Problem 2-3

(a) Determine the factored axial load or the required axial strength, P_{u} of a column in an office building with a regular roof configuration. The service axial loads on the column are as follows
$\mathrm{P}_{\mathrm{D}} \quad=\quad 200 \mathrm{kips}$ (dead load)
$\mathrm{P}_{\mathrm{L}}=300 \mathrm{kips}$ (floor live load)
$\mathrm{P}_{\mathrm{S}} \quad=\quad 150 \mathrm{kips}$ (snow load)
$\mathrm{P}_{\mathrm{W}} \quad=\quad \pm 60$ kips (wind load)
$\mathrm{P}_{\mathrm{E}} \quad=\quad \pm 40 \mathrm{kips}$ (seismic load)
(b) Calculate the required nominal axial compression strength, P_{n} of the column.

1: $\quad \mathrm{P}_{\mathrm{u}}=1.4 \mathrm{P}_{\mathrm{D}}=1.4(200 \mathrm{k})=280 \mathrm{kips}$
2: $\quad \mathrm{P}_{\mathrm{u}} \quad=1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{L}}+0.5 \mathrm{P}_{\mathrm{S}}$
$=1.2(200)+1.6(300)+0.5(150)=795 \mathbf{k i p s}$ (governs)
3 (a): $\quad \mathrm{P}_{\mathrm{u}}=1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{S}}+0.5 \mathrm{P}_{\mathrm{L}}$

$$
=1.2(200)+1.6(150)+0.5(300)=630 \mathrm{kips}
$$

3 (b): $\quad \mathrm{P}_{\mathrm{u}}=1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{S}}+0.5 \mathrm{P}_{\mathrm{W}}$
$=1.2(200)+1.6(150)+0.5(60)=510 \mathrm{kips}$
4: $\quad \mathrm{P}_{\mathrm{u}} \quad=1.2 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{W}}+0.5 \mathrm{P}_{\mathrm{L}}+0.5 \mathrm{P}_{\mathrm{S}}$

$$
=1.2(200)+1.0(60)+0.5(300)+0.5(150)=525 \mathrm{kips}
$$

5: $\quad \mathrm{P}_{\mathrm{u}}=1.2 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{E}}+0.5 \mathrm{P}_{\mathrm{L}}+0.2 \mathrm{P}_{\mathrm{S}}$
$=1.2(200)+1.0(40)+0.5(300)+0.2(150)=460 \mathrm{kips}$
Note that P_{D} must always oppose P_{W} and P_{E} in load combination 6

6 :
$\mathrm{P}_{\mathrm{u}} \quad=0.9 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{w}}$

$$
=0.9(200)+1.0(-60)=120 \mathrm{kips}(\text { no net uplift })
$$

7: $\quad \mathrm{P}_{\mathrm{u}}=0.9 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{E}}$
$=0.9(200)+1.0(-40)=140 \mathrm{kips}($ no net uplift)
$\phi \mathrm{P}_{\mathrm{n}}>\mathrm{P}_{\mathrm{u}}$
$\phi_{c}=0.9$
$(0.9)\left(\mathrm{P}_{\mathrm{n}}\right)=(795 \mathrm{kips})$
$P_{n}=884$ kips
(a) Determine the ultimate or factored load for a roof beam subjected to the following service loads:

Dead Load $=29 \mathrm{psf}$ (dead load)
Snow Load $=35 \mathrm{psf}$ (snow load)
Roof live load $=\quad 20 \mathrm{psf}$
Wind Load $=25$ psf upwards / 15 psf downwards
(b) Assuming the roof beam span is 30 ft and tributary width of 6 ft , determine the factored moment and shear.

Since, $S=35 p s f>L_{r}=20 p s f$, use S in equations and ignore L_{r}.

downward	No net uplift
$V_{u}=\frac{w_{u} L}{2}=\frac{(590)(30)}{2}=8850 \mathrm{lb}$.	.
$M_{u}=\frac{w_{u} L^{2}}{8}=\frac{(590)(30)^{2}}{8}=66375 \mathrm{ft}-\mathrm{Ib}$ $=66.4 \mathrm{ft}-\mathrm{kips}$	

Occupancy	Uniform Load (psf)	Concentrated Load (lb)*
Library stack rooms	150	1000
Classrooms	40	1000
Heavy storage	250	-
Light Manufacturing	125	2000
Offices	50	2000

*Note: Generally, the uniform live loads (in psf) are usually more critical for design than the concentrated loads

Problem 2-6

Determine the tributary widths and tributary areas of the joists, beams, girders and columns in the roof framing plan shown below.

Assuming a roof dead load of 30 psf and an essentially flat roof with a roof slope of $1 / 4$ " per foot for drainage, determine the following loads using the ASCE 7 load combinations. Neglect the rain load, R and assume the snow load, S is zero:
a. The uniform dead and roof live load on the typical roof beam in $\mathrm{Ib} / \mathrm{ft}$
b. The concentrated dead and roof live loads on the typical roof girder in Ib/ft
c. The total factored axial load on the typical interior column, in Ib.
d. The total factored axial load on the typical corner column, in Ib

Member	Tributary width (TW)	Tributary area (Aт)
Interior Beam	$24 \mathrm{ft} / 4$ spaces $=6 \mathrm{ft}$	$6 \mathrm{ft} \times 32 \mathrm{ft}=192 \mathrm{ft}^{2}$
Spandrel Beam	$(24 \mathrm{ft} / 4$ spaces $) / 2+0.75$ $=3.75 \mathrm{ft}$	$3.75 \mathrm{ft} \mathrm{x} 32 \mathrm{ft}=120 \mathrm{ft}^{2}$
Interior Girder	$32 \mathrm{ft} / 2+32 \mathrm{ft} / 2=32 \mathrm{ft}$	$32 \mathrm{ft} \times 24 \mathrm{ft}=768 \mathrm{ft}^{2}$
Spandrel Girder	$32 \mathrm{ft} / 2+0.75 \mathrm{ft}=16.75 \mathrm{ft}$	$16.75 \mathrm{ft} \mathrm{x} 24 \mathrm{ft}=402 \mathrm{ft}^{2}$
Interior Column	-	$32 \mathrm{ft} \mathrm{x} 24 \mathrm{ft}=768 \mathrm{ft}^{2}$
Corner Column	-	$(32 \mathrm{ft} / 2+0.75)(24 \mathrm{ft} / 2+0.75) \mathrm{ft}=214 \mathrm{ft}^{2}$

