Structural Dynamics Theory And Applications 1st Edition Tedesco Solutions Manual

Solutions Manual

to accompany

STRUCTURAL DYNAMICS Theory and Applications

Visit TestBankDeal.com to get complete for all chapters

Solutions Manual

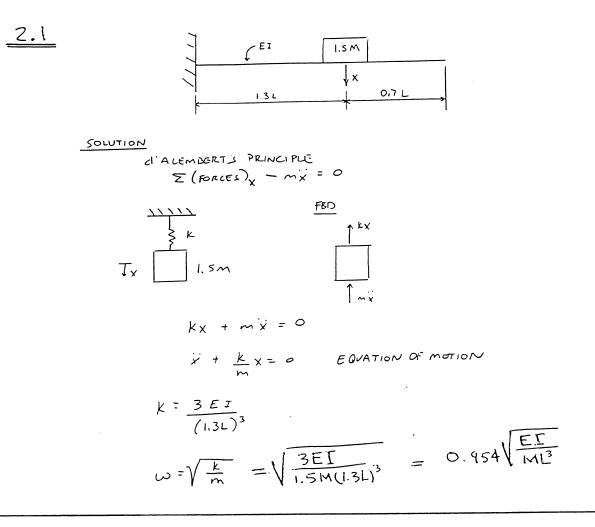
to accompany

STRUCTURAL DYNAMICS Theory and Applications

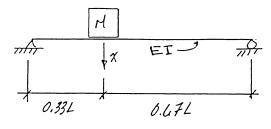
by

Joseph W. Tedesco Auburn University

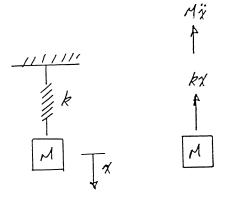
Prentice Hall, Upper Saddle River, NJ 07458



2.2



Solution :



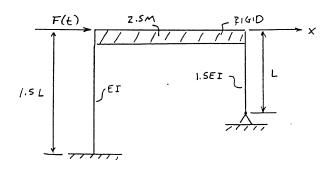
•

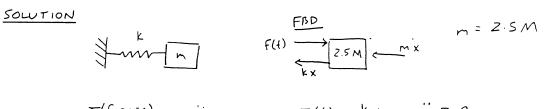
$$\frac{2.2 \text{ cont.}}{\text{Equation of motion: MX+kx=0 or X+k} = 0}$$

$$k = \frac{\text{CETL}}{(0.33L)(L-0.33L)[2L(0.33L)-(0.33L)^2-(0.33L)^2]}$$

$$k = \frac{(1.37ET)}{L^2}$$
Notural Frequency: $\omega = \sqrt{\frac{k}{M}} = 7.834\sqrt{\frac{ET}{ML^3}}$

2:3





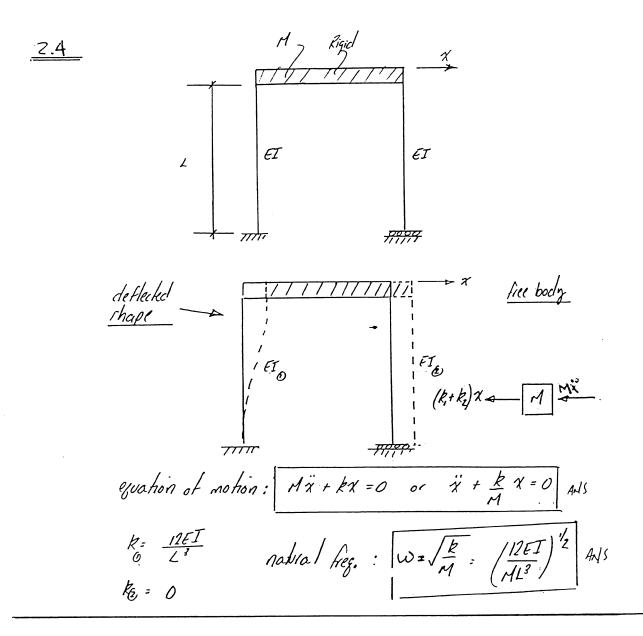
$$E(force(x) - my = 0) \qquad F(t) - kx - mx = 0$$

