

n=0

nαn−1 =
1

(1− α)2
.

Copyright 2014, Elsevier, Inc. All rights reserved.
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0.2 Problems using MATLAB

0.13 As we will see later, the sampling period of x(t) with a frequency of Ωmax = 2πfmax = 2π should
satisfy the Nyquist sampling condition

fs =
1

Ts
≥ 2fmax = 2 samples/sec

so Ts ≤ 1/2 (sec/sample). Thus when Ts = 0.1 the continuous-time and the discrete-time signals look
very much like each other, indicating the signals have the same information — such a statement will be
justified in the chapter on sampling where we will show that the continuous-time signal can be recovered
from the sampled signal. It is clear that when Ts = 1 the information is lost. Although it is not clear
from the figure that when we let Ts = 0.5 the discrete-time signal keeps the information, this sampling
period satisfies the Nyquist sampling condition and as such the original signal can be recovered from the
sampled signal. The following MATLAB script is used.

% Pr. 0._13
clear all; clf
T=3; Tss= 0.0001; t=[0:Tss:T];
xa=4*cos(2*pi*t); % continuous-time signal
xamin=min(xa);xamax=max(xa);
figure(1)
subplot(221)
plot(t,xa); grid
title(’Continuous-time Signal’); ylabel(’x(t)’); xlabel(’t sec’)
axis([0 T 1.5*xamin 1.5*xamax])
N=length(t);

for k=1:3,
if k==1,Ts= 0.1; subplot(222)
t1=[0:Ts:T]; n=1:Ts/Tss: N; xd=zeros(1,N); xd(n)=4*cos(2*pi*t1);
plot(t,xa); hold on; stem(t,xd);grid;hold off
axis([0 T 1.5*xamin 1.5*xamax]); ylabel(’x(0.1 n)’); xlabel(’t’)
elseif k==2, Ts=0.5; subplot(223)
t2=[0:Ts:T]; n=1:Ts/Tss: N; xd=zeros(1,N); xd(n)=4*cos(2*pi*t2);
plot(t,xa); hold on; stem(t,xd); grid; hold off
axis([0 T 1.5*xamin 1.5*xamax]); ylabel(’x(0.5 n)’); xlabel(’t’)
else,Ts=1; subplot(224)
t3=[0:Ts:T]; n=1:Ts/Tss: N; xd=zeros(1,N); xd(n)=4*cos(2*pi*t3);
plot(t,xa); hold on; stem(t,xd); grid; hold off
axis([0 T 1.5*xamin 1.5*xamax]); ylabel(’x(n)’); xlabel(’t’)

end
end

Copyright 2014, Elsevier, Inc. All rights reserved.
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Figure 2: Problem 13: Analog continuous-time signal (top left); continuous-time and discrete-time signals
superposed for Ts = 0.1 sec (top right) and Ts = 0.5 sec and Ts = 1 sec (bottom left to right).
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0.14 The derivative is

y(t) =
dx(t)

dt
= −8π sin(2πt)

which has the same frequency as x(t), thus the sampling period should be like in the previous problem,
Ts ≤ 0.5.

% Pr. 0_14
clear all
% actual derivative
Tss=0.0001;t1=0:Tss:3;
y=-8*pi*sin(2*pi*t1);
figure(2)
% forward difference
Ts=0.01;t=[0:Ts:3];N=length(t);
subplot(211)
xa=4*cos(2*pi*t); % sampled signal
der1_x=forwardiff(xa,Ts,t,y,t1);

clear der1_x
% forward difference
Ts=0.1;t=[0:Ts:3];N=length(t);
subplot(212)
xa=4*cos(2*pi*t); % sampled signal
der1_x=forwardiff(xa,Ts,t,y,t1);

The function forwardiff computes and plots the forward difference and the actual derivative.

function der=forwardiff(xa,Ts,t,y,t1)
% % forward difference
% % xa: sampled signal using Ts
% % y: actual derivative defined in t
N=length(t);n=0:N-2;
der=diff(xa)/Ts;
stem(n*Ts,der,’filled’);grid;xlabel(’t, nT_s’)
hold on
plot(t1,y,’r’); legend(’forward difference’,’derivative’)
hold off

For Ts = 0.1 the finite difference looks like the actual derivative but shifted, while for Ts = 0.01 it does
not.

Copyright 2014, Elsevier, Inc. All rights reserved.
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Figure 3: Problem 14: Ts = 0.01 sec (top) and Ts = 0.1 sec (bottom)
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0.15 (a) The backward finite difference (let Ts = 1 for simplicity)

∆1[x(n)] = x(n)− x(n− 1)

is connected with the forward finite difference ∆[x(n)] given in the chapter as follows

∆1[x(n+ 1)] = x(n+ 1)− x(n) = ∆[x(n)]

That is, ∆[x(n)] is ∆1[x(n)] shifted one sample to the left.
(b) (c) The average of the two finite differences gives

0.5 {∆1[x(n)] + ∆[x(n)]} = 0.5[x(n+ 1)− x(n− 1)]

which gives a better approximation to the derivative than either of the given finite differences. The
following script is used to compute ∆1 and the average.

% Pr. 0_15
% compares forward/backward differences
% with new average difference
Ts=0.1;
for k=0:N-2,

x1=4*cos(2*pi*(k-1)*Ts);
x2=4*cos(2*pi*k*Ts);
der_x(k+1)=x2-x1; % backward difference

end
der_x=der_x/Ts;
Tss=0.0001;t1=0:Tss:3;
y=-8*pi*sin(2*pi*t1); % actual derivative
n=0:N-2;
figure(3)
subplot(211)
stem(n*Ts,der_x,’k’);grid
hold on
stem(n*Ts,der1_x,’b’,’filled’) % derv1_x forward difference

% from Pr. 0.2
hold on
plot(t1,y,’r’); xlabel(’t, nT_s’)
legend(’bck diff’,’forwd diff’, ’derivative’)
hold off
subplot(212)
stem(n*Ts,0.5*(der_x+der1_x));grid;xlabel(’t, nT_s’) % average
hold on
plot(t1,y,’r’)
hold off
legend(’average diff’,’derivative’)

Copyright 2014, Elsevier, Inc. All rights reserved.
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Figure 4: Problem 15: Comparison of different finite differences.
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0.16 (a) According to Kirchoff’s current law

is(t) = iR(t) + iL(t) =
vL(t)

R
+ iL(t)

but vL(t) = LdiL(t)/dt so that the ordinary differential equation relating the input is(t) to the output
current in the inductor iL(t) is

diL(t)

dt
+ iL(t) = is(t)

after replacing L = 1 and R = 1. Notice that this d.e. is the dual of the one given in the Chapter, so that
the difference equation is

iL(nTs) =
Ts

2 + Ts
[is(nTs) + is((n− 1)Ts)] +

2− Ts
2 + Ts

iL((n− 1)Ts) n ≥ 1

iL(0) = 0
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Figure 5: Problem 16: Left (top to bottom): solution of difference equation for Ω0 = 0.005, 0.05, 0.5
(rad/sec). Right: input (top), solution of ordinary differential equation (bottom).

(b)(c) The scripts to solve the difference and ordinary differential equations are the following.

% Pr. 0_16
clear all
% solution of difference equation
Ts=0.01;
t=[0:Ts:100];
figure(4)
for k=0:2;

if k==0, subplot(311)
elseif k==1, subplot(312)
else, subplot(313)

end
W0= 0.005*10ˆk*pi; % frequency of source
is=cos(W0*t); % source

Copyright 2014, Elsevier, Inc. All rights reserved.



Chaparro — Signals and Systems using MATLAB 0.20

a=[1 (-2+Ts)/(2+Ts)]; % coefficients of i_L(n), i_L(n-1)
b=[Ts/(2+Ts) Ts/(2+Ts)]; % coefficients of i_s(n), i_s(n-1)
il=filter(b,a,is); % current in inductor computed by

% MATLAB function ’filter’
H=1/sqrt(1+W0ˆ2)*ones(1,length(t)); % filter gain at W0
plot(t,is,t,il,’r’,t,H,’g’); xlabel(’t’); ylabel(’i_s(t),i_L(t)’)
axis([0 100 1.1*min(is) 1.1*max(is)])
legend(’input current’,’output current’,’filter gain’); grid
pause(0.1)

end
%%%%
% solution of ordinary differential equation for cosine input of frequency 0.5pi
clear all
syms t x y
x=cos(0.5*pi*t);
y=dsolve(’Dy+y=cos(0.5*pi*t)’,’y(0)=0’,’t’)
figure(5)
subplot(211)
ezplot(x,[0 100]);grid
subplot(212)
ezplot(y,[0 100]);grid
axis([0 100 -1 1])
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0.17 (a) The distributive and the associative laws are equivalent to the ones for integrals, indeed
∑

k

cak = c(· · ·+ a−1 + a0 + a1 + · · · ) = c
∑

k

ak

since c does not depend on k. Likewise
∑

k

[ak + bk] = (· · ·+ a−1 + b−1 + a0 + b0 + a1 + b1 · · · ) =
∑

k

ak +
∑

k

bk

Finally, when adding a set of numbers the order in which they are added does not change the result. For
instance,

a0 + a1 + a2 + a3 = a0 + a2 + a1 + a3

(b) Gauss’ trick can be shown in general as follows. Let S =
∑N
k=0 k then

2S =

N∑

k=0

k +

0∑

k=N

k

letting ` = −k +N in the second summation we have

2S =

N∑

k=0

k +

N∑

`=0

(N − `) =

N∑

k=0

(k +N − k) = N

N∑

k=0

1 = N(N + 1)

where we let the dummy variables of the two sums be equal. We thus have that for N = 104

S =
N(N + 1)

2
=

104(104 + 1)

2
≈ 0.5× 108

(c) Using the above properties of the sum,

S1 =

N∑

k=0

(α+ βk) = α

N∑

k=0

1 + β

N∑

k=0

k

= α(N + 1) + β
N(N + 1)

2

(d) The following script computes numerically and symbolically the various sums.

% Pr. 0_17
clear all
% numeric
N=100;
S1=[0:1:N];
S2=[N:-1:0];
S=sum(S1+S2)/2
% symbolic
syms S1 N alpha beta k
simple(symsum(alpha+beta*k,0,N))
% computing sum for specific values of alpha, beta and N
subs(symsum(alpha+beta*k,0,N),{alpha,beta,N},{1,1,100})
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S = 5050

((2*alpha + N*beta)*(N + 1))/2

5151

The answers shown at the bottom.
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0.18 (a) The following figure shows the upper and lower bounds when approximating the integral of t:

upper bound

lower bound

0

0.25

0.5

0.75

1
t

x(t) = t

0.25 0.5 0.75

1

Figure 6: Problem 18: Upper and lower bounds of the integral of t when N = 4.

(b) (c) The lower bound for the integral is

S` =

N−1∑

n=1

(nTs)Ts = T 2
s

N−1∑

n=1

n = T 2
s

N−2∑

`=0

(`+ 1)

= T 2
s

[
(N − 1)(N − 2)

2
+ (N − 1)

]

The definite integral is
∫ 1

0

tdt =
1

2

The upper bound is

Su =

N∑

n=1

(nTs)Ts = S` +NT 2
s

Letting NTs = 1, or Ts = 1/N we have then that
[

(N − 1)(N − 2) + 2(N − 1)

2N2

]
≤ 1

2
≤
[

(N − 1)(N − 2) + 2(N − 1)

2N2

]
+

1

N

for large N the upper and the lower bound tend to 1/2.

The following script computes the lower and upper bound of the integral of t.

% Pr. 0_18
clear all
Ts=0.001;N=1/Ts;
% integral of t from 0 to 1 is 0.5
syms S1 n T k
% lower bound
n=subs(N);T=subs(Ts);
y=simple(symsum(k*Tˆ2,1,n-1));
yy=subs(y)
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% upper bound
z=simple(symsum(k*Tˆ2,1,n));
zz=subs(z)

% average
int= 0.5*(yy+zz)

giving the following results (the actual integral is 1/2).

yy = 0.4995
zz = 0.5005
int = 0.5000

(d) For y(t) = t2, 0 ≤ t ≤ 1, the following script computes the upper and the lower bounds and their
average:

%% integral of tˆ2 from 0 to 1 is 0.333
% lower bound
y1=simple(symsum(kˆ2*Tˆ3,1,n-1));
yy1=subs(y1)

% upper bound
z1=simple(symsum(kˆ2*Tˆ3,1,n));
zz1=subs(z1)

% average
int= 0.5*(yy1+zz1)

giving the following results, in this case the value of the definite integral is 1/3.

yy1 = 0.3328
zz1 = 0.3338
int = 0.3333
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0.19 The indefinite integral equals 0.5t2. Computing it in [0, 1] gives the same value as the sum of the integrals
computed between [0, 0.5] and [0.5, 1].

As seen before, the sum

S =

100∑

n=0

n =
100(101)

2
= 5050

while

S1 = S + 50 = 5100

S2 = S

the first sum has an extra term when n = 50 while the other does not. To verify this use the following
script:

% Pr. 0_19
clear all
N=100;
syms n,N
S=symsum(n,0,N)
S1=symsum(n,0,N/2)+symsum(n,N/2,N)
S2=symsum(n,0,N/2)+symsum(n,N/2+1,N)

giving

S = 5050
S1 = 5100
S2 = 5050
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0.20 (a)(b) We have that
0 < e−αt < e−βt

for α > β ≥ 0.

% Pr. 0_20
clear all
% compare two exponentials
t=[0:0.001:10];
x=exp(-0.5*t);
x1=exp(-1*t);
figure(6)
plot(t,x,t,x1,’r’);
legend(’Exponential Signal, a=-0.5’,’Exponential Signal, a=-1’)
grid
axis([0 10 0 1.1 ]); xlabel(’time’)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

time

 

 
Exponential Signal, a=−0.5
Exponential Signal, a=−1

Figure 7: Problem 20: Comparison of exponentials e−0.5t and e−t for t ≥ 0 and 0 otherwise.

(c) Sampling x(t) = eat using Ts = 1, we get

x(t)|t=n = ean = αn

where α = ea > 0
(d) The voltage in the capacitor is given by

vc(t) =
1

C

∫ t

0

e−0.5τdτ + vc(0)

with a initial voltage vc(0) = 0. Letting C = 1, we have

vc(t) =
e−0.5τ

−0.5
|t0 = 2(1− e−0.5t)

so that at t = 1 the voltage in the capacitor is vc(1) = 2− 2e−0.5 = 0.79.
(e) Letting NTs = 1, the definite integral is approximated, from below, by

N−1∑

n=0

Tse
−0.5(n+1)Ts
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if we let α = e−0.5Ts the above sum becomes

Ts

N−1∑

n=0

αn+1 = Tsα
1− αN
1− α

which is computed using the following script:

% compute value of Int (the integral)
N=1000;Ts=1/N;alpha=exp(- 0.5*Ts);
Int=Ts*alpha*(1-alphaˆN)/(1-alpha)

Int = 0.7867

approximating the analytic result found above.
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0.21 (a) The point (1,1) in the two-dimensional plane corresponds to z = 1 + j. The magnitude and phase are

|z| =
√

1 + 1 =
√

2

∠z = tan−1 (1) = π/4

(b) For the other complex numbers:

|w| =
√

2, ∠w = π − π/4 = 3π/4

|v| =
√

2, ∠v = π + π/4 = 5π/4

|u| =
√

2, ∠u = −π/4

The sum of these complex numbers
z + w + v + u = 0

(c) The ratios

z

w
=

1 + j

−1 + j
=

√
2ejπ/4√
2ej3π/4

= 1e−jπ/2 = −j

w

v
=
−1 + j

−1− j =

√
2ej3π/4√
2ej5π/4

= 1e−jπ/2 = −j

u

z
=

1− j
1 + j

=

√
2e−jπ/4√
2ejπ/4

= 1e−jπ/2 = −j

Also, multiplying numerator and denominator by the by the conjugate of the denominator we get the
above results. For instance,

z

w
=

1 + j

−1 + j
=

(1 + j)(−1− j)
2

=
−1− j − j − j2

2
=
−2j

2
= −j

and similarly for the others. Using these ratios we have

u

w
=
u

z
× z

w
= (−j)(−j) = −1.

(d) y = 10−6 = j10−6 = 10−6z so that

|y| = 10−6|z| = 10−6

∠y = π/4

Although the magnitude of y is negligible, its phase is equal to that of z.
The results are verified by the following script:

% Pr. 0_21
z=1+j; w=-1+j; v=-1-j;u=1-j;
figure(1)
compass(1,1)
hold on
compass(-1,1,’r’)
hold on
compass(-1,-1,’k’)
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hold on
compass(1,-1,’g’)
hold off
% part (a)
abs(z)
angle(z)
% part (b)
abs(w)
angle(w)
abs(v)
angle(v)
abs(u)
angle(u)
r=z+w+v+u
%part (c)
r1=z/w
r2=w/v
r3=u/z
r4=u/z
r5=u/w
figure(2)
compass(real(r1),imag(r1))
hold on
compass(real(r2),imag(r2),’r’)
hold on
compass(real(r3),imag(r3),’k’)
hold on
compass(real(r4),imag(r4),’g’)
hold on
compass(real(r5),imag(r5),’b’)
hold off
% part (c)
z
y=z*1e-16
abs(y)
angle(y)/pi
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Figure 8: Problem 21: Results of complex calculations in parts (a) z, w, v, u and (b) z/w,w/v, u/z, z/w
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0.22 (a)(b) Since

x(t) = (1 + jt)2 = 1 + j2t+ j2t2 = 1− t2︸ ︷︷ ︸
real

+j 2t︸︷︷︸
imag.

its derivative with respect to t is

y(t) =
dx(t)

dt
= −2t+ 2j =

dRe[x(t)]

dt
+ j

dIm[x(t)]

dt

% Pr. 0_22
clear all
t=[-5: 0.001:5];
x=(1+j*t).ˆ2;
xr=real(x);
xi=imag(x);
figure(7)
subplot(211)
plot(t,xr); title(’Real part of x(t)’); grid
subplot(212)
plot(t,xi); title(’Imaginary part of x(t)’); xlabel(’Time’); grid

% Warning when plotting complex signals
figure(8)
disp(’Read warning. MATLAB is being nice with you, this time!’)
plot(t,x); title(’COMPLEX Signal x(t)?’); xlabel(’Time’)

When plotting the complex function x(t) as function of t, MATLAB ignores the imaginary part. One
should not plot complex functions as functions of time as the results are not clear when using MATLAB.
See Fig. 9 for plots.
(c) Using the rectangular expression of x(t) we have

∫ 1

0

x(t)dt =

∫ 1

0

(1− t2 + 2jt)dt =

∫ 1

0

(1− t2)dt+ 2j

∫ 1

0

t dt = t− t3

3
+ j

2t2

2

∣∣1
0 =

2

3
+ j1

(d) The integral

∫ 1

0

x∗(t)dt =

∫ 1

0

(1− t2 − 2jt)dt =

∫ 1

0

(1− t2)dt− 2j

∫ 1

0

t dt = t− t3

3
− j 2t2

2

∣∣1
0 =

2

3
− j1

which is the complex conjugate of the integral calculated in (c). So yes, the expression is true.
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Figure 9: Problem 22: Real and imaginary parts of x(t) (left); complex signal x(t) ignoring imaginary part.
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0.23 (a) Using Euler’s identity

ejπn = cos(πn) + j sin(πn) = cos(πn) = (−1)n

so it is a real signal.

ejπn

n

· · ·· · ·

1

−1

0

1

2

3

Figure 10: Problem 23: The complex exponential ejπn = cos(πn) which is real.

(b) Replacing the sines by exponentials we have

sin(α) sin(β) =
1

−4
(ejα − e−jα)(ejβ − e−jβ)

=
1

−4

[
ej(α+β) + e−j(α+β) − ej(α−β) − ej(−α+β)

]

=
1

−4
[2 cos(α+ β)− 2 cos(α− β)]

=
1

2
[cos(α− β)− cos(α+ β)]

(c) Similarly

cos(α) sin(β) =
1

4j
(ejα + e−jα)(ejβ − e−jβ)

=
1

4j

[
ej(α+β) − e−j(α+β) − ej(α−β) + ej(−α+β)

]

=
1

4j
[2j sin(α+ β)− 2j sin(α− β)]

=
1

2
[sin(α+ β)− sin(α− β)]

If α = β then cos(α) sin(α) = (1/2) sin(2α) since sin(0) = 0. We have that T0 = 2 is the period of
sin(πt), cos(πt) as well as sin(2πt) (indeed, sin(2π(t+ 2)) = sin(2πt+ 4π) = sin(2πt)), therefore the
integral

∫ T0

0

sin(πt) cos(πt)dt = 0.5

∫ 2

0

sin(2πt)dt

︸ ︷︷ ︸
area under two periods of sin(2πt)

= 0.

Thus sin(πt) and cos(πt) are orthogonal.
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0.24
cos(jθ) =

1

2
(e−θ + eθ) = cosh(θ)

(b) The hyperbolic sine is defined as

sinh(θ) =
1

2
(eθ − e−θ)

which is connected with the circular sine as follows

sin(jθ) =
1

2j
(e−θ − eθ) = j sinh(θ) ⇒ sinh(θ) = −j sin(jθ)

(c) Since e±θ > 0 then cosh(θ) = cosh(−θ) > 0, the smallest value is for θ = 0 which gives cosh(0) =
1
(d) Indeed,

sinh(−θ) =
1

2
(e−θ − eθ) = − sinh(θ)
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Figure 11: Problem 24: cosh(θ) (top) and sinh(θ) (bottom).

% Pr. 0_24
clear all
theta=sym(’theta’);
x= 0.5*(exp(-theta)+exp(theta));
y= 0.5*(exp(theta)-exp(-theta));
figure(9)
subplot(211)
ezplot(x,[-10,10])
grid
subplot(212)
ezplot(y,[-10,10])
grid
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Chapter 1

Continuous–time Signals

1.1 Basic Problems

1.1 Notice that 0.5[x(t) + x(−t)], the even component of x(t), is discontinuous at t = 0, it is 1 at t = 0 but
0.5 at t± ε for ε→ 0. Likewise the odd component of x(t), or 0.5[x(t)− x(−t)], must be zero at t = 0
so that when added to the even component one gets x(t).
z(t) equals x(t). See Fig. 1.

t

t t t

tt

tt t

x(t) x(t + 1) x(t − 1)

x(−t) 0.5[x(t) + x(−t)] 0.5[x(t) − x(−t)]

x(2t) x(0.5t) y(t)

1

1

1 1

1

1 1

0.5

−0.5

(1)

−1

1

20.5

−1 −1 1

−1

1

−1 21

1

0

Figure 1.1: Problem 1

1
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1.2 (a) If x(t) = t for 0 ≤ t ≤ 1, then x(t + 1) is x(t) advanced by 1, i.e., shifted to the left by 1 so that
x(0) = 0 occurs at t = −1 and x(1) = 1 occurs at t = 0.

x(t)

x(−t) x(−t + 1)

t t

tt
1

1

2−1

1 1

1 1

0 0

0 0

−1

x(t + 1)

Figure 1.2: Problem 2: Original signal x(t), shifted versions x(t+ 1), x(−t) and x(−t+ 1).

The signal x(−t) is the reversal of x(t) and x(−t+1) would be x(−t) advanced to the right by 1. Indeed,

t x(−t+ 1)

1 x(0)

0 x(1)

− 1 x(2)

The sum y(t) = x(t+ 1) + x(−t+ 1) is such that at t = 0 it is y(0) = 2; y(t) = x(t+ 1) for t < 0; and
y(t) = x(−t+ 1) for t > 0. Thus,

y(t) = x(t+ 1) = t+ 1 0 ≤ t+ 1 < 1 or − 1 ≤ t < 0

y(0) = 2

y(t) = x(−t+ 1) = −t+ 1 0 ≤ −t+ 1 < 1 or 0 < t ≤ 1

or

y(t) =





t+ 1 −1 ≤ t < 0
2 t = 0
−t+ 1 0 < t ≤ 1

(b) Except for the discontinuity at t = 0, y(t) looks like the even triangle signal Λ(t), their integrals are
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y(t)

t−1 1

2

Figure 1.3: Problem 2: Triangular signal y(t) with discontinuity at the origin.

identical as the discontinuity of y(t) does not add any area.
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1.3 (a) We have that

i. x(t) is causal because it is zero for t < 0. It is neither even nor odd.
ii. Yes, the even component of x(t) is

xe(t) = 0.5[x(−t) + x(t)]

= 0.5[etu(−t) + e−tu(t)] = 0.5e−|t|

(b) x(t) = cos(t) + j sin(t) is a complex signal, xe(t) = 0.5[ejt + e−jt] = cos(t) so xo(t) = j sin(t).

