2-1. The steel framework is used to support the reinforced stone concrete slab that is used for an office. The slab is 200 mm thick. Sketch the loading that acts along members $B E$ and $F E D$. Take $a=2 \mathrm{~m}, b=5 \mathrm{~m}$. Hint: See Tables 1.2 and 1.4.

SOLUTION

Beam $\boldsymbol{B E}$. Since $\frac{b}{a}=\frac{5 \mathrm{~m}}{2 \mathrm{~m}}=2.5$, the concrete slab will behave as a one-way slab. Thus, the tributary area for this beam is rectangular, as shown in Fig. a, and the intensity of the uniform distributed load is

200 mm thick reinforced stone concrete slab:

$$
\left(23.6 \mathrm{kN} / \mathrm{m}^{3}\right)(0.2 \mathrm{~m})(2 \mathrm{~m})=9.44 \mathrm{kN} / \mathrm{m}
$$

Live load for office: $\left(2.40 \mathrm{kN} / \mathrm{m}^{2}\right)(2 \mathrm{~m})=4.80 \mathrm{kN} / \mathrm{m}$

$$
14.24 \mathrm{kN} / \mathrm{m}
$$

Ans.

Due to symmetry the vertical reactions at B and E are

$$
B_{y}=E_{y}=(14.24 \mathrm{kN} / \mathrm{m})(5) / 2=35.6 \mathrm{kN}
$$

The loading diagram for beam $B E$ is shown in Fig. b.
Beam FED. The only load this beam supports is the vertical reaction of beam $B E$ at E, which is $E_{y}=35.6 \mathrm{kN}$. The loading diagram for this beam is shown in Fig. c.

2-2. Solve Prob. 2-1 with $a=3 \mathrm{~m}, b=4 \mathrm{~m}$.

SOLUTION

Beam BE. Since $\frac{b}{a}=\frac{4}{3}<2$, the concrete slab will behave as a two-way slab. Thus, the tributary area for this beam is the hexagonal area shown in Fig. a, and the maximum intensity of the distributed load is

200 mm thick reinforced stone concrete slab: $\left(23.6 \mathrm{kN} / \mathrm{m}^{3}\right)(0.2 \mathrm{~m})(3 \mathrm{~m})$

$$
=14.16 \mathrm{kN} / \mathrm{m}
$$

Live load for office: [(2.40 kN/m²)(3 m)]

$$
\begin{aligned}
= & 7.20 \mathrm{kN} / \mathrm{m} \\
& 21.36 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Ans.

Due to symmetry, the vertical reactions at B and E are

$$
\begin{aligned}
B_{y}=E_{y} & =\frac{2\left[\frac{1}{2}(21.36 \mathrm{kN} / \mathrm{m})(1.5 \mathrm{~m})\right]+(21.36 \mathrm{kN} / \mathrm{m})(1 \mathrm{~m})}{2} \\
& =26.70 \mathrm{kN}
\end{aligned}
$$

The loading diagram for beam $B E$ is shown in Fig. b.
Beam FED. The loadings that are supported by this beam are the vertical reaction of beam $B E$ at E which is $E_{y}=26.70 \mathrm{kN}$ and the triangular distributed load of which its tributary area is the triangular area shown in Fig. a. Its maximum interisity is

200 mm thick reinforced stone concrete slab: $\left(23.6 \mathrm{kN} / \mathrm{m}^{3}\right)(0.2 \mathrm{~m})(1.5 \mathrm{~m})$

Live load for office: $\left(2.40 \mathrm{kN} / \mathrm{m}^{2}\right)(1.5 \mathrm{~m}) \quad \frac{3.60 \mathrm{kN} / \mathrm{m}}{10.68 \mathrm{kN} / \mathrm{m}}$
The loading diagram for beam $F E D$ is shown in Figec.

(a)

(C)

2-3. The floor system used in a school classroom consists of a 4-in. reinforced stone concrete slab. Sketch the loading that acts along the joist $B F$ and side girder $A B C D E$. Set $a=10 \mathrm{ft}, b=30 \mathrm{ft}$. Hint: See Tables 1.2 and 1.4.

SOLUTION

Joist $\boldsymbol{B F}$. Since $\frac{b}{a}=\frac{30 \mathrm{ft}}{10 \mathrm{ft}}=3$, the concrete slab will behave as a one-way slab.
Thus, the tributary area for this joist is the rectangular area shown in Fig. a, and the intensity of the uniform distributed load is
4-in.-thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(10 \mathrm{ft})=0.5 \mathrm{k} / \mathrm{ft}$
Live load for classroom: $\left(0.04 \mathrm{k} / \mathrm{ft}^{2}\right)(10 \mathrm{ft})$

$$
\begin{array}{r}
=0.4 \mathrm{k} / \mathrm{ft} \\
\\
0.9 \mathrm{k} / \mathrm{ft}
\end{array}
$$

Ans.
Due to symmetry, the vertical reactions at B and F are

$$
B_{y}=F_{y}=(0.9 \mathrm{k} / \mathrm{ft})(30 \mathrm{ft}) / 2=13.5 \mathrm{k}
$$

Ans.
The loading diagram for joist $B F$ is shown in Fig. b.
Girder $\boldsymbol{A B C D E}$. The loads that act on this girder are the vertical reactions of the joists at B, C, and D, which are $B_{y}=C_{y}=D_{y}=13.5 \mathrm{k}$. The loading diagram for this girder is shown in Fig. c.

(a)

(c)
*2-4. Solve Prob. 2-3 with $a=10 \mathrm{ft}, b=15 \mathrm{ft}$.

SOLUTION

Joist $\boldsymbol{B F}$. Since $\frac{b}{a}=\frac{15 \mathrm{ft}}{10 \mathrm{ft}}=1.5<2$, the concrete slab will behave as a two-way slab. Thus, the tributary area for the joist is the hexagonal area, as shown in Fig. a, and the maximum intensity of the distributed load is

4-in.-thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(10 \mathrm{ft})=0.5 \mathrm{k} / \mathrm{ft}$
Live load for classroom: $\left(0.04 \mathrm{k} / \mathrm{ft}^{2}\right)(10 \mathrm{ft})$

$$
\begin{aligned}
= & 0.4 \mathrm{k} / \mathrm{ft} \\
& 0.9 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

Ans.
Due to symmetry, the vertical reactions at B and G are

$$
B_{y}=F_{y}=\frac{\left.2\left[\frac{1}{2}(0.9 \mathrm{k} / \mathrm{ft})(5 \mathrm{ft})\right]+(0.9 \mathrm{k} / \mathrm{ft})(5 \mathrm{ft})\right]}{2}
$$

Ans.

The loading diagram for beam $B F$ is shown in Fig. b.

Girder $\boldsymbol{A B C D E}$. The loadings that are supported by this girder are the vertical reactions of the joist at B, C and D, which are $B_{y} C^{C}=C_{y}=D_{y}=4.50 \mathrm{k}$, and the triangular distributed load shown in Fig.a. Its maximum intensity is

4-in.-thick reinforced stone concrete slab:

$$
\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(5 \mathrm{ft})=0.25 \mathrm{k} / \mathrm{ft}
$$

$$
\text { Live load for classroom: }\left(0.04 \mathrm{k} / \mathrm{ft}^{2}\right)(5 \mathrm{ft}) \&^{\delta}=\frac{0.20 \mathrm{k} / \mathrm{ft}}{0.45 \mathrm{k} / \mathrm{ft}}
$$

The loading diagram for the girder $A B C D E$ is shown in Fig. c.

