
SafeHome System Architectural Model 

By Timothy C. Lethbridge, in conjunction with Roger Pressman 

Version 7.01, July 2004 

1. Introduction 

 

This document describes the design of the SafeHome system. Many parts of the 

SafeHome design, and the process used to develop it, are covered as a running example 

in Roger Pressman’s book “Software Engineering: A Practitioner’s Approach, 6th 

Edition” © McGraw-Hill, 2004. We will refer to the book simply as SEPA. 

The purpose of this document is to assist those who are reading SEPA and wish to 

see a more detailed design document describing SafeHome. It can, for example, be used 

by faculty who wish to explore the ideas in SafeHome more deeply with their students or 

by students who would like to study a more detailed example of the system architectural 

model. 

Accompanying this document is a file containing a UML model that can be loaded 

into the ArgoUML, an open source modeling tool. The version used to develop the model 

is ArgoUML 0.16, which is based on UML 1.31. ArgoUML also exports XMI, a format 

for interchange of UML models among tools, so an XMI version of the model is also 

provided. ArgoUML is available at argouml.tigris.org and runs on any platform that has a 

Java implementation. We chose ArgoUML simply because it is easy for anyone to obtain 

– it is not as complete and as bug-free as certain commercial tools, but is good enough for 

our purposes (and we have found that no tool behaves exactly the way we would like). 

A software model can be produced at many different levels of abstraction. The model 

presented here is at an intermediate level: It includes diagrams relating the important 

hardware units, classes, and states. 

The model presented does not correspond completely with the version of SafeHome 

described in SEPA. SEPA describes snapshots of a design in progress, whereas this 

document represents a subsequent and more complete iteration of SafeHome. We have, 

for example, added details that were not discussed in SEPA, but are necessary to explain 

how the system as a whole works. 

In accordance with modern software engineering practice, the design presented here 

should be considered an iteration, and not the ‘final release’. We invite critique and 

suggestions for improvement.  

                                                 
1 See appendix 1 for a discussion of the version of UML used. 

Software Engineering A Practitioners Approach 7th Edition Pressman Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/software-engineering-a-practitioners-approach-7th-edition-pressman-solutions-manual/


SafeHome Architectural Model  2 

2. Quick overview of SafeHome 

 

SEPA describes much of the background of the SafeHome product line; we suggest you 

read the relevant sections of the book before proceeding. We will, however, quickly set 

the scene: 

The SafeHome company has developed an innovative hardware box that implements 

wireless Internet (802.11) connectivity in a very small form factor (the size of a 

matchbook). The idea is to use this technology to develop and market a comprehensive 

home automation product line. This would ultimately provide not only security functions, 

but also would enable control over telephone answering machines, lights, heating, air 

conditioning, and home entertainment devices. The first generation of the system, 

described here, will only focus on home security since that is a market the public readily 

understands. 

3. Key actors and use cases 

 

When fully developed the system envisioned by the SafeHome marketing team will 

implement hundreds of use cases. As a first step in development, however, we will 

identify the use cases that should be available in the first few releases – these will provide 

very basic security functionality. 

Figure 1 shows that there are there are two main actors (roles played by users of the 

system): HouseholdUser and ConfigurationManager. The latter is a sub-actor of the 

former since ConfigurationManagers can do everything that HouseholdUsers can. 

The Arm System and Disarm System use cases both require the actor to specify an 

activation code. The latter is shown as an inclusion use case. The use cases performed by 

the Configuration manager require a more sophisticated Log-In use case to be performed. 



SafeHome Architectural Model  3 

 

Figure 1: Use cases for release 1 of the system 

Figure 2 shows additional use cases that will need to be implemented in order to 

provide the functionality of changing configurations of the system. For simplicity we 

have not shown the fact that each of these also includes the Log-In use case. 

There will also be a set of use cases for designing a room layout. These are not 

included for the time being. 

 

Figure 2: Use cases for release 2 of the system 



SafeHome Architectural Model  4 

 

4. Packages for organizing the model 

 

The SafeHome model is arranged into a hierarchy of packages to help organize it. Figure 

3 shows the packages. Each of the elements in the remaining sections of this document is 

arranged into one of the packages shown. There is also a conceptual outer package, 

simply called SafeHome, that includes all of them. 

