Chapter 2 Solutions

Prob. 2.1

(a\&b) Sketch a vacuum tube device. Graph photocurrent I versus retarding voltage V for several light intensities.

Note that V_{o} remains same for all intensities.
(c) Find retarding potential.
$\lambda=2440 \mathrm{~A}=0.244 \mu \mathrm{~m} \quad \Phi=4.09 \mathrm{eV}$

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{h} v-\Phi=\frac{1.24 \mathrm{eV} \cdot \mu \mathrm{~m}}{\lambda(\mu \mathrm{~m})}-\Phi=\frac{1.24 \mathrm{eV} \cdot \mu \mathrm{~m}}{0.244 \mu \mathrm{~m}}-4.09 \mathrm{eV}=5.08 \mathrm{eV}-4.09 \mathrm{eV} \approx 1 \mathrm{eV}
$$

Prob. 2.2

Show third Bohr postulate equates to integer number of DeBroglie waves fitting within circumference of a Bohr circular orbit.

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{n}}=\frac{4 \pi \epsilon_{\mathrm{o}} \mathrm{n}^{2} \hbar^{2}}{\mathrm{mq}^{2}} \text { and } \frac{\mathrm{q}^{2}}{4 \pi \epsilon_{\mathrm{o}} \mathrm{r}^{2}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \text { and } \mathrm{p}_{\theta}=\mathrm{mvr} \\
& \mathrm{r}_{\mathrm{n}}=\frac{4 \pi \epsilon_{\mathrm{o}} \mathrm{n}^{2} \hbar^{2}}{\mathrm{mq}^{2}}=\frac{\mathrm{n}^{2} \hbar^{2}}{\mathrm{mr}_{\mathrm{B}}^{2}} \cdot \frac{4 \pi \epsilon_{\mathrm{o}} \mathrm{r}_{\mathrm{n}}{ }^{2}}{\mathrm{q}^{2}}=\frac{\mathrm{n}^{2} \hbar^{2}}{\mathrm{mr}_{\mathrm{n}}{ }^{2}} \cdot \frac{\mathrm{r}_{\mathrm{n}}}{\mathrm{mv}^{2}}=\frac{\mathrm{n}^{2} \hbar^{2}}{\mathrm{~m}^{2} v^{2} \mathrm{r}_{\mathrm{n}}}
\end{aligned}
$$

$$
\mathrm{m}^{2} \mathrm{v}^{2} \mathrm{r}_{\mathrm{n}}^{2}=\mathrm{n}^{2} \hbar^{2}
$$

$$
\operatorname{mvr}_{\mathrm{n}}=\mathrm{n} \hbar
$$

$\mathrm{p}_{\theta}=\mathrm{n} \hbar$ is the third Bohr postulate

Prob. 2.3

(a) Find generic equation for Lyman, Balmer, and Paschen series.
$\Delta \mathrm{E}=\frac{h \mathrm{c}}{\lambda}=\frac{\mathrm{mq}^{4}}{32 \pi^{2} \epsilon_{\mathrm{o}}{ }^{2} \mathrm{n}_{1} \hbar^{2}}-\frac{\mathrm{mq}^{4}}{32 \pi^{2} \epsilon_{\mathrm{o}}{ }^{2} \mathrm{n}_{2}{ }^{2} \hbar^{2}}$
$\frac{h \mathrm{c}}{\lambda}=\frac{\mathrm{mq}^{4}\left(\mathrm{n}_{2}{ }^{2}-\mathrm{n}_{1}^{2}\right)}{32 \epsilon_{\mathrm{o}}{ }^{2} \mathrm{n}_{1}{ }^{2} \mathrm{n}_{2}{ }^{2} \hbar^{2} \pi^{2}}=\frac{\mathrm{mq}^{4}\left(\mathrm{n}_{2}{ }^{2}-\mathrm{n}_{1}{ }^{2}\right)}{8 \epsilon_{\mathrm{o}}{ }^{2} \mathrm{n}_{1} \mathrm{n}_{2}{ }^{2} h^{2}}$
$\lambda=\frac{8 \epsilon_{\mathrm{o}}{ }^{2} \mathrm{n}_{1}{ }^{2} \mathrm{n}_{2}{ }^{2} h^{2} \cdot h \mathrm{c}}{\mathrm{mq}^{4}\left(\mathrm{n}_{2}{ }^{2}-\mathrm{n}_{1}^{2}\right)}=\frac{8 \varepsilon_{\mathrm{o}}{ }^{2} h^{3} \mathrm{c}}{\mathrm{mq}^{4}} \cdot \frac{\mathrm{n}_{1}{ }^{2} \mathrm{n}_{2}{ }^{2}}{\mathrm{n}_{2}{ }^{2}-\mathrm{n}_{1}{ }^{2}}$
$\lambda=\frac{8 \cdot\left(8.85 \cdot 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}}\right)^{2} \cdot\left(6.63 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{3} \cdot 2.998 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{9.11 \cdot 10^{-31} \mathrm{~kg} \cdot\left(1.60 \cdot 10^{-19} \mathrm{C}\right)^{4}} \cdot \frac{\mathrm{n}_{1}{ }^{2} \mathrm{n}_{2}{ }^{2}}{\mathrm{n}_{2}{ }^{2}-\mathrm{n}_{1}{ }^{2}}$
$\lambda=9.11 \cdot 10^{8} \mathrm{~m} \cdot \frac{\mathrm{n}_{1}{ }^{2} \mathrm{n}_{2}{ }^{2}}{\mathrm{n}_{2}{ }^{2}-\mathrm{n}_{1}{ }^{2}}=9.11 \AA \cdot \frac{\mathrm{n}_{1}{ }^{2} \mathrm{n}_{2}{ }^{2}}{\mathrm{n}_{2}{ }^{2}-\mathrm{n}_{1}{ }^{2}}$
$\mathrm{n}_{1}=1$ for Lyman, 2 for Balmer, and 3 for Paschen
(b) Plot wavelength versus n for Lyman, Balmer, and Paschen series.

LYMAN SERIES						
n	$\mathrm{n}^{\wedge} 2$	$\mathrm{n}^{\wedge} 2-1$	$\mathrm{n}^{\wedge} 2 /\left(\mathrm{n}^{\wedge} 2-1\right)$	$911^{*} \mathrm{n}^{\wedge} 2 /\left(\mathrm{n}^{\wedge} 2-1\right)$		
2	4	3	1.33	1215		
3	9	8	1.13	1025		
4	16	15	1.07	972		
5	25	24	1.04	949		
LYMAN LIMIT						$911 \AA$
n	$\mathrm{n}^{\wedge} 2$	$\mathrm{n}^{\wedge} 2-4$	$4 \mathrm{n}^{\wedge} 2 /\left(\mathrm{n}^{\wedge} 2-4\right)$	$911^{*} 4^{*} \mathrm{n}^{\wedge} 2 /\left(\mathrm{n}^{\wedge} 2-4\right)$		
3	9	5	7.20	6559		
4	16	12	5.33	4859		
5	25	21	4.76	4338		
6	36	32	4.50	4100		
7	49	45	4.36	3968		

Prob. 2.4

(a) Find Δp_{x} for $\Delta x=1 \AA$.
$\Delta \mathrm{p}_{\mathrm{x}} \cdot \Delta \mathrm{x}=\frac{h}{4 \pi} \rightarrow \Delta \mathrm{p}_{\mathrm{x}}=\frac{h}{4 \pi \cdot \Delta \mathrm{x}}=\frac{6.63 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{4 \pi \cdot 10^{-10} \mathrm{~m}}=5.03 \cdot 10^{-25} \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}$
(b) Find Δt for $\Delta E=1 \mathrm{eV}$.

$$
\Delta \mathrm{E} \cdot \Delta \mathrm{t}=\frac{h}{4 \pi} \rightarrow \Delta \mathrm{t}=\frac{h}{4 \pi \cdot \Delta \mathrm{E}}=\frac{4.14 \cdot 10^{-15} \mathrm{eV} \cdot \mathrm{~s}}{4 \pi \cdot 1 \mathrm{eV}}=3.30 \cdot 10^{-16} \mathrm{~s}
$$

Prob. 2.5

Find wavelength of 100 eV and 12 keV electrons. Comment on electron microscopes compared to visible light microscopes.

$$
\begin{aligned}
& \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2} \rightarrow \mathrm{v}=\sqrt{\frac{2 \cdot \mathrm{E}}{\mathrm{~m}}} \\
& \lambda=\frac{h}{\mathrm{p}}=\frac{h}{\mathrm{mv}}=\frac{h}{\sqrt{2 \cdot \mathrm{E} \cdot \mathrm{~m}}}=\frac{6.63 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{\sqrt{2 \cdot 9.11 \cdot 10^{-31} \mathrm{~kg}}} \cdot \mathrm{E}^{-\frac{1}{2}}=\mathrm{E}^{-\frac{1}{2}} \cdot 4.91 \cdot 10^{-19} \mathrm{~J}^{\frac{1}{2}} \cdot \mathrm{~m}
\end{aligned}
$$