Ans.

$B_{y}=4.50 \mathrm{~K}$
(b)

(C)

2-5. Solve Prob. 2-3 with $a=7.5 \mathrm{ft}, b=20 \mathrm{ft}$.

SOLUTION

Beam BF. Since $\frac{b}{a}=\frac{20 \mathrm{ft}}{7.5 \mathrm{ft}}=2.7>2$, the concrete slab will behave as a one-way slab. Thus, the tributary area for this beam is a rectangle, as shown in Fig. a, and the intensity of the distributed load is

4-in.-thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(7.5 \mathrm{ft})=0.375 \mathrm{k} / \mathrm{ft}$
Live load from classroom: $\left(0.04 \mathrm{k} / \mathrm{ft}^{2}\right)(7.5 \mathrm{ft})$

$$
\begin{aligned}
= & 0.300 \mathrm{k} / \mathrm{ft} \\
& 0.675 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

Ans.

Due to symmetry, the vertical reactions at B and F are

$$
B_{y}=F_{y}=\frac{(0.675 \mathrm{k} / \mathrm{ft})(20 \mathrm{ft})}{2}=6.75 \mathrm{k}
$$

Ans.

The loading diagram for beam $B F$ is shown in Fig. b.

Beam $\boldsymbol{A B C D}$. The loading diagram for this beam is shown in Fig. c.

(a)

2-6. The frame is used to support a 2 -in.-thick plywood floor of a residential dwelling. Sketch the loading that acts along members $B G$ and $A B C D$. Set $a=6 \mathrm{ft}, b=18 \mathrm{ft}$. Hint: See Tables 1.2 and 1.4.

SOLUTION

Beam $\boldsymbol{B} \boldsymbol{G}$. Since $\frac{b}{a}=\frac{18 \mathrm{ft}}{6 \mathrm{ft}}=3>2$, the plywood platform will behave as one-way slab. Thus, the tributary area for the beam is rectangular and shown shaded in Fig. a. The intensity of the uniform distributed load is

$$
\begin{aligned}
& \text { 2-in.-thick plywood platform: }\left(36 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)\left(\frac{2}{12} \mathrm{ft}\right)(6 \mathrm{ft})=36 \mathrm{lb} / \mathrm{ft} \\
& \text { Live load for residential dwelling: }\left(40 \frac{\mathrm{lb}}{\mathrm{ft}^{2}}\right)(6 \mathrm{ft})=\frac{240 \mathrm{lb} / \mathrm{ft}}{276 \mathrm{lb} / \mathrm{ft}^{2}}
\end{aligned}
$$

Ans.

Due to symmetry, the vertical reaction at B and G are

$$
B_{y}=G_{y}=\frac{(276 \mathrm{lb} / \mathrm{ft})(18 \mathrm{ft})}{2}=2484 \mathrm{lb}
$$

The loading diagram for beam $B G$ is shown in Fig. b.
Beam $\boldsymbol{A B C D}$. The loads that act on this beam are the vertical reaction of beams $B G$ and $C F$ at B and C respectively, which are $C_{y}=B_{y}=2484 \mathrm{lb}$. The loading diagram of this beam is shown in Fig. c.

(a)

Ans.

2-7. Solve Prob. 2-6, with $a=10 \mathrm{ft}, b=10 \mathrm{ft}$.

SOLUTION

Beam BG. Since $\frac{b}{a}=\frac{10 \mathrm{ft}}{10 \mathrm{ft}}=1<2$, the plywood platform will behave as a two-way slab. Thus, the tributary area for this beam is the shaded square area shown in Fig. a, and the maximum intensity of the triangular distributed load is

$$
\begin{aligned}
& \text { 2-in.-thick plywood platform: }\left(36 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)\left(\frac{2}{12} \mathrm{ft}\right)(10 \mathrm{ft})=60 \mathrm{lb} / \mathrm{ft} \\
& \text { Live load for residential dwelling: }\left(40 \frac{\mathrm{lb}}{\mathrm{ft}^{2}}\right)(10 \mathrm{ft})=\frac{400 \mathrm{lb} / \mathrm{ft}}{460 \mathrm{lb} / \mathrm{ft}}
\end{aligned}
$$

Due to symmetry, the vertical reaction at B and G are

$$
B_{y}=G_{y}=\frac{\frac{1}{2}(460 \mathrm{lb} / \mathrm{ft})(10 \mathrm{ft})}{2}=1150 \mathrm{lb}
$$

The loading diagram for beam $B G$ is shown in Fig. b.
Beam $A B C D$. The loadings that are supported by this beam are the vertical reaction of beams $B G$ and $C F$ at B and C respectively, which are $B_{y}=C_{y}=1150 \mathrm{lb}$ and the triangular distributed load contributed by the dotted triangular area shown in Fig. a. Its maximum intensity is

$$
\begin{aligned}
& \text { 2-in.-thick plywood platform: }\left(36 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)\left(\frac{2}{\sqrt{2} 2} \mathrm{ft}\right)(5 \mathrm{ft})=30 \mathrm{lb} / \mathrm{ft} \\
& \text { Live load for residential dwelling: }\left(40 \frac{1 \mathrm{~b}}{\mathrm{ft}^{2}}\right)(5 \mathrm{ft})=\frac{200 \mathrm{lb} / \mathrm{ft}}{230 \mathrm{lb} / \mathrm{ft}}
\end{aligned}
$$

The loading diagram for beam $A B C D$ is shownin Fig. c.

Beam ABCD. 1150 lb at B and $C, w_{\text {max }}=230 \mathrm{lb} / \mathrm{ft}$
*2-8. Solve Prob. 2-6, with $a=10 \mathrm{ft}, b=15 \mathrm{ft}$.

SOLUTION

Beam $\boldsymbol{B G}$. Since $\frac{b}{a}=\frac{15 \mathrm{ft}}{10 \mathrm{ft}}=1.5<2$, the plywood platform will behave as a two-way slab. Thus, the tributary area for this beam is the shaded octagonal area shown in Fig. a, and the maximum intensity of the trapezoidal distributed load is

$$
\begin{aligned}
& \text { 2-in.-thick plywood platform: }\left(36 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)\left(\frac{2}{12} \mathrm{ft}\right)(10 \mathrm{ft})=60 \mathrm{lb} / \mathrm{ft} \\
& \text { Live load for residential dwelling: }\left(40 \frac{\mathrm{lb}}{\mathrm{ft}^{2}}\right)(10 \mathrm{ft})=\frac{400 \mathrm{lb} / \mathrm{ft}}{460 \mathrm{lb} / \mathrm{ft}}
\end{aligned}
$$

Due to symmetry, the vertical reactions of B and G are

$$
B_{y}=G_{y}=\frac{\frac{1}{2}(460 \mathrm{lb} / \mathrm{ft})(15 \mathrm{ft}+5 \mathrm{ft})}{2}=2300 \mathrm{lb}
$$

The loading diagram for beam $B G$ is shown in Fig. b.
Beam $\boldsymbol{A B C D}$. The loadings that are supported by this beam are the vertical reactions of beam $B G$ and $C F$ at B and C respectively which are $B_{y}=C_{y}=2300 \mathrm{lb}$, and the triangular distributed load contributed by the dotted triangular area shown in Fig. a. Its maximum intensity is

$$
\begin{aligned}
& \text { 2-in.-thick plywood platform: }\left(36 \mathrm{ab} / \mathrm{ft}^{3}\right)\left(\frac{2}{12} \mathrm{ft}\right)(5 \mathrm{ft})=30 \mathrm{lb} / \mathrm{ft} \\
& \text { Live load for residential dwelling: }\left(40 \mathrm{lb} / \mathrm{ft}^{2}\right)(5 \mathrm{ft})=\frac{200 \mathrm{lb} / \mathrm{ft}}{230 \mathrm{lb} / \mathrm{ft}} \quad \text { Ans. }
\end{aligned}
$$

Ans.