 

Figure 3: Package diagram for the SafeHome model 

5. Hardware description. 

 

Before understanding the software architecture it is often best to first understand the 

hardware on which the software will run and with which it will interact. The hardware 

environment for SafeHome is as follows: 

• Central processor: There is a central processor (CP) located on the customer’s 

premises. The CP software can run on any computer with an external broadband 

Internet connection or a modem, as well as an 802.11b wireless card. The CP uses 

its broadband Internet connection and/or modem to communicate with the 

SafeHome corporate site, and with a monitoring company (that can call 

emergency services as needed). If both broadband and modem are installed, they 

can act as backups for each other. The CP also acts as a wireless Internet base 

station for communication with the devices described below. The CP could run on 

any home PC; we assume however, that to ensure the integrity of the security 

system, the software would actually run on a dedicated computer – so crashes of 

other programs, viruses, etc. cannot circumvent the security. This dedicated 

computer would have an uninterruptible power supply, but would lack such things 

as a video card, keyboard and screen, commonly found in a home PC. 

• Sensor and actuator devices: There are a variety of devices that communicate 

with the CP. Some of these are sensors (e.g. motion sensors placed internally and 

externally, sensors that detect whether a door or window is open, fire detectors, 

smoke detectors, carbon monoxide detectors, basement water detectors, etc.). 



SafeHome Architectural Model  5 

Some are alarm signalers (siren, flashing light, etc.). Some are cameras that can 

send digital pictures to the CP, and can be panned or zoomed. It is the intent of the 

company that the line of devices would be expanded in the future, so the interface 

with the CP needs to be flexible to allow for innovation. The devices need a 

power supply, and may have battery backups – details such as that are out of the 

scope of this document. The main thing to know at this point is that a significant 

number of devices can be purchased, installed physically and then configured with 

the software system so that the software system can communicate with them. 

• Special Hardware Control panels: These are hardware devices that provide a 

simple user interface to the system. Like the devices described above, they 

communicate with the CP wirelessly. They allow for such basic functions as 

arming and disarming the system. Normally there would be one in the home near 

the front door, but there could be others (e.g. at other exterior doors or in a 

bedroom). 

• Web browser: The control panel described above is used for the simplest of 

operations. However, in order to access the full functionality of SafeHome, its 

users must connect to the CP via a web browser. The CP runs a web server, 

accessible over its wireless connection (or through the SafeHome corporate web 

site); this provides the full user interface (UI) capability for the system. The web 

UI is a superset of the capability available on the hardware control panels.  

• SafeHome corporate web site. Users who are traveling can have full access to 

their home system by connecting to the SafeHome corporate web site. This site 

routes all its communication to the CP located in the client’s home. Direct 

external connection to the CP is not allowed to help prevent denial-of-service 

attacks and other forms of hacking. 

Communication among all the above components is heavily encrypted to enhance 

security. Details of the encryption layers are not discussed here. 

Figure 4 below (Deployment Diagram 1 in the model) illustrates these hardware 

elements. It also illustrates the main software components that will exist in the system. 

The web server and web browsers are generic; the main software components then are the 

Control Software (described below), and the device control software on each device (not 

described here). 



SafeHome Architectural Model  6 

 

Figure 4: Deployment Diagram for SafeHome 

4. Control Software Classes 

 

Figure 5 shows the core class diagram of the Control Software component. The classes in 

this diagram are described below. 

 

Figure 5: Class diagram for the Control Software of the SafeHome Central Processor 

 

SafeHomeSystem: The core singleton class (only one instance exists) 

• userid: Entered when logging into the system through a web browser 



SafeHome Architectural Model  7 

• streetAddress: Street address of the home. Used when communicating with the 

monitoring company to identify the property 

• activationState: The state of the system as a whole. Discussed later. 

• masterPassword: A password that must be entered 

Configuration: A setup of the system with various Devices (in zones), FloorPlans, and 

ActivationCodes. There will always be at least one configuration – a configuration 

named ‘default’ is created when the system starts. This will contain an activation code 

9999 and all devices initially added to the system. Additional configurations can be 

created (Duplicate Configuration use case) to allow the homeowner to experiment 

with the system, set up temporary configurations (e.g. when guests will be present and 

need their own activation codes) etc. There is an association from SafeHomeSystem 

that identifies the current configuration; this is changed during the Set Current 

Configuration use case. 

• configurationName: A name given to the configuration by the person setting up 

the configuration. Can be changed at any time. 

ActivationCode: Contains a simple integer identifying a code that is typed to arm or 

disarm the system (Specify Activation Code use case). Different people can be given 

different codes, e.g. to allow a cleaner to enter temporarily (Add Activation Code use 

case). A future extension of the system would be to identify the time period during 

which certain codes are active. 

DeviceType: Maintains information about each type of device that may be installed in 

the system. Each Device has a DeviceType – information that is common to all 

devices of the same type is kept here. 

Device: A representation of particular piece of hardware installed in the system. A device 

is installed by telling the user interface that it exists (specifying its serial number) and 

then powering it up (the Add Device use case). The software should then be able to 

detect its presence wirelessly. 

• serialNumber: The number printed on the back of the device, and permanently 

recorded in the hardware of the device. Cannot be changed. Unique for each 

device manufactured by SafeHome. 

• label: A name assigned to the device by the user when the device is being 

installed. May be left blank (although this would make the system less 

informative) and may be changed at any time. The label might, for example, 

describe symbolically the location of a sensor or camera. 

• isOn: True if the device is currently being detected wirelessly.  

Sensor: Represents a device that should trigger a reaction by the system if some 

condition becomes true (a door is open, CO is detected, water is detected, motion is 

detected, fire is detected). There can be several subclasses. 

• detectingAnomaly: True if the sensor is detecting the undesirable state it is 

designed to detect. 



SafeHome Architectural Model  8 

AlarmSignaler: Represents a device that will sound an alarm. There can be several 

subclasses. 

Camera: Represents a camera that can send images to the system, and can be panned and 

zoomed. 

DeviceInConfiguration: An association class between Configuration and Device. 

Represents certain parameters set for that device in a particular configuration. These 

parameters are changed in the Change Device In Configuration use case. 

• zone: A number from 0 to 5 that can be defined to help the user understand where 

an emergency is occurring. This can be used to divide the house into up to five 

zones (e.g. outside, basement, living room, eating areas, upstairs). The default is 

zero, meaning undefined zone. The sound of an the alarm depends on the zone of 

the sensor that triggers the system (zone 0 = continuous sound, zone 1 = evenly 

spaced beeps, zone 2 = pairs of beeps, etc.) An AlarmSignaler in zone 0 will 

always sound. An AlarmSignaler given a numbered zone will only sound if a 

sensor in that zone triggers the alarm. 

• activeOnStay: Determines whether the device will be used when the system is in 

‘Stay’ state. This is discussed more later. 

• activeOnAway: Determines whether the device will be used when the system is 

in ‘Away’ state. This is discussed more later. 

• alarmIfOff: Determines whether the system should consider it an anomaly if the 

wireless signal from the device cannot be detected (e.g. if a burglar has 

disconnected it). The default is true. The homeowner may want to set this to false 

for some devices – e.g. they may want to allow certain cameras to turned off from 

time to time. 

FloorPlan: Part of an optional feature of the system. The homeowner may set up several 

floor plans that can be looked at visually in the web interface – there would be one for 

each floor of the house. These can be used, for example, to help him or her understand 

where a camera is pointing, etc. The floor plan has a set of devices (each with its own 

FloorCoordinates) and a set of Segments (representing doors, walls, etc.). 

• floorName: The name given by the user to the floor (e.g. ‘ground floor’, 

‘upstairs’) 

Segment: A Wall, Door or Window in a floor plan. Each appears differently visually 

when drawn in the user interface. 

FloorCoordinates: Specify the location (in meters) from the top-left corner of the 

FloorPlan (although the homeowner does not have to draw the unit to scale if he or she 

does not want to). 



SafeHome Architectural Model  9 

5. Activity and state diagrams  

 

In this section we will describe aspects the SafeHome system’s behavior. 

Figure 6 is a simple activity diagram showing the top level behavior of the 

SafeHomeSystem class. When the SafeHome central processor is running, it must be able 

to do two things at once: Perform its main security monitoring functions and respond to 

configuration changes. Figure 6 shows that these ‘Monitoring’ and ‘Configuration’ 

activities are conceptually concurrent – any part of either may overlap the other. For 

example, the system could be armed and detecting burglars at the same time as the 

homeowner is logging in from some external location via the web to change the active 

configuration (e.g. to add an ActivationCode so a friend can enter the house). 

 

Figure 6: Top level activity diagram 

Figure 7 describes the behavior of the SafeHomeSystem class during the Monitoring 

activity of Figure 6. There are three possible values for its activationState attribute: 

CheckingSystem, Disarmed and Armed; the latter two are substates of NormalOperation 

– in which the system spends most of its time. The system toggles backwards and 

forwards between Disarmed and Armed in response to user actions. Note that Figure 7 

does not model the user interface – this is kept quite separate, as is good practice in 

software engineering and is discussed in the context of Figure 9. The 

successfulActivation and successfulDeactivation events are triggered by the user 

interface. 

Note that in Figure 7, after CheckingSystem is complete, the system transitions to a 

symbol marked H*. This is the deep history symbol; it means that after resetting, the 

system will go back to doing what it was doing before (i.e. it goes back to being armed or 

disarmed). This is necessary to prevent the reset process from circumventing security. 



SafeHome Architectural Model  10 

 

Figure 7: Behavior of the SafeHomeSystem class during its Monitoring activity 

Figure 8 shows details of the Armed state. In this state the system has to respond to 

sensors by triggering alarms. It starts off in the No Sensors Triggered substate of the 

Nothing Unusual substate. Everything is normal while it is in this substate. 

If a motion detector detects motion, no alarm is immediately sounded: The system 

requires more than a short period of motion to sound an alarm; the motion could be 

caused by the homeowner coming home and going through the process of deactivating 

the system at a control panel. Or the motion could be caused by a minor earth tremor or a 

gust of wind. However, the system does go into Motion Detector Triggered state since it 

needs to behave differently if the motion persists. After 45 seconds the system goes into 

Heightened Motion Sensitivity state. In this state, the system will respond immediately to 

any further motion; it will stay in this state for 5 minutes before dropping back to No 

Sensors Triggered state. 

If any other sensor is triggered (or if a motion sensor is triggered in Heightened 

Motion Sensitivity) state, then the system goes into Acting On Alarm state. It starts the 

alarms sounding and calls the monitoring company. A timer is started on entry into this 

state, if no further sensors are triggered, this timer will time out after a user-configurable 

amount of time and the alarm will go off. This prevents a persistent false alarm from 

ringing indefinitely. On the other hand, if sensors continue to be triggered, the timer is 

reset, so the alarm will keep ringing. 



SafeHome Architectural Model  11 

 

Figure 8: State diagram of the Armed state 

Figure 9 shows the user interface of a model of control panel that is used to arm or 

disarm the system. Note that other user interfaces could be developed – in particular, 

there may be a web based interface that would allow remote arming of the system, or an 

interface that could be controlled by the monitoring company. No matter what user 

interface is used, it must at some point trigger the successfulActivation and 

successfulDeactivation transitions shown in Figure 7, so the system can be armed or 

disarmed respectively 

The control panel has a display capable of displaying a message, along with a series 

of buttons: Ten digit buttons (0-9), and keys labeled ‘Arm - Stay’, ‘Arm - Away’, ‘Test’, 

and ‘Cancel’. In the following we will only model the events and state transitions, not 

what is displayed on the screen. 

The control panel starts up displaying a welcome message. Then it goes into Ready 

For Use state if the system is currently disarmed, or Security Delay 2 state if the system is 

currently armed. We will explain the purpose of Security Delay 2 a bit later. 

Ready For Use state means that the system is not armed; in order to perform some 

function, however, the user must enter a valid ActivationCode. As soon as the first 

number key is pressed, the control panel goes into Entering Activation Code state. The 

panel stays in this state as long as the user keeps pressing number keys (activation codes 

can be very long if the configuration manager wants). 

When the user has finished entering his or her code he or she presses a function key: 

There are three function keys in the control panel modeled here: Arm – Stay, Arm – 

Away, and Test. If the user presses Test, and the activation code was correct, then the 

system goes into Test Alarm state for five seconds before returning to Ready For Use 

state. 

