2-1. The steel framework is used to support the reinforced stone concrete slab that is used for an office. The slab is 200 mm thick. Sketch the loading that acts along members $B E$ and $F E D$. Take $a=2 \mathrm{~m}, b=5 \mathrm{~m}$. Hint: See Tables 1-2 and 1-4.

Beam BE. Since $\frac{b}{a}=\frac{5 \mathrm{~m}}{2 \mathrm{~m}}=2.5$, the concrete slab will behave as a one way slab.
Thus, the tributary area for this beam is rectangular shown in Fig. a and the intensity of the uniform distributed load is

200 mm thick reinforced stone concrete slab:
$\left(23.6 \mathrm{kN} / \mathrm{m}^{3}\right)(0.2 \mathrm{~m})(2 \mathrm{~m})=9.44 \mathrm{kN} / \mathrm{m}$
Live load for office: $\left(2.40 \mathrm{kN} / \mathrm{m}^{2}\right)(2 \mathrm{~m})=\frac{480 \mathrm{kN} / \mathrm{m}}{14.24 \mathrm{kN} / \mathrm{m}}$
Ans.

Due to symmetry the vertical reaction at B and E are

$$
B_{y}=E_{y}=(14.24 \mathrm{kN} / \mathrm{m})(5) / 2=35.6 \mathrm{kN}
$$

The loading diagram for beam $B E$ is shown in Fig. b.
Beam FED. The only load this beam supports is the vertical reaction of beam $B E$ at E which is $E_{y}=35.6 \mathrm{kN}$. The loading diagram for this beam is shown in Fig. c.

2-2. Solve Prob. 2-1 with $a=3 \mathrm{~m}, b=4 \mathrm{~m}$.

Beam BE. Since $\frac{b}{a}=\frac{4}{3}<2$, the concrete slab will behave as a two way slab. Thus, the tributary area for this beam is the hexagonal area shown in Fig. a and the maximum intensity of the distributed load is

200 mm thick reinforced stone concrete slab: $\left(23.6 \mathrm{kN} / \mathrm{m}^{3}\right)(0.2 \mathrm{~m})(3 \mathrm{~m})$

$$
=14.16 \mathrm{kN} / \mathrm{m}
$$

Live load for office: $\left(2.40 \mathrm{kN} / \mathrm{m}^{2}\right)(3 \mathrm{~m})$

$$
=\frac{720 \mathrm{kN} / \mathrm{m}}{21.36 \mathrm{kN} / \mathrm{m}}
$$

Ans.
Due to symmetry, the vertical reactions at B and E are

$$
\begin{aligned}
B_{y}=E_{y} & =\frac{2\left[\frac{1}{2}(21.36 \mathrm{kN} / \mathrm{m})(1.5 \mathrm{~m})\right]+(21.36 \mathrm{kN} / \mathrm{m})(1 \mathrm{~m})}{2} \\
& =26.70 \mathrm{kN}
\end{aligned}
$$

The loading diagram for Beam $B E$ is shown in Fig. b.
Beam FED. The loadings that are supported by this beam are the vertical reaction of beam $B E$ at E which is $E_{y}=26.70 \mathrm{kN}$ and the triangular distributed load of which its tributary area is the triangular area shown in Fig. a. Its maximum intensity is

200 mm thick reinforced stone concrete slab: $\left(23.6 \mathrm{kN} / \mathrm{m}^{3}\right)(0.2 \mathrm{~m})(1.5 \mathrm{~m})$
$=7.08 \mathrm{kN} / \mathrm{m}$
Live load for office: $\left(2.40 \mathrm{kN} / \mathrm{m}^{2}\right)(1.5 \mathrm{~m})$
$=\frac{3.60 \mathrm{kN} / \mathrm{m}}{10.68 \mathrm{kN} / \mathrm{m}}$
Ans.

The loading diagram for Beam FED is shown in Fig. c.

(a)

2-3. The floor system used in a school classroom consists of a 4 -in. reinforced stone concrete slab. Sketch the loading that acts along the joist $B F$ and side girder $A B C D E$. Set $a=10 \mathrm{ft}, b=30 \mathrm{ft}$. Hint: See Tables 1-2 and 1-4.

Joist $\boldsymbol{B F}$. Since $\frac{b}{a}=\frac{30 \mathrm{ft}}{10 \mathrm{ft}}=3$, the concrete slab will behave as a one way slab. Thus, the tributary area for this joist is the rectangular area shown in Fig. a and the intensity of the uniform distributed load is

4 in thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(10 \mathrm{ft})=0.5 \mathrm{k} / \mathrm{ft}$
Live load for classroom: $\left(0.04 \mathrm{k} / \mathrm{ft}^{2}\right)(10 \mathrm{ft})=\frac{0.4 \mathrm{k} / \mathrm{ft}}{0.9 \mathrm{k} / \mathrm{ft}}$
Ans.

Due to symmetry, the vertical reactions at B and F are

$$
B_{y}=F_{y}=(0.9 \mathrm{k} / \mathrm{ft})(30 \mathrm{ft}) / 2=13.5 \mathrm{k}
$$

Ans.

The loading diagram for joist $B F$ is shown in Fig. b.
Girder $\boldsymbol{A B C D E}$. The loads that act on this girder are the vertical reactions of the joists at B, C, and D, which are $B_{y}=C_{y}=D_{y}=13.5 \mathrm{k}$. The loading diagram for this girder is shown in Fig. c.

(a)

(c)
*2-4. Solve Prob. 2-3 with $a=10 \mathrm{ft}, b=15 \mathrm{ft}$.

Joist $\boldsymbol{B F}$. Since $\frac{b}{a}=\frac{15 \mathrm{ft}}{10 \mathrm{ft}}=1.5<2$, the concrete slab will behave as a two way slab. Thus, the tributary area for the joist is the hexagonal area as shown in Fig. a and the maximum intensity of the distributed load is

4 in thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(10 \mathrm{ft})=0.5 \mathrm{k} / \mathrm{ft}$
Live load for classroom: $\left(0.04 \mathrm{k} / \mathrm{ft}^{2}\right)(10 \mathrm{ft}) \quad=\frac{0.4 \mathrm{k} / \mathrm{ft}}{0.9 \mathrm{k} / \mathrm{ft}}$
Ans.

Due to symmetry, the vertical reactions at B and G are

$$
B_{y}=F_{y}=\frac{2\left[\frac{1}{2}(0.9 \mathrm{k} / \mathrm{ft})(5 \mathrm{ft})\right]+(0.9 \mathrm{k} / \mathrm{ft})(5 \mathrm{ft})}{2}=4.50 \mathrm{k}
$$

Ans.

The loading diagram for beam $B F$ is shown in Fig. b.

Girder $\boldsymbol{A B C D E}$. The loadings that are supported by this girder are the vertical reactions of the joist at B, C and D which are $B_{y}=C_{y}=D_{y}=4.50 \mathrm{k}$ and the triangular distributed load shown in Fig. a. Its maximum intensity is

4 in thick reinforced stone concrete slab:

$$
\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(5 \mathrm{ft})=0.25 \mathrm{k} / \mathrm{ft}
$$

Live load for classroom: $\left(0.04 \mathrm{k} / \mathrm{ft}^{2}\right)(5 \mathrm{ft})$

$$
=\frac{0.20 \mathrm{k} / \mathrm{ft}}{0.45 \mathrm{k} / \mathrm{ft}}
$$

The loading diagram for the girder $A B C D E$ is shown in Fig. c.

(a)

Ans.

(C)

2-5. Solve Prob. 2-3 with $a=7.5 \mathrm{ft}, b=20 \mathrm{ft}$.

Beam $\boldsymbol{B F}$. Since $\frac{b}{a}=\frac{20 \mathrm{ft}}{7.5 \mathrm{ft}}=2.7>2$, the concrete slab will behave as a one way slab. Thus, the tributary area for this beam is a rectangle shown in Fig. a and the intensity of the distributed load is

4 in thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(7.5 \mathrm{ft})=0.375 \mathrm{k} / \mathrm{ft}$
Live load from classroom: $\left(0.04 \mathrm{k} / \mathrm{ft}^{2}\right)(7.5 \mathrm{ft}) \quad=\frac{0.300 \mathrm{k} / \mathrm{ft}}{0.675 \mathrm{k} / \mathrm{ft}}$
Ans.

Due to symmetry, the vertical reactions at B and F are

$$
B_{y}=F_{y}=\frac{(0.675 \mathrm{k} / \mathrm{ft})(20 \mathrm{ft})}{2}=6.75 \mathrm{k}
$$

Ans.

The loading diagram for beam $B F$ is shown in Fig. b.

Beam $\boldsymbol{A B C D}$. The loading diagram for this beam is shown in Fig. c.

(a)

2-6. The frame is used to support a 2-in.-thick plywood floor of a residential dwelling. Sketch the loading that acts along members $B G$ and $A B C D$. Set $a=5 \mathrm{ft}, b=15 \mathrm{ft}$. Hint: See Tables 1-2 and 1-4.

Beam BG. Since $\frac{b}{a}=\frac{15 \mathrm{ft}}{5 \mathrm{ft}}=3$, the plywood platform will behave as a one way slab. Thus, the tributary area for this beam is rectangular as shown in Fig. a and the intensity of the uniform distributed load is

2 in thick plywood platform: $\left(36 \frac{\mathrm{lb}}{\mathrm{ft}^{2}}\right)\left(\frac{2}{12} \mathrm{ft}\right)(5 \mathrm{ft})=30 \mathrm{lb} / \mathrm{ft}$
Line load for residential dweller: $\left(40 \frac{\mathrm{lb}}{\mathrm{ft}^{2}}\right)(5 \mathrm{ft})=\frac{200 \mathrm{lb} / \mathrm{ft}}{230 \mathrm{lb} / \mathrm{ft}}$
Ans.

Due to symmetry, the vertical reactions at B and G are
$B_{y}=G_{y}=\frac{(230 \mathrm{lb} / \mathrm{ft})(15 \mathrm{ft})}{2}=1725$
Ans.
The loading diagram for beam $B G$ is shown in Fig. a.
Beam $\boldsymbol{A B C D}$. The loads that act on this beam are the vertical reactions of beams $B G$ and $C F$ at B and C which are $B_{y}=C_{y}=1725 \mathrm{lb}$. The loading diagram is shown in Fig. c.

(C)

2-7. Solve Prob. 2-6, with $a=8 \mathrm{ft}, b=8 \mathrm{ft}$.

Beam BG. Since $\frac{b}{a}=\frac{8 \mathrm{ft}}{8 \mathrm{ft}}=1<2$, the plywood platform will behave as a two way slab. Thus, the tributary area for this beam is the shaded square area shown in Fig. a and the maximum intensity of the distributed load is

2 in thick plywood platform: $\left(36 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(\frac{2}{12} \mathrm{in}\right)(8 \mathrm{ft})=48 \mathrm{lb} / \mathrm{ft}$
Live load for residential dwelling: $(40 \mathrm{lb} / \mathrm{ft})(8 \mathrm{ft}) \quad=\frac{320 \mathrm{lb} / \mathrm{ft}}{368 \mathrm{lb} / \mathrm{ft}}$
Ans.
Due to symmetry, the vertical reactions at B and G are

$$
B_{y}=G_{y}=\frac{\frac{1}{2}(368 \mathrm{lb} / \mathrm{ft})(8 \mathrm{ft})}{2}=736 \mathrm{lb}
$$

Ans.

The loading diagram for the beam $B G$ is shown in Fig. b
Beam ABCD. The loadings that are supported by this beam are the vertical reactions of beams $B G$ and $C F$ at B and C which are $B_{y}=C_{y}=736 \mathrm{lb}$ and the distributed load which is the triangular area shown in Fig. a. Its maximum intensity is 2 in thick plywood platform: $\left(36 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(\frac{2}{12 \mathrm{ft}}\right)(4 \mathrm{ft})=24 \mathrm{lb} / \mathrm{ft}$ Live load for residential dwelling: $\left(40 \mathrm{lb} / \mathrm{ft}^{2}\right)(4 \mathrm{lb} / \mathrm{ft})=\frac{160 \mathrm{lb} / \mathrm{ft}}{184 \mathrm{lb} / \mathrm{ft}}$ The loading diagram for beam $A B C D$ is shown in Fig. c.

(a)

Ans.

(C)
*2-8. Solve Prob. 2-6, with $a=9 \mathrm{ft}, b=15 \mathrm{ft}$.

Beam BG. Since $\frac{b}{a}=\frac{15 \mathrm{ft}}{9 \mathrm{ft}}=1.67<2$, the plywood platform will behave as a two way slab. Thus, the tributary area for this beam is the octagonal area shown in Fig. a and the maximum intensity of the distributed load is

2 in thick plywood platform: $\left(36 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(\frac{2}{12} \mathrm{in}\right)(9 \mathrm{ft})=54 \mathrm{lb} / \mathrm{ft}$
Live load for residential dwelling: $\quad\left(40 \mathrm{lb} / \mathrm{ft}^{2}\right)(9 \mathrm{ft})=\frac{360 \mathrm{lb} / \mathrm{ft}}{414 \mathrm{lb} / \mathrm{ft}}$
Ans.

Due to symmetry, the vertical reactions at B and G are
$B_{y}=G_{y}=\frac{2\left[\frac{1}{2}(414 \mathrm{lb} / \mathrm{ft})(4.5 \mathrm{ft})\right]+(414 \mathrm{lb} / \mathrm{ft})(6 \mathrm{ft})}{2}=2173.5 \mathrm{lb}$
The loading diagram for beam $B G$ is shown in Fig. b.
Beam $\boldsymbol{A B C D}$. The loading that is supported by this beam are the vertical reactions of beams $B G$ and $C F$ at B and C which is $B_{y}=C_{y}=2173.5 \mathrm{lb}$ and the triangular distributed load shown in Fig. a. Its maximum intensity is
2 in thick plywood platform: $\left(36 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(\frac{2}{12} \mathrm{ft}\right)(4.5 \mathrm{ft})=27 \mathrm{lb} / \mathrm{ft}$
Live load for residential dwelling: $\left(40 \mathrm{lb} / \mathrm{ft}^{2}\right)(4.5 \mathrm{ft})=\frac{180 \mathrm{lb} / \mathrm{ft}}{207 \mathrm{lb} / \mathrm{ft}}$
The loading diagram for beam $A B C D$ is shown in Fig. c.

(a)

Ans.

(C)

2-9. The steel framework is used to support the 4 -in. reinforced stone concrete slab that carries a uniform live loading of $500 \mathrm{lb} / \mathrm{ft}^{2}$. Sketch the loading that acts along members $B E$ and $F E D$. Set $b=10 \mathrm{ft}, a=7.5 \mathrm{ft}$. Hint: See Table 1-2.

Beam $\boldsymbol{B E}$. Since $\frac{b}{a}=\frac{10}{7.5}<2$, the concrete slab will behave as a two way slab. Thus, the tributary area for this beam is the octagonal area shown in Fig. a and the maximum intensity of the distributed load is

4 in thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(7.5 \mathrm{ft})=0.375 \mathrm{k} / \mathrm{ft}$
Floor Live Load: $\left(0.5 \mathrm{k} / \mathrm{ft}^{2}\right)(7.5 \mathrm{ft})=\frac{3.75 \mathrm{k} / \mathrm{ft}}{4.125 \mathrm{k} / \mathrm{ft}}$
Ans.

Due to symmetry, the vertical reactions at B and E are
$B_{y}=E_{y}=\frac{2\left[\frac{1}{2}(4.125 \mathrm{k} / \mathrm{ft})(3.75 \mathrm{ft})\right]+(4.125 \mathrm{k} / \mathrm{ft})(2.5 \mathrm{ft})}{2}=12.89 \mathrm{k}$
The loading diagram for this beam is shown in Fig. b.
Beam FED. The loadings that are supported by this beam are the vertical reaction of beam $B E$ at E which is $E_{y}=12.89 \mathrm{k}$ and the triangular distributed load shown in Fig. a. Its maximum intensity is
4 in thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(3.75 \mathrm{ft})=0.1875 \mathrm{k} / \mathrm{ft}$
Floor live load: $\left(0.5 \mathrm{k} / \mathrm{ft}^{2}\right)(3.75 \mathrm{ft})=\frac{1.875 \mathrm{k} / \mathrm{ft}}{2.06 \mathrm{k} / \mathrm{ft}}$
The loading diagram for this beam is shown in Fig. c.

(a)

(C)

2-10. Solve Prob. 2-9, with $b=12 \mathrm{ft}, a=4 \mathrm{ft}$.

Beam $\boldsymbol{B E}$. Since $\frac{b}{a}=\frac{12}{4}=3>2$, the concrete slab will behave as a one way slab. Thus, the tributary area for this beam is the rectangular area shown in Fig. a and the intensity of the distributed load is
4 in thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{2}\right)\left(\frac{4}{12} \mathrm{ft}\right)(4 \mathrm{ft})=0.20 \mathrm{k} / \mathrm{ft}$

Floor Live load: $\left(0.5 \mathrm{k} / \mathrm{ft}^{2}\right)(4 \mathrm{ft})=\frac{2.00 \mathrm{k} / \mathrm{ft}}{2.20 \mathrm{k} / \mathrm{ft}}$
Ans.
Due to symmetry, the vertical reactions at B and E are
$B_{y}=E_{y}=\frac{(2.20 \mathrm{k} / \mathrm{ft})(12 \mathrm{ft})}{2}=13.2 \mathrm{k}$
The loading diagram of this beam is shown in Fig. b.

Beam FED. The only load this beam supports is the vertical reaction of beam
$B E$ at E which is $E_{y}=13.2 \mathrm{k}$.
Ans.
The loading diagram is shown in Fig. c.

2-11. Classify each of the structures as statically determinate, statically indeterminate, or unstable. If indeterminate, specify the degree of indeterminacy. The supports or connections are to be assumed as stated.

(a)

(b)

(c)

(e)

a)

b)

c)

d)

Ans.

Ans.

Ans.

Ans.

Ans.

*2-12. Classify each of the frames as statically determinate or indeterminate. If indeterminate, specify the degree of indeterminacy. All internal joints are fixed connected.

$$
21-12=91
$$

Ans.
Ans.
Ans.
Ans.

2-13. Classify each of the structures as statically determinate, statically indeterminate, stable, or unstable. If indeterminate, specify the degree of indeterminacy. The supports or connections are to be assumed as stated.
(a) $r=6 \quad 3 n=3(2)=6$ Statically determinate.
(b) $r=10 \quad 3 n=3(3)<10$

Statically indeterminate to 1°.
(c) $r=4 \quad 3 n=3(1)<4$ Statically determinate to 1°.

(a)

(b)

Ans.
(c)

Ans.

Ans.
9)

c)

2-14. Classify each of the structures as statically determinate, statically indeterminate, stable, or unstable. If indeterminate, specify the degree of indeterminacy. The supports or connections are to be assumed as stated.
(a) $r=5 \quad 3 n=3(2)=6$
$r<3 n$
Unstable.
(b) $r=9 \quad 3 n=3(3)=9$
$r=3 n$
Stable and statically determinate.
(c) $r=8 \quad 3 n=3(2)=6$
$r-3 n=8-6=2$

Stable and statically indeterminate to the second degree.
(a)

(b)
)
(a)
(c)

2-15. Classify each of the structures as statically determinate, statically indeterminate, or unstable. If indeterminate, specify the degree of indeterminacy.
(a) $r=5 \quad 3 n=3(2)=6$
$r<3 n$
Unstable.
(b) $r=10 \quad 3 n=3(3)=9$ and $r-3 n=10-9=1$

(a)

Stable and statically indeterminate to first degree.
(c) Since the rocker on the horizontal member can not resist a horizontal force component, the structure is unstable.

(b)

(c)
(a)
 (b)

*2-16. Classify each of the structures as statically determinate, statically indeterminate, or unstable. If indeterminate, specify the degree of indeterminacy.
(a) $r=6 \quad 3 n=3(1)=3$
$r-3 n=6-3=3$
Stable and statically indeterminate to the third degree.
(b) $r=4 \quad 3 n=3(1)=3$
$r-3 n=4-3=1$
Stable and statically indeterminate to the first degree.
(c) $r=3 \quad 3 n=3(1)=3 \quad r=3 n$

Stable and statically determinate.

(a)

(b)
(d) $r=6 \quad 3 n=3(2)=6 \quad r=3 n$

Stable and statically determinate.

2-17. Classify each of the structures as statically determinate, statically indeterminate, stable, or unstable. If indeterminate, specify the degree of indeterminacy.

(a) $r=2 \quad 3 n=3(1)=3 \quad r<3 n$

Unstable.
(b) $r=12 \quad 3 n=3(2)=6 \quad r>3 n$
$r-3 n=12-6=6$
Stable and statically indeterminate to the sixth degree.
(a)

(b)
(c) $r=6 \quad 3 n=3(2)=6$
$r=3 n$
Stable and statically determinate.

(d) Unstable since the lines of action of the reactive force components are concurrent.
(c)

(d)

2-18. Determine the reactions on the beam. Neglect the thickness of the beam.

$$
\begin{array}{ll}
\varsigma+\sum M_{A}=0 ; & B_{y}(15)-20(6)-20(12)-26\left(\frac{12}{13}\right)(15)=0 \\
& B_{y}=48.0 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; & A_{y}+48.0-20-20-\frac{12}{13}(26)=0 \\
& A_{y}=16.0 \mathrm{kN} \\
\xrightarrow{+} \sum F_{x}=0 ; & A_{x}=\left(\frac{5}{13}\right) 26=0 \\
& A_{x}=10.0 \mathrm{kN}
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

*2-20. Determine the reactions on the beam.

$$
\begin{array}{ll}
\zeta+\sum M_{A}=0 ; & F_{B}(26)-52(13)-39\left(\frac{1}{3}\right)(26)=0 \\
+\uparrow \sum F y=0 ; & F_{B}=39.0 \mathrm{k} \\
& A_{y}-\frac{12}{13}(39)-\left(\frac{12}{13}\right) 52+\left(\frac{12}{13}\right)(39.0)=0 \\
& A_{y}=48.0 \mathrm{k} \\
\xrightarrow{+} \sum F_{x}=0 ; & -A_{x}+\left(\frac{5}{13}\right) 39+\left(\frac{5}{13}\right) 52-\left(\frac{5}{13}\right) 39.0=0 \\
& A_{x}=20.0 \mathrm{k}
\end{array}
$$

Ans.

Ans.

Ans.

2-21. Determine the reactions at the supports A and B of the compound beam. Assume there is a pin at C.

Equations of Equilibrium: First consider the FBD of segment $A C$ in Fig. $a . N_{\mathrm{A}}$ and C_{y} can be determined directly by writing the moment equations of equilibrium about C and A respectively.
$\zeta+\sum M_{C}=0 ; \quad 4(6)(3)-N_{A}(6)=0 \quad N_{A}=12 \mathrm{kN}$
$\varsigma+\sum M_{A}=0 ; \quad C_{y}(6)-4(6)(3)=0 \quad C_{y}=12 \mathrm{kN}$

Then,

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad 0-C_{x}=0 \quad C_{x}=0
$$

Using the FBD of segment $C B$, Fig. b,

$$
\begin{gathered}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; \quad 0+B_{x}=0 \quad B_{x}=0 \\
+\uparrow \sum F_{y}=0 ; \quad B_{y}-12-18=0 \quad B_{y}=30 \mathrm{kN} \\
\varsigma+\sum M_{B}=0 ; \quad 12(4)+18(2)-M_{B}=0 \quad M_{B}=84 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

(a)

Ans.

Ans.

Ans.

Ans.

Ans.

(b)

2-22. Determine the reactions at the supports A, B, D, and F.

Equations of Equilibrium: First consider the FBD of segment $E F$ in Fig. $a . N_{F}$ and E_{y} can be determined directly by writing the moment equations of equilibrium about E and F respectively.
$\zeta+\sum M_{E}=0 ; \quad N_{F}-(8)-8(4)=0 \quad N_{F}=4.00 \mathrm{k}$
$\varsigma+\sum M_{F}=0 ; 8(4)-E_{y}(8)=0 \quad E_{y}=4.00 \mathrm{k}$

Then

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad E_{x}=0
$$

Consider the FBD of segment $C D E$, Fig. b,
$\xrightarrow{+} \sum F_{x}=0 ; \quad C_{x}-0=0 \quad C_{x}=0$
$\varsigma+\sum M_{C}=0 ; \quad N_{P}(4)-4.00(6)=0 \quad N_{D}=6.00 \mathrm{k}$
$\varsigma+\sum M_{D}=0 ; \quad C_{y}(4)-4.00(2)=0 \quad C_{y}=2.00 \mathrm{k}$

Now consider the FBD of segment $A B C$, Fig. c.
$\zeta+\sum M_{A}=0 ; \quad N_{B}(8)+2.00(12)-2(12)(6)=0 \quad N_{B}=15.0 \mathrm{k}$
$\mathrm{S}+\sum M_{B}=0 ; \quad 2(12)(2)+2.00(4)-A_{y}(8)=0 \quad A_{y}=7.00 \mathrm{k}$
$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}-0=0 \quad A_{x}=0$

Ans.

Ans.

Ans.

(b)

Ans.

2-23. The compound beam is pin supported at C and supported by a roller at A and B. There is a hinge (pin) at D. Determine the reactions at the supports. Neglect the thickness of the beam.

Equations of Equilibrium: Consider the FBD of segment $A D$, Fig. a.
$\xrightarrow{+} \sum F_{x}=0 ; \quad D_{x}-4 \sin 30^{\circ}=0 \quad D_{x}=2.00 \mathrm{k}$
$\varsigma+\sum M_{D}=0 ; \quad 8(2)+4 \cos 30^{\circ}(12)-N_{A}(6)=0 \quad N_{A}=9.59 \mathrm{k}$
$\varsigma+\sum M_{A}=0 ; \quad D_{y}(6)+4 \cos 30^{\circ}(6)-8(4)=0 \quad D_{y}=1.869 \mathrm{k}$

Now consider the FBD of segment $D B C$ shown in Fig. b,

$$
\begin{aligned}
& \stackrel{+}{\rightarrow} \sum F_{x}=0 ; \quad C_{x}-2.00-12\left(\frac{3}{5}\right)=0 \quad C_{x}=9.20 \mathrm{k} \\
& C+\sum M_{C}=0 ; \quad 1.869(24)+15+12\left(\frac{4}{5}\right)(8)-N_{B}(16)=0
\end{aligned}
$$

Ans.

Ans.
$\zeta+\sum M_{B}=0 ; \quad 1.869(8)+15-12\left(\frac{4}{5}\right)(8)-C_{y}(16)=0$

$$
C_{y}=2.93 \mathrm{k}
$$

Ans.

$$
N_{B}=8.54 \mathrm{k}
$$

Ans.

(a)

(b)
*2-24. Determine the reactions on the beam. The support at B can be assumed to be a roller.

Equations of Equilibrium:

$\zeta+\sum M_{A}=0 ; \quad N_{B}(24)-2(12)(6)-\frac{1}{2}(2)(12)(16)=0 \quad N_{B}=14.0 \mathrm{k}$ Ans.
$\varsigma+\sum M_{B}=0 ; \quad \frac{1}{2}(2)(12)(8)+2(12)(18)-A_{y}(24)=0 \quad A_{y}=22.0 \mathrm{k}$ Ans.
$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0$
Ans.

(a)

2-25. Determine the reactions at the smooth support C and pinned support A. Assume the connection at B is fixed connected.

$$
\zeta+\sum M_{A}=0 ; \quad C_{y}\left(10+6 \sin 60^{\circ}\right)-480(3)=0
$$

$$
\begin{array}{cl}
C_{y}=94.76 \mathrm{lb}=94.8 \mathrm{lb} \\
\xrightarrow{+} \sum F_{x}=0 ; & A_{x}-94.76 \sin 30^{\circ}=0 \\
& A_{y}=47.4 \mathrm{lb} \\
+\uparrow \sum F_{y}=0 ; & A_{y}+94.76 \cos 30^{\circ}-480=0 \\
& A_{y}=398 \mathrm{lb}
\end{array}
$$

Ans.

Ans.

Ans.

2-26. Determine the reactions at the truss supports A and B. The distributed loading is caused by wind.

$\zeta+\sum M_{A}=0 ; \quad B_{y}(96)+\left(\frac{12}{13}\right) 20.8(72)-\left(\frac{5}{13}\right) 20.8(10)$

$$
-\left(\frac{12}{13}\right) 31.2(24)-\left(\frac{5}{13}\right) 31.2(10)=0
$$

$B_{y}=5.117 \mathrm{kN}=5.12 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ; \quad A_{y}-5.117+\left(\frac{12}{13}\right) 20.8-\left(\frac{12}{13}\right) 31.2=0$
$A_{y}=14.7 \mathrm{kN}$
$\xrightarrow{+} \sum F_{x}=0 ; \quad-B_{x}+\left(\frac{5}{13}\right) 31.2+\left(\frac{5}{13}\right) 20.8=0$

$$
B_{x}=20.0 \mathrm{kN}
$$

Ans.

Ans.

Ans.

2-27. The compound beam is fixed at A and supported by a rocker at B and C. There are hinges pins at D and E. Determine the reactions at the supports.

Equations of Equilibrium: From $\mathrm{FBD}(\mathrm{a})$,

$$
\begin{array}{lll}
C+\sum M_{E}=0 ; & C_{y}(6)=0 & C_{y}=0 \\
+\uparrow \sum F_{y}=0 ; & E_{y}-0=0 & E_{y}=0 \\
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; & E_{x}=0 &
\end{array}
$$

From FBD (b),

$$
\begin{array}{ll}
C+\sum M_{D}=0 ; & B_{y}(4)-15(2)=0 \\
& B_{y}=7.50 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; & D_{y}+7.50-15=0 \\
& D_{y}=7.50 \mathrm{kN} \\
\xrightarrow{+} \sum F_{x}=0 ; & D_{x}=0
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

Ans.

(c)
*2-28. Determine the reactions at the supports A and B. The floor decks $C D, D E, E F$, and $F G$ transmit their loads to the girder on smooth supports. Assume A is a roller and B is a pin.

Consider the entire system.
$\zeta+\sum M_{B}=0 ; \quad 10(1)+12(10)-A_{y}(8)=0$

$$
A_{y}=16.25 \mathrm{k}=16.3 \mathrm{k}
$$

$\xrightarrow{+} \sum F_{x}=0 ; \quad B_{x}=0$
$+\uparrow \sum F_{y}=0 ; \quad 16.25-12-10+B_{y}=0$

$$
B_{y}=5.75 \mathrm{k}
$$

Ans.
Ans.

2-29. Determine the reactions at the supports A and B of the compound beam. There is a pin at C.

Member $A C$:
$\zeta+\sum M_{C}=0 ;-A_{y}(6)+12(2)=0$
$A_{y}=4.00 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ; \quad C_{y}+4.00-12=0$
$C_{y}=8.00 \mathrm{kN}$
$\xrightarrow{+} \sum F_{x}=0 ; \quad C_{x}=0$
Member CB:
$\zeta+\sum M_{B}=0 ;-M_{B}+8.00(4.5)+9(3)=0$
$M_{B}=63.0 \mathrm{kN} \cdot \mathrm{m}$
$+\uparrow \sum F_{y}=0 ; \quad B_{y}-8-9=0$

$$
B_{y}=17.0 \mathrm{kN}
$$

$\xrightarrow{+} \sum F_{x}=0 ; \quad B_{x}=0$

Ans.

Ans.

Ans.
Ans.

2-30. Determine the reactions at the supports A and B of the compound beam. There is a pin at C.

Member $A C$:
$\varsigma+\sum M_{C}=0 ; \quad-A_{y}(6)+6(2)=0 ; \quad A_{y}=2.00 \mathrm{kN}$
$\xrightarrow{+} \sum F_{x}=0 ; \quad C_{x}=0$
$+\uparrow \sum F_{y}=0 ; \quad 2.00-6+C_{y}=0 ; \quad C_{y}=4.00 \mathrm{kN}$
Member $B C$:
$+\uparrow \sum F_{y}=0 ; \quad-4.00-8+B_{y}=0 ; \quad B_{y}=12.0 \mathrm{kN}$
$\xrightarrow{+} \sum F_{x}=0 ;$
$0-B_{x}=0 ; \quad B_{x}=0$
$\zeta+\sum M_{B}=0 ; \quad-M_{B}+8(2)+4.00(4)=0 ; \quad M_{B}=32.0 \mathrm{kN} \cdot \mathrm{m}$ Ans.

Ans.

Ans.
Ans.

2-31. The beam is subjected to the two concentrated loads as shown. Assuming that the foundation exerts a linearly varying load distribution on its bottom, determine the load intensities w_{1} and w_{2} for equilibrium (a) in terms of the parameters shown; (b) set $P=500 \mathrm{lb}, L=12 \mathrm{ft}$.

Equations of Equilibrium: The load intensity w_{1} can be determined directly by summing moments about point A.
$C+\sum M_{A}=0 ; \quad P\left(\frac{L}{3}\right)-w_{1} L\left(\frac{L}{6}\right)=0$
$w_{1}=\frac{2 P}{L}$
$+\uparrow \sum F_{y}=0 ; \quad \frac{1}{2}\left(w_{2}-\frac{2 P}{L}\right) L+\frac{2 P}{L}(L)-3 P=0$
$w_{2}=\left(\frac{4 P}{L}\right)$
If $P=500 \mathrm{lb}$ and $L=12 \mathrm{ft}$,

$$
\begin{aligned}
& w_{1}=\frac{2(500)}{12}=83.3 \mathrm{lb} / \mathrm{ft} \\
& w_{2}=\frac{4(500)}{12}=167 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

Ans.

Ans.

Ans.
Ans.
A.

*2-32 The cantilever footing is used to support a wall near its edge A so that it causes a uniform soil pressure under the footing. Determine the uniform distribution loads, w_{A} and w_{B}, measured in lb/ft at pads A and B, necessary to support the wall forces of 8000 lb and 20000 lb .
$\zeta+\sum M_{A}=0 ; \quad-8000(10.5)+w_{B}(3)(10.5)+20000(0.75)=0$

$$
w_{B}=2190.5 \mathrm{lb} / \mathrm{ft}=2.19 \mathrm{k} / \mathrm{ft}
$$

$+\uparrow \sum F_{y}=0 ; \quad 2190.5(3)-28000+w_{A}(2)=0$

$$
w_{A}=10.7 \mathrm{k} / \mathrm{ft}
$$

Ans.

Ans.

2-33. Determine the horizontal and vertical components of reaction acting at the supports A and C.

Equations of Equilibrium: Referring to the FBDs of segments $A B$ and $B C$ respectively shown in Fig. a,
$\varsigma+\sum M_{A}=0 ; \quad B_{x}(8)+B_{y}(6)-50(4)=0$
$\zeta+\sum M_{C}=0 ; \quad B_{y}(3)-B_{x}(4)+30(2)=0$

2-33. Continued

Solving,
$B_{y}=6.667 \mathrm{kN} \quad B_{x}=20.0 \mathrm{kN}$

Segment $A B$,
$\xrightarrow{+} \sum F_{x}=0 ; \quad 50-20.0-A_{x}=0 \quad A_{x}=30.0 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ; \quad 6.667-A_{y}=0 \quad A_{y}=6.67 \mathrm{kN}$
Ans.
Ans.

Segment $B C$,
$\xrightarrow{+} \sum F_{x}=0 ; \quad C_{x}+20.0-30=0 \quad C_{x}-10.0 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ; \quad C_{y}-6.667=0 \quad C y=6.67 \mathrm{kN}$
Ans.
Ans.

2-34. Determine the reactions at the smooth support A and the pin support B. The joint at C is fixed connected.

Equations of Equilibrium: Referring to the FBD in Fig. a.

$$
\begin{array}{ll}
\hookrightarrow+\sum M_{B}=0 ; & N_{A} \cos 60^{\circ}(10)-N_{A} \sin 60^{\circ}(5)-150(10)(5)=0 \\
& N_{A}=11196.15 \mathrm{lb}=11.2 \mathrm{k} \\
\xrightarrow{+} \sum F_{x}=0 ; & B_{x}-11196.15 \sin 60^{\circ}=0 \\
& B_{x}=9696.15 \mathrm{lb}=9.70 \mathrm{k} \\
+\uparrow \sum F_{y}=0 ; & 11196.15 \cos 60^{\circ}-150(10)-B_{y}=0 \\
& B_{y}=4098.08 \mathrm{lb}=4.10 \mathrm{k}
\end{array}
$$

Ans.

Ans.

Ans.
$150(10) 1 b$

2-35. Determine the reactions at the supports A and B.

$700 \mathrm{lb} / \mathrm{ft}$ at $52 \mathrm{ft}=36,400 \mathrm{lb}$ or 36.4 k
$500 \mathrm{lb} / \mathrm{ft}$ at $30 \mathrm{ft}=15,000 \mathrm{lb}$ or 15.0 k

$$
\begin{array}{ll}
\varsigma+\sum M_{A}=0 ; & 96\left(B_{y}\right)-24\left(\frac{48}{52}\right)(36.4)-40\left(\frac{20}{52}\right)(36.4)-15(15)=0 \\
& B_{y}=16.58 \mathrm{k}=16.6 \mathrm{k} \\
+ & 15+\frac{20}{52}(36.4)-A_{x}=0 ; \quad A_{x}=29.0 \mathrm{k} \\
+\sum F_{x}=0 ; & \\
+\uparrow \sum F_{y}=0 ; & A_{y}+B_{y}-\frac{48}{52}(36.4)=0 ; \quad A_{y}=17.0 \mathrm{k}
\end{array}
$$

*2-36. Determine the horizontal and vertical components of reaction at the supports A and B. Assume the joints at C and D are fixed connections.
$\varsigma+\sum M_{B}=0 ; \quad 20(14)+30(8)+84(3.5)-A_{y}(8)=0$

$$
A_{y}=101.75 \mathrm{kN}=102 \mathrm{kN}
$$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad B_{x}-84=0
$$

$$
B_{x}=84.0 \mathrm{kN}
$$

$$
+\uparrow \sum F_{y}=0 ; \quad 101.75-20-30-40-B_{y}=0
$$

$$
B_{y}=11.8 \mathrm{kN}
$$

Ans.

Ans.

2-37. Determine the horizontal and vertical components force at pins A and C of the two-member frame.

Free Body Diagram: The solution for this problem will be simplified if one realizes that member $B C$ is a two force member.

Equations of Equilibrium:

$\zeta+\sum M_{A}=0 ; \quad F_{B C} \cos 45^{\circ}(3)-600(1.5)=0$

$$
F_{B C}=424.26 \mathrm{~N}
$$

$$
+\uparrow \sum F_{y}=0 ; \quad A_{y}+424.26 \cos 45^{\circ}-600=0
$$

$$
A_{y}=300 \mathrm{~N}
$$

Ans.
$\xrightarrow{+} \sum F_{x}=0 ; \quad 424.26 \sin 45^{\circ}-A_{x}=0$

$$
A_{x}=300 \mathrm{~N}
$$

For pin C,
$C_{x}=F_{B C} \sin 45^{\circ}=424.26 \sin 45^{\circ}=300 \mathrm{~N}$
Ans.
$C_{y}=F_{B C} \cos 45^{\circ}=424.26 \cos 45^{\circ}=300 \mathrm{~N}$
Ans.

2-38. The wall crane supports a load of 700 lb . Determine the horizontal and vertical components of reaction at the pins A and D. Also, what is the force in the cable at the winch W ?

Pulley E :

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0 ; \quad 2 T-700=0 \\
T=350 \mathrm{lb}
\end{gathered}
$$

Member $A B C$:

$$
\begin{gathered}
\varsigma+\sum M_{A}=0 ; \quad T_{B D} \sin 45^{\circ}(4)-350 \sin 60^{\circ}(4)-700(8)=0 \\
T_{B D}=2409 \mathrm{lb} \\
+\uparrow \sum F_{y}=0 ; \quad A_{y}+2409 \sin 45^{\circ}-350 \sin 60^{\circ}-700=0 \\
A_{y}=700 \mathrm{lb} \\
\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}-2409 \cos 45^{\circ}-350 \cos 60^{\circ}+350-350=0 \\
A_{x}=1.88 \mathrm{k}
\end{gathered}
$$

At D :
$D_{x}=2409 \cos 45^{\circ}=1703.1 \mathrm{lb}=1.70 \mathrm{k}$
$D_{y}=2409 \sin 45^{\circ}=1.70 \mathrm{k}$

Ans.

2-39. Determine the resultant forces at pins B and C on member $A B C$ of the four-member frame.
$\varsigma+\sum M_{F}=0 ; \quad F_{C D}(7)-\frac{4}{5} F_{B E}(2)=0$
$\zeta+\sum M_{A}=0 ; \quad-150(7)(3.5)+\frac{4}{5} F_{B E}(5)-F_{C D}(7)=0$
$F_{B E}=1531 \mathrm{lb}=1.53 \mathrm{k}$
$F_{C D}=350 \mathrm{lb}$
Ans.
Ans.

*2-40. Determine the reactions at the supports is A and D. Assume A is fixed and B and C and D are pins.

Member $B C$:

$$
\begin{gathered}
C+\sum M_{B}=0 ; \quad C_{y}(1.5 L)-(1.5 w L)\left(\frac{1.5 L}{2}\right)=0 \\
C_{y}=0.75 w L \\
+\uparrow \sum F_{y}=0 ; \quad B_{y}-1.5 w L+0.75 w L=0 \\
B_{y}=0.75 w L
\end{gathered}
$$

Member $C D$:

$$
\begin{array}{ll}
C+\sum M_{D}=0 ; & C_{x}=0 \\
\xrightarrow{+} \sum F_{x}=0 ; & D_{x}=0 \\
+\uparrow \sum F_{y}=0 ; & D_{y}-0.75 w L=0 \\
& D_{y}=0.75 w L
\end{array}
$$

Ans.

Ans.