Ans.

The loading diagram for beam $A B C D$ is shown in Fig. c.

(C)

2-9. The steel framework is used to support the 4-in. reinforced stone concrete slab that carries a uniform live loading of $400 \mathrm{lb} / \mathrm{ft}^{2}$. Sketch the loading that acts along members $B E$ and $F E D$. Set $a=9 \mathrm{ft}, b=12 \mathrm{ft}$. Hint: See Table 1.2.

SOLUTION

Beam BE. Since $\frac{b}{a}=\frac{12 \mathrm{ft}}{9 \mathrm{ft}}=\frac{4}{3}<2$, the concrete slab will behave as a two-way slab. Thus, the tributary area for this beam is the shaded octagonal area shown in Fig. a, and the maximum intensity of the trapezoidal distributed load is

4-in.-thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(9 \mathrm{ft})=0.45 \mathrm{k} / \mathrm{ft}$
Floor live load: $\left(0.4 \mathrm{k} / \mathrm{ft}^{2}\right)(9 \mathrm{ft})$

$$
=\frac{3.60 \mathrm{k} / \mathrm{ft}}{4.05 \mathrm{k} / \mathrm{ft}}
$$

Due to symmetry, the vertical reactions at B and E are

$$
B_{y}=E_{y}=\frac{\frac{1}{2}(4.05 \mathrm{k} / \mathrm{ft})(3 \mathrm{ft}+12 \mathrm{ft})}{2}=15.19 \mathrm{k}
$$

Ans.

The loading diagram of beam $B E$ is shown in Fig. a.
Beam FED. The loadings that are supported by this beam are the yerticalreactions of beam $B E$ at E, which is $E_{y}=15.19 \mathrm{k}$ and the triangular distributed load contributed by dotted triangular tributary area shown in Fig. a. Its maximum intensity is

4-in.-thick concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(4.5 \mathrm{ft})=0.225 \mathrm{k} / \mathrm{ft}$
Floor live load: $\left(0.4 \mathrm{k} / \mathrm{ft}^{2}\right)(4.5 \mathrm{ft}){ }_{\mathrm{S}}$
The loading diagram of beam $F E D$ is shown in Fig. c.

(a)

(b)

(C)

Beam BE. $\quad w_{\max }=4.05 \mathrm{k} / \mathrm{ft}$
Beam FED. $\quad 15.2 \mathrm{k}$ at $E, w_{\text {max }}=2.025 \mathrm{k} / \mathrm{ft}$

2-10. Solve Prob. 2-9, with $a=6 \mathrm{ft}, b=18 \mathrm{ft}$.

SOLUTION

Beam BE. Since $\frac{b}{a}=\frac{18 \mathrm{ft}}{6 \mathrm{ft}}=3>2$, the concrete slab will behave as a one-way slab. Thus, the tributary area for this beam is the shaded rectangular area shown in Fig. a, and the intensity of the uniform distributed load is

4-in.-thick reinforced stone concrete slab: $\left(0.15 \mathrm{k} / \mathrm{ft}^{3}\right)\left(\frac{4}{12} \mathrm{ft}\right)(6 \mathrm{ft})=0.30 \mathrm{k} / \mathrm{ft}$
Floor live load: $\left(0.4 \mathrm{k} / \mathrm{ft}^{2}\right)(6 \mathrm{ft}) \quad=\frac{2.40 \mathrm{k} / \mathrm{ft}}{2.70 \mathrm{k} / \mathrm{ft}}$

Ans.

Due to symmetry, the vertical reactions at B and E are

$$
B_{y}=E_{y}=\frac{(2.70 \mathrm{k} / \mathrm{ft})(18 \mathrm{ft})}{2}=24.3 \mathrm{k}
$$

The loading diagram of beam $B E$ is shown in Fig. b.
Beam FED. The only load this beam supports is the vertical reaction of beam $B E$ at E, which is $E_{y}=24.3 \mathrm{k}$.

The loading diagram of beam $F E D$ is shown in Fig. c.

2-11. Classify each of the structures as statically determinate or indeterminate. If indeterminate, specify the degree of indeterminacy.

(a)

Ans.

Ans.

Ans.

(c)

(d)

(e)
*2-12. Classify each of the frames as statically determinate or indeterminate. If indeterminate, specify the degree of indeterminacy. All internal joints are fixed connected.

(a)

(b)

Stable and statically indeterminate to third degree.
$r=12 \quad 3 n=3(2)=6$
$r-3 n=12-6=6$
Stable and statically indeterminate to sixth degree.
$\begin{array}{ll}r=5 & 3 n=3(2)=6 \\ r<3 n & \end{array}$
Unstable.
Unstable since the line of action of the reactive force components are concurrent.

(d)

(b)
(d)

2-13. Classify each of the structures as statically determinate, statically indeterminate, stable, or unstable. If indeterminate, specify the degree of indeterminacy. The supports or connections are to be assumed as stated.

SOLUTION

(a) $r=7 \quad 3 n=3(2)=6 \quad r-3 n=7-6=1$

Stable and statically indeterminate to first degree.
(b) $r=6 \quad 3 n=3(2)=6 \quad r=3 n$

Stable and statically determinate

(a)

pin (b)

(c)
(c) $r=4 \quad 3 n=3(1)=3 \quad r-3 n=4-3=1$

Stable and statically indeterminate to first degree

(c)

2-14. Classify each of the structures as statically determinate, statically indeterminate, stable, or unstable. If indeterminate, specify the degree of indeterminacy. The supports or connections are to be assumed as stated.

SOLUTION

(a) $r=5 \quad 3 n=3(2)=6$
$r<3 n$

Unstable
(b) $r=9 \quad 3 n=3(3)=9$
$r=3 n$
Stable and statically determinate
(c) $r=8 \quad 3 n=3(2)=6$
$r-3 n=8-6=2$
Stable and statically indeterminate to the second degree

2-15. Classify each of the structures as statically determinate, statically indeterminate, stable, or unstable.

SOLUTION

(a) Unstable
(support reactions concurrent)
(b) $r=3 \quad 3 n=3(1)=3$

Statically determinate
(c) $r=3 \quad 3 n=3(1)=3$

Statically determinate

(a)

Ans.

Ans.

(b)
4)

b)

c)

*2-16. Classify each of the structures as statically determinate, statically indeterminate, or unstable. If indeterminate, specify the degree of indeterminacy.

