Statics and Strength of Materials For Architecture and Building Construction

Fourth Edition

Barry S. Onouye

PEARSON

Prentice
Hall abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

[^0]Pearson Prentice Hall ${ }^{\text {TM }}$ is a trademark of Pearson Education, Inc.
Pearson ${ }^{\circledR}$ is a registered trademark of Pearson plc
Prentice Hall ${ }^{\circledR}$ is a registered trademark of Pearson Education, Inc.

Instructors of classes using Onouye, Statics and Strength of Materials for Architecture and Building Construction, Fourth Edition, may reproduce material from the instructor's manual for classroom use.

PEARSON

Prentice
Hall

Statics and Strength of Materials

For Architecture and Building Construction

Fourth Edition

Barry Onouye

Pearson/Prentice Hall
Upper Saddle River, New Jersey Columbus, Ohio

Preface

This Instructor's Manual is intended to accompany Statics and Strength of Materials for Architecture and Building Construction.
It was initially developed as a study guide for students to practice on a variety of problems to enhance their understanding of the principles covered in the text. Solutions were developed in sufficient detail to allow students to use these problems as additional example problems.

Although the problem solutions contained in this Instructor's Manual have been worked, re-worked, checked and scrutinized by my many students over the years, there are inevitably errors that remain to be discovered by others using the book. If you detect discrepancies, omissions and errors as you work through these problems, I would appreciate hearing from you so that I can incorporate the changes for any future editions of the Instructor's Manual or book.

I realize that many instructors do not allow student's access to the Instructor's Manual but I have personally found that my students appreciated having it as a study guide.

Fall, 2010

Barry Onouye, Senior Lecturer
Dept. of Architecture
College of Built Environments
University of Washington
e-mail: barryo@u.washington.edu

Table of Contents

Chapter 2 Statics

- Graphical addition of vectors
pg 2.1-2.2
- Resolution of forces: x and y components
pg 2.2-2.3
- Vector addition by components
pg 2.3-2.6
- Moment of a force
- Varignon's theorem
pg 2.6-2.7
pg $2.7-2.8$
- Moment couples
- Equilibrium of concurrent forces
- Equilibrium of rigid bodies
- Supplementary problems
pg 2.9
pg 2.10-2.13
pg. $2.13-2.16$
pg 2.16-2.26

Chapter 3 Analysis of Determinate Systems

- Cables with concentrated loads
- Equilibrium of rigid bodies with distributed loads
- Planar trusses - method of joints
- Truss analysis - method of sections
- Diagonal tension counters
- Zero-force members
- Pinned frames - multi-force members
- Supplementary problems
- Retaining walls

Chapter 4 Load Tracing

- Gravity load trace
pg $4.1-4.8$
- Lateral load trace
pg $3.1-3.3$
pg 3.4-3.5
pg $3.6-3.8$
pg 3.8-3.10
pg 3.10-3.12
pg 3.12
pg 3.13-3.15
pg 3.16-3.28
pg $3.29-3.32$

Chapter 5 Strength of Materials

- Tension, Compression and shear stress
pg 5.1-5.2
- Deformation and strain
pg 5.3
- Elasticity, strength and deformation
pg 5.3-5.4
- Thermal stress and deformation
pg. $5.4-5.5$
- Statically indeterminate, axially loaded members
pg 5.5-5.6

Chapter 6 Cross-Sectional Properties

- Centroids	pg 6.1-6.3
- Moment of inertia	pg 6.3-6.7
- Moment of inertia for composite sections	pg 6.7-6.9

Chapter 7 Bending and Shear Diagrams

- Equilibrium method for shear and moment diagrams
pg 7.1-7.4
- Semi-graphical method for shear and moment diagrams
pg 7.5-7.10

Chapter 8 Bending and Shear Stress in Beams

- Bending stress
pg 8.1-8.5
- Bending and shear stresses
pg 8.6-8.12
- Deflection in Beams
pg $8.13-8.15$

Chapter 9 Column Analysis and Design

- Euler buckling loads and stresses
- Axially loaded steel columns - analysis
pg 9.1-9.2
pg 9.3-9.4
- Design of steel columns
- Axially load wood columns
pg 9.5-9.6
pg 9.6-9.9

Chapter 10 Structural Connections

- Bolted steel connections
pg 10.1-10.3
- Framed connections
- Welded connections
pg 10.3
pg 10.4-10.5

Chapter 2 Problem Solutions

2.1

or

2.2

2.4

$\mathrm{F}=1000 \mathrm{lb}$.