$\mathbf{R}_{2}=1.0$ (flat roof)

Member	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{L r}$
Interior Beam	1.0	20 psf
Spandrel Beam	1.0	20 psf
Interior Girder	0.6	$(0.6)(20)=12 \mathrm{psf}$
Spandrel Girder	$1.2-0.001(402)$ $=0.798$	$(0.798)(20)=15.96 \mathrm{psf}$
Interior Column	0.6	$(0.6)(20)=12 \mathrm{psf}$
Corner Column	$1.2-0.001(214)$ $=0.986$	$(0.798)(20)=19.72 \mathrm{psf}$

Member	$\mathrm{p}_{\mathrm{u}}=1.2 \mathrm{D}+1.6 \mathrm{Lr}$	Wu (plf)	P_{u} (kips)
Interior Beam	$(1.2)(30)+(1.6)(20)=$ 68psf	(68psf)(6ft) $=$ 408plf	-
Spandrel Beam	$(1.2)(30)+(1.6)(20)=$ 68psf	$\begin{aligned} & (68 \mathrm{psf})(3.75 \mathrm{ft})= \\ & \text { 255plf } \end{aligned}$	-
Interior Girder	$\begin{aligned} & (1.2)(30)+(1.6)(12)= \\ & \text { 55.2psf } \end{aligned}$	-	$\begin{aligned} & (55.2 \mathrm{psf})(6 \mathrm{ft})(32 \mathrm{ft})=\mathbf{1 0 . 6} \\ & \text { kips } \end{aligned}$
Spandrel Girder	$\begin{aligned} & (1.2)(30)+(1.6)(15.96) \\ & =\mathbf{6 1 . 5 p s f} \end{aligned}$	-	$\begin{aligned} & (61.5 \mathrm{psf})(6 \mathrm{ft})(32 / 2 \mathrm{ft})=\mathbf{5 . 9} \\ & \text { kips } \end{aligned}$
Interior Column	$\begin{aligned} & (1.2)(30)+(1.6)(12)= \\ & \text { 55.2psf } \end{aligned}$	-	$(55.2 \mathrm{psf})\left(768 \mathrm{ft}{ }^{2}\right)=42.4 \mathrm{kips}$
Corner Column	$\begin{aligned} & (1.2)(30)+(1.6)(19.72) \\ & =67.6 \mathrm{psf} \end{aligned}$	-	$(67.6 \mathrm{psf})\left(214 \mathrm{ft}{ }^{2}\right)=\mathbf{1 4 . 5} \mathbf{~ k i p s}$

Problem 2-7

A 3-story building has columns spaced at 18 ft in both orthogonal directions, and is subjected to the roof and floor loads shown below. Using a column load summation table, calculate the cumulative axial loads on a typical interior column with and without live load reduction. Assume a roof slope of $1 / 4>$ per foot for drainage.

Roof Loads:		$\frac{2^{\text {nd }} \text { and 3 }{ }^{\text {rd }} \text { Floor Loads: }}{}$
Dead Load, $D_{\text {roof }}$ $=20 \mathrm{psf}$ Snow Load, S $=40 \mathrm{psf}$	Dead Load, D floor $=40 \mathrm{psf}$	
	Floor Live Load, L $=50 \mathrm{psf}$	

Member	$\mathbf{A}_{\mathbf{T}}\left(\mathbf{f t .}{ }^{\mathbf{2}}\right)$	$\mathbf{K}_{\mathbf{L L}}$	$\mathbf{L}_{\mathbf{0}}(\mathbf{p s f})$	Live Load Red. Factor $\mathbf{0 . 2 5}+\mathbf{1 5} / \sqrt{ }\left(\mathbf{K}_{\mathbf{L L}} \mathbf{A}_{\mathbf{T}}\right)$	Design live load, \mathbf{L} $\mathbf{o r} \mathbf{S}$
$\mathbf{3}^{\text {rd }}$ floor	N / A	-	-	-	$\mathbf{4 0} \mathbf{~ p s f}$ (Snow load)
$\mathbf{2}^{\text {nd }} \mathbf{\text { floor }}$	$(18)(18)=$ $324 \mathrm{ft}^{2}$	4	40 psf	$\left[0.25+\frac{15}{\sqrt{(4)(324)}}\right]=0.667$	$(0.667)(50)$ $=\mathbf{3 4} \mathbf{~ p s f}$ $\geq 0.50 \mathrm{~L}_{\mathrm{o}}=25 \mathrm{psf}$
Ground Flr.	2 floors x $(18)(18)=$ $648 \mathrm{ft}^{2}$	4	40 psf	$\left[0.25+\frac{15}{\sqrt{(4)(648)}}\right]=0.545$	$(0.545)(50)$ $=\mathbf{2 8} \mathbf{~ p s f}$ $\geq 0.40 \mathrm{~L}_{\mathrm{o}}=20 \mathrm{psf}$

$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overparen{E} \\ & \underset{\leftarrow}{\leftrightarrows} \end{aligned}$	禺		鹍							
	With Floor Live Load Reduction										
Roof	324	20	40	1	40	44	88	14.3 or 28.5	14.3	28.5	28.5
$3{ }^{\text {rd }}$ Flr	324	40	50	0.666	33.3	101	65	32.8 or 21	47.1	495	49.5
$2^{\text {nd }} \mathrm{Flr}$	324	40	50	0.544	27.2	92	62	29.7 or 20	74	68	74
	Without Floor Live Load Reduction										
Roof	324	20	40	1	40	44	88	14.3 or 28.5	14.3	28.5	28.5
$3{ }^{\text {rd }} \mathrm{Flr}$	324	40	50	1	50	128	73	41.5 or 23.7	55.7	52.2	55.7
$2^{\text {nd }} \mathrm{Flr}$	324	40	50	1	50	128	73	41.5 or 23.7	97.2	75.9	97

(a) Determine the dead load (with and without partitions) in psf of floor area for a steel building floor system with W24x55 beams (weighs $55 \mathrm{Ib} / \mathrm{ft}$) spaced at $6^{\prime}-0$ " o.c. and W30x116 girders (weighs 116 $\mathrm{Ib} / \mathrm{ft}$) spaced at 35^{\prime} o.c. The floor deck is $3.5^{\prime \prime}$ normal weight concrete on $1.5^{\prime \prime}$ x 20 gage composite steel deck.

