Chapter Two Loads on Structures

Pq2

CHAPTER 2

2.1 Beam CD

Uniformly distributed load = $23.6(3.6)(\frac{100}{1000}) + 77(\frac{11,800}{1,000,000})$ = $\frac{9.4 \text{ KN/m}}{25.25 \text{ KN}}$ 35.25 KN 35.25 KN

Girder AE

Uniformly distributed load = $77(\frac{21.100}{10.00,000}) = \frac{1.63 \text{ kN/m}}{10.00,000}$ Concentrated load at C = 35.25 kN

Concentrated loads at A and E

$$= [150(1.8)(\frac{4}{12}) + 77(\frac{11.800}{10.00,000})](\frac{7.5}{2}) = 19.34 \text{ KN}$$

$$19.34 \text{ KN} \qquad 35.25 \text{ KN} \qquad 19.34 \text{ KN}$$

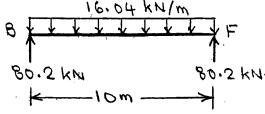
$$42.83 \text{ KN} \qquad 42.83 \text{ KN}$$

$$= 3.6 \text{ m} \qquad 3.6 \text{ m} \qquad 3.6 \text{ m}$$

Beam CD Uniformly distributed load

= 9.4 + 18.8(150)(21) = 9.4 + 5.9 = 15.3 KN/m

Girder AE Uniformly existributed load = 1.63 KN/m


Concentrated load at C = 35.25 + 5.9(7.5) = 57.4 KN

Concentrated loads at A and E = 19.34 KN

2.3 Beam BF

Uniformly distributed load

$$= 3.8(2)(13.3) + 77(100) = 16.04 \text{ kN/m}$$

Girder AD

Uniformly distributed load = 77(25600) = 1.97 KN/m

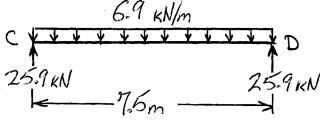
Concentrated loads at B and C = 80.2 km

Concentrated loads at A and D

$$= \left[28.6 (2.5) \left(\frac{130}{1000}\right) + 77 \left(\frac{9100}{106}\right)\right] \frac{10}{2} = 41.85 \text{ kN}$$

$$+1.85 \text{ kN} \qquad 80.2 \text{ kN} \qquad 41.85 \text{ kN}$$

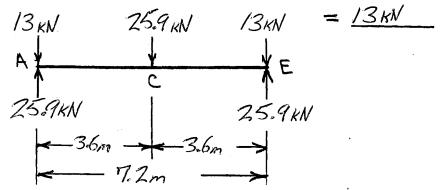
$$+1.95 \text{ kN} \qquad 41.85 \text{ kN}$$


2.4

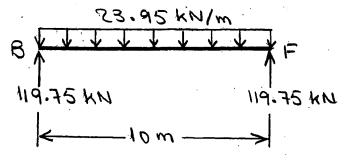
Uniformly distributed load $77(\frac{27,700}{1,000,000}) = 2.13 \text{ KN/m}$ Concentrated loads at A and G $= 23.6(3)(\frac{100}{1000}) + 77(\frac{10.450}{1,000,000}) = 2.13 \cdot 0 \cdot \text{KN}$ Concentrated loads at C and E $= 23.6(3)(\frac{100}{1000}) + 77(\frac{10.450}{1,000,000}) = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.6(3)(\frac{100}{1000}) + 77(\frac{10.450}{1,000,000}) = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.6(3)(\frac{100}{1000}) + 77(\frac{10.450}{1,000,000}) = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.6(3)(\frac{100}{1000}) + 77(\frac{10.450}{1,000,000}) = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.6(3)(\frac{100}{1000}) + 77(\frac{10.450}{1,000,000}) = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.6(3)(\frac{100}{1000}) + 77(\frac{10.450}{1,000,000}) = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.6(3)(\frac{100}{1000}) + 77(\frac{10.450}{1,000,000}) = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.6(3)(\frac{100}{1000}) + \frac{10.450}{1000} = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.6(3)(\frac{100}{1000}) + \frac{10.450}{1000} = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.6(3)(\frac{100}{1000}) + \frac{10.450}{1000} = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.6(3)(\frac{100}{1000}) + \frac{10.450}{1000} = 2.13 \cdot 0 \cdot \text{KN}$ $= 23.7 \cdot \text{KN}$ $= 36.3 \cdot \text{KN}$