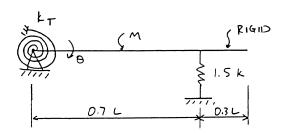
$$x + \frac{L}{m}x = \frac{F(t)}{m} \qquad \text{Eduation}$$
of motion

$$K = \frac{12EI}{(1.5L)^{3}} + \frac{3(1.5EI)}{L^{3}}$$

= $\frac{12(30\times10^{6})(15^{\circ})}{(1.5\times12\times12^{\circ})^{3}} + \frac{3(1.5)(30\times10^{6})(15^{\circ})}{(12.0\times12)^{3}}$
= $12,140$ L³

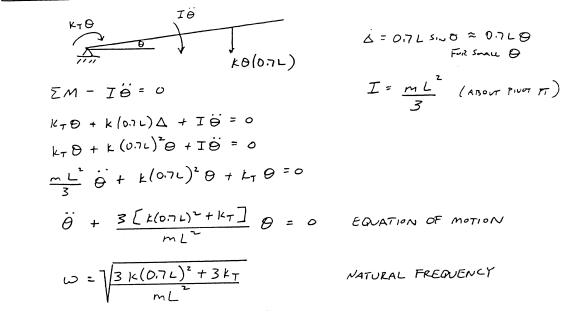
$$W = \sqrt{\frac{k}{m}} = \sqrt{\frac{12,140 \text{ L}^{0}/\text{lm}}{2.5(1.0 \text{ L}^{0.5ee}/\text{lm})}} = 69.7 \text{ rad/sec}$$

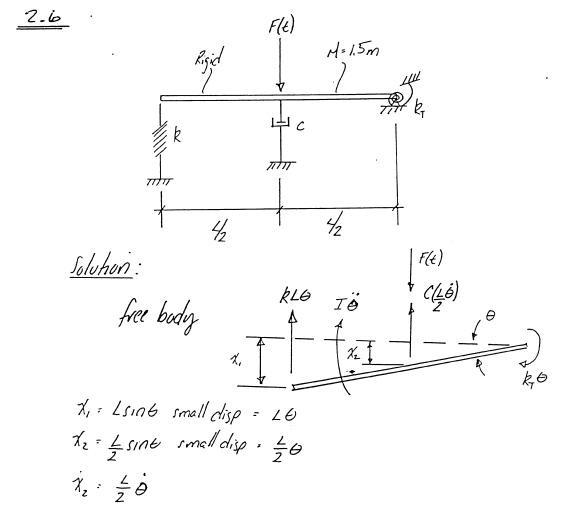




2.5 Cont.

SOLUTION





2.6 Cont.

 $I = \frac{ML^2}{3} = \frac{1.5mL^2}{3} = \frac{mL^2}{3}$ equation of motion: $k_{+} 6 + k_{-} 6 (L) + I \ddot{6} + C(\frac{1}{2} \dot{6}) (\frac{1}{2}) = F(t) (\frac{1}{2})$ $k_{T}\Theta + k_{L}^{2}\Theta + I\Theta + \frac{(L^{2}G + F(t)(\frac{L}{2}))}{2T}$ $IG + (L^{2}G + (kL^{2} + k_{T})G = F(t)/(L)$ $\left(\frac{mL}{2}\right) \theta + \frac{CL}{4} \theta + \left(\frac{kL}{2} + \frac{k_{T}}{k_{T}}\right) \theta = F(t) \left(\frac{t_{T}}{2}\right)$ $\frac{\partial}{\partial t} + \frac{C}{2m} \partial + \frac{2(kL^2 + k_T)}{ml^2} \partial = F(t)(\frac{1}{mL})$ ANS

natural frequency:

$$\omega = \sqrt{\frac{2(kL^2 + k_T)}{mL^2}}$$
All

 $\frac{2.7}{8}$ $\leq M_{A} = I_{A} d$ $mL\ddot{o}(L) + mgLsin0 + Kt0 = 0$ $mL\ddot{o} + (mgLsin0 + Kt0) = 0$ mg