(c) The product of the even signal x(t) with the sine, which is odd, gives an odd signal and because of
this symmetry the integral is zero.

(d) Yes, because x(t) + x(−t) = 2xe(t), i.e., twice the even component of x(t), and multiplied by the
sine it is an odd function.
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1.4 The signal x(t) = t[u(t)− u(t− 1)] so that its reflection is

v(t) = x(−t) = −t[u(−t)− u(−t− 1)]

and delaying v(t) by 2 is

y(t) = v(t− 2) = −(t− 2)[u(−(t− 2))− u(−(t− 2)− 1)]

= (−t+ 2)[u(−t+ 2)− u(−t+ 1)] = (2− t)[u(t− 1)− u(t− 2)]

On the other hand, the delaying of x(t) by 2 gives

w(t) = x(t− 2) = (t− 2)[u(t− 2)− u(t− 3)]

which when reflected gives

z(t) = w(−t) = (−t− 2)[u(−t− 2)− u(−t− 3)]

Comparing y(t) and z(t) we can see that these operations do not commute, that the order in which these
operations are done cannot be changed, so that y(t) 6= z(t) as shown in Fig. 1.4.

v(t) y(t)

w(t) z(t)

t t

t t

−1 1 2

321 −1−2−3

1 1

1 1

Figure 1.4: Problem 4: Reflection and delaying do not commute, y(t) 6= z(t).
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1.5 (a) x(t) is called causal because it is zero for t < 0, it repeats every 0.5 sec. for t ≥ 0.

· · ·

· · ·

· · ·

· · ·

· · ·

x(t)

xe(t)

xo(t)

10.5

−0.5

0.5

0.5

1

1

−0.5

1

0.5

0.5

−0.5

Figure 1.5: Problem 5.

(b) Even component xe(t) = 0.5[x(t) + x(−t)] is periodic of fundamental period Te = 0.5. The odd
component is xo(t) = 0.5[x(t)− x(−t)] is not periodic.

(c) xe(t) and xo(t) are non-causal signals as they are different from zero for negative times.
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1.6 (a) Using Ω0 = 2πf0 = 2π/T0 for

i. cos(2πt): Ω0 = 2π rad/sec, f0 = 1 Hz and T0 = 1 sec.
ii. sin(t− π/4): Ω0 = 1 rad/sec, f0 = 1/(2π) Hz and T0 = 2π sec.

iii. tan(πt) = sin(πt)/ cos(πt): Ω0 = π rad/sec, f0 = 1/2 Hz and T0 = 2 sec.

(b) The fundamental period of sin(t) is T0 = 2π, and T1 = 2π/3 is the fundamental period of sin(3t),
T1/T0 = 1/3 so 3T1 = T0 = 2π is the fundamental period of z(t).

(c) i. y(t) is periodic of fundamental period T0 = 1.
ii. w(t) = x(2t) is x(t) compressed by a factor of 2 so its fundamental period is T0/2 = 1/2, the

fundamental period of z(t).
iii. v(t) has same fundamental period as x(t), T0 = 1, indeed v(t + kT0) = 1/x(t + kT0) =

1/x(t).

(d) i. x(t) = 2 cos(t), Ω0 = 2πf0 = 1 so f0 = 1/(2π)

ii. y(t) = 3 cos(2πt+ π/4), Ω0 = 2πf0 = 2π so f0 = 1

iii. c(t) = 1/ cos(t), of fundamental period T0 = 2π, so f0 = 1/(2π).

(e) ze(t) is periodic of fundamental period T0, indeed

ze(t+ T0) = 0.5[z(t+ T0) + z(−t− T0))]

= 0.5[z(t) + z(−t)]

Same for zo(t) since zo(t) = z(t)− ze(t).
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1.7 (a) i. x(t) = cos(t+ π/4), Ω0 = 1 = 2π/T0 so T0 = 2π,
x(t+ kT0) = cos(t+ k2π + π/4) = x(t)

ii. y(t) = 2 + sin(2πt), Ω0 = 2π, T0 = 1
y(t+ kT0) = 2 + sin(2πt+ 2πk) = y(t)

iii. z(t) = 1 + (cos(t)/ sin(3t)), T0 = 2π fundamental period of cosine, T1 = 2π/3 fundamental
period of the sine, then T0/T1 = 3 or T0 = 3T1 = 2π is the fundamental period of z(t),

z(t+ 2πk) = 1 +
cos(t+ 2πk)

sin(3t+ 6πk)
= z(t)

(b) i. z1(t) is periodic of period 10T0, indeed

z1(t+ 10T0) = x1(t+ 10T0) + 2y1(t+ 10T0)

= x1(t) + 2y1(t)

ii. v1(t) is periodic of fundamental period 10T0 as

v1(t+ 10T0) =
x1(t+ 10T0)

y1(t+ 10T0)
=
x1(t)

y1(t)

iii. w1(t) is periodic of fundamental period T0, since y1(10T0) is compressed by a factor of 10 so
its fundamental period is T0 the same as x1(t).
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1.8 (a) x(t) is a causal decaying exponential with energy

Ex =

∫ ∞

0

e−2tdt =
1

2

and zero power as

Px = lim
T→∞

Ex
2T

= 0

(b)

Ez =

∫ ∞

−∞
e−2|t|dt = 2

∫ ∞

0

e−2tdt

︸ ︷︷ ︸
Ez1

(c) i. If y(t) = sign[x1(t)], it has the same fundamental period as x1(t), i.e., T0 = 1 and y(t) is a
train of pulses so its energy is infinite, while

Py =

∫ 1

0

1 dt = 1

ii. Since x2(t) = cos(2πt − π/2) = cos(2π(t − 1/4)) = x1(t − 1/4), the energy and power of
x2(t) coincide with those of x1(t).

(d) v(t) = x1(t) + x2(t) is periodic of fundamental period T0 = 2π, and its power is

Pv =
1

2π

∫ 2π

0

(cos(t) + cos(2t))2dt =
1

2π

∫ 2π

0

(cos2(t) + cos2(2t) + 2 cos(t) cos(2t))dt

Using

cos2(θ) =
1

2
+

1

2
cos(2θ)

cos(θ) cos(φ) =
1

2
(cos(θ + φ) + cos(θ − φ))

we have

Pv =
1

2π

∫ 2π

0

cos2(t)dt

︸ ︷︷ ︸
Px1

+
1

2π

∫ 2π

0

cos2(2t)dt

︸ ︷︷ ︸
Px2

+
1

2π

∫ 2π

0

2 cos(t) cos(2t))dt

︸ ︷︷ ︸
0

=
1

2
+

1

2
+ 0 = 1

(e) Power of x(t)

Px =
1

T0

∫ T0

0

x2(t)dt

=

∫ 1

0

cos2(2πt)dt

=

∫ 1

0

(1/2 + cos2(4πt)dt = 0.5 + 0 = 0.5
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Power of f(t)

Pf = lim
T→∞

1

2T

∫ T

−T
y2(t)dt

= lim
N→∞

1

2(NT0)

∫ NT0

0

y2(t)dt

=
1

2T0

∫ T0

0

y2(t)dt = 0.5Ps
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1.9 This problem can be done in the time domain or in the phasor domain. The series connection of the
source vs(t) = cos(t), the resistor R and the inductor L is equivalent to the connection of a phasor
source Vs = 1ej0, and impedances R and jΩL = jL (the frequency of the source is Ω = 1). The
corresponding to the current across the resistor and the inductor, in steady state, is

I =
Vs

R+ jL

(a) L = 1, R = 0 —intuitively, the power used by the inductor is zero since only the resistor uses power.

_
+

Vs = 1ej0

R

jLI

Figure 1.6: Problem 9: Phasor circuit.

In this case, the current i(t) has a phasor

I =
1

j
= −j = 1e−jπ/2

so that the current across the inductor in steady state is given by

i(t) = cos(t− π/2)

We can compute the average power Pa in time by finding the instantaneous power as

p(t) = i(t)vs(t) = cos(t− π/2) cos(t) =
1

2
(cos(π/2) + cos(2t− π/2))

so that

Pa =
1

T0

∫ T0

0

p(t)dt

=
1

2π

∫ 2π

0

1

2
[cos(π/2) + cos(2t− π/2)]dt = 0

since cos(π/2) = 0 and the area under cos(2t− π/2) in a period is zero.

You probably remember from Circuits that the average power is computed using the equivalent expres-
sion

Pa =
VsmIm

2
cos(θ)
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where Vsm and Im are the peak-to-peak values of the phasors corresponding to Vs and I , and θ is the
angle in the impedance of the inductor, i.e, j1 = ejπ/2 or θ = π/2, and the average power is then

Pa = 0.5 cos(π/2) = 0

Confirming our intuition!
(b) For L = 1, R = 1, the phasor

I =
Vs

1 + j
=

√
2

2
e−jπ/4

and so in the phasor domain,

Pa =
VsmIm

2
cos(π/4) =

√
2/2

2

√
2/2 =

1

4

(c) L = 0, R = 1, in this case the power used by the resistor will be the power provided by the source.
in this case the phasor for the current across the resistor is

I = Vs = 1ej0 so that i(t) = cos(t)

in the steady state. Thus,

Pa =
1

T0

∫ T0

0

p(t)dt

=
1

2π

∫ 2π

0

1

2
[cos(0) + cos(2t)]dt = 0.5

In the phasor domain, the average power is

Pa =
V 2
sm

2
cos(0) =

1

2

(d) The complex power supplied to the circuit is given by

P =
1

2
VsI
∗ =

1

2
(IZ)I∗ =

|I|2|Z|
2

ejθ

where Z = |Z|ejθ = R+ jΩL is the input impedance.

Since Ω = 1, then for

• R = 0, L = 1, Z = j, I = −j so P = 1
2e
jπ/2 = 0 + j0.5 and Pa = Re[P ] = 0.

• R = 1, L = 1, Z = 1 + j, I = 1/(1 + j) so |I|2 = 1/2, Z =
√

2, θ = π/4 so that P =
0.5(0.5)

√
2ejπ/4 = 0.25

√
2(cos(π/4) + j sin(π/4)) and Pa = Re[P ] = 0.25.

• R = 1, L = 0, Z = 1, I = 1 so P = 1
2e
j0 = 0.5 + j0 and Pa = Re[P ] = 0.5.