SOLUTION

(a) $r=6 \quad 3 n=3(1)=3$
$r-3 n=6-3=3$
Stable and statically indeterminate to the third degree
(b) $r=4 \quad 3 n=3(1)=3$
$r-3 n=4-3=1$
Stable and statically indeterminate to the first degree
(c) $r=3 \quad 3 n=3(1)=3 \quad r=3 n$

Stable and statically determinate
(d) $r=6 \quad 3 n=3(2)=6 \quad r=3 n$

2-17. Classify each of the structures as statically determinate, statically indeterminate, or unstable. If indeterminate, specify the degree of indeterminacy.

SOLUTION

a)
$r=9, \quad n=3$
$r=3 n$
$9=3(3)$

Statically determinate
b)
$r=12, \quad n=4$
$r=3 n$
$12=3(4)$
Statically determinate
c)
$r=3, \quad n=1$
$r=3 n$
$3=3(1)$
Stable and statically determinate
d)
$r=5, \quad n=2$
$r<3 n$
$5<3$ (2)
Unstable
a.)

b.)

(b)

(a)

Ans.

Ans.

(d)

Ans.

c.)

d.)

*2-18. Determine the reactions on the beam.

SOLUTION

Equations of Equilibrium. Referring to the $F B D$ of the beam in Fig. a, \boldsymbol{A}_{y} and \boldsymbol{B}_{y} can be determined directly by writing the moment equations of equilibrium about B and A respectively.

$\varsigma+\Sigma M_{B}=0 ;$	$60(10)+120(15)-A_{y}(30)=0$	$A_{y}=80.0 \mathrm{k}$
$\varsigma+\Sigma M_{A}=0 ;$	$B_{y}(30)-120(15)-60(20)=0$	$B_{y}=100 \mathrm{k}$

Write the force equation of equilibrium along x axis,

$$
\xrightarrow{+} \Sigma F_{x}=0 ; \quad B_{x}=0
$$

Ans.
Ans.

Ans.

2-19. Determine the reactions at the supports.

SOLUTION

$\zeta+\Sigma M_{A}=0 ; \quad-15 \mathrm{k}(4 \mathrm{ft})-60 \mathrm{k}(12 \mathrm{ft})-15 \mathrm{k}(20 \mathrm{ft})+F_{B} \cos 30^{\circ}(24 \mathrm{ft})=0$

$$
F_{B}=51.962 \mathrm{k}=52.0 \mathrm{k}
$$

$\xrightarrow{+} \Sigma F_{x}=0 ;$
$A_{x}-51.962 \mathrm{k}\left(\sin 30^{\circ}\right)=0$
$A_{x}=25.981 \mathrm{k}=26.0 \mathrm{k}$
$+\uparrow \Sigma F_{y}=0 ;$
$A_{y}+51.962 \mathrm{k}\left(\cos 30^{\circ}\right)-15 \mathrm{k}-60 \mathrm{k}-15 \mathrm{k}=0$

$$
A_{y}=45 \mathrm{k}
$$

*2-20. Determine the reactions on the beam.

SOLUTION

$\zeta+\Sigma M_{A}=0 ; \quad F_{B}(26)-52(13)-39\left(\frac{1}{3}\right)(26)=0$
$F_{B}=39.0 \mathrm{k}$
$+\uparrow \Sigma F y=0 ; \quad A_{y}-\frac{12}{13}(39)-\left(\frac{12}{13}\right) 52+\left(\frac{12}{13}\right)(39.0)=0$
$A_{y}=48.0 \mathrm{k}$
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad-A_{x}+\left(\frac{5}{13}\right) 39+\left(\frac{5}{13}\right) 52-\left(\frac{5}{13}\right) 39.0=0$
$A_{x}=20.0 \mathrm{k}$

Ans.

Ans.

Ans.

2-21. Determine the reactions at the supports A and B of the compound beam. There is a pin at C.

SOLUTION

Member $A C$:
$\zeta+\Sigma M_{C}=0 ;-A_{y}(6)+12(2)=0$
$A_{y}=4.00 \mathrm{kN}$
$+\uparrow \Sigma F_{y}=0 ; C_{y}+4.00-12=0$
$C_{y}=8.00 \mathrm{kN}$
$\xrightarrow{+} \Sigma F_{x}=0 ; C_{x}=0$
Member $C B$:
$\zeta+\Sigma M_{B}=0 ;-M_{B}+8.00(4.5)+9(3)=0$
$M_{B}=63.0 \mathrm{kN} \cdot \mathrm{m}$
$+\uparrow \Sigma F_{y}=0 ; B_{y}-8-9=0$
$B_{y}=17.0 \mathrm{kN}$
$\xrightarrow{+} \Sigma F_{x}=0 ; B_{x}=0$
Ans.

Ans.

Ans.
Ans.

2-22. Determine the reactions at the supports.

SOLUTION

$\xrightarrow{+} \Sigma F_{x}=0 ; \quad A_{x}=0$
$\varsigma+\Sigma M_{B}=0 ; \quad 900(4.5)+200(1.333)-A_{y}(9)=0$

$$
A_{y}=480 \mathrm{lb}
$$

$$
+\uparrow \Sigma F_{y}=0 ; 480-1100+B_{y}=0
$$

$$
B_{y}=620 \mathrm{lb}
$$

Ans.

Ans.

Ans.

2-23. Determine the reactions at the supports A and C of the compound beam. Assume A is fixed, B is a pin, and C is a roller.

SOLUTION

Equations of Equilibrium. First consider the $F B D$ of segment $B C$ in Fig. $a . N_{C}$ and \boldsymbol{B}_{y} can be determined directly by writing the moment equations of equilibrium about B and C respectively.
$\zeta+\Sigma M_{B}=0 ; \quad N_{C}(4)-6(1.5)=0 \quad N_{C}=2.25 \mathrm{kN}$
$\zeta+\Sigma M_{C}=0 ; \quad 6(2.5)-B_{y}(4)=0 \quad B_{y}=3.75 \mathrm{kN}$
Write the force equation of equilibrium along x axis,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad B_{x}=0$
Then consider the $F B D$ of segment $A B$, Fig. b,

$$
\begin{array}{rlr}
\xrightarrow{+} \Sigma F_{x} & =0 ; & A_{x}
\end{array}=0
$$

$$
A_{y}=21.75 \mathrm{kN}
$$

$$
\varsigma+\Sigma M_{A}=0 ; \quad M_{A}-18(1.5)-3.75(3)=0 \quad M_{A} \geqslant 38.25 \mathrm{kN} \cdot \mathrm{~m}
$$

Ans.

(b)
*2-24. Determine the reactions on the beam. The support at B can be assumed to be a roller.

SOLUTION

Equations of Equilibrium:

$\varsigma+\Sigma M_{A}=0 ; \quad N_{B}(24)-2(12)(6)-\frac{1}{2}(2)(12)(16)=0 \quad N_{B}=14.0 \mathrm{k} \quad$ Ans.
$\varsigma+\Sigma M_{B}=0 ; \quad \frac{1}{2}(2)(12)(8)+2(12)(18)-A_{y}(24)=0 \quad A_{y}=22.0 \mathrm{k}$
Ans.
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad A_{x}=0$

(a)

2-25. Determine the horizontal and vertical components of reaction at the pins A and C.