2.7 Cont. For small values of @ Sino=0 $m \stackrel{2}{L} \stackrel{0}{0} + (mq L + k_E) \stackrel{0}{0} = 0$ $\mathcal{O} + \left(\frac{\alpha}{L} + \frac{K_{E}}{m_{1}z}\right) \mathcal{O} = 0$ $\omega = \sqrt{\frac{q}{1} + \frac{KE}{M}}$. F(+) 2.8 H=1.5m $\frac{1}{1} \begin{pmatrix} u \\ c = 0 \end{pmatrix} = k_T$ Assume a consurvative system (i.e. no damping) Sulution : distributed mass: (1.5m/L) Here body $\frac{1}{z} k(L_{\theta})^2$ F(+) ₹ x= y 0 Kinehic Energy (1 mv2) $\frac{1}{2}\left(\frac{1.5m}{L}\left(\eta\dot{\theta}\right)^{2}d\eta = \frac{3}{4}\left(\frac{m}{L}\dot{\theta}^{2}\eta^{2}d\eta = \frac{3}{4}\left(\frac{m}{3L}\dot{\theta}^{2}\eta^{3}\right)\right)^{L}$ $T = \frac{mL^2\dot{\theta}^2}{4}$

2.8 Cont. Pokohal Energy $V = \frac{1}{2}k(1\theta)^{2} + \frac{1}{2}k_{T}\theta^{2} - F(t)(\frac{1}{2})\theta$ TOTAL WORK (T+V) = constant $\frac{mL^2\Theta}{L}^2 + \frac{1}{2}k(L\Theta)^2 + \frac{1}{2}k_T G^2 - F(t)(\frac{L}{2})\Theta = Constant$ $\frac{d(T+V)}{dE} = 0 = \frac{mL^2}{2} \tilde{e} \tilde{e} + kL^2 \tilde{e} e + k_{\pm} \tilde{e} e - F(t)(\frac{L}{2}) \tilde{e}$ equation of motion : $\underline{ML}^{2} \theta + (kL^{2} + k_{T})\theta = F(\epsilon)(\frac{L}{2})$ $\Theta + 2(kL^2 + k_F) \Theta = F(e)(\frac{1}{mL})$ And ML^2 natural frequency : $\omega = \sqrt{\frac{2(kL^2 + k_T)}{mL^2}}$ ANS 2.9 θ

L

2.9 Cont.

SOLUTION

$$\frac{E N E R C Y M E T H O P}{T + V} = const A N T$$

$$\frac{d}{dt} (T + V) = 0$$

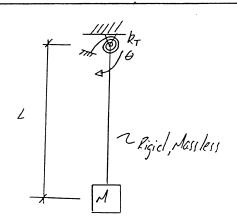
$$m L^{2} \dot{\Theta} \dot{\Theta} + mg L (s_{1N} \Theta) \dot{\Theta} + K L^{2} \Theta \dot{\Theta} + K_{T} \Theta \dot{\Theta} = 0$$

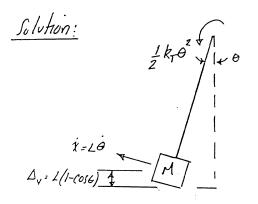
$$m L^{2} \ddot{\Theta} + mg L s_{1N} \Theta + K L^{2} \Theta + K_{T} \Theta \dot{\Theta} = 0$$

$$\dot{\Theta} + \left(\frac{Mg L + K L^{2} + K_{T}}{M L^{2}}\right) \Theta = 0 \qquad E QUATION OF MOTION$$

$$\omega = \sqrt{\frac{Mg L + K L^{2} + K_{T}}{M L^{2}}} \qquad NATURAL FREQUENCY$$

2.10



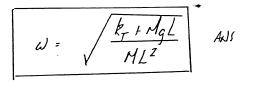


2.10 cont.

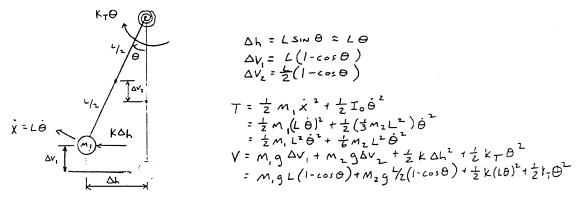
2.11

Kinehic Energy (T) 1my2 + M(LO) 2 Poknhal energy: (V) Mg [(1- (050) + - k_F 02 TOTAL WORK: (T+V) $\frac{1}{2}ML^{2}\Theta^{2} + \frac{1}{2}k_{F}\Theta^{2} + M_{gL}(1-\cos\theta) = constant$ $\frac{d(T+V)}{d\Phi} = 0 = ML^2 \ddot{\theta} \ddot{\theta} + k_{T} \ddot{\theta} \dot{\theta} + M_{g} L si \dot{h} \dot{\theta} \ddot{\theta}$ ML20 + K, 0 + MgL0 = 0 $ML^{2} \dot{\theta} + (k_{T} + M_{q}L) \theta = 0$ $\theta \neq \left(\frac{k_{T} + M_{q}L}{M^{2}}\right) \theta = 0$ ANI

natural frequency.