- Include the weights of 1" light-wt floor finish, suspended acoustical tile ceiling, Mechanical and Electrical (assume an industrial building), and partitions.
- Since the beam and girder sizes are known, you must calculate the ACTUAL WEIGHT in psf of the beam and girder by dividing their weights in Ib/ft by their tributary widths)
(b) Determine the dead loads in kips/ft for a typical INTERIOR BEAM and a typical INTERIOR GIRDER. Assume the girder load is uniformly distributed because there are 4 or more beams framing into the girder.
(c) If the floor system in (a) is to be used as a heavy manufacturing plant, determine the controlling factored loads in kips/ft for the design of the typical beam and the typical girder.
- Use the Limit States (LSD) load combinations
- Note that partition loads need not be included in the dead load calculations when the floor live load is greater than 80 psf .
(d) Determine the factored, V_{u} and the factored moment, M_{u} for a typical beam and a typical girder.
- Assume the beams and girders are simply supported
- The span of the beam is 35 ft (i.e. the girder spacing)
- The span of the girder is 30 ft .

Part (a): Dead Loads

$\mathrm{W} 24 \times 55$	$55 \mathrm{plf} / 6 \mathrm{ft}$	$=$	9 psf
$\mathrm{W} 30 \times 116$	$116 \mathrm{plf} / 35 \mathrm{ft}$	$=$	3 psf

Floor deck
$(4.25 " / 12)(145 \mathrm{pcf}) \quad=\quad 51 \mathrm{psf}$
metal deck $=3 \mathrm{psf}$
light wt. floor finish $=8 \mathrm{psf}$
susp. ceiling $=2 \mathrm{psf}$
M / E (industrial) $=20 \mathrm{psf}$
Partitions $=20 \mathrm{psf}$
$\Sigma_{\mathrm{DL}}=116 \mathrm{psf}($ with partitions $)$
$\Sigma_{\mathrm{DL}}=96 \mathrm{psf}$ (without partitions)

Part (b):

dead load on interior beam:
$(116 \mathrm{psf})\left(6^{\prime}\right)=696 \mathrm{plf}=\mathbf{0 . 7 0} \mathbf{~ k i p s} / \mathbf{f t}$. (with partitions)
$(96 \mathrm{psf})\left(6^{\prime}\right)=576 \mathrm{plf}=\mathbf{0 . 5 8} \mathbf{~ k i p s} / \mathrm{ft}$. (without partitions)
dead load on interior girder:
$(116 \mathrm{psf})\left(35^{\prime}\right)=4060 \mathrm{plf}=4.1 \mathrm{kips} / \mathrm{ft}$. (with partitions)
$(96 \mathrm{psf})\left(35^{\prime}\right)=3360 \mathrm{plf}=\mathbf{3 . 4}$ kips/ft. (without partitions)
Part (c): Heavy Mfr.: Live Load = 250psf

$$
1.4 \mathrm{D}=(1.4)(96)=134.4 \mathrm{psf}
$$

$$
1.2 \mathrm{D}+1.6 \mathrm{~L}=(1.2)(96)+(1.6)(250)=\mathbf{5 1 5 p s f} \leftarrow \text { controls }
$$

Design Load on Beam:
$(515 \mathrm{psf})(6 \mathrm{ft})=3091 \mathrm{plf}=3.1 \mathbf{k i p s} / \mathbf{f t}$
Part (d)
Design Load on Girder (assuming uniformly distributed load):
$(515 \mathrm{psf})(35 \mathrm{ft})=18032 \mathrm{plf}=\mathbf{1 8 . 0} \mathbf{~ k i p s} / \mathbf{f t}$
Factored concentrated load from a beam on a typical interior girder:
$(3.1 \mathrm{kips} / \mathrm{ft})\left(35^{\prime} / 2+35^{\prime} / 2\right)=\mathbf{1 0 8 . 5} \mathbf{k i p s}$

Part (d):

Beam: $\quad V_{u}=\frac{w_{u} L}{2}=\frac{(3.1)(35)}{2}=\mathbf{5 4 . 3} \mathbf{~ k i p s}$

$$
M_{u}=\frac{w_{u} L^{2}}{8}=\frac{(3.1)(35)^{2}}{8}=\mathbf{4 7 4 . 7} \mathbf{~ f t - k i p s}
$$

Girder: $\quad \mathrm{V}_{\mathrm{u}}=\frac{\mathrm{w}_{\mathrm{u}} \mathrm{L}}{2}=\frac{(18.0)(30)}{2}=\mathbf{2 7 0}$ kips

$$
\mathrm{M}_{\mathrm{u}}=\frac{\mathrm{w}_{\mathrm{u}} \mathrm{~L}^{2}}{8}=\frac{(18.0)(30)^{2}}{8}=\mathbf{2 0 2 5} \mathbf{f t} \text {-kips }
$$

Problem 2-9

The building with the steel roof framing shown in Figure 2-16 is located in Rochester, New York. Assuming terrain category \mathbf{C} and a partially exposed roof, determine the following:
a) The balanced snow load on the lower roof, P_{f}
b) The balanced snow load on the upper roof, P_{f}
c) The design snow load on the upper roof, P_{s}
d) The snow load distribution on the lower roof considering sliding snow from the upper pitched roof
e) The snow load distribution on the lower roof considering drifting snow
f) The factored dead plus snow load in $\mathrm{Ib} / \mathrm{ft}$ for the low roof Beam A shown on plan. Assume a steel framed roof and assuming a typical dead load of 29 psf for the steel roof
g) The factored moment, M_{u} and factored shear, V_{u} for Beam A Note that the beam is simply supported
h) For the typical interior roof girder nearest the taller building (i.e. the interior girder supporting beam "A", in addition to other beams), draw the dead load and snow load diagrams, showing all the numerical values of the loads in $\mathrm{Ib} / \mathrm{ft}$ for:
a. Dead load and snow drift loads
b. Dead load and sliding snow load
i) For each of the two cases in part (h), determine the unfactored reactions at both supports of the simply supported interior girder due to dead load, snow load, and the factored reactions. Indicate which of the two snow loads (snow drift or sliding snow) will control the design of this girder.