SOLUTION

Equations of Equilibrium. Here, member $A B$ is a two force member, which is reflected in the $F B D$ of beam $B C$, Fig. $a . \boldsymbol{F}_{A B}$ and \boldsymbol{C}_{y} can be determined directly by writing the moment equation of equilibrium about C and B respectively.
$\varsigma+\Sigma M_{C}=0 ; \quad 90(3)-F_{A B} \sin 45^{\circ}(6)=0 \quad F_{A B}=63.64 \mathrm{kN}$
$\zeta+\Sigma M_{B}=0 ;$
$C_{y}(6)-90(3)=0$
$C_{y}=45.0 \mathrm{kN}$
Ans.
Then write the force equation of equilibrium along x axis,
$\xrightarrow{+} \Sigma F_{x}=0 ;$

$$
C_{x}-63.64 \cos 45^{\circ}=0
$$

$$
C_{x}=45.0 \mathrm{kN}
$$

Now consider the $F B D$ of pin A, Fig. b,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad 63.64 \cos 45^{\circ}-A_{x}=0 \quad A_{x}=45.0 \mathrm{kN}$
$+\uparrow \Sigma F_{y}=0 ; \quad A_{y}-63.64 \sin 45^{\circ}=0 \quad A_{y}=45.0 \mathrm{kN}$

Ans.
Ans.

$F_{A B}=63.64 \mathrm{k}$
(b)

2-26. Determine the reactions at the truss supports A and B. The distributed loading is caused by wind.

SOLUTION

$$
\begin{aligned}
\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(96)+\left(\frac{12}{13}\right) & 20.8(72)-\left(\frac{5}{13}\right) 20.8(10) \\
& -\left(\frac{12}{13}\right) 31.2(24)-\left(\frac{5}{13}\right) 31.2(10)=0
\end{aligned}
$$

$B_{y}=5.117 \mathrm{k}=5.12 \mathrm{k}$
$+\uparrow \Sigma F_{y}=0 ; \quad A_{y}-5.117+\left(\frac{12}{13}\right) 20.8-\left(\frac{12}{13}\right) 31.2=0$
$A_{y}=14.7 \mathrm{k}$
$\xrightarrow{ \pm} \Sigma F_{x}=0 ; \quad-B_{x}+\left(\frac{5}{13}\right) 31.2+\left(\frac{5}{13}\right) 20.8=0$
$B_{x}=20.0 \mathrm{k}$

Ans.

Ans.

2-27. The compound beam is fixed at A and supported by a rocker at E and C. There are hinges (pins) at D and B. Determine the reactions at the supports.

SOLUTION

Equation of Equilibrium. First consider the $F B D$ of segment $B D$, Fig. b.
$\varsigma+\Sigma M_{D}=0 ;$
$B_{y}(3)-6(2)=0$
$B_{y}=4.00 \mathrm{kN}$
$\zeta+\Sigma M_{B}=0 ;$
$6(1)-D_{y}(3)=0$
$D_{y}=2.00 \mathrm{kN}$
$\xrightarrow{+} \Sigma F_{x}=0 ;$
$D_{x}-B_{x}=0$

Next consider the $F B D$ of segment $B E C$, Fig. c.

$$
\begin{array}{rrrr}
\varsigma+\Sigma M_{C}=0 ; & 12(1)+400(3)-N_{E}(2)=0 & N_{E}=12.0 \mathrm{kN} \\
\varsigma+\Sigma M_{E}=0 ; & N_{C}(2)+4.00(1)-12(1)=0 & N_{C}=4.00 \mathrm{kN} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & B_{x} & =0 &
\end{array}
$$

Then, from Eq. (1),

$$
D_{x}=0
$$

Finally consider the $F B D$ of segment $A D$, Fig. a.

*2-28. Determine the reactions on the beam. The support at B can be assumed as a roller.

SOLUTION

$$
\begin{array}{ccc}
C+\Sigma M_{A}=0 ; & -20 \mathrm{kN}(3 \mathrm{~m})-20 \mathrm{kN}(6 \mathrm{~m})-20 \mathrm{kN}(9 \mathrm{~m})-20 \mathrm{kN}(12 \mathrm{~m}) \\
& B_{y}=78.2 \mathrm{kN} & -8 \mathrm{kN}\left(\sin 60^{\circ}\right)(15 \mathrm{~m})+B_{y}(9 \mathrm{~m})=0 \\
& -A_{x}+8 \mathrm{kN}\left(\cos 60^{\circ}\right)=0 \\
& A_{x}=4 \mathrm{kN} & \text { Ans. } \\
\xrightarrow{+} \Sigma F_{x}=0 ; & -20 \mathrm{kN}-20 \mathrm{kN}-20 \mathrm{kN}-20 \mathrm{kN}-8 \mathrm{kN}\left(\sin 60^{\circ}\right) \\
+\uparrow \Sigma F_{y}=0 ; & +78.2 \mathrm{kN}+A_{y}=0
\end{array}
$$

2-29. Determine the reactions at the supports A, B, C, and D.

SOLUTION

Member $E F$:

$$
\begin{array}{ll}
\varsigma+\Sigma M_{F}=0 ; & 8 \mathrm{k}(3 \mathrm{ft})-E_{y}(12 \mathrm{ft})=0 \\
& E_{y}=2 \mathrm{k} \\
+\uparrow \Sigma F_{y}=0 ; & 2 \mathrm{k}-8 \mathrm{k}+F_{y}=0 \\
& F_{y}=6 \mathrm{k}
\end{array}
$$

Member $A B E$:

$$
\begin{gathered}
\varsigma+\Sigma M_{A}=0 ; \quad-24 \mathrm{k}(6 \mathrm{ft})+B_{y}(12 \mathrm{ft})-2 \mathrm{k}(24 \mathrm{ft})=0 \\
B_{y}=16 \mathrm{k} \\
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}-24 \mathrm{k}+16 \mathrm{k}-2 \mathrm{k}=0 \\
A_{y}=10 \mathrm{k}
\end{gathered}
$$

Ans.

Ans.

2-30. Determine the reactions at the supports A and B of the compound beam. Assume A is a roller, C is a pin, and B is fixed.

SOLUTION

Equations of Equilibrium. First consider the $F B D$ of segment $A C$ in Fig. $a . \boldsymbol{N}_{A}$ and \boldsymbol{C}_{y} can be determined directly by writing the moment equations of equilibrium about C and A respectively.

$\zeta+\Sigma M_{C}=0 ;$	$15(1.5)+12(3)-N_{A}(4.5)=0$	$N_{A}=13.0 \mathrm{kN}$
$\varsigma+\Sigma M_{A}=0 ;$	$C_{y}(4.5)-12(1.5)-15(3)=0$	$C_{y}=14.0 \mathrm{kN}$

Then write the force equation of equilibrium along x axis,

$$
\xrightarrow{+} \Sigma F_{x}=0 ; \quad C_{x}=0
$$

Now consider the $F B D$ of segment $C B$, Fig. b,

$$
\begin{array}{rrr}
+\Sigma \Sigma F_{x}=0 ; & B_{x}=0 & \\
+\uparrow \Sigma F_{y}=0 ; & B_{y}-14.0-12=0 & B_{y}=26.0 \mathrm{kN} \\
C+\Sigma M_{B}=0 ; & 14.0(3)+12(1.5)-M_{B}=0 & M_{B}=60.0 \mathrm{kN} \cdot \mathrm{~m} \\
\text { Ans. }
\end{array}
$$

Ans.

2-31. The beam is subjected to the two concentrated loads as shown. Assuming that the foundation exerts a linearly varying load distribution on its bottom, determine the load intensities w_{1} and w_{2} for equilibrium (a) in terms of the parameters shown; (b) set $P=500 \mathrm{lb}, L=12 \mathrm{ft}$.

SOLUTION

Equations of Equilibrium: The load intensity w_{1} can be determined directly by summing moments about point A.
$C+\Sigma M_{A}=0 ; \quad P\left(\frac{L}{3}\right)-w_{1} L\left(\frac{L}{6}\right)=0$

$$
w_{1}=\frac{2 P}{L}
$$

$+\uparrow \Sigma F_{y}=0 ; \quad \frac{1}{2}\left(w_{2}-\frac{2 P}{L}\right) L+\frac{2 P}{L}(L)-3 P=0$
$w_{2}=\left(\frac{4 P}{L}\right)$
If $P=500 \mathrm{lb}$ and $L=12 \mathrm{ft}$,

$$
\begin{aligned}
& w_{1}=\frac{2(500)}{12}=83.3 \mathrm{lb} / \mathrm{ft} \\
& w_{2}=\frac{4(500)}{12}=167 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

Ans.

Ans.

Ans.

Ans.
*2-32. Determine the horizontal and vertical components of reaction at the supports A and C. Assume the members are pin connected at A, B, and C.

SOLUTION

$\varsigma+\Sigma M_{A}=0 ;\left(\frac{3}{5}\right) F_{C B}(2)+\left(\frac{4}{5}\right) F_{C B}(0.2)-9(1.5)=0$
$F_{C B}=9.926 \mathrm{kN}$
$\xrightarrow{+} \Sigma F_{x}=0 ;-A_{x}+\left(\frac{4}{5}\right) 9.926=0$
$A_{B}=7.94 \mathrm{kN}$
$+\uparrow \Sigma F_{y}=0 ; A_{y}+\frac{3}{5}(9.926)-9=0$
$A_{y}=3.04 \mathrm{kN}$
$C_{x}=\frac{4}{5}(9.926)=7.94 \mathrm{kN}$
$C_{y}=\frac{3}{5}(9.926)=5.96 \mathrm{kN}$

2-33. Determine the horizontal and vertical components of reaction at the supports A and C.

SOLUTION

Equations of Equilibrium. Member $B C$ is a two force member, which is reflected in
 the $F B D$ diagram of member $A B$, Fig. $a . \boldsymbol{F}_{B C}$ and \boldsymbol{A}_{x} can be determined directly by writing the moment equations of equilibrium about A and B respectively.
$C+\Sigma M_{A}=0 ; \quad F_{B C}\left(\frac{3}{5}\right)(4)-24(2)=0 \quad F_{B C}=20.0 \mathrm{kN}$
$\varsigma+\Sigma M_{B}=0 ; \quad 24(2)-A_{x}(4)=0 \quad A_{x}=12.0 \mathrm{kN}$
Ans.
Write the force equation of equilibrium along y axis using the result of $F_{B C}$,
$+\uparrow \Sigma F_{y}=0 ; \quad 20.0\left(\frac{4}{5}\right)-A_{y}=0 \quad A_{y}=16.0 \mathrm{kN}$
Then consider the $F B D$ of pin at C, Fig. b,

$$
\begin{array}{lll}
+ \\
\rightarrow \\
F_{x} & =0 ; & 20.0\left(\frac{3}{5}\right)-C_{x}=0
\end{array} \quad C_{x}=12.0 \mathrm{kN},
$$

Ans.

Ans.

2-34. Determine the components of reaction at the supports. Joint C is a rigid connection.

SOLUTION

Equations of Equilibrium. From the $F B D$ of the frame in Fig. a, we notice that \boldsymbol{N}_{B} can be determined directly by writing the moment equation of equilibrium about A.
$\zeta+\Sigma M_{A}=0 ; \quad N_{B}\left(\frac{3}{5}\right)(5)+N_{B}\left(\frac{4}{5}\right)(4)-8(2)-6(5)=0$

$$
N_{B}=7.419 \mathrm{kN}=7.42 \mathrm{kN}
$$

Ans.
Then write the force equation of equilibrium along x and y axis using this result, S

$$
\begin{array}{lll}
+ \\
\rightarrow \\
F_{x} & =0 ; & 6-7.419\left(\frac{3}{5}\right)-A_{x}=0
\end{array} \quad A_{x}=1.548 \mathrm{kN}=1.55 \mathrm{kN}
$$

2-35. The bulkhead $A D$ is subjected to both water and soil-backfill pressures. Assuming $A D$ is "pinned" to the ground at A, determine the horizontal and vertical reactions there and also the required tension in the ground anchor $B C$ necessary for equilibrium. The bulkhead has a mass of 800 kg .

SOLUTION

Equations of Equilibrium: The force in ground anchor $B C$ can be obtained directly by summing moments about point A.

$$
\begin{aligned}
& \zeta+\Sigma M_{A}=0 ; \quad 1007.5(2.167)-236(1.333)-F(6)=0 \\
& F=311.375 \mathrm{kN}=311 \mathrm{kN} \\
& \xrightarrow{+} \Sigma F_{x}=0 ; \quad A_{x}+311.375+236-1007.5=0 \\
& A_{x}=460 \mathrm{kN} \\
& +\uparrow \Sigma F_{y}=0 ; \quad A_{y}-7.848=0 \quad A_{y}=7.85 \mathrm{kN}
\end{aligned}
$$

*2-36. Determine the reactions at the supports A and B. Assume the support at B is a roller. C is a fixedconnected joint.

SOLUTION

$$
\begin{aligned}
& +\sum M_{A}=0 ; \quad B_{y}(10)-70(5)-10(4)-15(8)=0 \\
& B_{y}=51 \mathrm{k}
\end{aligned}
$$

$$
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+51-70=0
$$

$$
A_{y}=19 \mathrm{k}
$$

$$
+\leftarrow \Sigma F_{x}=0 ; \quad A_{x}-10-15=0
$$

$$
A_{x}=25 \mathrm{k}
$$

Ans.

Ans.

2-37. Determine the horizontal and vertical reactions at A and C of the two-member frame.

SOLUTION

Equations of Equilibrium. Member $B C$ is a two force member, which is reflected in

350 N/m
 the FBD of member $A B$, Fig $a . \mathbf{F}_{B C}$ and \mathbf{A}_{x} can be determined directly by writing the moment equations of equilibrium about A and B respectively.
$\varsigma+\Sigma M_{A}=0 ; \quad F_{B C}\left(\frac{4}{\sqrt{41}}\right)(5)-1750(2.5)=0 \quad F_{B C}=1400.68 \mathrm{~N}$
$\varsigma^{C}+\Sigma M_{B}=0 ; \quad 1750(2.5)-A_{x}(5)=0 \quad A_{x}=875 \mathrm{~N}$
Ans.

Write the force equation of equilibrium along y axis using the result of $F_{B C}$
$+\uparrow \Sigma F_{y}=0 ; \quad(1400.68)\left(\frac{5}{\sqrt{41}}\right)-A_{y}=0 \quad A_{y}=1093.75 \mathrm{~N}=1094 \mathrm{~N}$ Ans.
Then consider the FBD of pin at C, Fig. b,

$$
\begin{array}{lll}
+ \\
\rightarrow \\
F_{x} & =0 ; & 1400.68\left(\frac{4}{\sqrt{41}}\right)-C_{x}=0 \\
+\uparrow \Sigma F_{y}=0 ; & C_{y}-1400.68\left(\frac{5}{\sqrt{41}}\right)=0 & C_{x}=875 \mathrm{~N}
\end{array}
$$

2-38. The wall crane supports a load of 700 lb . Determine the horizontal and vertical components of reaction at the pins A and D. Also, what is the force in the cable at the winch W ?

SOLUTION

Pulley E :

$$
\begin{array}{r}
+\uparrow \Sigma F_{y}=0 ; \quad 2 T-700=0 \\
T=350 \mathrm{lb}
\end{array}
$$

Member $A B C$:

$\varsigma+\Sigma M_{A}=0 ; \quad T_{B D} \sin 45^{\circ}(4)-350 \sin 60^{\circ}(4)-700(8)=0$
$T_{B D}=2409 \mathrm{lb}$
$+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+2409 \sin 45^{\circ}-350 \sin 60^{\circ}-700=0$
$A_{y}=700 \mathrm{lb}$
$\xrightarrow{ \pm} \Sigma F_{x}=0 ; \quad A_{x}-2409 \cos 45^{\circ}-350 \cos 60^{\circ}+350-350=0$

$$
A_{x}=1.88 \mathrm{k}
$$

At D :

$$
D_{x}=2409 \cos 45^{\circ}=1703.1 \mathrm{lb}=1.70 \mathrm{k}
$$

$$
D_{y}=2409 \sin 45^{\circ}=1.70 \mathrm{k}
$$

Ans.

Ans.

Ans.

Ans.

Ans.

2-39. Determine the horizontal and vertical force components that the pins support at A and D exert on the four-member frame.

SOLUTION

Equations of Equilibrium. First consider the FBD of member $C D$, Fig. a

$$
\begin{array}{rcc}
C+\Sigma M_{D}=0 ; & F_{B C}(4)-400(3)=0 & F_{B C}=300 \mathrm{lb} \\
\hookrightarrow+\Sigma M_{B}=0 ; & 400(1)-D_{y}^{\prime}(4)=0 & D_{y}^{\prime}=100 \mathrm{lb} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & D_{x}^{\prime}=0 &
\end{array}
$$

Next consider the FBD of member $A B$, Fig. b

$$
\begin{array}{lll}
C+\Sigma M_{A}=0 ; & F_{B D}\left(\frac{3}{5}\right)(4)-1000(2)-300(4)=0 \quad F_{B D}=1333.33 \mathrm{lb} \\
\zeta+\Sigma M_{B}=0 ; & 1000(2)-A_{y}(4)=0 & A_{y}=500 \mathrm{lb} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & 1333.33\left(\frac{4}{5}\right)-A_{x}=0 & \\
\hline
\end{array}
$$

Finally consider the FBD of the pin at D, Fig. c

$$
\xrightarrow{+} \Sigma F_{x}=0 ; \quad D_{x}-1333.33\left(\frac{4}{5}\right)=0 \quad \text { D } \quad 1066.6 / \mathrm{lb}=1067 \mathrm{lb}
$$

$$
+\uparrow \Sigma F_{y}=0
$$

$$
D_{y}-100-1333.33\left(\frac{3}{5}\right)^{2}=0 \quad D_{y}=900 \mathrm{lb}
$$

Ans.

(b)
*2-40. Determine the reactions at the supports A and D. Assume A is fixed and B, C and D are pins.

SOLUTION

Equations of Equilibrium. First consider the FBD of member $B C$, Fig. a

$$
\begin{array}{lll}
C+\Sigma M_{B}=0 ; & C_{y}(9)-3(3)-6(6)=0 & C_{y}=5.00 \mathrm{k} \\
C+\Sigma M_{C}=0 ; & 6(3)+3(6)-B_{y}(9)=0 & B_{y}=4.00 \mathrm{k} \\
\xrightarrow{+} \Sigma F_{x}=0 & B_{x}-C_{x}=0 &
\end{array}
$$

$$
\begin{array}{lll}
\varsigma+\Sigma M_{C}=0 ; & D_{x}(12)-3(6)=0 & D_{x}=1.50 \mathrm{k} \\
\varsigma+\Sigma M_{D}=0 ; & 3(6)-C_{x}(12)=0 & C_{x}=1.50 \mathrm{k} \\
+\uparrow \Sigma F_{y}=0 ; & D_{y}-5.00=0 & D_{y}=5.00 \mathrm{k}
\end{array}
$$

Then Eq (1) gives $B_{x}=1.50 \mathrm{k}$
Finally consider the FBD of member $A B$, Fig. c
$\xrightarrow{+} \Sigma F_{x}=0 ;$
$A_{x}-1.50=0$
$+\uparrow \Sigma F_{y}=0 ;$
$A_{y}-4.00=0$
$A_{x}=1.50 \mathrm{k}$
$\zeta+\Sigma M_{A}=0 ;$

$$
1.50(12)-M_{A}=0 \quad M_{A}=-18.0 \mathrm{k} \cdot \mathrm{ft}
$$

Ans.
Ans. B_{x} Ans.

Ans.

(1)

2-41. Determine the components of reaction at the pinned supports A and C of the two-member frame. Neglect the thickness of the members. Assume B is a pin.

SOLUTION

Equations of Equilibrium. Referring to the FBD of members $A B$ and $B C$ shown in Fig. a and b, respectively, we notice that \boldsymbol{B}_{x} and \boldsymbol{B}_{y} can be determined by solving simultaneously the moment equations of equilibrium written about A and C, respectively.

$$
\begin{array}{cc}
C+\Sigma M_{A}=0 ; & B_{x}(6.5)+B_{y}(6)-(6)(\sqrt{42.25})\left(\frac{2.5}{\sqrt{42.25}}\right)(5.25) \\
& -(6)(\sqrt{42.25})\left(\frac{6}{\sqrt{42.25}}\right)(3)-(2)(4)(2)=0 \\
6.5 B_{x}+6 B_{y}=202.75 \\
C+\Sigma M_{C}=0 ; & (6)(\sqrt{42.25})\left(\frac{2.5}{\sqrt{42.25}}\right)(5.25)+(6)(\sqrt{42.25})\left(B_{y}(6)-B_{x}(6.5)=0\right. \\
& 6.5 B_{x}-6 B_{y}=186.75
\end{array}
$$

2-41. (Continued)

Solving Eq (1) and (2) yields

$$
B_{x}=29.96 \mathrm{k} \quad B_{y}=1.333 \mathrm{k}
$$

Using these results and writing the force equation of equilibrium by referring to the FBD of member $A B$, Fig. a,

$$
\xrightarrow{+} \Sigma F_{x}=0 ; \quad 2(4)+(6)(\sqrt{42.25})\left(\frac{2.5}{\sqrt{42.25}}\right)-29.96+A_{x}=0
$$

$$
A_{x}=6.962 \mathrm{k}=6.96 \mathrm{k}
$$

Ans.

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+1.333-6(\sqrt{42.25})\left(\frac{6}{\sqrt{42.25}}\right)=0 \\
A_{y}=34.67 \mathrm{k}=34.7 \mathrm{k}
\end{gathered}
$$

Ans.

Referring to the FBD of member $B C$, Fig. b

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=0 ; \quad 29.96-(6)(\sqrt{42.25})\left(\frac{2.5}{\sqrt{42.25}}\right)-C_{x}=0 \\
C_{x}=14.96 \mathrm{k}=15.0 \mathrm{k}
\end{gathered}
$$

$$
+\uparrow \Sigma F_{y}=0 ; \quad C_{y}-1.333-(6)(\sqrt{42.25})\left(\frac{6}{\sqrt{42.25}}\right)=0
$$

$$
C_{y}=37.33 \mathrm{k}=37.3 \mathrm{k}
$$

2-42. Determine the horizontal and vertical components of reaction at A, C, and D. Assume the frame is pin connected at A, C, and D, and there is a fixed-connected joint at B.

SOLUTION

Member $C D$:
$\varsigma+\Sigma M_{D}=0 ; \quad-C_{x}(6)+90(3)=0$

$$
C_{x}=45.0 \mathrm{kN}
$$

$$
\xrightarrow{+} \Sigma F_{x}=0 ; \quad D_{x}+45-90=0
$$

$$
D_{x}=45.0 \mathrm{kN}
$$

$+\uparrow \Sigma F_{y}=0 ; \quad D_{y}-C_{y}=0$
Member $A B C$:
$\zeta+\Sigma M_{A}=0 ;$
$C_{y}(5)+45.0(4)-50(1.5)-40(3.5)=0$
$C_{y}=7.00 \mathrm{kN}$
$+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+7.00-50-40=0$
$A_{y}=83.0 \mathrm{kN}$
$\xrightarrow{\text { 土 }} \Sigma F_{x}=0 ;$
$A_{x}-45.0=0$
$A_{x}=45.0 \mathrm{kN}$
From Eq. (1).
$D_{y}=7.00 \mathrm{kN}$

Ans.

Ans.

Ans.

2-43. The bridge frame consists of three segments which can be considered pinned at A, D, and E, rocker supported at C and F, and roller supported at B. Determine the horizontal and vertical components of reaction at all these supports due to the loading shown.

SOLUTION

For segment $B D$:

$$
\begin{array}{rrrl}
\varsigma+\Sigma M_{D} & =0 ; & 2(30)(15)-B_{y}(30)=0 & B_{y}=30 \mathrm{kip} \\
\xrightarrow{+} \Sigma F_{x} & =0 ; & D_{x}=0 & \\
+\uparrow \Sigma F_{y}=0 ; & D_{y}+30-2(30)=0 & D_{y}=30 \mathrm{kip}
\end{array}
$$

For segment $A B C$:

$$
\begin{array}{rrr}
C+\Sigma M_{A}=0 ; & C_{y}(5)-2(15)(7.5)-30(15)=0 & C_{y}=135 \mathrm{kip} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & A_{x}=0 & \\
+\uparrow \Sigma F_{y}=0 ; & -A_{y}+135-2(15)-30=0 & A_{y}=75 \mathrm{kip}
\end{array}
$$

For segment $D E F$:

$$
\begin{aligned}
& \zeta+\Sigma M_{g}=0 ; \quad-F_{y}(5)+2(15)(7.5)+30(15)=0 \quad F_{y}=135 \text { kip } \\
& \xrightarrow{+} \Sigma F_{x}=0 ; \quad E_{x}=0 \\
& +\uparrow \Sigma F_{y}=0 ; \quad-E_{y}+135-2(15)-30=0 \quad E_{y}=75 \mathrm{kip}
\end{aligned}
$$

Ans.

Ans.
Ans.

Ans.
Ans.

Ans.

Ans.
Ans.

Ans.
*2-44. Determine the horizontal and vertical reactions at the connections A and C of the gable frame. Assume that A, B, and C are pin connections. The purlin loads such as D and E are applied perpendicular to the center line of each girder.

SOLUTION

Member $A B$:

$$
\begin{gathered}
\varsigma+\Sigma M_{A}=0 ; \quad B_{x}(15)+B_{y}(12)-(1200)(5)-600\left(\frac{12}{13}\right)(6)-600\left(\frac{5}{13}\right)(12.5) \\
-400\left(\frac{12}{13}\right)(12)-400\left(\frac{5}{13}\right)(15)=0 \\
B_{x}(15)+B_{y}(12)=18,946.154
\end{gathered}
$$

Member $B C$:

$$
\begin{gathered}
C+\Sigma M_{C}=0 ; \quad-B_{x}(15)+B_{y}(12)+600\left(\frac{12}{13}\right)(6)+600\left(\frac{5}{13}\right)(1 \\
400\left(\frac{12}{13}\right)(12)+400\left(\frac{5}{13}\right)(15)=0 \\
B_{x}(15)-B_{y}(12)=12,446.15
\end{gathered}
$$

(1)

Menber BC.

$$
B_{x}=1063.08 \mathrm{lb}
$$

Solving Eqs. (1) and (2),

$$
B_{y_{c}}=250.0 \mathrm{lb}
$$

Member $A B$:

$$
\begin{gathered}
\rightarrow \Sigma F_{x}=0 ; \quad-A_{x}+1200+1000\left(\frac{5}{13}\right)-1063.08=0 \\
A_{x}=5221 \mathrm{~b}
\end{gathered}
$$

$$
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}-800-1000\left(\frac{12}{13}\right)+250=0
$$

$$
A_{y}=1473 \mathrm{lb}
$$

Member $B C$:

$$
\begin{array}{ll}
+ \\
\rightarrow \\
F_{x} & =0 ;
\end{array} \begin{aligned}
& -C_{x}-1000\left(\frac{5}{13}\right)+1063.08=0 \\
& \\
& C_{x}=678 \mathrm{lb} \\
& +\uparrow \Sigma F_{y}=0 ;
\end{aligned} C_{y}-800-1000\left(\frac{12}{13}\right)-250.0=0
$$

Ans.

Ans.

2-1P. The railroad trestle bridge shown in the photo is supported by reinforced concrete bents. Assume the two simply supported side girders, track bed, and two rails have a weight of $0.5 \mathrm{k} / \mathrm{ft}$ and the load imposed by a train is $7.2 \mathrm{k} / \mathrm{ft}$. Each girder is 20 ft long. Apply the load over the entire bridge and determine the compressive force in the columns of each bent. For the analysis assume all joints are pin connected and neglect the weight of the bent.Are these realistic assumptions?

SOLUTION

Maximum reactions occur when the live load is over the entire span.
Load $=7.2+0.5=7.7 \mathrm{k} / \mathrm{ft}$
$R=7.7(10)=77 \mathrm{k}$
Then $\quad P=\frac{2(77)}{2}=77 \mathrm{k}$
All members are two-force members.
$\zeta+\Sigma M_{B}=0 ; \quad-77(8)+F \sin 75^{\circ}(8)=0$

$$
F=79.7 \mathrm{k}
$$

It is not reasonable to assume the members are pinconnected, since such alfamework is unstable.

Ans.

