Statics and Strength of Materials for A

Insstructor's Manual to accompany

US CODUTIS MOTH IS DIOTECTED THIS FURTHER OF THIS PROPERTIES AND THE OTECTED TO T **Statics and Strength of Materials** For **Architecture and Building Construction**

Fourth Edition

Barry S. Onouye

Upper Saddle River, New Jersey Columbus, Ohio

Visit TestBankDeal.com to get complete for all chapters

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Copyright © 2012 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall[™] is a trademark of Pearson Education, Inc. **Pearson**[®] is a registered trademark of Pearson plc **Prentice Hall**[®] is a registered trademark of Pearson Education, Inc.

Instructors of classes using Onouye, *Statics and Strength of Materials for Architecture and Building Construction, Fourth Edition,* may reproduce material from the instructor's manual for classroom use.

10 9 8 7 6 5 4 3 2 1

ISBN-13: 978-0-13-511455-1 ISBN-10: 0-13-511455-1

Instructor's Manual to Accompany

Statics and Strength of Materials

For Architecture and Building Construction

Fourth Edition

Barry Onouye

Pearson/Prentice Hall

Upper Saddle River, New Jersey Columbus, Ohio

Preface

This Instructor's Manual is intended to accompany Statics and Strength of Materials for Architecture and Building Construction.

It was initially developed as a study guide for students to practice on a variety of problems to enhance their understanding of the principles covered in the text. Solutions were developed in sufficient detail to allow students to use these problems as additional example problems.

Although the problem solutions contained in this Instructor's Manual have been worked, re-worked, checked and scrutinized by my many students over the years, there are inevitably errors that remain to be discovered by others using the book. If you detect discrepancies, omissions and errors as you work through these problems, I would appreciate hearing from you so that I can incorporate the changes for any future editions of the Instructor's Manual or book.

I realize that many instructors do not allow student's access to the Instructor's Manual but I have personally found that my students appreciated having it as a study guide.

Fall, 2010

Barry Onouye, Senior Lecturer Dept. of Architecture College of Built Environments University of Washington e-mail: barryo@u.washington.edu

Table of Contents

Chapter 2 Statics

 Graphical addition of vectors 	pg 2.1 - 2.2
 Resolution of forces: x and y components 	pg 2.2 - 2.3
 Vector addition by components 	pg 2.3 - 2.6
Moment of a force	pg 2.6 - 2.7
 Varignon's theorem 	pg 2.7 – 2.8
Moment couples	pg 2.9
 Equilibrium of concurrent forces 	pg 2.10 – 2.13
 Equilibrium of rigid bodies 	pg. 2.13 – 2.16
 Supplementary problems 	pg 2.16 – 2.26

Chapter 3 Analysis of Determinate Systems

 Cables with concentrated loads 	pg 3.1 – 3.3
 Equilibrium of rigid bodies with distributed 	
loads	pg 3.4 – 3.5
 Planar trusses – method of joints 	pg 3.6 – 3.8
 Truss analysis – method of sections 	pg 3.8 – 3.10
 Diagonal tension counters 	pg 3.10 – 3.12
Zero-force members	pg 3.12
 Pinned frames – multi-force members 	pg 3.13 – 3.15
 Supplementary problems 	pg 3.16 – 3.28
Retaining walls	pg 3.29 – 3.32

Chapter 4 Load Tracing

 Gravity load trace 	pg 4.1 – 4.8
Lateral load trace	pg 4.8 – 4.11

Chapter 5 Strength of Materials

 Tension, Compression and shear stress 	pg 5.1 – 5.2
 Deformation and strain 	pg 5.3
 Elasticity, strength and deformation 	pg 5.3 – 5.4
 Thermal stress and deformation 	pg. 5.4 – 5.5
 Statically indeterminate, axially loaded 	
members	pg 5.5 – 5.6

Chapter 6 Cross-Sectional Properties

Centroids	pg 6.1 – 6.3
 Moment of inertia 	pg 6.3 – 6.7
 Moment of inertia for composite sections 	pg 6.7 – 6.9

Chapter 7 Bending and Shear Diagrams

 Equilibrium method for shear and moment 	
diagrams	pg 7.1 – 7.4
 Semi-graphical method for shear and 	
moment diagrams	pg 7.5 – 7.10

Chapter 8 Bending and Shear Stress in Beams

Bending stress	pg 8.1 – 8.5
 Bending and shear stresses 	pg 8.6 – 8.12
Deflection in Beams	pg 8.13 – 8.15

Chapter 9 Column Analysis and Design

 Euler buckling loads and stresses 	pg 9.1 – 9.2
 Axially loaded steel columns - analysis 	pg 9.3 – 9.4
 Design of steel columns 	pg 9.5 – 9.6
 Axially load wood columns 	pg 9.6 – 9.9

Chapter 10 Structural Connections

 Bolted steel connections 	pg 10.1 – 10.3
Framed connections	pg 10.3
Welded connections	pg 10.4 – 10.5

2.3

2.4

2.5

 $T_v = T \cos 10^\circ$

 $\therefore T = \frac{T_y}{\cos 10^\circ} = \frac{250N}{0.985} = 254N$

2.8

Purlin Detail

2.9

Statics and Strength of Materials for Architecture and Building Construction 4th Edition Onouye Solutions Manual

2.10

Graphical Solution:

