Chapter 2 Introduction to Optimization \& Linear Programming

1. If an LP model has more than one optimal solution it has an infinite number of alternate optimal solutions. In Figure 2.8, the two extreme points at $(122,78)$ and $(174,0)$ are alternate optimal solutions, but there are an infinite number of alternate optimal solutions along the edge connecting these extreme points. This is true of all LP models with alternate optimal solutions.
2. There is no guarantee that the optimal solution to an LP problem will occur at an integer-valued extreme point of the feasible region. (An exception to this general rule is discussed in Chapter 5 on networks).
3. We can graph an inequality as if they were an equality because the condition imposed by the equality corresponds to the boundary line (or most extreme case) of the inequality.
4. The objectives are equivalent. For any values of X_{1} and X_{2}, the absolute value of the objectives are the same. Thus, maximizing the value of the first objective is equivalent to minimizing the value of the second objective.
5. a. linear
b. nonlinear
c. linear, can be re-written as: $4 \mathrm{X}_{1}-.3333 \mathrm{X}_{2}=75$
d. linear, can be re-written as: $2.1 \mathrm{X}_{1}+1.1 \mathrm{X}_{2}-3.9 \mathrm{X}_{3} \leq 0$
e. nonlinear
6.

7.

8.

9.

10.

11.

12.

13. $\mathrm{X}_{1}=$ number of softballs to produce, $\mathrm{X}_{2}=$ number of baseballs to produce

14. $\mathrm{X}_{1}=$ number of His chairs to produce, $\mathrm{X}_{2}=$ number of Hers chairs to produce

$$
\begin{array}{ll}
\text { MAX } & 10 X_{1}+12 X_{2} \\
\text { ST } & 4 X_{1}+8 X_{2} \leq 1200 \\
& 8 X_{1}+4 X_{2} \leq 1056 \\
& 2 X_{1}+2 X_{2} \leq 400 \\
& 4 X_{1}+4 X_{2} \leq 900 \\
& 1 X_{1}-0.5 X_{2} \geq 0 \\
& X_{1}, X_{2} \geq 0
\end{array}
$$

15. $\mathrm{X}_{1}=$ number of propane grills to produce, $\mathrm{X}_{2}=$ number of electric grills to produce

$$
\begin{array}{ll}
\text { MAX } & 100 X_{1}+80 X_{2} \\
\text { ST } & 2 X_{1}+1 X_{2} \leq 2400 \\
& 4 X_{1}+5 X_{2} \leq 6000 \\
& 2 X_{1}+3 X_{2} \leq 3300 \\
& 1 X_{1}+1 X_{2} \leq 1500 \\
& X_{1}, X_{2} \geq 0
\end{array}
$$

16. $X_{1}=$ number of generators, $X_{2}=$ number of alternators

17. $X_{1}=$ number of generators, $X_{2}=$ number of alternators

d. No, the feasible region would not increase so the solution would not change -- you'd just have extra (unused) wiring capacity.
18. $X_{1}=$ proportion of beef in the mix, $X_{2}=$ proportion of pork in the mix

MIN $.85 \mathrm{X}_{1}+.65 \mathrm{X}_{2}$
ST $\quad 1 X_{1}+1 X_{2}=1$
$0.2 \mathrm{X}_{1}+0.3 \mathrm{X}_{2} \leq 0.25$
$\mathrm{X}_{1}, \mathrm{X}_{2} \geq 0$

19. $\mathrm{T}=$ number of TV ads to run, $\mathrm{M}=$ number of magazine ads to run

$$
\begin{array}{ll}
\text { MIN } & 500 \mathrm{~T}+750 \mathrm{P} \\
\text { ST } & 3 \mathrm{~T}+1 \mathrm{P} \geq 14 \\
& -1 \mathrm{~T}+4 \mathrm{P} \geq 4 \\
& 0 \mathrm{~T}+2 \mathrm{P} \geq 3 \\
& \mathrm{~T}, \mathrm{P} \geq 0
\end{array}
$$

20. $X_{1}=\#$ of TV spots, $X_{2}=\#$ of magazine ads

21. $X_{1}=$ tons of ore purchased from mine $1, X_{2}=$ tons of ore purchased from mine 2

MIN	$90 \mathrm{X}_{1}+120 \mathrm{X}_{2}$	(cost)
ST	$0.2 \mathrm{X}_{1}+0.3 \mathrm{X}_{2} \geq 8$	(copper)
	$0.2 \mathrm{X}_{1}+0.25 \mathrm{X}_{2} \geq 6$	(zinc)
	$0.15 \mathrm{X}_{1}+0.1 \mathrm{X}_{2} \geq 5$	(magnesium)
	$\mathrm{X}_{1}, \mathrm{X}_{2} \geq 0$	

22. $\mathrm{R}=$ number of Razors produced, $\mathrm{Z}=$ number of Zoomers produced