HINT: Note that for the girder, the dead load is a uniform load, whereas the snow load may be uniformly distributed or trapezoidal in shape depending on whether sliding or drifting snow is being considered.

Solution:

(a) Lower Roof: Balanced Snow Load, P_{f}

Ground snow load for Rochester, New York, $\mathrm{P}_{\mathrm{g}}=40 \mathrm{psf}$ (Building Code of New York State, Figure 1608.2)

Assume:
Category I building
Terrain Category C \& Partially exposed roof Slope factor ($\theta \approx 0$ degrees for a flat roof)

Temperature factor,
Flat roof snow load or Balanced Snow load on lower roof is, P_{f} lower $=0.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I}_{\mathrm{s}} \mathrm{P}_{\mathrm{g}}=0.7 \times 1.0 \times 1.0 \times 1.0 \times 40 \mathrm{psf}=\mathbf{2 8} \mathbf{~ p s f}$
(b) Design snow load for lower roof, P_{s} lower $=\mathrm{P}_{\mathrm{f}} \mathrm{C}_{\mathrm{s}}=28 \mathrm{psf} \times 1.0=\mathbf{2 8} \mathbf{~ p s f}$

(c) Upper Roof: Balanced Snow Load, Pf

Ground snow load, $\mathrm{P}_{\mathrm{g}}=40 \mathrm{psf}$
Assume:

Category I building
Terrain Category C \& Partially exposed roof
Roof slope, $\theta=\arctan (6 / 12)=27$ degrees
Slope factor,

Temperature factor,
$\mathrm{C}_{\mathrm{s}}=1.0(\mathrm{ASCE} 7$ Fig 7-2)
$\mathrm{I}_{\mathrm{s}}=1.0$
$\mathrm{C}_{\mathrm{e}}=1.0($ ASCE 7 Table 7-2)
$\mathrm{C}_{\mathrm{t}}=1.0($ ASCE 7 Table 7-3)

Flat roof snow load or Balanced Snow load on upper roof is,
P_{f} upper $=0.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I}_{\mathrm{s}} \mathrm{P}_{\mathrm{g}}=0.7 \times 1.0 \times 1.0 \times 1.0 \times 40 \mathrm{psf}=\mathbf{2 8} \mathbf{~ p s f}$
Design snow load for upper roof, P_{s} upper $=\mathrm{P}_{\mathrm{f}} \mathrm{C}_{\mathrm{s}}=28$ psf x $1.0=\mathbf{2 8} \mathbf{~ p s f}$
(d) Sliding Snow Load on Lower Roof
$\mathrm{W}=$ distance from ridge to eave of sloped roof $=20 \mathrm{ft}$
Uniform sliding snow load, $\mathrm{P}_{\mathrm{SL}}=0.4 \mathrm{P}_{\text {f upper }} \mathrm{x} \mathrm{W} / 15^{\text {, }}$
$=0.4 \times 28 \mathrm{psf} \times 20^{\prime} / 15^{\prime}=\mathbf{1 5} \mathbf{~ p s f}$

- This sliding snow load is uniformly distributed over a distance of $\mathbf{1 5} \mathbf{f t}$ (Code specified) measured from the face of the taller building. This load is added to the balanced snow load on the lower roof.
- Total maximum total snow load, \mathbf{S} on the lower roof over the Code specified 15 ft distance $=28$ $\mathrm{psf}+15 \mathrm{psf} \approx \mathbf{4 3} \mathbf{~ p s f}$
- Beyond the distance of 15 ft from the face of taller building, the snow load on the lower roof is a uniform value of 28 psf .

Average total snow load, \mathbf{S} on beam $A=28 \mathrm{psf}$ (balanced snow) $+15 \mathrm{psf} \approx \mathbf{4 3} \mathbf{~ p s f}$
(e) Drifting Snow Load on Lower Roof
$\gamma=$ density of snow $=0.13 \mathrm{P}_{\mathrm{g}}+14=0.13 \times 40+14=19.2 \mathrm{pcf}$
$\mathrm{H}_{\mathrm{b}}=\mathrm{P}_{\mathrm{f}}($ lower $) / \gamma=28 \mathrm{psf} / 19.2=1.46 \mathrm{ft}$
$\mathrm{H}=$ height difference between low roof and eave of higher roof $=15 \mathrm{ft}$
$\mathrm{H}_{\mathrm{c}}=\mathrm{H}-\mathrm{H}_{\mathrm{b}}=13.54 \mathrm{ft}$
The maximum height of the drifting snow is obtained as follows:

Windward Drift: length of lower roof $=80 \mathrm{ft}$ and $\mu=0.75$

$$
\begin{aligned}
& \mathbf{H}_{\mathbf{d}}=\mu\left(0.43[\mathrm{~L}]^{1 / 3}\left[\mathrm{P}_{\mathrm{g}}+10\right]^{1 / 4}-1.5\right) \\
& =0.75\left(0.43[80]^{1 / 3}[40+10]^{1 / 4}-1.5\right)=\mathbf{2 . 6} \mathbf{f t} \text { (governs) }
\end{aligned}
$$

Leeward Drift: length of upper roof $=40 \mathrm{ft}$ and $\mu=1.0$

$$
\mathrm{H}_{\mathrm{d}}=1.0\left(0.43[40]^{1 / 3}[40+10]^{1 / 4}-1.5\right)=2.4 \mathrm{ft}
$$

The maximum value of the triangular snow drift load,

$$
\mathrm{P}_{\mathrm{SD}}=\gamma \mathrm{H}_{\mathrm{d}}=19.2 \mathrm{pcf} \times 2.6 \mathrm{ft}=\mathbf{5 0} \mathbf{~ p s f}
$$

This load must be superimposed on the uniform balanced flat roof snow load, P_{f}

The length of the triangular portion of the snow drift load, w , is given as follows:
$\mathrm{H}_{\mathrm{d}}=2.8 \mathrm{ft} \leq \mathrm{H}_{\mathrm{c}}=13.54 \mathrm{ft}$, therefore
$\mathrm{w}=4 \mathrm{H}_{\mathrm{d}}=4 \times 2.6 \mathrm{ft}=\mathbf{1 0 . 4} \mathbf{f t}$ (governs) $\leq 8 \mathrm{H}_{\mathrm{c}}=8 \times 13.54=108 \mathrm{ft}$
This triangular snow drift load must be superimposed on the uniform balanced snow load on the lower roof.