SOLUTION



$$\frac{ENERGY METHOD}{T + V} = constrant}$$

$$\frac{d}{dt}(T+V) = 0$$

$$M_{1}L^{2}\dot{\theta}\ddot{\theta} + \frac{1}{3}M_{2}L^{2}\dot{\theta}\ddot{\theta} + M_{1}gL(sno\theta)\dot{\theta} + M_{2}g\frac{1}{2}(sno\theta)\dot{\theta} + KL^{2}\theta\dot{\theta} + K_{T}\theta\dot{\theta} = 0$$

$$M_{1}L^{2}\ddot{\theta} + \frac{1}{3}M_{2}L^{2}\ddot{\theta} + M_{1}gL\theta + M_{2}g\frac{1}{2}\theta + KL^{2}\theta + K_{T}\theta = 0$$

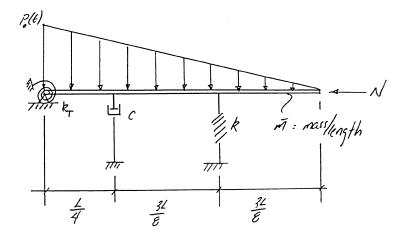
$$M_{1}L^{2}\ddot{\theta} + \frac{M_{1}gL + \frac{1}{2}M_{2}gL + KL^{2} + K_{T}}{M_{1}L^{2} + \frac{1}{3}M_{2}L^{2}}\theta = 0$$

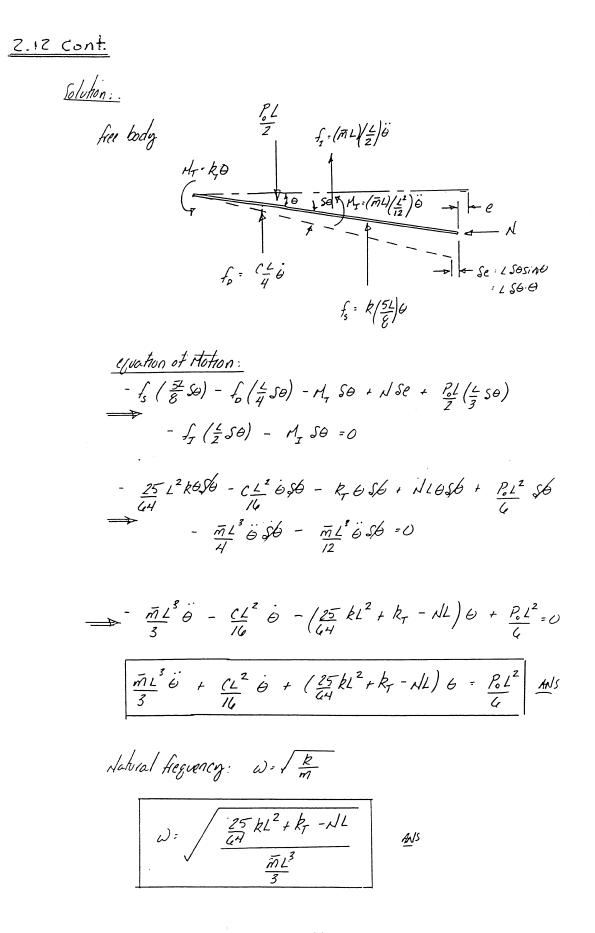
$$EWation of Motion$$

$$W = \sqrt{\frac{M_{1}gL + \frac{1}{2}M_{2}gL + KL^{2} + K_{T}}{M_{1}L^{2} + \frac{1}{3}M_{2}L^{2}}}$$

$$NaturaL FLEQUENCY$$

2.12





Visit TestBankDeal.com to get complete for all chapters