2.5 Live load = 1.92 KN/m2

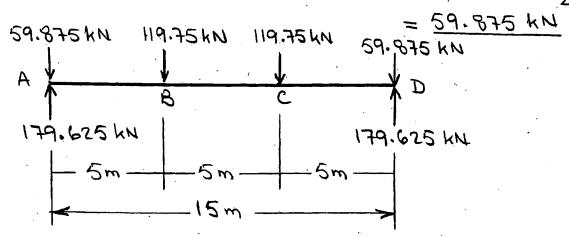
Beam CD


Uniformly distributed load = 1.92 (3.6) = 6.9 KN/m

Crirder AE


Concentrated load at C = 25.9KN

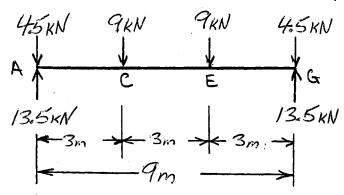
Concentrated loads at A and $E = [692(168)](\frac{7.5}{2})$


2.6 Live load = 4.79 kPa = 4.79 kN/m² Beam BF

Uniformly distributed load = 4.79(5) = 23.95 KN/m

Girden AD

Concentrated loads at Band C = $\frac{119.75 \text{ kN}}{2}$ Concentrated loads at A and D = $[4.79(2.5)]\frac{10}{2}$


2.7 Beam EF

Uniformly distributed load = 1 (9) = 3 KN/m

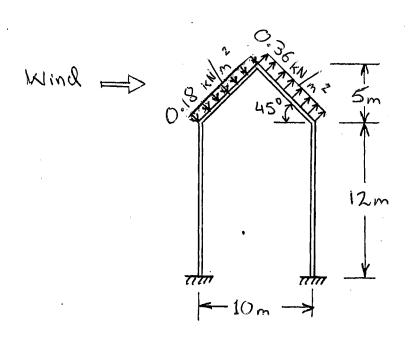
Girder AG

Concentrated loads at C and E = 9KN

Concentrated loads at A and G = 9 12 - 45KN

Column A Concentrated load = 13.5 KN

2.8
$$V = 38m/s$$
, $h = 12 + (5/2) = 14.5m$, $I = 1.0$, $8g = 365.76m$, $\alpha = 7.0$, $K_{84} = 1$ and $K_{d} = 1$ $K_{h} = 2.01 \left(\frac{14.5}{365.76}\right)^{47} = 0.8$ $G = 0.613(0.8)(1)(1)(38)^{2}(1) = 0.71 \text{ kN/m}^{2}$ $G = 0.85$


For
$$\theta = 45^{\circ}$$
 and $h/L = 14.5/10 = 1.45$?

 $Cp = 0.3$ for windward side

 $Cp = -0.6$ for leeward side

Thus, the wind pressures are:

 $P_h = 0.71 (0.85)(-0.8) = \frac{0.18 \text{ kN/m}^2}{0.36 \text{ kN/m}^2}$ for windward side $P_h = 0.71 (0.85)(-0.6) = \frac{0.36 \text{ kN/m}^2}{0.36 \text{ kN/m}^2}$ for leeward side

[2.9] $V = 40 \text{ m/8}, h = 12 + \frac{5}{2} = 14.5 \text{ m}$ $I = 1.15, 8_{9} = 366 \text{ m}, \alpha = 7.0, K_{8t} = 1$ and $K_{d} = 1$ $K_{h} = 2.01 \left(\frac{14.5}{366} \right)^{2} = 0.8$ $Q_{h} = 0.613(0.8)(1)(1)(40^{2}(1.15) = 902.34 \text{ N/m}^{2})$ A = 0.85Roof slope: $\Theta = \tan^{-1}(5/6) = 39.8^{\circ}$ $\frac{h}{L} = \frac{14.5}{12} = 1.21$ Cp = -0.1 and 0.25 for windward side

Thus, the wind pressures are: $A = (90.3.31)(0.95)(0.1) = -76.7 \text{ N/m}^{2}$

 $p_{h} = (902.34)(0.85)(-0.1) = -76.7 \, N/m^{2}$ for windward side

Ph = (902.84)(0.85)(-0.6) = -460.2N/m² for lerward 3ide

Wind Nind 12m

$$V = 40m/s \quad h = 10 + \frac{4}{2} = 12m$$

$$I = 1.15, \quad \delta_g = 2.74.32m \quad \alpha = 9.5, \quad k_{gt} = 1$$
and $k_d = 1$