- Therefore, Maximum total snow load $=28 \mathrm{psf}+50 \mathrm{psf}=78 \mathrm{psf}$.
- The snow load varies from the maximum value of 78 psf to a value of 28 psf (i.e. balanced snow load) at a distance of 10.4 ft from the face of the taller building.
- Beyond the distance of 10.4 ft from the face of taller building, the snow load on the lower roof is a uniform value of 28 psf .

(f) Factored Dead + Live Load on Low Roof Beam A

From geometry, the average snow drift load on the low roof beam \mathbf{A} is found using similar triangles:
$(50 \mathrm{psf} / 10.4 \mathrm{ft})=\mathrm{SD}_{\text {average }} /(10.4 \mathrm{ft}-4 \mathrm{ft})$
$\mathrm{SD}_{\text {average }}=31 \mathrm{psf}=$ average "uniform" snow drift load on beam A
Average total snow load, \mathbf{S} on beam $\mathrm{A}=28 \mathrm{psf}$ (balanced snow) $+31 \mathrm{psf}=\mathbf{5 9} \mathbf{~ p s f}$

NOTE: This average total snow load is greater than the value of 43 psf for sliding snow obtained in part (d). Therefore, the \mathbf{S} value for snow drift is more critical and therefore governs!

Using the ASCE 7 strength load combinations, the factored load on the roof is:
$\mathrm{w}_{\mathrm{u} \text { roof }}=1.2 \times 29 \mathrm{psf}+1.6 \times 59 \mathrm{psf}=\mathbf{1 2 9 . 2} \mathbf{~ p s f}$
Tributary width of beam $\mathrm{A}=4 \mathrm{ft}$ (see roof plan)
Factored load on beam, $\mathrm{w}_{\mathrm{u}}=\mathrm{w}_{\mathrm{u} \text { roof }} \mathrm{x}$ Beam Tributary width $=129.2 \mathrm{psf} \times 4 \mathrm{ft}=\mathbf{5 1 7} \mathbf{~ l b} / \mathbf{f t}$
(g) Factored Moment and Shear for the Low Roof Beam A

Span of beam $=20 \mathrm{ft}$

$$
\begin{array}{llll}
\mathrm{M}_{\mathrm{u}}=\mathrm{w}_{\mathrm{u}} \mathrm{~L}^{2} / 8 & =(517 \mathrm{lb} / \mathrm{ft}) \times(20 \mathrm{ft})^{2} / 8 & = & \mathbf{2 5 . 9} \mathbf{~ f t} \text {-kips } \\
\mathrm{V}_{\mathrm{u}} & =\mathrm{w}_{\mathrm{u}} \mathrm{~L} / 2 & =(517 \mathrm{lb} / \mathrm{ft}) \times(20 \mathrm{ft}) / 2 & =
\end{array}
$$

(h) Loading diagram for Typical Interior Low roof Girder that frames into the Taller Building column

Consider both the snow drift and sliding snow loads and then determine which of these loads is more critical for this girder
(1) Snow drift on typical interior girder

Using principles from statics, we can calculate the girder reactions as follows:
$\mathbf{R}_{1 \mathbf{D}}=580 \mathrm{Ib} / \mathrm{ft} \mathrm{x}\left(20^{\prime} / 2\right)=5800 \mathrm{Ib}=5.8 \mathbf{k i p s}$
$\mathbf{R}_{\mathbf{2}} \mathbf{D}=580 \mathrm{Ib} / \mathrm{ft} \mathrm{x}\left(20^{\prime} / 2\right)=5800 \mathrm{Ib}=\mathbf{5 . 8} \mathbf{~ k i p s}$

$$
\begin{aligned}
\mathbf{R}_{1 \mathbf{L}} & =\frac{560 \mathrm{lb} / \mathrm{ft} \times\left(20^{\prime}\right) \times\left(20^{\prime} / 2\right)+1^{\prime} 2 \times 1000 \mathrm{Ib} / \mathrm{ft} \mathrm{x} 10.4^{\prime} \times\left(10.4^{\prime} / 3\right)}{20^{\prime}} \\
& =6501 \mathrm{lb} \quad=\mathbf{6 . 5} \mathbf{~ k i p s} \\
\mathbf{R}_{2 \mathbf{L}} & =560 \mathrm{lb} / \mathrm{ft} \times\left(20^{\prime}\right)+1 / 2 \times 1000 \mathrm{Ib} / \mathrm{ft} \times 10.4^{\prime}-\mathrm{R}_{1 \mathrm{LL}} \\
& =9899 \mathrm{Ib} \quad=\mathbf{9 . 9} \mathbf{~ k i p s}
\end{aligned}
$$

The factored reactions are calculated using the factored load combinations from the course text,

$$
\begin{array}{ll}
\mathbf{R}_{1 \mathbf{u}}=1.2 \mathrm{R}_{1 \mathrm{D}}+1.6 \mathrm{R}_{1 \mathrm{~L}}=1.2 \times 5.8 \mathrm{kip}+1.6 \times 6.5 \mathrm{kip} & =\mathbf{1 7 . 4} \mathbf{~ k i p s} \\
\mathbf{R}_{\mathbf{2} \mathbf{u}}=1.2 \mathrm{R}_{2 \mathrm{D}}+1.6 \mathrm{R}_{2 \mathrm{~L}}=1.2 \times 5.8 \mathrm{kip}+1.6 \times 9.9 \mathrm{kip} & =\mathbf{2 2 . 8} \mathbf{k i p s}
\end{array}
$$

(2) Sliding snow on typical interior girder

Using principles from statics, we can calculate the girder reactions as follows:

```
\(\mathbf{R}_{1}{ }_{\mathrm{DL}}=580 \mathrm{Ib} / \mathrm{ft} \mathrm{x}\left(20^{\prime} / 2\right)=5800 \mathrm{Ib}=\mathbf{5 . 8} \mathbf{~ k i p s}\)
\(\mathbf{R}_{2} \mathbf{~ D L}=580 \mathrm{Ib} / \mathrm{ft} \times\left(20^{\prime} / 2\right)=5800 \mathrm{Ib}=\mathbf{5 . 8} \mathbf{k i p s}\)
\(\mathbf{R}_{1 \mathrm{LL}}=\frac{560 \mathrm{lb} / \mathrm{ft} \times\left(20^{\prime}\right) \times\left(20^{\prime} / 2\right)+300 \mathrm{Ib} / \mathrm{ft} \mathrm{x} 15^{\prime} \times\left(15^{\prime} / 2\right)}{20^{\prime}}\)
    \(=7288 \mathrm{Ib} \quad=7.3 \mathrm{kips}\)
\(\mathbf{R}_{\mathbf{2 L L}}=560 \mathrm{lb} / \mathrm{ft} \times\left(20^{\prime}\right)+300 \mathrm{lb} / \mathrm{ft} \times 15^{\prime}-\mathrm{R}_{1 \mathrm{LL}}\)
    \(=8412 \mathrm{Ib} \quad=8.4\) kips
```

The factored reactions are calculated using the factored load combinations from the course text,
$\mathbf{R}_{\mathbf{1}}=1.2 \mathrm{R}_{1 \mathrm{D}}+1.6 \mathrm{R}_{1 \mathrm{~L}}=1.2 \times 5.8 \mathrm{kip}+1.6 \times 7.3 \mathrm{kip}=\mathbf{1 8 . 6} \mathbf{k i p s}$
$\mathbf{R}_{\mathbf{2}} \mathbf{u}=1.2 \mathrm{R}_{2 \mathrm{D}}+1.6 \mathrm{R}_{2 \mathrm{~L}}=1.2 \times 5.8 \mathrm{kip}+1.6 \times 8.4 \mathrm{kip}=\mathbf{2 0 . 4} \mathbf{k i p s}$

Problem 2-10

An eight-story office building consists of columns located 30 ft apart in both orthogonal directions. The roof and typical floor gravity loads are given below:

Roof loads:

Dead Load $($ RDL $)=80 \mathrm{psf}$;
Snow Load $(S L)=40$ psf

Floor Loads:

Floor Dead Load (FDL) $=120 \mathrm{psf}$
Floor Live Load $(\mathrm{FLL})=50 \mathrm{psf}$
(a) Using the column tributary area and a column load summation table, determine the total unfactored and factored vertical loads in a typical interior column in the first story neglecting live load reduction.
(b) Using the column tributary area and a column load summation table, determine the total unfactored and factored vertical loads in a typical interior column in the first story considering live load reduction.
(c) Develop a spread sheet to solve parts (a) and (b) and verify your results.

Solution:

Column load summation table using tributary area

GIVEN: 8-story building; Typical Interior Column Tributary Area per floor $=30 \mathrm{ft} \times 30 \mathrm{ft}=900 \mathrm{ft}^{2}$
Roof Loads: $\quad \mathrm{D}=80 \mathrm{psf} \quad \mathrm{S}=40 \mathrm{psf}$
Typical floor loads: $\mathrm{D}=120 \mathrm{psf} \quad \mathrm{L}=50 \mathrm{psf}$
Floor Live Load Calculation Table

Member	Levels supported	At (summation of floor TA)	Kle	Unreduced Floor live load, Lo (psf)	Design live load*, L
$8^{\text {th }}$ floor Column (i.e. column below roof)	Roof only	Floor live load reduction NOT applicable to roofs!!!	-	40 psf (snow)	40 psf (snow)
$7^{\text {th }}$ floor column (i.e. column below $8^{\text {th }}$ floor)	1 floor + roof (i.e. supports the roof and the $8^{\text {th }}$ floor)	$\begin{aligned} & 1 \text { floor x } 900 \\ & \mathrm{ft}^{2}=\mathbf{9 0 0} \mathrm{ft}^{2} \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{~K}_{\mathrm{LL}} \mathrm{~A}_{\mathrm{T}}=3600> \\ 400 \mathrm{ft}^{2} \Rightarrow \\ \text { Live Load } \\ \text { reduction } \end{gathered}$	50 psf	$\begin{gathered} 0.5 \times 50= \\ \mathbf{2 5} \mathbf{~ p s f} \\ \geq 0.50 \mathrm{Lo}= \\ 25 \mathrm{psf} \end{gathered}$

			allowed		
$6^{\text {th }}$ floor column (i.e. column below $7^{\text {th }}$ floor)	2 floors + roof (i.e. supports the roof, $8^{\text {th }}$ and $7^{\text {th }}$ floors)	$\begin{aligned} & 2 \text { floors x } 900 \\ & \mathrm{ft}^{2}=\mathbf{1 8 0 0} \mathbf{f t}^{2} \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{~K}_{\mathrm{LL}} \mathrm{~A}_{\mathrm{T}}=7200> \\ 400 \mathrm{ft}^{2} \Rightarrow \\ \text { Live Load } \\ \text { reduction } \\ \text { allowed } \end{gathered}$	50 psf	$\begin{gathered} 0.43 \times 50= \\ \mathbf{2 2} \mathbf{~ p s f} \\ \geq 0.40 \mathrm{Lo}= \\ 20 \mathrm{psf} \end{gathered}$
$5^{\text {th }}$ floor column (i.e. column below $6^{\text {th }}$ floor)	```3 floors + roof (i.e. supports the roof, 8}\mp@subsup{8}{}{\mathrm{ th}}\mathrm{ , 7 th and 6 }\mp@subsup{6}{}{\mathrm{ th} floors)```	$\begin{aligned} & 3 \text { floors x } 900 \\ & \mathrm{ft}^{2}=\mathbf{2 7 0 0} \mathbf{f t}^{2} \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{~K}_{\mathrm{LL}} \mathrm{~A}_{\mathrm{T}}=10800 \\ > \\ 400 \mathrm{ft}^{2} \Rightarrow \\ \text { Live Load } \\ \text { reduction } \\ \text { allowed } \end{gathered}$	50 psf	$\begin{gathered} 0.394 \times 50= \\ \mathbf{2 0} \mathbf{~ p s f} \\ \geq 0.40 \mathrm{Lo}= \\ 20 \mathrm{psf} \end{gathered}$
$4^{\text {th }}$ floor column (i.e. column below $5^{\text {th }}$ floor)	4 floors + roof (i.e. supports the roof, $8^{\text {th }}$, $7^{\text {th }}, 6^{\text {th }}$ and $5^{\text {th }}$ floors)	$\begin{aligned} & 4 \text { floor x } 900 \\ & \mathrm{ft}^{2}=\mathbf{3 6 0 0} \mathbf{f t}^{\mathbf{2}} \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{~K}_{\mathrm{LL}} \mathrm{~A}_{\mathrm{T}}=14400 \\ > \\ 400 \mathrm{ft}^{2} \Rightarrow \\ \text { Live Load } \\ \text { reduction } \\ \text { allowed } \end{gathered}$	50 psf	$\begin{gathered} 0.375 \times 50=19 \\ \mathrm{psf} \\ \geq 0.40 \mathrm{Lo}= \\ \mathbf{2 0} \mathbf{~ p s f} \end{gathered}$
$3^{\text {rd }}$ floor column (i.e. column below $4^{\text {th }}$ floor)	5 floors + roof (.e. supports the roof, $8^{\text {th }}$, $7^{\text {th }}, 6^{\text {th }}, 5^{\text {th }}$ and $4^{\text {th }}$ floors)	$\begin{aligned} & 5 \text { floor x } 900 \\ & \mathrm{ft}^{2}=\mathbf{4 5 0 0} \mathrm{ft}^{\mathbf{2}} \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{~K}_{\mathrm{LL}} \mathrm{~A}_{\mathrm{T}}=18000 \\ > \\ 400 \mathrm{ft}^{2} \Rightarrow \\ \text { Live Load } \\ \text { reduction } \\ \text { allowed } \end{gathered}$	50 psf	$\begin{gathered} 0.362 \times 50=18 \\ \mathrm{psf} \\ \geq 0.40 \mathrm{Lo}= \\ \mathbf{2 0} \mathbf{~ p s f} \end{gathered}$
$2^{\text {nd }}$ floor column (i.e. column below $3^{\text {rd }}$ floor)	6 floors + roof (i.e. supports the roof, $8^{\text {th }}$, $7^{\text {th }}, 6^{\text {th }}, 5^{\text {th }}$, $4^{\text {th }}$ and $3^{\text {rd }}$ floors)	$\begin{aligned} & 6 \text { floor x } 900 \\ & \mathrm{ft}^{2}=\mathbf{5 4 0 0} \mathrm{ft}^{\mathbf{2}} \end{aligned}$	$\begin{gathered} \mathrm{K}_{\mathrm{LL}} \mathrm{~A}_{\mathrm{T}}=21600 \\ > \\ 400 \mathrm{ft}^{2} \Rightarrow \\ \text { Live Load } \\ \text { reduction } \\ \text { allowed } \end{gathered}$	50 psf	$\begin{gathered} 0.352 \times 50=18 \\ \mathrm{psf} \\ \geq 0.40 \mathrm{Lo}= \\ \mathbf{2 0} \mathbf{~ p s f} \end{gathered}$
Ground or $1{ }^{\text {st }}$ floor column (i.e. column below $2^{\text {nd }}$ floor)	7 floors + roof (i.e. supports the roof, $8^{\text {th }}, 7^{\text {th }}$, $6^{\text {th }}, 5^{\text {th }}, 4^{\text {th }}$, $3^{\text {rd }}$ and $2^{\text {nd }}$ floors)	$\begin{aligned} & 7 \text { floors x } 900 \\ & \mathrm{ft}^{2}=\mathbf{6 3 0 0} \mathrm{ft}^{2} \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{~K}_{\mathrm{LL}} \mathrm{~A}_{\mathrm{T}}=25200 \\ > \\ 400 \mathrm{ft}^{2} \Rightarrow \\ \text { Live Load } \\ \text { reduction } \\ \text { allowed } \end{gathered}$	50 psf	$\begin{gathered} 0.344 \times 50=17.3 \\ \mathrm{psf} \\ \geq 0.40 \mathrm{Lo}= \\ \mathbf{2 0} \mathbf{~ p s f} \end{gathered}$

$* \mathbf{L} \quad=\mathrm{L}_{\mathrm{o}}\left[0.25+\left\{15 /\left[\mathrm{K}_{\mathrm{LL}} \mathrm{A}_{\mathrm{T}}\right]^{0.5}\right\}\right]$
$\geq 0.50 \mathrm{~L}_{\mathrm{o}}$ for members supporting one floor (e.g. slabs, beams, girders or columns)
$\geq 0.40 \mathrm{~L}_{0}$ for members supporting two or more floors (e.g. columns)
$\mathrm{L}_{\mathrm{o}}=$ unreduced design live load from the Code (ASCE 7-02 Table 4-1)
$K_{L L}=$ live load factor (ASCE 7-02 Table 4-2)
$\mathrm{A}_{\mathrm{T}}=$ summation of the floor tributary area in ft^{2} supported by the member, excluding the roof area and floor areas with NON-REDUCIBLE live loads.

The COLUMN LOAD SUMMATION TABLES are shown on the following pages for the two cases:

1. Live load reduction ignored
2. Live load reduction considered

$7^{\text {th }} \mathrm{Flr}$	900	120	50	1	50	224	169	201.6 or 152.1	$\mathbf{5 0 7 . 6}$	448.2	$\mathbf{5 0 7 . 6}$
$6^{\text {th }} \mathrm{Flr}$	900	120	50	1	50	224	169	201.6 or 152.1	$\mathbf{7 0 9 . 2}$	600.3	$\mathbf{7 0 9 . 2}$
$5^{\text {th }} \mathrm{Flr}$	900	120	50	1	50	224	169	201.6 or 152.1	$\mathbf{9 1 0 . 8}$	752.4	$\mathbf{9 1 0 . 8}$
$4^{\text {th }} \mathrm{Flr}$	900	120	50	1	50	224	169	201.6 or 152.1	$\mathbf{1 1 1 2 . 4}$	904.5	$\mathbf{1 1 1 2 . 4}$
$3^{\text {rd }} \mathrm{Flr}$	900	120	50	1	50	224	169	201.6 or 152.1	$\mathbf{1 3 1 4 . 0}$	1056.6	$\mathbf{1 3 1 4 . 0}$
$2^{\text {nd }} \mathrm{Flr}$	900	120	50	1	50	224	169	201.6 or 152.1	$\mathbf{1 5 1 5 . 6}$	1208.7	$\mathbf{1 5 1 5 . 6}$