The real part of the complex power corresponds to the average power used by the resistors, while the
imaginary part corresponds to the reactive power which is due to inductor and capacitors only.
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1.10 (a) Let x(t) = x1(t) + x2(t) = cos(2πt) + 2 cos(πt), so that x1(t) is a cosine of frequency Ω1 = 2π or
period T1 = 1, and x2(t) is a cosine of frequency Ω2 = π or period T2 = 2. The ratio of these periods
T2/T1 = 2/1 is a rational number so x(t) is periodic of fundamental period T0 = 2T1 = T2 = 2.
The average power of x(t) is given by

Px =
1

T0

∫ T0

0

x2(t)dt =
1

2

∫ 2

0

[x2
1(t) + x2

2(t) + 2x1(t)x2(t)]dt

Using the trigonometric identity cos(α) cos(β) = cos(α− β) + cos(α+ β) we have that the integral

1

2

∫ 2

0

2x1(t)x2(t)dt =
1

2

∫ 2

0

4 cos(2πt) cos(πt)dt

=

∫ 2

0

[cos(πt) + cos(3πt)]dt = 0

since cos(πt) + cos(3πt) is periodic of period 2 and so its area under a period is zero. Thus,

Px =
1

2

∫ 2

0

[x2
1(t) + x2

2(t)]dt

=
1

2

∫ 2

0

x2
1(t)dt+

1

2
2

∫ 1

0

x2
2(t)]dt

= Px1
+ Px2

so that the power of x(t) equals the sum of the powers of x1(t) and x2(t) which are sinusoids of different
frequencies, and thus orthogonal as we will see later.
Finally,

Px =
1

2

∫ 2

0

cos2(2πt)dt+

∫ 1

0

4 cos2(πt)dt

=
1

2

∫ 2

0

[0.5 + 0.5 cos(4πt)]dt+

∫ 1

0

4[0.5 + 0.5 cos(2πt)]dt

= 0.5 + 2 = 2.5

remembering that the integrals of the cosines are zero (they are periodic of period 0.5 and 1 and the
integrals compute their areas under one or more periods, so they are zero).
(b) The components of y(t) have as periods T1 = 2π and T2 = 2 so that T1/T2 = π which is not rational
so y(t) is not periodic. In this case we need to find the power of y(t) by finding the integral over an
infinite support of y2(t) which will as before give

Py = Py1 + Py2

In the case of harmonically related signals we can use the periodicity and compute one integral. However,
in either case the power superposition holds.
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1.11 (a) Yes, expressing ej2πt = cos(2πt) + j sin(2πt), periodic of fundamental period T0 = 1, then the
integral is the area under the cosine and sine in one or more periods (which is zero) when k 6= 0
and integer. If k = 0, the integral is also zero.

(b) Yes, whether t0 = 0 (first equation) or a value different from zero, the two integrals are equal as
the area under a period is the same. In the case x(t) = cos(2πt), both integrals are zero.

(c) It is not true, cos(2πt)δ(t− 1) = cos(2π)δ(t− 1) = δ(t− 1).

(d) It is true, considering x(t) the product of cos(t) and u(t) its derivative is

dx(t)

dt
=

d cos(t)

dt
u(t) + cos(t)

du(t)

dt
= − sin(t)u(t) + cos(0)δ(t)

(e) Yes,
∫ ∞

−∞

[
e−tu(t)

]
δ(t− 2)dτ =

∫ ∞

0

[
e−2
]
δ(t− 2)dτ

= e−2

(f) Yes,

dx(t)

dt
= 0.5[etu(t) + etδ(t)] + 0.5[−e−tu(t) + e−tδ(t)]

= 0.5[et − e−t]u(t) + δ(t) = sinh(t)u(t) + δ(t)

(g) The even component xe(t) is a periodic full-wave rectified signal of amplitude 1/2 and fundamental
period T1 = π.
Power of x(t)

Px = 0.5

[
1

π

∫ π

0

x2(t)dt

]

Power of xe(t)

Pxe =
1

π

∫ π

0

(0.5x(t))2dt = 0.5Px
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1.12 (a) See Fig. 12a
x(t) = |t| [u(t+ 2)− u(t− 2)]︸ ︷︷ ︸

p(t)

Derivative

x(t)

y(t)

2−2

2

−1

1

t

t

(2)

(−2)

−2 2

Figure 1.7: Problem 12

y(t) =
dx(t)

dt
= 2δ(t+ 2)− u(t+ 2) + 2u(t)− u(t− 2)− 2δ(t− 2)

(b) Integral

∫ t

−∞
y(t′)dt′ =





0 t < −2
−t −2 ≤ t < 0
t 0 ≤ t < 2
0 t ≥ 2

which equals x(t).

(c) Yes, because x(t) is an even function of t.
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1.13 (a) The signal x(t) is

x(t) =





0 t < −1
t+ 1 −1 ≤ t ≤ 0
−1 0 < t ≤ 1
0 t > 1

there are discontinuities at t = 0 and at t = 1. The derivative

y(t) =
dx(t)

dt
= u(t+ 1)− u(t)− 2δ(t) + δ(t− 1)

indicating the discontinuities at t = 0, a decrease from 1 to −1, and at t = 1 an increase from −1
to 0.

(b) The integral
∫ t

−∞
y(τ)dτ =

∫ t

−∞
[u(τ + 1)− u(τ)

−2δ(τ) + δ(τ − 1)]dτ = x(t)

x(t)

y(t)

(−2)

(1)

1

1

1

1

−1

−1

−1

t

t

Figure 1.8: Problem 13
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1.14 (a) x(t), −∞ < t <∞, is a continuous signal and its derivative exists and it is

y(t) =
d cos(Ω0t)

dt
= −Ω0 sin(Ω0t)

(b) x1(t) has a discontinuity at t = 0, and so its derivative will have a δ(t) function. Indeed, its derivative
is

z(t) =
d cos(Ω0t)u(t)

dt

=
d cos(Ω0t)

dt
u(t) + cos(Ω0t)

du(t)

dt
= −Ω0 sin(Ω0t)u(t) + cos(Ω0t)δ(t)

= −Ω0 sin(Ω0t)u(t) + cos(0)δ(t)

= −Ω0 sin(Ω0t)u(t) + δ(t)

(c) The integral of z(t) is zero for t < 0, and

∫ t

−∞
z(t′)dt′ =

∫ t

0

−Ω0 sin(Ω0t
′)dt′ +

∫ t

0−
δ(t′)dt′

= [cos(Ω0t)− 1] + 1 = cos(Ω0t) t > 0

or cos(Ω0t)u(t).
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1.15 (a) The signal x(t) = t for 0 ≤ t ≤ 1, zero otherwise. Then

x(2t) =

{
2t 0 ≤ 2t ≤ 1 or 0 ≤ t ≤ 1/2
0 otherwise

that is, the signal has been compressed — instead of being between 0 and 1, it is now between 0 and 0.5.

(b) Likewise, the signal

x(t/2) =

{
t/2 0 ≤ t/2 ≤ 1 or 0 ≤ t ≤ 2
0 otherwise

i.e., the signal has been expanded, its support has doubled.
The following figure illustrates the compressed and expanded signals x(2t) and x(t/2).

x(2t) x(t/2)

t t0.5 1 21

1 1

Figure 1.9: Problem 15: Compressed x(2t), expanded x(t/2) signals.

(c) If the acoustic signal is recorded in a tape, we can play it faster (contraction) or slower (expansion)
than the speed at which it was recorded. Thus the signal can be made to last a desired amount of time,
which might be helpful whenever an allocated time is reserved for broadcasting it.
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1.16 (a) Because of the discontinuity of x(t) at t = 0 the even component of x(t) is a triangle with xe(0) = 1,
i.e.,

xe(t) =





0.5(1− t) 0 < t ≤ 1
0.5(1 + t) −1 ≤ t < 0
1 t = 0

while the odd component is

xo(t) =





0.5(1− t) 0 < t ≤ 1
−0.5(1 + t) −1 ≤ t < 0
0 t = 0

xe(t) x0(t)

t t

1

0.50.5

1 1

−1

−1

−0.5

Figure 1.10: Problem 16: Even and odd decomposition of x(t).

(b) The energy of x(t) is
∫ ∞

−∞
x2(t)dt =

∫ ∞

−∞
[xe(t) + xo(t)]

2dt

=

∫ ∞

−∞
x2
e(t)dt+

∫ ∞

−∞
x2
o(t)dt+ 2

∫ ∞

−∞
xe(t)xo(t)dt

where the last equation on the right is zero, given that the integrand is odd.

(c) The energy of x(t) = 1− t, 0 ≤ t ≤ 1 and zero otherwise, is given by
∫ ∞

−∞
x2(t)dt =

∫ 1

0

(1− t)2dt = t− t2 +
t3

3

∣∣1
0 =

1

3

The energy of the even component is
∫ ∞

−∞
x2
e(t)dt = 0.25

∫ 0

−1

(1 + t)2dt+ 0.25

∫ 1

0

(1− t)2dt = 0.5

∫ 1

0

(1− t)2dt

where the discontinuity at t = 0 does not change the above result. The energy of the odd component is
∫ ∞

−∞
x2
o(t)dt = 0.25

∫ 0

−1

(1 + t)2dt+ 0.25

∫ 1

0

(1− t)2dt = 0.5

∫ 1

0

(1− t)2dt

so that
Ex = Exe + Exo
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1.17 (a) The function g(t) corresponding to the first period of x(t) is given by

g(t) = u(t)− 2u(t− 1) + u(t− 2)

(b) The periodic signal x(t) is

x(t) = g(t) + g(t− 2) + g(t− 4) + · · ·

+ g(t+ 2) + g(t+ 4) + · · · =
∞∑

k=−∞
g(t+ 2k)

(c) Yes, the signals y(t), z(t) and v(t) are periodic of period T0 = 2 as can be easily verified.
(d) The derivative of x(t) is

· · ·· · ·

dx(t)
dt

t
1−1

2

2

−2

Figure 1.11: Problem 17: Derivative of x(t).

w(t) = 2δ(t) − 2δ(t− 1) + 2δ(t− 2) + · · ·
− 2δ(t+ 1) + 2δ(t+ 2) + · · ·

which can be seen to be periodic of period T0 = 2.
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1.18 (a) Ω0 = 2π = 2πf0 (rad/sec), so f0 = 1/T0 = 1 (Hz) and T0 = 1 sec.
The sum

z(t) = x(t) + y(t)

= (2 cos(2πt) + cos(πt)) + j(2 sin(2πt) + sin(πt)

is also periodic of period T1 = 2.
(b) v(t) = x(t)y(t) = 2ej3πt with frequency Ω3 = 3π so that

T3 = 2π/Ω3 = 2/3
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1.19 (a) The derivative signal y(t) = dx(t)/dt is a train of rectangular pulses. Indeed, if x1(t) = r(t) −
2r(t− 0.5) + r(t− 1) is the first period of x(t) then

x(t) =

∞∑

k=−∞
x1(t− k)

its derivative is

y(t) =
dx(t)

dt
=

∞∑

k=−∞

dx1(t− k)

dt

where
dx1(t− k)

dt
= u(t− k)− 2u(t− 0.5− k) + u(t− 1− k)

(b) The signal x(t)− 0.5 has an average of zero, so its integral

z(t) = lim
N→∞

N

∫ 1

0

(x(t)− 0.5)dt = 0

(c) Neither is a finite energy signal.
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1.2 Problems using MATLAB

1.20 The given signal x(t) = e−|t| is even, positive and decays to zero as t→ ±∞
(a) The signal is finite energy as

Ex =

∫ ∞

−∞
x2(t)dt = 2

∫ ∞

0

e−2tdt = 2
e−2t

−2
|∞0 = 1

(b) The signal x(t) is absolutely integrable as
∫ ∞

−∞
|x(t)|dt = 2

∫ ∞

0

e−tdt = 2
e−2t

−1
|∞0 = 2

Notice that 0 < x2(t) < x(t) and so the knowledge that x(t) is absolutely integrable (i.e., that the above
integral is finite) would imply that x(t) has finite energy (i.e., the integral calculated in (b) is finite).
(c) The energy of y(t) is

Ey =

∫ ∞

0

e−2t cos2(2πt)dt <

∫ ∞

0

e−2tdt = Ex/2 = 1/2

since cos2(2πt) ≤ 1 (the decaying sinusoid is bounded by the envelope e−2tu(t)).

% Pr. 1_20
clear all; clf
syms x y t z
x=exp(-abs(t));
% computation of integrals
% for increasing values of time
for k=1:100,

zi=2*int(x,t,0,k/10);
yi=2*int(xˆ2,t,0,k/10);
vi=int((exp(-t)*cos(2*pi*t))ˆ2,0,k/10);
zz(k)=subs(zi);
yy(k)=subs(yi);
vv(k)=subs(vi);

end
t1=[1:100]/10;
figure(1)
subplot(221)
ezplot(x,[-10,10]);grid
axis([-10 10 0 1]);title(’x(t)=eˆ{-|t|}’)
subplot(222)
plot(t1,zz);grid;title(’integral of |x(t)|’);xlabel(’t’)
subplot(223)
plot(t1,yy);grid;title(’integral of |x(t)|ˆ2’);xlabel(’t’)
subplot(224)
plot(t1,vv);grid;title(’integral of |eˆ{-t}cos(2\pit)|ˆ2’);xlabel(’t’)

figure(2)
ezplot((exp(-t)*cos(2*pi*t))ˆ2,[0,5]);grid
axis([0 5 0 1])
hold on
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ezplot((exp(-t))ˆ2,[0,5])
axis([0 5 0 1]);title(’envelope of |y(t)|ˆ2’)
hold off
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Figure 1.12: Problem 20: signal x(t), and the integrals of |x(t)|, |x(t)|2 and |y(t)|2 (left). Right: envelope of
|y(t)|2.