For 100 eV ,
$\lambda=\mathrm{E}^{-\frac{1}{2}} \cdot 4.91 \cdot 10^{-19} \mathrm{~J}^{\frac{1}{2}} \cdot \mathrm{~m}=\left(100 \mathrm{eV} \cdot 1.602 \cdot 10^{-19} \frac{\mathrm{~J}}{\mathrm{eV}}\right)^{-\frac{1}{2}} \cdot 4.91 \cdot 10^{-19} \mathrm{~J}^{\frac{1}{2}} \cdot \mathrm{~m}=1.23 \cdot 10^{-10} \mathrm{~m}=1.23 \AA$
For 12 keV ,
$\lambda=\mathrm{E}^{-\frac{1}{2}} \cdot 4.91 \cdot 10^{-19} \mathrm{~J}^{\frac{1}{2}} \cdot \mathrm{~m}=\left(1.2 \cdot 10^{4} \mathrm{eV} \cdot 1.602 \cdot 10^{-19} \frac{\mathrm{~J}}{\mathrm{eV}}\right)^{-\frac{1}{2}} \cdot 4.91 \cdot 10^{-19} \mathrm{~J}^{\frac{1}{2}} \cdot \mathrm{~m}=1.12 \cdot 10^{-11} \mathrm{~m}=0.112 \AA$
The resolution on a visible microscope is dependent on the wavelength of the light which is around 5000 Á; so, the much smaller electron wavelengths provide much better resolution.

Prob. 2.6

Which of the following could NOT possibly be wave functions and why? Assume 1-D in each case. (Here $\mathrm{i}=$ imaginary number, C is a normalization constant)
A) $\Psi(x)=C$ for all x.
B) $\Psi(\mathrm{x})=\mathrm{C}$ for values of x between 2 and 8 cm , and $\Psi(\mathrm{x})=3.5 \mathrm{C}$ for values of x between 5 and $10 \mathrm{~cm} . \Psi(\mathrm{x})$ is zero everywhere else.
C) $\Psi(x)=$ i C for $\mathrm{x}=5 \mathrm{~cm}$, and linearly goes down to zero at $\mathrm{x}=2$ and $\mathrm{x}=10 \mathrm{~cm}$ from this peak value, and is zero for all other x .

If any of these are valid wavefunctions, calculate C for those case(s). What potential energy for x ≤ 2 and $\mathrm{x} \geq 10$ is consistent with this?
A) For a wavefunction $\Psi(\mathrm{x})$, we know $\mathrm{P}=\int_{-\infty}^{\infty} \Psi^{*}(\mathrm{x}) \Psi(\mathrm{x}) \mathrm{dx}=1$

$$
\mathrm{P}=\int_{-\infty}^{\infty} \Psi^{*}(\mathrm{x}) \Psi(\mathrm{x}) \mathrm{dx}=\mathrm{c}^{2} \int_{-\infty}^{\infty} \mathrm{dx} \rightarrow \mathrm{P}=\left\{\begin{array}{cc}
0 & \mathrm{c}=0 \\
\infty & \mathrm{c} \neq 0
\end{array} \Rightarrow \Psi(\mathrm{x})\right. \text { cannot be a wave function }
$$

B) For $5 \leq \mathrm{x} \leq 8, \Psi(\mathrm{x})$ has two values, C and 3.5 C . For $\mathrm{c} \neq 0, \Psi(\mathrm{x})$ is not a function and for $\mathrm{c}=0: \mathrm{P}=\int_{-\infty}^{\infty} \Psi^{*}(\mathrm{x}) \Psi(\mathrm{x}) \mathrm{dx}=0 \Rightarrow \Psi$ (xcannot be a wave function.
C) $\Psi(x)= \begin{cases}\frac{\mathrm{iC}}{3}(\mathrm{x}-2) & 2 \leq \mathrm{x} \leq 5 \\ -\frac{\mathrm{iC}}{5}(\mathrm{x}-10) & 5 \leq \mathrm{x} \leq 10\end{cases}$