MAX	$70 \mathrm{R}+40 \mathrm{Z}$
ST	$\mathrm{R}+\mathrm{Z} \leq 700$
	$\mathrm{R}-\mathrm{Z} \leq 300$
	$2 \mathrm{R}+1 \mathrm{Z} \leq 900$
	$3 \mathrm{R}+4 \mathrm{Z} \leq 2400$
	$\mathrm{R}, \mathrm{Z} \geq 0$

23. $\mathrm{P}=$ number of Presidential desks produced, $\mathrm{S}=$ number of Senator desks produced

```
MAX 103.75 P + 97.85 S
ST }30\textrm{P}+24\textrm{S}\leq15,00
    1P}+1\textrm{S}\leq60
    5P+3S \leq 3000
    P,S \geq0
```


24. $\quad \mathrm{X}_{1}=$ acres planted in watermelons, $\mathrm{X}_{2}=$ acres planted in cantaloupes

25. $\mathrm{D}=$ number of doors produced, $\mathrm{W}=$ number of windows produced

MAX $500 \mathrm{D}+400 \mathrm{~W}$
ST $\quad 1 \mathrm{D}+0.5 \mathrm{~W} \leq 40$
$0.5 \mathrm{D}+0.75 \mathrm{~W} \leq 40$
$0.5 \mathrm{D}+1 \mathrm{~W} \leq 60$
D, $\mathrm{W} \geq 0$

26. $X_{1}=$ number of desktop computers, $X_{2}=$ number of laptop computers

Case 2-1: For The Lines They Are A-Changin'

1. 200 pumps, 1566 labor hours, 2712 feet of tubing.
2. Pumps are a binding constraint and should be increased to 207 , if possible. This would increase profits by $\$ 1,400$ to $\$ 67,500$.
3. Labor is a binding constraint and should be increased to 1800 , if possible. This would increase profits by $\$ 3,900$ to $\$ 70,000$.
4. Tubing is a non-binding constraint. They've already got more than they can use and don't need any more.
5. 9 to 8: profit increases by $\$ 3,050$

8 to 7: profit increases by $\$ 850$
7 to 6: profit increases by $\$ 0$
6. 6 to 5: profit increases by $\$ 975$

5 to 4: profit increases by $\$ 585$
4 to 3: profit increases by $\$ 390$
7. 12 to 13 : profit changes by $\$ 0$

13 to 14 : profit decreases by $\$ 760$
14 to 15 : profit decreases by $\$ 1,440$
8. 16 to 17 : profit changes by $\$ 0$

17 to 18 : profit changes by $\$ 0$
18 to 19: profit decreases by $\$ 400$
9. The profit on Aqua-Spas can vary between $\$ 300$ and $\$ 450$ without changing the optimal solution.
10. The profit on Hydro-Luxes can vary between $\$ 233.33$ and $\$ 350$ without changing the optimal solution.

Spreadsheet Modeling \& Decision Analysis

A Practical Introduction to Business Analytics
$8^{\text {th }}$ edition

Cliff T. Ragsdale

Chapter 2

Introduction to Optimization and Linear Programming

Introduction

- We all face decision about how to use limited resources such as:
- Oil in the earth
- Land for dumps
- Time
- Money
- Workers

Mathematical Programming...

- MP is a field of management science that finds the optimal, or most efficient, way of using limited resources to achieve the objectives of an individual of a business.
- a.k.a. Optimization

Applications of Optimization

- Determining Product Mix
- Manufacturing
- Routing and Logistics
- Financial Planning

Characteristics of Optimization Problems

- Decisions
- Constraints
- Objectives

General Form of an Optimization Problem

MAX (or MIN): $f_{0}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right)$
Subject to:

$$
f_{l}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right)<=\mathrm{b}_{1}
$$

$$
f_{k}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right)>=\mathrm{b}_{k}
$$

$$
f_{m}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right)=\mathrm{b}_{m}
$$

Note: If all the functions in an optimization are linear, the problem is a Linear Programming (LP) problem

Linear Programming (LP) Problems

MAX (or MIN): $\mathrm{c}_{1} \mathrm{X}_{1}+\mathrm{c}_{2} \mathrm{X}_{2}+\ldots+\mathrm{c}_{n} \mathrm{X}_{n}$
Subject to: $\quad \mathrm{a}_{11} \mathrm{X}_{1}+\mathrm{a}_{12} \mathrm{X}_{2}+\ldots+\mathrm{a}_{1 n} \mathrm{X}_{n}<=\mathrm{b}_{1}$

$$
\mathrm{a}_{k 1} \mathrm{X}_{1}+\mathrm{a}_{k 2} \mathrm{X}_{2}+\ldots+\mathrm{a}_{k n} \mathrm{X}_{n}>=\mathrm{b}_{k}
$$

$$
\mathrm{a}_{m 1} \mathrm{X}_{1}+\mathrm{a}_{m 2} \mathrm{X}_{2}+\ldots+\mathrm{a}_{m n} \mathrm{X}_{n}=\mathrm{b}_{m}
$$

An Example LP Problem

Blue Ridge Hot Tubs produces two types of hot tubs: Aqua-Spas \& Hydro-Luxes.

Aqua-Spa Hydro-Lux
Pumps
1

Labor 9 hours
Tubing
12 feet
6 hours
16 feet
Unit Profit \$350 \$300
There are 200 pumps, 1566 hours of labor, and 2880 feet of tubing available.

5 Steps In Formulating LP Models:

1. Understand the problem.
2. Identify the decision variables.
$X_{1}=$ number of Aqua-Spas to produce
$\mathrm{X}_{2}=$ number of Hydro-Luxes to produce
3. State the objective function as a linear combination of the decision variables. MAX: $350 \mathrm{X}_{1}+300 \mathrm{X}_{2}$

5 Steps In Formulating LP Models (continued)

4. State the constraints as linear combinations of the decision variables.

$$
\begin{array}{ll}
1 X_{1}+1 X_{2}<=200 & \} \text { pumps } \\
9 X_{1}+6 X_{2}<=1566 & \} \text { labor } \\
12 X_{1}+16 X_{2}<=2880 & \} \text { tubing }
\end{array}
$$

5. Identify any upper or lower bounds on the decision variables.

$$
\begin{aligned}
& X_{1}>=0 \\
& X_{2}>=0
\end{aligned}
$$

LP Model for Blue Ridge Hot Tubs

$$
\begin{array}{ll}
\text { MAX: } 350 X_{1}+300 X_{2} \\
\text { S.T.: } & 1 X_{1}+1 X_{2}<=200 \\
& 9 X_{1}+6 X_{2}<=1566 \\
12 X_{1}+16 X_{2}<=2880 \\
& X_{1}>=0 \\
& X_{2}>=0
\end{array}
$$

Solving LP Problems: An Intuitive Approach

- Idea: Each Aqua-Spa $\left(X_{1}\right)$ generates the highest unit profit (\$350), so let's make as many of them as possible!
- How many would that be?
- Let $X_{2}=0$
>1 st constraint: $\quad 1 X_{1}<=200$
$>$ 2nd constraint: $\quad 9 X_{1}<=1566$ or $X_{1}<=174$
>3 rd constraint: $\quad 12 X_{1}<=2880$ or $X_{1}<=240$
- If $X_{2}=0$, the maximum value of X_{1} is 174 and the total profit is $\$ 350^{*} 174+\$ 300^{*} 0=\$ 60,900$
- This solution is feasible, but is it optimal?
- No!

Solving LP Problems: A Graphical Approach

- The constraints of an LP problem defines its feasible region.
- The best point in the feasible region is the optimal solution to the problem.
- For LP problems with 2 variables, it is easy to plot the feasible region and find the optimal solution.

Plotting the Second Constraint

© 2017 Cengage Learning. All Rights Reserved. May not

Plotting the Third Constraint

© 2017 Cengage Learning. All Rights Reserved. May not

© 2017 Cengage Learning. All Rights Reserved. May not

Using A Level Curve to Locate

Calculating the Optimal Solution

- The optimal solution occurs where the "pumps" and "labor" constraints intersect.
- This occurs where:

$$
\begin{array}{ll}
& X_{1}+X_{2}=200 \\
\text { and } & 9 X_{1}+6 X_{2}=1566 \tag{2}
\end{array}
$$

- From (1) we have, $X_{2}=200-X_{1}$
- Substituting (3) for X_{2} in (2) we have,

$$
9 X_{1}+6\left(200-X_{1}\right)=1566
$$

which reduces to $X_{1}=122$

- So the optimal solution is,

$$
X_{1}=122, X_{2}=200-X_{1}=78
$$

Total Profit $=\$ 350 * 122+\$ 300^{*} 78=\$ 66,100$

Enumerating The Corner Points

Summary of Graphical Solution to LP Problems

1. Plot the boundary line of each constraint
2. Identify the feasible region
3. Locate the optimal solution by either:
a. Plotting level curves
b. Enumerating the extreme points

Understanding How Things Change See file Fig2-8.xlsm

Special Conditions in LP Models

- A number of anomalies can occur in LP problems:
- Alternate Optimal Solutions
- Redundant Constraints
- Unbounded Solutions
- Infeasibility

Example of Alternate Optimal Solutions

Example of a Redundant Constraint

Example of an Unbounded Solution

© 2017 Cengage Learning. All Rights Reserved. May not

End of Chapter 2

The Analytic Solver Platform software featured in this book is provided by Frontline Systems.

http://www.solver.com