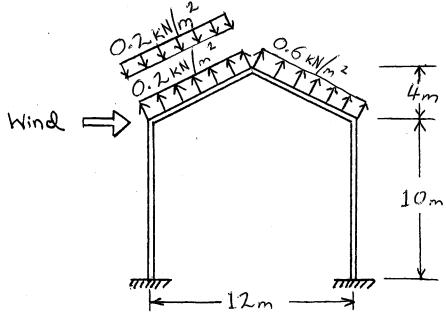
$$K_h = 2.01 \left(\frac{12}{2.74.32}\right)^{2/9.5} = 1.04$$

$$Q_h = 0.613(1.04)(1)(1)(40)^2(1.15) = 1.17 \text{ kN/m}^2$$

$$G = 0.85$$

$$Roof = 10pe : \quad \theta = tan'(4/6) = 33.7°$$

$$\frac{h}{L} = \frac{12}{12} = 1.0$$

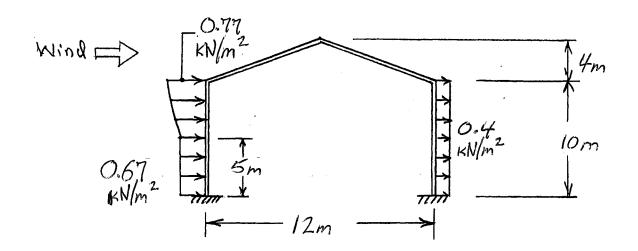

$$C_h = -0.7 \text{ and } 0.2 \text{ for wind ward side}$$

Cp = -0.2 and 0.2 for windward side Cp = -0.6 for leeward side

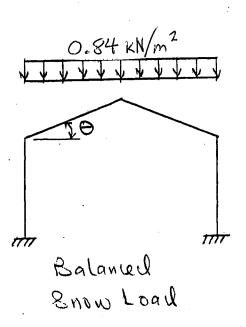
Thus, the wind pressures are:

$$P_h = 1.17 (0.85)(-0.2) = -0.2 \, \text{kN/m}^2$$
 for windward $P_h = 1.17 (0.85)(0.2) = 0.2 \, \text{kN/m}^2$ side

Ph = 1.17 (0.85)(-0.6) = -0.6 KN/mt for leeward side



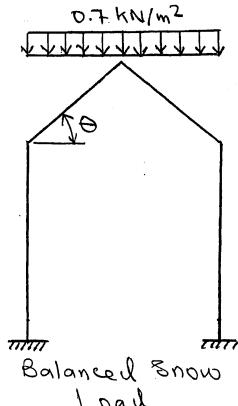
[2.11] V = 40m/s, E = 1.15, 3g = 274.32m, $\alpha = 9.5$ From the solution of Problem 2.10: $9h = 1.17 \, \text{kN/m}^2$ and G = 0.85


Leeward wall: For L/B = 12/10 = 1.2, Cp = -0.4Thus, the wind pressure, $p_h = 1.17$ (0.85)(-0.4) = $\frac{-0.4 \text{ kN/m}^2}{}$

Windward wall: Cp = 0.8

\$ (m)	k ₈	9 8(KN/m2)	P= (KN/m2)
10	1.00	1.128	0.77
7,5	0.94	1.06	0.72
6.0	0.90	1.02	0.70
5.0	0.87	0.98	0.67

2.12 $p_q = 1 \text{KN/m}^2$, Ce = 1, $C_t = 1$, E = 1.2 $p_f = 0.7 C_e C_t I p_q = 0.7 (1)(1)(1.2)(1) = 0.84 \text{ KN/m}^2$ $0 = \tan^{-1}(4/6) = 33.7^\circ$, $21.3 + 0.5 = 21.3 + 0.5 = 4^\circ$ Therefore, the minimum values of p_f need not be considered. $C_5 = 1$ Balanced load = $p_5 = C_5 p_f = 1(0.84) = 0.84 \text{ KN/m}^2$



$$\frac{70}{M} + 0.5 = \frac{70}{19.7} + 0.5 = 4.10$$

Therefore, the minimum values of PP need not be considered.

$$C_8 = 1 - \frac{\theta - 30^9}{40^9} = 0.76$$

Balanced Load = P= = C=P= 0.76 (0.92) = 0.7 kN/m2