$$
\begin{aligned}
\mathrm{P} & =\int_{-\infty}^{\infty} \Psi^{*}(\mathrm{x}) \Psi(\mathrm{x}) \mathrm{dx}=\int_{2}^{5} \frac{\mathrm{c}^{2}}{9}(\mathrm{x}-2)^{2} \mathrm{dx}+\int_{5}^{10} \frac{\mathrm{c}^{2}}{25}(\mathrm{x}-10)^{2} \mathrm{dx} \\
& \left.\left.=\frac{\mathrm{c}^{2}}{3 \times 9}(\mathrm{x}-2)^{3}\right]_{2}^{5}+\frac{\mathrm{c}^{2}}{3 \times 25}(\mathrm{x}-10)^{3}\right]_{5}^{10} \\
& =\mathrm{c}^{2}\left[\frac{27}{27}+\frac{125}{3 \times 25}\right]=\frac{8 \mathrm{c}^{2}}{3}
\end{aligned}
$$

$$
\mathrm{P}=1 \Rightarrow \frac{8 \mathrm{c}^{2}}{3}=1 \Rightarrow \mathrm{c}=0.612 \xrightarrow{\rightarrow} \Psi(\mathrm{x}) \text { can be a wave function }
$$

Since $\Psi(\mathrm{x})=0$ for $\mathrm{x} \leq 2$ and $\mathrm{x} \geq 10$, the potential energy should be infinite in these two regions.

Prob. 2.7

A particle is described in 1D by a wavefunction:
$\Psi=\mathrm{Be}^{-2 \mathrm{x}}$ for $\mathrm{x} \geq 0$ and $\mathrm{Ce}^{+4 \mathrm{x}}$ for $\mathrm{x}<0$, and B and C are real constants. Calculate B and C to make Ψ a valid wavefunction. Where is the particle most likely to be?

A valid wavefunction must be continuous, and normalized.
For $\Psi(0)=\mathrm{C}=\mathrm{B}$
To normalize $\Psi, \int_{-\infty}^{\infty}|\Psi|^{2} \mathrm{dx}=1$

$$
\begin{aligned}
& \int_{-\infty}^{0} \mathrm{C}^{2} \mathrm{e}^{8 x} \mathrm{dx}+\int_{0}^{\infty} \mathrm{C}^{2} \mathrm{e}^{-4 x} \mathrm{dx}=1 \\
& \frac{\mathrm{C}^{2}}{8}\left[\mathrm{e}^{8 x}\right]_{-\infty}^{0}+\mathrm{C}^{2}\left(\frac{-1}{4}\right)\left[\mathrm{e}^{-4 x}\right]_{0}^{\infty}=1 \\
& \frac{\mathrm{C}^{2}}{8}+\frac{\mathrm{C}^{2}}{4}=1 \Rightarrow \mathrm{C}=\sqrt{\frac{8}{3}}
\end{aligned}
$$

than zero $\left(|\psi|^{2}>0\right)$ and classical mechanically zero.

Prob. 2.10

Find $4 \cdot p_{x}^{2}+2 \cdot p_{z}^{2}+7 m E$ for $\Psi(x, y, z, t)=A \cdot e^{j(10 \cdot x+3 \cdot y-4 t)}$.

$$
\left\langle p_{x}{ }^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} \mathrm{A}^{*} \cdot \mathrm{e}^{-\mathrm{j}(10 \cdot x+3 \cdot y-4 \cdot \mathrm{t})}\left(\frac{\hbar}{\mathrm{j}} \frac{\partial}{\partial x}\right)^{2} \mathrm{~A} \cdot \mathrm{e}^{\mathrm{j}(10 \cdot x+3 \cdot y-4 \mathrm{t})} \mathrm{dx}}{\int_{-\infty}^{\infty}|\mathrm{A}|^{2} \mathrm{e}^{-\mathrm{j}(10 \cdot x+3 \cdot y-4 \cdot t)} \mathrm{e}^{\mathrm{j}(10 \cdot x+3 \cdot y-4 \cdot \mathrm{t})} \mathrm{dx}}=100 \cdot \hbar^{2}
$$

$$
\left\langle p_{z}{ }^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} A^{*} \cdot \mathrm{e}^{-\mathrm{j}(10 \cdot x+3 \cdot y-4 \cdot t)}\left(\frac{\hbar}{\mathrm{h}} \frac{\partial}{\partial z}\right)^{2} \mathrm{~A} \cdot \mathrm{e}^{\mathrm{j}(10 \cdot x+3 \cdot y-4 \cdot \mathrm{t}} \mathrm{dz}}{\int_{-\infty}^{\infty}|\mathrm{A}|^{2} \mathrm{e}^{-\mathrm{j}(10 \cdot x+3 \cdot y-4 \cdot \mathrm{t})} \mathrm{e}^{\mathrm{j}(10 \cdot x+3 \cdot \mathrm{y}-4 \cdot \mathrm{t})} \mathrm{dz}}=0
$$