*2-40. Continued

Member $B C$:

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad B_{x}-0=0 ; \quad B_{x}=0
$$

Member $A B$:

$$
\begin{aligned}
\xrightarrow{+} \sum F_{x}=0 ; & w L-A_{x}=0 \\
& A_{x}=w L
\end{aligned}
$$

Ans.
Ans.

$\begin{aligned}+\uparrow \sum F_{y}=0 ; & A_{y}-0.75 w L=0 \\ & A_{y}=0.75 w L\end{aligned}$

$$
A_{y}=0.75 w L
$$

Ans.

$$
\zeta+\sum M_{A}=0 ; \quad M_{A}-w L\left(\frac{L}{2}\right)=0
$$

$$
M_{A}=\frac{w L^{2}}{2}
$$

Ans.

2-41. Determine the horizontal and vertical reactions at the connections A and C of the gable frame. Assume that A, B, and C are pin connections. The purlin loads such as D and E are applied perpendicular to the center line of each girder.

Member $A B$:

$$
\begin{array}{cl}
\varsigma+\sum M_{A}=0 ; & B_{x}(15)+B_{y}(12)-(1200)(5)-600\left(\frac{12}{13}\right)(16)-600\left(\frac{5}{13}\right)(12.5) \\
-400\left(\frac{12}{13}\right)(12)-400\left(\frac{5}{13}\right)(15)=0 \\
B_{x}(15)+B_{y}(12)=18,946.154 \tag{1}
\end{array}
$$

Member $B C$:

$$
\begin{align*}
\varsigma+\sum M_{C}=0 ; & -\left(B_{x}\right)(15)+B_{y}(12)+(600)\left(\frac{12}{13}\right)(6)+600\left(\frac{5}{13}\right)(12.5) \\
+ & 400\left(\frac{12}{13}\right)(12)+400\left(\frac{5}{13}\right)(15)=0 \\
& B_{x}(15)-B_{y}(12)=12.946 .15 \tag{2}
\end{align*}
$$

2-41. Continued

Solving Eqs. (1) and (2),

$$
B_{x}=1063.08 \mathrm{lb}, \quad B_{y}=250.0 \mathrm{lb}
$$

Member $A B$:

$$
\begin{gathered}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; \quad-A_{x}+1200+1000\left(\frac{5}{13}\right)-1063.08=0 \\
A_{x}=522 \mathrm{lb} \\
+\uparrow \sum F_{y}=0 ; \quad A_{y}-800-1000\left(\frac{12}{13}\right)+250=0 \\
A_{y}=1473 \mathrm{lb}=1.47 \mathrm{k}
\end{gathered}
$$

Ans.

Ans.

Member $B C$:

$$
\begin{gathered}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; \\
-C_{x}-1000\left(\frac{5}{13}\right)+1063.08=0 \\
C_{x}=678 \mathrm{lb} \\
+\uparrow \sum F_{y}=0 ; \\
C_{y}-800-1000\left(\frac{12}{13}\right)+250.0=0 \\
C_{y}=1973 \mathrm{lb}=1.97 \mathrm{k}
\end{gathered}
$$

Ans.

Ans.

2-42. Determine the horizontal and vertical components of reaction at A, C, and D. Assume the frame is pin connected at A, C, and D, and there is a fixed-connected joint at B.

Member $C D$:

$\zeta+\sum M_{D}=0 ; \quad-C_{x}(6)+90(3)=0$

$$
C_{x}=45.0 \mathrm{kN}
$$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad D_{x}+45-90=0
$$

$$
D_{x}=45.0 \mathrm{kN}
$$

$+\uparrow \sum F_{y}=0 ; \quad D_{y}-C_{y}=0$
Member $A B C$:

$$
\begin{array}{cl}
C+\sum M_{A}=0 ; & C_{y}(5)+45.0(4)-50(1.5)-40(3.5)=0 \\
& C_{y}=7.00 \mathrm{kN}
\end{array}
$$

Ans.
(1)

Ans.

2-42. Continued

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & A_{y}+7.00-50-40=0 \\
& A_{y}=83.0 \mathrm{kN} \\
\xrightarrow{+} \sum F_{x}=0 ; & A_{x}-45.0=0 \\
& A_{x}=45.0 \mathrm{kN}
\end{array}
$$

Ans.

Ans.
From Eq. (1).
$D_{y}=7.00 \mathrm{kN}$
Ans.

2-43. Determine the horizontal and vertical components at A, B, and C. Assume the frame is pin connected at these points. The joints at D and E are fixed connected.

$$
\begin{equation*}
-16 \mathrm{ft}\left(B_{x}\right)-18 \mathrm{ft}\left(B_{x}\right)=0 \tag{2}
\end{equation*}
$$

Solving Eq. 1 \& 2

$$
B_{x}=24.84 \mathrm{k}
$$

$$
B_{y}=22.08 \mathrm{k}
$$

$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}-24.84 \mathrm{k}=0$
$A_{x}=24.84 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad A_{y}-22.08 \mathrm{k}=0$
$A_{y}=22.08 \mathrm{k}$
$\xrightarrow{+} \sum F_{x}=0 ; \quad C_{x}-15 \mathrm{k}-\sin \left(18.43^{\circ}\right)(56.92 \mathrm{k})+24.84 \mathrm{k}$
$C_{x}=8.16 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad C y+22.08 \mathrm{k}-\cos \left(18.43^{\circ}\right)(56.92 \mathrm{k})=0$
$C y=31.9 \mathrm{k}$

Ans.
Ans.

Ans.

Ans.

*2-44. Determine the reactions at the supports A and B. The joints C and D are fixed connected.

$$
\begin{gathered}
C+\sum M_{A}=0 ; \quad \frac{4}{5} F_{B}(4.5)+\frac{3}{5} F_{B}(2)-30(1.5)=0 \\
F_{B}=9.375 \mathrm{kN}=9.38 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; \quad A_{y}+\frac{4}{5}(9.375)-30=0 \\
A_{y}=22.5 \mathrm{kN} \\
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; \quad A_{x}-\frac{3}{5}(9.375)=0 \\
A_{x}=5.63 \mathrm{kN}
\end{gathered}
$$

Ans.

Ans.