If the user presses either Arm key after entering a valid code, the system goes into 

Delay To Leave state. This gives the user time to leave the house, lock the doors, etc. 

before the system becomes armed. The difference between the Arm keys is that the 



SafeHome Architectural Model  12 

system will be sensitive to different sets of sensors – however from the perspective of the 

current diagram, both keys cause the same effect. 

If the user presses a function key without entering a valid activation code, the system 

goes into Security Delay 1 for a few seconds. The security delay prevents somebody with 

ill intent from trying out codes over and over again rapidly until they randomly stumble 

on a valid one; they always have to put up with a delay, which should make the random 

guessing process infeasible. 

If a user presses the Cancel key while entering the activation code, the system goes 

back to Ready For Use state. This ensures that if a legitimate user starts typing the wrong 

code, they can try again immediately. 

Sixty seconds after entering Delay To Leave state, the system triggers the 

successfulActivation event and goes into Awaiting Disarm Activation Code state. 

Triggering this event forces the SafeHomeSystem to become armed, as indicated in 

Figure 7. 

Note that it is possible for there to be more than one user interface in use (another 

control panel, e.g. at a different door, or a web-based UI). At any time if a different UI 

arms the system, a transition will always be made instantly to Awaiting Disarm 

Activation Code state – in other words, this would happen, even if the user of this control 

panel was in the middle of activating the system. 

Once the system is armed, the only way to disarm it is to enter a valid 

ActivationCode again. As soon as the user presses the first number key, the system goes 

into Accepting Disarm Code state. The system keeps accepting keys until a valid code 

has been entered, at which time the UI triggers the successfulDeactivation event and 

transitions to Ready For Use state. 

If the user types an invalid code, he or she can press ‘Cancel’ to try again. However it 

will not be possible to try again for 20 seconds due to the presence of the Security Delay 

2 state. This prevents rapid retries by someone trying to guess the code. Starting up the 

control panel while the system is armed also incorporates this security delay to account 

for the situation where the user unplugs and plugs in the control panel to reset it. 



SafeHome Architectural Model  13 

 

Figure 9: Behavior of the Control Panel user interface 

6. Thoughts about extensions to this model 

 

The model presented above could be extended and improved indefinitely. We leave it as 

an exercise for the reader to make changes. The purpose of this document has been to 

present the top level architecture of the system, and to help you learn about modeling, 

rather than exhaustively model every detail of SafeHome. However, as pointed out at the 

beginning, we may update this document at some future time. 

Some of the issues you might consider when improving and extending the model are: 

• Adding full details to all the use cases 

• Modelling the configuration user interface, including the UI for building floor 

plans 

• Fine-tuning the details of the diagrams presented above. For example, in Figures 8 

and 9 there are several fixed delays built into the system. It is not really good 

software engineering practice to hard-code values like this into the system. These 

delays should really be parameters that can be set in a configuration, and therefore 

adjusted by the user. This would mean changing the class diagram (Figure 5) as 

well. 

• Modelling the aspects of the system that have to do with controlling the cameras 

and obtaining images from them (some of this is discussed in the SEPA book). 

• Adding operations to all the classes – and in particular, building an API (set of 

public operations) that can be accessed by the user interfaces. 



SafeHome Architectural Model  14 

 

Appendix 1: Version of UML used in this Model 

 

UML 1.3 was used in this model. More specifically, the subset of UML 1.3 supported in 

ArgoUML 0.16. 

As of mid-2004 UML has evolved somewhat: The most recent version is 2.0. 

However, there are no widely available tools that support UML 2.0 properly as of the 

time of writing. 

For the purposes of learning UML there is relatively little in the SafeHome model 

that would need to be changed for UML 2.0. The minor differences we are aware of are 

as follows: 

• All the multiplicities in the class diagrams that are left blank would have to be 

shown explicitly as ‘1’. This change was in fact present in UML 1.4, but is not 

implemented in many tools, such as ArgoUML 0.16. 

• The symbol for a UML component has changed somewhat in UML 2.0 

Software Engineering A Practitioners Approach 7th Edition Pressman Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/software-engineering-a-practitioners-approach-7th-edition-pressman-solutions-manual/