$$
\langle E\rangle=\frac{\int_{-\infty}^{\infty} A^{*} \cdot e^{-\mathrm{j}(10 \cdot x+3 \cdot y-4 t)}\left(-\frac{\hbar}{j} \frac{\partial}{\partial t}\right) A^{c} \cdot e^{j(1 \cdot x+3 \cdot-4 \cdot t)} \mathrm{dt}}{\int_{-\infty}^{\infty}|A|^{2} \mathrm{e}^{-\mathrm{j}(10 \cdot x+3 \cdot y-4 \cdot t} \mathrm{e}^{\mathrm{j}(10 \cdot x+3 \cdot y-4 \cdot t} \mathrm{dt}}=4 \cdot \hbar
$$

$$
4 \cdot \mathrm{p}_{\mathrm{x}}^{2}+2 \cdot \mathrm{p}_{\mathrm{z}}^{2}+7 m E=400 \hbar^{2}+28\left(9.11 \cdot 10^{-31} \mathrm{~kg}\right) \hbar
$$

Prob. 2.11

Find the uncertainty in position (Δx) and momentum ($\Delta \rho$).
$\Psi(\mathrm{x}, \mathrm{t})=\sqrt{\frac{2}{\mathrm{~L}}} \cdot \sin \left(\frac{\pi \mathrm{x}}{\mathrm{L}}\right) \cdot \mathrm{e}^{-2 \pi \mathrm{j} E t / h}$ and $\int_{0}^{\mathrm{L}} \Psi^{*} \cdot \Psi \mathrm{dx}=1$
$\langle\mathrm{x}\rangle=\int_{0}^{\mathrm{L}} \Psi^{*} \cdot \mathrm{x} \cdot \Psi \mathrm{dx}=\frac{2}{\mathrm{~L}} \int_{0}^{\mathrm{L}} \mathrm{x} \cdot \sin ^{2}\left(\frac{\pi \mathrm{x}}{\mathrm{L}}\right) \mathrm{dx}=0.5 \mathrm{~L}$ (from problem note)
$\left\langle\mathrm{x}^{2}\right\rangle=\int_{0}^{\mathrm{L}} \Psi^{*} \cdot \mathrm{x} \cdot \Psi \mathrm{dx}=\frac{2}{\mathrm{~L}} \int_{0}^{\mathrm{L}} \mathrm{x}^{2} \cdot \sin ^{2}\left(\frac{\pi \mathrm{x}}{\mathrm{L}}\right) \mathrm{dx}=0.28 \mathrm{~L}^{2} \quad$ (from problem note)
$\Delta \mathrm{x}=\sqrt{\left\langle\mathrm{x}^{2}\right\rangle-\langle\mathrm{x}\rangle^{2}}=\sqrt{0.28 \mathrm{~L}^{2}-(0.5 \mathrm{~L})^{2}}=0.17 \mathrm{~L}$
$\Delta \mathrm{p} \geq \frac{h}{4 \pi \cdot \Delta \mathrm{x}}=0.47 \cdot \frac{h}{\mathrm{~L}}$

Prob. 2.12

Calculate the first three energy levels for a 10Á quantum well with infinite walls.
$\mathrm{E}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \cdot \pi^{2} \cdot \hbar^{2}}{2 \cdot \mathrm{~m} \cdot \mathrm{~L}^{2}}=\frac{\left(6.63 \cdot 10^{-34}\right)^{2}}{8 \cdot 9.11 \cdot 10^{-31} \cdot\left(10^{-9}\right)^{2}} \cdot \mathrm{n}^{2}=6.03 \cdot 10^{-20} \cdot \mathrm{n}^{2}$
$\mathrm{E}_{1}=6.03 \cdot 10^{-20} \mathrm{~J}=0.377 \mathrm{eV}$
$\mathrm{E}_{2}=4 \cdot 0.377 \mathrm{eV}=1.508 \mathrm{eV}$
$\mathrm{E}_{3}=9 \cdot 0.377 \mathrm{eV}=3.393 \mathrm{eV}$

Prob. 2.13

Show schematic of atom with $1 s^{2} 2 s^{2} 2 p^{4}$ and atomic weight 21. Comment on its reactivity.

This atom is chemically reactive because the outer 2 p shell is not full. It will tend to try to add two electrons to that outer shell.