By similar triangles:

$$
\begin{aligned}
& \frac{\mathrm{F}_{\mathrm{x}}}{4}=\frac{\mathrm{F}_{\mathrm{y}}}{3}=\frac{\mathrm{F}}{5} \\
& \therefore \mathrm{~F}_{\mathrm{x}}=\frac{4}{5} \mathrm{~F}=\frac{4}{5}(1000 \#)=800 \# \\
& \mathrm{~F}_{\mathrm{y}}=\frac{3}{5} \mathrm{~F}=\frac{3}{5}(1000 \#)=600 \# \\
& \sin \theta=\frac{3}{5} \quad \text { and } \quad \cos \theta=\frac{4}{5} \\
& \therefore \quad \mathrm{~F}_{\mathrm{x}}=\mathrm{F} \cos \theta=(1000 \#)\left(\frac{4}{5}\right)=800 \# \\
& \mathrm{~F}_{\mathrm{y}}=\mathrm{F} \sin \theta=(1000 \#)\left(\frac{3}{5}\right)=600 \#
\end{aligned}
$$

2.7

$\mathrm{T}_{\mathrm{x}}=\mathrm{T} \sin 10^{\circ}$
$\mathrm{T}_{\mathrm{y}}=\mathrm{T} \cos 10^{\circ}$
$\therefore \mathrm{T}=\frac{\mathrm{T}_{\mathrm{y}}}{\cos 10^{\circ}}=\frac{250 \mathrm{~N}}{0.985}=254 \mathrm{~N}$
2.8

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{4}{12}\right)=18.43^{\circ} \\
& P_{x}=P\left(\frac{4}{12.65}\right)=(300 \#)(0.316)=94.9 \# \\
& P_{y}=P\left(\frac{12}{12.65}\right)=(300 \#)(0.949)=285 \#
\end{aligned}
$$

Purlin Detail
2.9

Graphical solution using the tip-to-tail method
2.10

$-\mathrm{T}_{\mathrm{AC}}=-\mathrm{T}_{\mathrm{AC}} \cos 60^{\circ}=-0.5 \mathrm{~T}_{\mathrm{AC}}$
$-\mathrm{T}_{\mathrm{ACy}}=-\mathrm{T}_{\mathrm{AC}} \sin 60^{\circ}=-0.866 \mathrm{~T}_{\mathrm{AC}}$
$+\mathrm{T}_{\mathrm{AB}_{\mathrm{x}}}=+\mathrm{T}_{\mathrm{AB}} \cos 40^{\circ}=+0.766 \mathrm{~T}_{\mathrm{AB}}$
$-\mathrm{T}_{\mathrm{AB}}=-\mathrm{T}_{\mathrm{AB}} \sin 40^{\circ}=-0.642 \mathrm{~T}_{\mathrm{AB}}$
$\mathrm{R}_{\mathrm{x}}=\Sigma \mathrm{F}_{\mathrm{x}}=-(0.5)(800 \mathrm{~N})+(0.766)(600 \mathrm{~N})=59.6 \mathrm{~N}$
$\mathrm{R}_{\mathrm{y}}=\Sigma \mathrm{F}_{\mathrm{y}}=-(0.866)(800 \mathrm{~N})-(0.642)(600 \mathrm{~N})=-1078 \mathrm{~N}$
$\theta=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=\tan ^{-1}\left(\frac{1078}{59.6}\right)=\tan ^{-1}(18.1)=86.8^{\circ}$
$\phi=\tan ^{-1}\left(\frac{R_{x}}{R_{y}}\right)=\tan ^{-1}\left(\frac{59.6}{1078}\right)=\tan ^{-1}(0.055)=3.2^{\circ}$
$\mathrm{R}=\sqrt{59.6^{2}+1078^{2}}=1079 \mathrm{~N}$

2.10 cont'd

Graphical Solution:

Visit TestBankDeal.com to get complete for all chapters

[^0]: Copyright © 2012 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.
 Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