(d) For a value C for the capacitor, considering the initial condition the source for the RC circuit the KVL
equation for t ≥ 0 is:

vR(t) +
1

C

∫ t

0

i(τ)dτ = 1, or

e−t +
1

CR

∫ t

0

e−τdτ = 1

after replacing the voltage and current in the resistor. Solving the integral we obtain

e−t +
1

RC
(1− e−t) = 1

so that for t = 0 we get an identity indicating the initial condition is satisfied by the solution. For t→∞
we get 1/RC = 1. So thatR = 1/C in general, forC = 1 mF thenR = 1 KΩ and forC = 1µ = 10−6F,
then R = 106Ω or 1 MΩ.
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1.21 (a) The signal x1(t) = 4 cos(πt) has frequency Ω1 = 2π/2 so that the period of x1(t) is T1 = 2.
Likewise the signal x2(t) = − sin(3πt + π/2) has frequency Ω2 = 3π = 2π/(2/3) so that it is
periodic of period T2 = 2/3. The signal x(t) is periodic of fundamental period T0 = 2 as the ratio
T1/T2 = 2/(2/3) = 3 so that T0 = 3T2 = T1 = 2.
(b) The ratio of the two periods is

T1

T2
=

3

3× 4
=

1

4

so that
T0 = 4T1 = T2

is the period of x(t) = x1(t) + x2(t).
(c) In general, if the ratio of the periods of two periodic signals is

T1

T2
=
M

K

for integers M and K, not divisible by each other, then T0 = KT1 = MT2 is the period of the sum of
the periodic signals. If the ratio is not rational (i.e., M and/or K are not integers) then the sum of the two
periodic signals is not periodic.
The following script is used to show that x1(t) + x2(t) is periodic, while x3(t) + x4(t) is not.

% Pr. 1_21
clear all; clf
syms x1 x2 x3 x4 t
x1=4*cos(2*pi*t); x2=-sin(3*pi*t+pi/2);
x3=4*cos(2*t);x4=x2;
figure(3)
subplot(211)
ezplot(x1+x2,[0 10]);grid
subplot(212)
ezplot(x3+x4,[0 10]);grid

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

t

4 cos(2 π t)−cos(3 π t)

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

t

4 cos(2 t)−cos(3 π t)

Figure 1.13: Problem 21: periodic x1(t) + x2(t) (top), non–periodic x3(t) + x4(t) (bottom).
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1.22 (a) The triangular pulse has a width of 2∆ and a height of 1/∆, its area is 1. The following MATLAB
script can be used to see the limit as ∆→ 0

% Pr. 1_22
clear all; clf
% part (a)
delta=0.1;
t=[-delta:0.05:delta];N=length(t);
lambda=zeros(1,N);
figure(5)
for k=1:6,

lambda=(1-abs(t/delta))/delta;
delta=delta/2;
plot(t,lambda);xlabel(’t’)
axis([-0.1 0.1 0 330]);grid
hold on
pause(0.5)

end
grid
hold off

(b) The signal S∆(t) = 1/∆s(t/∆) so that

S∆(t) =
1

∆

sin(πt/∆)

πt/∆
=

sin(πt/∆)

πt

and so

S∆(0) = lim
t→ 0

(π/∆)
cos(πt/∆)

π
= 1/∆

and S∆(t) is zero at
πt/∆ = ±kπ k 6= 0 integer

or t = ±k∆ and finally the integral
∫ ∞

−∞
S∆(t)dt =

∫ ∞

−∞

sin(τπ)

π∆τ
∆dτ = 1

where we used τ = t/∆. The following script illustrates the limit as ∆→ 0.

% part (b)
syms S t
delta=1;
figure(6)
for k=1:4,

delta=delta/k;
S=(1/delta)*sinc(t/delta);
ezplot(S,[-2 2])
axis([-2 2 -8 30])
hold on
I=subs(int(S,t,-100*delta, 100*delta)) % area under sinc
pause(0.5)

end
grid;xlabel(’t’)
hold off

Copyright 2014, Elsevier, Inc. All rights reserved.
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Figure 1.14: Problem 22: approximation of δ(t) using triangular (left) or sinc (right) functions
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1.23 (a) The sampling signal is a sequence of unit impulses at uniform times kT , for t > 0. The integral

ssT (t) =

∫ t

−∞

∞∑

k=0

δ(t− kT )dt =

∞∑

k=0

∫ t

−∞
δ(t− kT )dt =

∞∑

k=0

u(t− kT )

This signal is called the “stairway to the stars” (ssT (t)) for obvious reasons.
(b)(c) The following script will display the signal ss(t) and the conversion to analog (just uncomment
the desired signal and comment the not desired signal).

% Pr. 1_23 parts (b) and (c)
clear all; clf
T=0.1; t=0:T:10;
%f=t; % part (b)
f=cos(2*pi*t); % part (c)
figure(6)
stairs(t,f);grid
%axis([0 10 0 10]) % part (b)
axis([0 10 -1.1 1.1]) % part (c)
hold on
plot(t,f,’r’)
hold off

When f(t) = t + 1 the output looks like a digitized line with unit slope and cut at 1 (see figure below),
similarly when f(t) = cos(2πt) the output looks like a digitized sinusoid.
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Figure 1.15: Problem 23: ‘Digitized’ ramp and cosine signals using ’stairway to stars’
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1.24 (a) The expanded signal x(t/2) is periodic. The first period of x(t) is x1(t) for 0 ≤ t ≤ 2, and so the
period of x(t/2) is x1(t/2) which is supported in 0 ≤ t/2 ≤ 2 or 0 ≤ t ≤ 4, so the period of x(t/2) is
4.
(b) The compressed signal x(2t) is periodic. The first period of x(t), x1(t) for 0 ≤ t ≤ 2, becomes
x1(2t) for 0 ≤ 2t ≤ 2 or 0 ≤ t ≤ 1, its support is halved. So the period of x(2t) is 1.

% Pr. 1_24, part(b)
clear all; clf
t=0:0.002:8;
t1=0:0.001:8; t2=0:0.004:8;
x=cos(pi*t);
x1=cos(pi*t1/2);
x2=cos(pi*2*t2);
figure(7)
subplot(211)
plot(t1,x1)
hold on
plot(t,x,’r’)
xlabel(’t (sec)’)
ylabel(’x(t/2), x(t)’)
legend(’expanded signal’, ’original signal’)
subplot(212)
plot(t2,x2)
hold on
plot(t,x,’r’)
xlabel(’t (sec) ’)
ylabel(’x(2t), x(t)’)
hold off
legend(’compressed signal’, ’original signal’)
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Figure 1.16: Problem 24: expanded and compressed sinusoids vs original sinusoid.
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1.25 (a) The power of the full-wave rectified signal is

Py =

∫ 1

0

| sin(πt)|2dt

because the period of y(t) is T = 1. A simpler expression for sin2(πt) can be computed using Euler’s
equation

sin2(πt) =

[
ejπt − e−jπt

2j

]2

=
−1

4

[
ej2πt − 2 + e−j2πt

]

= 0.5(1− cos(2πt))

Since cos(2πt) has a period 1 its integral over a period is zero, thus

Py = 0.5

(b) A pulse ρ(t) = u(t)−u(t−1) covers one of the periods of y(t) and thus the area under the full-wave
rectified signal is Py < 1 the area of the pulse squared.
(c) The following script is used to calculate the power which is found to be 1/2

% Pr. 1_25, part (c)
clear all;clf
syms x t
x=sin(pi*t); T=1;
figure(8)
ezplot(xˆ2,[0,5*T]);grid
P=int(xˆ2,t,0,T)/T
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Figure 1.17: Problem 25: magnitude squared signal used to compute power.
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1.26 The sampling rate Fs in sample/second is given with the discretized signal. To get one second of the
signal we need to take N = Fs samples from the given signal. The corresponding number of samples
NN for τ = 0.5 sec. is then calculated and the signal y(t) computed and displayed as function of time
as shown in the following script. For Fs = 8, 192 samples/sec, NN = 4, 096 samples

% Pr. 1_26
clear all; clf
load handel; Fs % test signal and sampling freq
N=Fs; y=y(1:N)’; % one second of handel
NN=fix(0.5*Fs) % delay in samples
% delaying signals
t=0:1/Fs:(N-1)/Fs;
tt=0:1/Fs:(N-1)/Fs+2*NN/Fs;
y1=[y zeros(1,2*NN)];
y2=0.8*[zeros(1,NN) y zeros(1,NN)];
y3=0.5*[zeros(1,2*NN) y];

yy=y1+y2+y3;
figure(9)
subplot(211)
plot(t,y); title(’original signal’);grid
subplot(212)
plot(tt,yy); title(’multipath signal’);grid
xlabel(’t (sec)’)

sound(yy,Fs)
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Figure 1.18: Problem 26: original ’handel’ signal (top); two-path affected signal (bottom).
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1.27 (a) (b) Adding 1 to the phasor 0.7ejφt gives a phasor of continuously varying magnitude and phase. Part
(a) of the script below shows it.
We have

1 + 0.7ejφt = 1 + 0.7 cos(φt) + j0.7 sin(φt) = A(t)ejθ(t)

where
A(t) =

√
(1 + 0.7 cos(φt))2 + (0.7 sin(φt))2 =

√
1.49 + 1.4 cos(φt)

and

θ(t) = tan−1

[
0.7 sin(φt)

1 + 0.7 cos(φt)

]

which are computed as indicated in the script below.
(c) In this case we consider the effects of having two paths, the attenuation and the delays in time and in
frequency.

% Pr. 1_27
clear all; clf
% part (a)
t1=0;T=0.5;
m=1;
figure(10)
for k=1:512,

B=0.7*exp(j*pi*t1/100);
A=1+B;
A1(k)=abs(A);
Theta(k)=angle(A)*180/pi;
if k==20*m,

compass(real(A),imag(A),’r’)
hold on
compass(real(B),imag(B))
hold on
compass(1,0,’k’)
legend(’A=B+1’,’B’,’1’)
m=m+1;
pause(0.1)

else
t1=t1+T;
hold off

end
end
t=0:T:511*T;
% part (b)
figure(11)
subplot(211)
plot(t,A1);title(’Magnitude of 1+eˆ{j\phi t}’);grid
axis([0 max(t) 0 1.1*max(A1)])
subplot(212)
plot(t,Theta);title(’Phase (degrees) of 1+eˆ{j\phi t}’);grid
axis([0 max(t) 1.1*min(Theta) 1.1*max(Theta)]);xlabel(’t’)

% part (c)
y0=0.7*exp(j*(pi+pi/100)*t);
y1=real(exp(j*pi*t)+[zeros(1,100) y0(1:length(y0)-100)]);
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t1=0:T:(length(y1)-1)*T;
figure(12)
plot(t1,y1);title(’Multi-path effects’);grid
axis([0 max(t1) 1.1*min(y1) 1.1*max(y1)]); ylabel(’y_1(t)’);xlabel(’t’)
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Figure 1.19: Problem 27: phasor plot (top–left); magnitude and phase of 1+ejφt (top–right); resulting signal
due to multipath (bottom).

Copyright 2014, Elsevier, Inc. All rights reserved.



Chaparro — Signals and Systems using MATLAB 1.34

1.28 (a) The following script generates the signal y(t) for NP = 101 players, and ∆ = 0.02 Hz (changing
the NP to 51 we obtain the corresponding signal).

% Pr. 1_28
clear all; clf
NP=101 % number of players
% NP=51
A=10; delta=2/(NP-1);
F=160-(NP-1)/2*delta:delta:160+(NP-1)/2*delta;
t=0:0.1:200;
y=zeros(1,length(t));
figure(13)
for k=1:NP,

y=y+A*cos(2*pi*F(k)*t);
plot(t,y);grid
pause(0.1)

end
ylabel(’y(t)’); xlabel(’t’)

The final signal looks like a sequence of very narrow pulses.
(b) In this part, one can think of a multipath with NP paths, with no attenuation but a different Doppler
shift, ranging from −1 Hz to 1 Hz, in increments of 0.02 Hz.
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Figure 1.20: Problem 28: pulsation effect when NP = 101 and ∆ = 0.02 Hz.
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1.29 (a)(b) The following script generates the chirps

% Pr. 1_29
clear all;clf
t=0:0.05:40;
% chirps
y=cos(2*t+t.ˆ2/4);
y1=cos(2*t- 2*sin(t));
figure(14)
subplot(211)
plot(t,y); title(’linear chirp’)
axis([0 20 1.1*min(y) 1.1*max(y)]);grid
subplot(212)
plot(t,y1);title(’sinusoidal chirp’);xlabel(’t’)
axis([0 20 1.1*min(y1) 1.1*max(y1)]);grid

% instantaneous frequencies
IF=2+2*t/4;
IF1=2-2*cos(2*t);
figure(15)
subplot(211)
plot(t,IF);title(’IF of linear chirp’)
ylabel(’frequency’); xlabel(’t’);grid
subplot(212
plot(t,IF1);title(’IF of sinusoidal chirp’)
ylabel(’frequency’);xlabel(’t’);grid
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Figure 1.21: Problem 29: linear and sinusoidal chirps (left) and their corresponding instantaneous frequencies
(right).
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Chapter 2

Continuous–time Systems

2.1 Basic Problems
2.1 (a) The y(t)-x(t) relation is a line through the origin between −10 to 10 and a constant before and after

that. The system is non-linear, for instance if x(t) = 7 the output is y(t) = 700 but if we double the
input, the output is not 2y(t) = 1400 but 1000.
(b) If the inputs is always between −10 and 10 the system behaves like a linear system. In this case the
output is chopped whenever x(t) is above 10 or below −10. Se Fig. 2.1.
(c) Whenever the input goes below −10 or above 10 the output is −1000 and 1000, otherwise the output
is 2000 cos(2πt)u(t).
(d) If the input is delayed by 2 the clipping will still occur, simply at a later time. So the system is time
invariant.
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Figure 2.1: Problem 1: input and output of amplifier.
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2.2 (a) Input x1(t) = δ(t) gives

y1(t) =

∫ t

t−1

δ(τ)dτ + 2 =





2 t < 0
3 0 ≤ t ≤ 1
2 t > 1

x2(t) = 2x1(t) gives

y2(t) = 2

∫ t

t−1

δ(τ)dτ + 2 =





2 t < 0
4 0 ≤ t ≤ 1
2 t > 1

Since y2(t) 6= 2y(t) system is non-linear.

x1(t) y1(t)

y2(t)x2(t)

t

t

t

t

(1)

(2) 2

1

1

2

2 2
3

4

Figure 2.2: Problem 2

(b) If x3(t) = u(t) − u(t − 1) then y3(t) = 2 + r(t) − 2r(t − 1) + r(t − 2) . If x4(t) = x3(t − 1)
then the corresponding output is y3(t− 1), so the system is time-invariant.

(c) Non-causal, although y(t) depends on present and past inputs, it is not zero when x(t) = 0, due to
the bias of 2.

(d) If |x(t)| < M we have

|y(t)| ≤
∫ t

t−1

|x(τ)|dτ + 2 < M + 2 <∞

The system is BIBO stable.
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2.3 (a) x(t) = sin(2πt)u(t) is zero for t < 0 and repeats periodically every T0 = 1. Thus,

y(t) =

∞∑

k=0

p(t− k), p(t) = u(t)− 2u(t− 0.5) + u(t− 1)

If the input is 2x(t) the output is the same as before, so the system is non-linear.

(b) The system is time-invariant: if input x(t− τ) the output is y(t− τ) for any value of τ .
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2.4 (a) Derivative
dz(t)

dt
= w(t)− w(t− 1)

which excludes the initial condition of 2. System is LTI if initial condition is zero.

(b) i. If input is i(t− µ) then the output is letting η = τ − µ
∫ t

0

i(τ − µ)dτ =

∫ 0

−µ
i(η)dη +

∫ t−µ

0

i(η)dη = vc(t− µ)

that is, provided that i(t) = 0 for t < 0, the system is time-invariant.

ii. If i(t) = u(t) then vc(t) =
∫ t

0
u(τ)dτ = r(t). If we shift the inputs i1(t) = i(t−1) = u(t−1)

the previous output is shifted, so system is time-invariant.

(c) If x(t) = u(t) then y(t) = sin(2πt)u(t) while corresponding to x(t − 0.5) = u(t − 0.5) is
y1(t) = sin(2πt)u(t− 0.5) indicating the system is not time-invariant as y1(t) is not y(t− 0.5).

−0.5 0 0.5 1 1.5
t

sin(2 π t) heaviside(t)

−0.5 0 0.5 1 1.5
t

heaviside(t − 1/2) sin(2 π t)

Figure 2.3: Problem 4(c)
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2.5 (a) See Fig. 1. The circuit is a series connection of a voltage source x(t) with a resistor R = 1/2 Ω,
and capacitor C = 1F. Indeed, the mesh current is i(t) = dy(t)/dt so

x(t) = Ri(t) + y(t) = Rdy(t)/dt+ y(t)

_
+

x(t)

R = 1/2 �

C = 1F
+

�
y(t)

i(t)

Figure 2.4: Problem 5

(b) The output is
y(t) = e−2t 0.5 e2τ |t0 = 0.5(1− e−2t)u(t)

and

dy(t)

dt
= e−2tu(t) + 0.5(1− e−2t)δ(t)

= e−2tu(t)

dy(t)

dt
+ 2y(t) = e−2tu(t) + u(t)− e−2tu(t)

= u(t)
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2.6 (a) i. z(t) = Av(t) +B, system is linear if B = 0, non-linear otherwise.
ii. z(t) = v(t) cos(Ω0t) is linear but time-varying.

iii. If f(t) = v(t) = u(t)− u(t− 1), B = 0 then z(t) = u(t)− u(t− 1), and if we shift v(t) so
the input is v1(t) = u(t− 2)− u(t− 3) the output is z1(t) = v1(t)f(t) = 0 which is different
from z(t− 2), so the system is time-varying.

(b) i. The system is linear:

1

T

∫ t

t−T
[Ax1(τ) +Bx2(τ)]dτ =

A

T

∫ t

t−T
x1(τ)dτ +

B

T

∫ t

t−T
x2(τ)dτ = Ay1(t) +By2(t)

where yi(t), i = 1, 2, are the corresponding outputs to xi(t),i = 1, 2.
ii. If x(t) = u(t) then y(t) = r(t) − r(t − 1) and if x1(t) = u(t − 2) the corresponding output

is y1(t) = y(t− 2). System is time-invariant.
In general, if x1(t) = x(t− λ) the output is

1

T

∫ t

t−T
x1(τ)︸ ︷︷ ︸
x(t−λ)

dτ =
1

T

∫ t−λ

t−T−λ
x(ν)dν

(using ν = τ − λ) which is the same as y(t− λ), so time-invariant.
iii. y(t) depends on present and past inputs, and zero if input is zero, so the system is causal.
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2.7 (a) The charge is
q(t) = C(t)v(t)

so that

i(t) =
dq(t)

dt
= C(t)

dv(t)

dt
+ v(t)

dC(t)

dt

(b) If C(t) = 1 + cos(2πt) and v(t) = cos(2πt), the current is

i1(t) = C(t)
dv(t)

dt
+ v(t)

dC(t)

dt
= (1 + cos(2πt))(−2π sin(2πt))− cos(2πt)(2π sin(2πt))

= −2π sin(2πt)[1 + 2 cos(2πt)]

(c) When the input is
v(t− 0.25) = cos(2π(t− 1/4)) = sin(2πt)

the output current is

i2(t) = C(t)
dv(t− 0.25)

dt
+ v(t− 0.25)

dC(t)

dt

= (1 + cos(2πt))(2π cos(2πt))− 2π sin2(2πt)

= 2π cos(2πt) + 2π[cos2(2πt)− sin2(2πt)]

which is not
i1(t− 0.25) = 2π cos(2πt)[1 + sin(2πt)]

so the system is time varying.
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2.8 (a) The system is LTI since the input x(t) and the output y(t) are related by a convolution integral with
h(t− τ) = e−(t−τ)u(t− τ) or h(t) = e−tu(t).
Another way: to show that the system is linear let the input be x1(t) + x2(t), and x1(t) and x2(t) have
as outputs

yi(t) =

∫ t

0

e−(t−τ)xi(τ)dτ i = 1, 2

The output for x1(t) + x2(t) is

∫ t

0

e−(t−τ)(x1(τ) + x2(τ))dτ = y1(t) + y2(t)

To show the time invariance let the input be x(t− t0), its output will be

∫ t

0

e−(t−τ)x(τ − t0)dτ =

∫ 0

−t0
e−((t−t0)−µ)x(µ)dµ+

∫ t−t0

0

e−((t−t0)−µ)x(µ)dµ

=

∫ t−t0

0

e−((t−t0)−µ)x(µ)dµ = y(t− t0)

by letting µ = τ − t0 and using the causality of the input. The system is then TI.

Finally the impulse response is found by letting x(t) = δ(t) so that the output is

h(t) =

∫ t

0

e−(t−τ)δ(τ)dτ =

∫ t

0

e−(t−0)δ(τ)dτ =

{
e−t × 1 = e−t t ≥ 0
0 otherwise

(b) Yes, this system is causal as the output y(t) depends on present and past values of the input.
(c) Letting x(t) = u(t), the unit-step response is

s(t) =

∫ t

0

e−t+τu(τ)dτ = e−t
∫ t

0

eτdτ = 1− e−t

for t ≥ 0 and zero otherwise. The impulse response as indicated before is h(t) = ds(t)/dt = e−tu(t).
The BIBO stability of the system is then determined by checking whether the impulse response is abso-
lutely integrable or not, ∫ ∞

−∞
|h(t)|dt =

∫ ∞

0

e−tdt = −e−t |∞0 = 1

so yes it is BIBO stable.
(d) Using superposition, the response to the pulse x1(t) = u(t)− u(t− 1) would be

y1(t) = y(t)− y(t− 1) = (1− e−t)u(t)− (1− e−(t−1))u(t− 1)

which starts at zero, grows to a maximum of 1− e−1 at t = 1 and goes down to zero as t→∞.
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2.9 (a) Letting x(t) = δ(t) the impulse response is

h(t) =
1

T

∫ t+T/2

t−T/2
δ(τ)dτ

=
1

T

∫ t

t−T/2
δ(τ)dτ +

1

T

∫ t+T/2

t

δ(τ)dτ

If t > 0, and t− T/2 < 0 the first integral includes 0, while the second does not. Thus

h(t) =
1

T

∫ t

t−T/2
δ(τ)dτ + 0 =

1

T
t > 0 and t− T/2 < 0, or 0 < t < T/2

Likewise when t < 0 then t−T/2 < −T/2 and t+T/2 < T/2 the reverse of the previous case happens
and so

h(t) = 0 +
1

T

∫ t+T/2

t

δ(τ)dτ =
1

T
t < 0 and t+ T/2 > 0, or − T/2 < t < 0

so that
h(t) =

1

T
[u(t+ T/2)− u(t− T/2)]

indicating that the system is non-causal as h(t) 6= 0 for t < 0.
(b) If x(t) = u(t) then the output of the averager is

y(t) =
1

T

∫ t+T/2

t−T/2
u(τ)dτ

If t + T/2 < 0 then y(t) = 0 since the argument of the unit step signal is negative. If t + T/2 ≥ 0 and
t− T/2 < 0 then

y(t) =

∫ t+T/2

0

u(τ)dτ =
1

T
(t+ T/2)

and finally when t− T/2 ≥ 0 then

y(t) =
1

T

∫ t+T/2

t−T/2
u(τ)dτ = 1

The unit-step response of the noncausal averager is

y(t) =





0 t < −T/2
1
T (t+ T/2) −T/2 ≤ t < T/2
1 t ≥ T/2
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2.10 The input to all the systems is x(t) = cos(t),−∞ < t <∞
(a) The system is non-linear, as the output

y(t) = cos2(t) = 0.5(1 + cos(2t))

has frequency components of frequencies 0 and 2 (rad/sec) which are not in the input.
(b) The output is

y(t) = 0.5 cos(t) + 0.5 cos(t− 1)

having the same frequencies as the input so it is LTI.
(c) The output

y(t) = cos(t)u(t)

is not LTI. This is not a periodic signal, and it has frequencies different from the one at the input due to
the multiplication by the u(t).
(d) The output is

y(t) = 0.5 sin(τ)|tt−2 = 0.5 sin(t)− 0.5 sin(t− 2)

having the same frequency as the input so it is LTI.
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2.11 (a) Since f(t) is not a constant, the system is a modulator thus linear but time varying. Linearity is clearly
satisfied. If x(t) 6= 0 is the input and we shift it to get as input x(t − 11) the corresponding output is
zero different from y(t− 11). Thus the system is time varying. Since y(t) depends on x(t) the system is
causal. For x(t) bounded, i.e., |x(t)| < M < ∞, the output is also bounded, |y(t)| < M |f(t)| < ∞ so
the system is BIBO stable.
(b) The modulated signal is

x(t)f(t) = 2[cos((π/2 + 6π/7)t) + cos((6π/7− π/2)t) = 2(cos(19πt/14) + cos(5πt/14)

with periods of T0 = 28/19 and T1 = 28/5 for the two components. The ratio

T0

T1
=

5

9

i.e., it is rational so the modulated signal is periodic of period 5T1 = 19T0 = 28, which is easily verified.
The frequencies at the output are not present at the input so the system is linear but not time–invariant
(f(t) is a function of t).
(c) If x(t) = u(t), the modulated signal is y(t) = u(t) − u(t − 2), and if we shift the input so that it is
x(t−3) = u(t−3) the corresponding output is u(t−3)[u(t)−u(t−2)] = 0 different from the previous
output shifted by 3, therefore the system is time-varying.
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2.12 (a) If y(0) = 0 the system is linear, indeed for an input αx1(t) + βx2(t) with y1(t) the response due
to x1(t) and y2(t) the response due to x2(t) we have

∫ t

0

e−(t−τ)[αax1(τ) + βx2(τ)]dτ = αy1(t) + βy2(t)

If y(0) 6= 0, the output for input αx1(t) is

y(0)e−t +

∫ t

0

e−(t−τ)αx1(τ)dτ = y(0)e−t + αy1(t)

which is not αy1(t) thus it is not linear.

(b) If the input is x(t) = 0, then y(t) = y(0)e−tu(t) is the zero-input response, due completely to the
initial condition. If y(0) = 0 the response

y(t) =

∫ t

0

e−(t−τ)x(τ)dτ

(which is the convolution integral of the impulse response h(t) = e−tu(t) with x(t)) is the zero-
state response.

(c) The impulse response, obtained when y(0) = 0, x(t) = δ(t), and y(t) = h(t) is

h(t) =

∫ t

0−
e−(t−τ)δ(τ)dτ = e−t

∫ t

0−
e0δ(τ)dτ =

{
e−t t ≥ 0
0 otherwise

(d) If x(t) = u(t) and y(0) = 0, then y(t) = s(t) given by

s(t) =

∫ t

0

e−(t−τ)dτ = (1− e−t)u(t)

Notice the relation between the unit-step and the impulse response:

−1 0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

−heaviside(t) (1/exp(t) − 1)

Figure 2.5: Problem 12

ds(t)

dt
= δ(t)− e−tδ(t) + e−tu(t)

= e−tu(t) = h(t)
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2.13 (a) To find the differential equation let y(0) = 0, so that

y(t) = 2e−2t

∫ t

0

e2τx(τ)dτ

and its derivative is

dy(t)

dt
= −4e−2t

∫ t

0

e2τx(τ)dτ + 2e−2te2tx(t) = −2y(t) + 2x(t)

giving the differential equation
dy(t)

dt
+ 2y(t) = 2x(t)

(b) Finding the integral after replacing x(τ) = u(τ) we have that

y(t) = y(0)e−2t + 2e−2t e
2τ

2

∣∣t
0 = y(0)e−t + (1− e−2t)

so that in the steady state, i.e., when t → ∞, the output is 1, independent of the value of the initial
condition.
(c) From the given input-output equation, letting x(t) = δ(t) and y(0) = 0 the output is the impulse
response of the system

h(t) = 2

∫ t

0

e−2(t−τ)δ(τ)dτ = 2e−2t

∫ t

0

δ(τ)dτ = 2e−2tu(t)

Computing the convolution integral as

y(t) =

∫ ∞

−∞
x(t− τ)h(τ)dτ

it can be obtained graphically by reflecting the input x(t) = u(t) and shifting it linearly from −∞ to∞
to get

• for t < 0 then y(t) = 0

• for t ≥ 0

y(t) =

∫ t

0

2e−2τdτ = 1− e−t

and so in the steady state the output goes to 1.
(d) The zero-input response is

yzi(t) = y(0)e−2tu(t)

and it is bounded for any finite value of the initial condition y(0), in particular for y(0) = 1, therefore
the system that depends on the initial condition is BIBO.

Copyright 2014, Elsevier, Inc. All rights reserved.



Chaparro — Signals and Systems using MATLAB 2.14

2.14 (a) Yes. Using the convolution integral the output is

y(t) =

∫ ∞

−∞
h(τ)︸︷︷︸

u(τ)−u(τ−1)

x(t− τ)dτ =

∫ 1

0

x(t− τ)dτ =

∫ t

t−1

x(η)dη

where we changed the variable to η = t− τ .

(b) If x(t) = u(t) then the step-response is

y(t) =





0 t < 0
t 0 ≤ t < 1
1 t ≥ 1.

i.e., the unit-step response is s(t) = r(t)− r(t− 1) and the impulse response is

h(t) =
ds(t)

dt
= u(t)− u(t− 1)
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2.15 (a) x1(t) = x(t) − x(t − 2) so y1(t) = y(t) − y(t − 2), two triangular pulses, the second multiplied
by −1.

x1(t) y1(t)

x2(t)
y2(t)

tt

t t

1

1

1

1

2 2

2

3 4

�1

�1

�1 �1

1

1

�1

Figure 2.6: Problem 15

(b) x2(t) = x(t+ 1)− x(t) then y2(t) = y(t+ 1)− y(t) (they overlap between 0 and 1).

(c) x3(t) = δ(t) − δ(t − 1) so y3(t) = dy(t)/dt = u(t) − 2u(t − 1) + u(t − 2). Considering that
the output of x(t) is y(t), i.e., y(t) = S[x(t)], and that the integrator and the differentiator are
LTI systems Fig. 2.7 shows how to visualize the result in this problem by considering that you can
change the order of the cascading of LTI systems.

x3(t) =
dx(t)

dt

x(t) y(t)
dy(t)

dtZ
d

dt

| {z }
1

x3(t) =
dx(t)

dt

dy(t)

dtZ
d

dt
S S

dy(t)

dt

⌘

Figure 2.7: Problem 15
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2.16 (a) If x(t) =
∑9
k=0 δ(t− kT ) then by superposition and time-invariance

y(t) =

9∑

k=0

h(t− kT )

(b) If T = 1, y(t) = u(t)− u(t− 10), while when t = 0.5

y(t) =

9∑

k=0

h(t− 0.5k) =

9∑

k=0

[u(t− 0.5k)− u(t− 0.5k − 1)]

· · ·
t

⌧

x(⌧)h(t � ⌧)

1

T 2T 9T

10

0

0

1

T = 1

T = 0.5

0.5

t

t

y(t)

y(t)

1

Figure 2.8: Problem 16
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2.17 (a) By the definition of the derivative

d

dt

[∫ t

0

f(τ)dτ

]
= lim

h→0

1

h

[∫ t+h

0

f(τ)dτ −
∫ t

0

f(τ)dτ

]

= lim
h→0

1

h

[∫ t+h

t

f(τ)dτ

]

= lim
h→0

f(t)h

h
= f(t)

(b) y(t) satisfies the ordinary differential equation, indeed

dy(t)

dt
= −ay(0)e−at +

d

dt

[
e−at

∫ t

0

eaτx(τ)dτ

]

= −a[y(0)e−at + e−at
∫ t

0

eaτx(τ)dτ

︸ ︷︷ ︸
y(t)

] + x(t) = −ay(t) + x(t)

(c) Multiplying the two terms of the ordinary differential equation by eat we get

eatdy(t)/dt+ aeaty(t)︸ ︷︷ ︸
d(eaty(t))/dt

= eatx(t)

eaty(t) =

∫ t

0

eaτx(τ)dτ + y(0)

solving for y(t) we obtain the solution.
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2.18 (a) For x1(t) = u(t)− u(t− 2) and zero initial conditions, we can use the convolution integral

y1(t) =

∫ t

0

h(τ)x1(t− τ)dτ

=

∞∑

k=0

∫ t

0

h1(τ − 2k)x(t− τ)dτ

for k = 0, we find graphically the integral to be

z(t) =

∫ t

0

h1(τ)x1(t− τ)dτ = r(t)− 2r(t− 1) + 2r(t− 3)− r(t− 4)

graphically. So that

y1(t) =

∞∑

k=0

z(t− 2k) = r(t)− 2r(t− 1) + r(t− 2)

(b) For x2(t) = δ(t)− δ(t− 2), the output is

y2(t) = h(t)− h(t− 2)

=

∞∑

k=0

h1(t− 2k)−
∞∑

k=0

h1(t− 2(k + 1))

= h1(t) +

∞∑

k=1

h1(t− 2k)−
∞∑

k′=1

h1(t− 2k′)

= h1(t)

where we changed to the variable k′ = k + 1 in the second summation.
Also since x2(t) = dx1(t)/dt the output

y2(t) =
dy1(t)

dt
= u(t)− 2u(t− 1) + u(t− 2) = h1(t)
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2.19 (a) The output is the sum of two modulated signals, and as such it is time-varying as each modulator is
time-varying.
(b) If we let m1(t) = m2(t) = m(t), the output is equal to the sum of two modulators so it is linear
since the modulators are liner. Also

s(t) = m(t)(cos(Ωct) + sin(Ωct)) =
√

2m(t) cos(Ωct− π/4)

i.e., one modulator with a phase. This system is known to be linear.
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2.20 (a) We can either find the impulse response or show that the output is bounded for any input signal that
is bounded. To find the impulse response change the variable to σ = t− τ which gives

y(t) =
−1

T

∫ 0

T

x(t− σ)dσ =

∫ T

0

1

T
x(t− σ)dσ

which is a convolution integral with h(t) = (1/T )[u(t)−u(t−T )]. This impulse response is absolutely
integrable as ∫ ∞

0

|h(t)|dt =

∫ T

0

1

T
dt = 1

Likewise, if we assume that x(t) is bounded, i.e., there is a value M <∞ such that |x(t)| < M , then

|y(t)| ≤ 1

T

∫ t

t−T
|x(τ)|dτ ≤ M

T

∫ t

t−T
dτ = M <∞

so system is BIBO stable.
(b) The ramp is not bounded, there is no M such that |r(t)| < M <∞. So when we compute the output
of the stable system to the ramp we do not expect it to be bounded either. Indeed

y(t) =
1

T

∫ t

t−T
τdτ =

t2 − (t− T )2

2T
= t− T

2

increases as t increases, so it is unbound.
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2.21 (a) The following block diagram represents the echo system:

+
x(t) y(t)

α1

αN−1

αN

τ–delay

τ–delay

τ–delay

...

y(t− (N − 1)τ)

y(t−Nτ)

y(t− τ)

Figure 2.9: Problem 21: recursive model for echo system.

(b) When N = 1, τ = 1 and α = 0.1 the input/output equation for the echo system is

y(t) = x(t) + 0.1y(t− 1)

To check the LTI we need an explicit expression of the output in terms of the input. This can be obtained
by recursively replacing y(t − k), k = 1, 2, · · · in the right by the a delayed version of the input/output
equation, i.e.,

y(t) = x(t) + 0.1y(t− 1) = x(t) + 0.1x(t− 1) + 0.01x(t− 2) · · ·

=

∞∑

k=0

(0.1)kx(t− k)

Using this expression we have that if the input is x(t) = x1(t) +x2(t), with corresponding outputs y1(t)
and y2(t), then

∞∑

k=0

(0.1)k[x1(t− k) + x2(t− k)] = y1(t) + y2(t)

so the echo system is linear. If we shift the input to x(t− n0) then the output will be

∞∑

k=0

(0.1)kx(t− n0 − k) = y(t− n0)

i.e., time-invariant. The system is then overall LTI.
(c) The non-recursive model can be written as

z(t) =

M∑

k=0

βkx(t− kτ) β0 = 1
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x(t) τ–delay τ–delay τ–delay· · ·

x(t− τ) x(t− (M − 1)τ) x(t−Mτ)

β1 β2 βM

z(t)

+

Figure 2.10: Problem 21: non-recursive model for echo system.

We have a finite representation of the output in terms of the inputs, attenuated and shifted in time. The
system resembles that in (b), and as in there it can be shown to be LTI.
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2.2 Problems using MATLAB

2.22 (a) The output voltage when the switch closes at t = 0 is

vo(t) = −R(t)u(t) = −(1 + 0.5 cos(20πt))u(t)

The initial value of the voltage is v(0) = −1.5.
(b) If the switch closes at t = 50 msec, the output voltage is

vo1(t) = −R(t)u(t− 50× 10−3)

=

{
−(1 + 0.5 cos(20πt)) t ≥ 50× 10−3

0 otherwise

with an initial value of vo1(50× 10−3) = −0.5.
(c) The initial values are different, and v01(t) 6= vo(t− 50× 10−3) so the system is time varying.
The following script is used for the plotting in (a) and (b)

%% Pr 2_22
t=0:0.01:0.2;M=length(t);
v0=-(1+0.5*cos(20*pi*t));
t1=0:0.01:0.05;
N=length(t1);
v01=[zeros(1,N) v0(N+1:M)];
figure(1)
subplot(211)
plot(t,v0); grid; axis([0 max(t) -1.7 0.2]); ylabel(’v_0(t)’)
subplot(212)
plot(t,v01); grid;axis([0 max(t) -1.7 0.2]); xlabel(’t’); ylabel(’v_{01}(t)’)
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Figure 2.11: Problem 22
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2.23 (a) The zener diode clips any signal that exceeds a set threshold, in this case 0.5, thus if we have a
sinusoid with amplitude 0.3, less than the threshold, the output of the zerner diode would be the same as
the input. When the amplitude of the input is 1 the output is a sinusoid clipped at 0.5, but when it is 0.3
is not a clipped sinuosoid. Thus, the system is non-linear as scaling does not hold.
(b) The zener diode would do the same thresholding to a signal x(t) or to a shifted version of it x(t− τ),

so the system is time invariant.

%% Pr 2_23
t=0:0.001:4;
vs=cos(pi*t); x=vs;
% vs=0.3*cos(pi*t);x=vs; % for a second input get rid of %
N=length(t);
for k=1:N,

if abs(vs(k))>=0.5,
if vs(k)<0,

vs(k)=-0.5;
else

vs(k)=0.5;
end

end
end
y=vs;
figure(2)
plot(t,x); grid; hold on
plot(t,y,’or’); axis([0 4 -1.1 1.1]); legend(’x(t)’,’y(t)’); xlabel(’t’)
hold off
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Figure 2.12: Problem 23: input x(t) and output y(t) of the zener diode.
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2.24 (a) No, the diode is non-linear. For v(t) > 0 doubling the voltage does not double the current i(t)
because the voltage-current relation is not a 45o line.
(b) To get the current to be close to zero when the voltage is negative we would need that Is → 0 because
eqv(t)/kT − 1 ≤ 0. If the constant q/kT → ∞ the current would be very large for small values of the
voltage. The ideal diode is an approximation to the p-n diode with the voltage-current plot given by
the script below. The ideal diode is non-linear, the voltage-current plot is not a line of slope 45o. The
following is the plot for the given values of Is and the constant q/kT .

%% Pr. 2_24
v=-0.1:0.01:1;
Is=0.0001;kqT=0.026;
i=Is*(exp(v/kqT)-1);
figure(1)
plot(v,i);grid
axis([-0.1 1.2 -5 1.1*max(i)])
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Figure 2.13: Problem 24: i-v response of the p-n diode.

(c) This is a half-wave rectifier used to obtain dc sources. The output is the positive part of the sinusoid
and zero whenever the sinusoid is negative.
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Figure 2.14: Problem 24: output of the half-wave rectifier.
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2.25 % Pr 2_25
clear all; clf
Ts=0.01; delay=1; Tend=20;
t=0:Ts:Tend;
%x=cos(2*pi*t).*(ustep(t,0)-ustep(t,-20));
%x=sin(2*pi*t).*exp(-0.1*t).*(ustep(t,0)-ustep(t,-20));
x=ramp(t,1,0)+ramp(t,-2,-2)+ramp(t,1,-8);
h=exp(-t);
y=Ts*conv(x,h);
% plots
t1=0:Ts:length(y)*Ts-Ts;
figure(1)
subplot(311)
plot(t,x); axis([0 20 -5 3]);grid;ylabel(’x(t)’);
subplot(312)
plot(t,h); axis([0 20 -0.1 1]);grid;ylabel(’h(t)’);
subplot(313)
plot(t1,y);
grid
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Figure 2.15: Problem 25: input, impulse response and output of convolution integral.
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2.26 This averager is a LTI system
(a) The average signal for T = 1 and x(t) = u(t) is

y(t) =

∫ t

t−1

u(τ)dτ =


0 t < 0∫ t

0
dτ = t 0 ≤ t < 1∫ t

t−1
dτ = 1 t ≥ 1

Using the LTI of the system, the response to x1(t) = x(t)− x(t− 1) = u(t)− u(t− 1) is then

y1(t) = y(t)− y(t− 1) =


t 0 ≤ t ≤ 1
1− (t− 1) = 2− t 1 ≤ t ≤ 2
0 otherwise

which is a triangular signal.
(b) The implementation of the averager can be seen as the sliding, from left to right, of a rectangular window of
width T and amplitude 1, and adding the values of the signal in that window to get the output. If we let T = T0, the
period of the sinusoid x(t) = cos(2πt/T0)u(t) after zero, the output of the averager is zero for t ≤ 0. There is then
a transient for 0 ≤ t ≤ T0, and the output will be zero for t ≥ t0, as the average of the sinusoids is zero.
(c) The following script is used to implement this convolution in (a) and (b).

%% Pr. 2_26
N=1000; Ts=1/N;
tt=0:Ts:2; x=cos(2*pi*tt);
h=[ones(1,N) zeros(1,N+1)];
y=conv(x,h)*Ts;t=0:Ts:(length(y)-1)*Ts;
figure(5)
subplot(211)
plot(tt,x);hold on;plot(tt,h,’or’); legend(’x(t)’,’h(t)’);
axis([0 2 -1.1 1.1]); grid
subplot(212)
plot(t(1:length(t)/2),y(1:length(t)/2));grid
axis([0 2 1.1*min(y) 1.1*max(y)]); ylabel(’x*h’); xlabel(’t’)
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Figure 2.16: Problem 26:Sinusoid and impulse response (top), result of convolution.

Copyright 2014, Elsevier, Inc. All rights reserved.



Chaparro — Signals and Systems using MATLAB 2.29

2.27 (a) The system with the sinc impulse response is non-causal because h(t) 6= 0 for t < 0. As such an ideal
low-pass filter cannot be used for real-time processing as it would require future inputs, not available in
real-time. This can be seen by looking at the convolution with a causal signal x(t):

y(t) =

∫ ∞

0

x(τ)h(t− τ)dτ

=

∫ t

0

x(τ)h(t− τ)dτ +

∫ ∞

t

x(τ)h(t− τ)dτ

where the upper limit of the top integral is due to h(τ) having an infinite support, and the lower limit
because x(t) is causal. The second bottom integral shows that the output depends on future values of the
input.
(b) For the low-pass filter to be BIBO stable the impulse response h(t) must be absolutely integrable,
i.e., ∫ ∞

−∞
| sin(t)/t|dt <∞

To approximtely compute this integral we use the following script. The integral is bounded, so the filter
is BIBO stable.

%% Pr 2_27
clear all; clf
syms x t x1
x=abs(sinc(t/pi));
for k=1:30,
x1=int(x,t,0,k);
xx(k)=subs(2*x1);
end
n=1:30;
figure(1)
subplot(211)
ezplot(x,[-30,30]); axis([-30 30 -0.1 1.2]);grid
subplot(212)
stem(n,xx); axis([1 30 0 8]);grid
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Figure 2.17: Problem 27: absolute value of sinc function and its integral values for t = n sec.
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2.28 %% Pr. 2_28
clear all; clf
% parts (a)--(c)

Ts=0.01;
t=0:0.01:100; N=length(t)
p=[20*ones(1,4000) -10*ones(1,2000) zeros(1,N-6000)];
P=1.1*abs(min(p))
x=(p+P).*cos(2*pi*t);
figure(6)
subplot(221)
plot(t,p); ylabel(’p(t)’)
subplot(222)
plot(t,x); ylabel(’x(t)’)

y=abs(x);
subplot(223)
plot(t,y); ylabel(’y(t)’)
h=exp(-0.8*t);
z=conv(h,y)*Ts; z=z*20/15;
subplot(224)
plot(t,z(1:length(t))-P); ylabel(’z(t)’); xlabel(’t’)

% part (d)
Ts=0.01;
t=0:0.01:100;N=length(t)
p=2*cos(0.2*pi*t);
P=abs(min(p))
x=(p+P).*cos(10*pi*t);
figure(7)
subplot(221)
plot(t,p+P); ylabel(’p(t)+P(t)’)
subplot(222)
plot(t,x); ylabel(’x(t)’)

y=abs(x);
subplot(223)
plot(t,y); ylabel(’y(t)’); xlabel(’t’)
h=exp(-0.8*t);

z=conv(h,y)*Ts;z=z-P+0.4;z=z*2/max(z);
subplot(224)
plot(t,z(1:length(t)));grid; ylabel(’z(t)’); xlabel(’t’)
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Figure 2.18: Problem 28: modulation and envelope detection for pulses and for sinusoid.
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2.29 %% Pr. 2_29
clear all; clf
% part (a)

Ts=0.01;
t=0:Ts:10;
omega_c=2*pi; nu=10;
m=cos(t); %% message
im=sin(t); %% integral of message
y=cos(omega_c*t +2*pi*nu*im); %% FM1 with nu=10
y1=cos(omega_c*t +2*pi*nu*im/10); %% FM2 with nu/10
figure(9)
subplot(311)
plot(t,m); ylabel(’m(t)’)
subplot(312)
plot(t,y); ylabel(’y(t)’)
subplot(313)
plot(t,y1); ylabel(’y_1(t)’)

% part(b)
N=length(t)
for k=1:N,

if m(k)>=0,
m1(k)=1; %% message
y(k)=cos(omega_c*k*Ts +2*pi*nu*k*Ts/10); %% FM

else
m1(k)=-1;

y(k)=cos(omega_c*k*Ts -2*pi*nu*k*Ts/10);

end
end
figure(10)
subplot(211)
plot(t,m1); ; ylabel(’m_1(t)’)
axis([0 10 1.1*min(m1) 1.1*max(m1)])
subplot(212)
plot(t,y); ylabel(’y(t)’)
axis([0 10 1.1*min(y) 1.1*max(y)])
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Figure 2.19: Problem 29: message signal m(t) and FM signals for ν = 10 and 1 (top); message m1(t) and
FM signal for ν = 1 (bottom)
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