Problem 2-11 (see framing plan and floor section)
Framing Members:
Interior Beam: W16x31
Spandrel beam: W21x50
Interior Girder:W24x68

Floor Deck: see below
Assume Office occupancy, LL=50psf
a) Determine the floor dead load in PSF to the interior beam
b) Determine the weight of the perimeter wall (brick \& stud wall) in PLF
c) Determine the service dead and live loads to the spandrel and interior beams in PLF
d) Determine the factored loads to the spandrel and interior beams in PLF
e) Determine the factored maximum moment and shear in the to the spandrel and interior beams
f) Determine the factored loads to the interior girder
g) Determine the factored maximum moment and shear in the interior girder

B-LOK $\quad 1.5^{\prime \prime} \times 6^{\prime \prime}$ deck $\quad F_{y}=40 \mathrm{ksi} \quad f^{\prime}{ }_{c}=3 \mathrm{ksi} \quad 145$ pcf concrete

DECK PROPERTIES										
Gage	t	w	$\mathrm{A}_{\text {s }}$	Ip	S_{p}	S_{n}	$\phi \mathrm{Rb}_{\text {b }}$	$\phi \mathrm{Rb}_{\mathrm{d}}$	ϕV_{n}	studs
22	0.0295	1.6	0.470	0.158	0.189	0.191	1290	1690	2830	0.52
20	0.0358	1.9	0.570	0.205	0.233	0.241	1830	2440	3420	0.63
19	0.0418	2.3	0.670	0.251	0.276	0.283	2420	3270	3980	0.74
18	0.0474	2.6	0.760	0.294	0.317	0.322	3040	4140	4500	0.84
16	0.0598	3.3	0.960	0.380	0.406	0.408	4620	6390	5620	0.84

	COMPOSITE PROPERTIES												
	Slab Depth	$\begin{aligned} & \phi \mathrm{M}_{\mathrm{nt}} \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{c}} \\ & \mathrm{in}^{2} \end{aligned}$	Vol. $\mathrm{ft}^{3} / \mathrm{ft}^{2}$	$\begin{gathered} \text { W } \\ \text { psf } \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{c}} \\ & \mathrm{in}^{3} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { lav } \\ \text { in }^{4} \end{array} \end{aligned}$	ϕM_{no} in.k	$\phi \mathrm{V}_{\mathrm{nt}}$ lbs.	Max Unshored Span, ft.			$\begin{aligned} & \mathrm{A}_{\mathrm{wwt}} \\ & \mathrm{in}^{2} / \mathrm{ft} \end{aligned}$
										$\begin{gathered} 1 \\ \text { span } \end{gathered}$	$\underset{\text { span }}{2}$	$\stackrel{3}{\text { span }}$	
$\begin{aligned} & 0 \\ & 0 \\ & \text { त } \\ & \hline 0 \end{aligned}$	4.00	45.43	21.3	0.255	37	0.96	4.0	32.66	3970	5.31	7.10	7.19	0.023
	4.50	53.42	24.8	0.297	43	1.16	5.7	39.48	4610	5.04	6.76	6.84	0.027
	5.00	61.41	28.3	0.339	49	1.37	7.8	46.48	5280	4.81	6.47	6.54	0.032
	5.50	69.40	32.1	0.380	55	1.58	10.4	53.61	5820	4.61	6.21	6.28	0.036
	6.00	77.39	36.0	0.422	61	1.79	13.4	60.83	6180	4.45	5.99	6.06	0.041
\mathfrak{N}	6.50	85.38	40.1	0.464	67	2.00	17.0	68.14	6560	4.34	5.79	5.85	0.045
	6.75	89.37	42.2	0.484	70	2.11	19.1	71.81	6760	4.29	5.69	5.76	0.047
	7.00	93.37	44.3	0.505	73	2.22	21.3	75.50	6960	4.24	5.61	5.67	0.050

Typical Floor Section
$\mathrm{w}_{\text {deck }}:=1.6 \mathrm{psf} \quad \mathrm{H}_{\text {wall }}:=15.5 \mathrm{ft}$
$\mathrm{w}_{\text {conc }}:=49 \mathrm{psf} \quad \mathrm{w}_{\text {studs }}:=1.4 \mathrm{psf}$
$\mathrm{w}_{\text {part }}:=15 \mathrm{psf} \quad \mathrm{w}_{\text {ins }}:=3 \mathrm{psf}$

$\mathrm{w}_{\mathrm{ME}}:=5 \mathrm{psf} \quad \quad \mathrm{w}_{\mathrm{gwb}}:=2 \cdot(5 \mathrm{psf}) \cdot 0.625=6.25 \mathrm{psf}$
$\mathrm{w}_{\text {clg }}:=2 \mathrm{psf} \quad \quad \mathrm{w}_{\text {brick }}:=40 \mathrm{psf}$

$$
\mathrm{LL}:=50 \mathrm{psf}
$$

$\mathrm{DL}_{\text {floor }}:=\mathrm{w}_{\text {deck }}+\mathrm{w}_{\text {conc }}+\mathrm{w}_{\text {part }}+\mathrm{w}_{\text {ME }}+\mathrm{w}_{\text {clg }}=72.6 \mathrm{psf}$
$\mathrm{DL}_{\text {wall }}:=\mathrm{w}_{\text {studs }}+\mathrm{w}_{\text {ins }}+\mathrm{w}_{\text {gwb }}+\mathrm{w}_{\text {brick }}=50.65 \mathrm{psf}$
$\mathrm{w}_{\text {wall }}:=\mathrm{H}_{\text {wall }} \cdot \mathrm{DL}_{\text {wall }}=785.1 \mathrm{plf}$
Part (b)

Loads to Interior Beam:

$\mathrm{L}_{\mathrm{IB}}:=30 \mathrm{ft}$
$\mathrm{TW}_{\text {IB }}:=7 \mathrm{ft}$
$\mathrm{DL}_{\mathrm{IB}}:=\mathrm{DL}_{\mathrm{floor}}+\frac{31 \mathrm{plf}}{\mathrm{TW}_{\mathrm{IB}}}=77 \mathrm{psf} \quad$ Part (a)
${ }^{w_{\text {DIB }}}:=\mathrm{TW}_{\mathrm{IB}} \cdot \mathrm{DL}_{\mathrm{IB}}=539.2 \cdot \mathrm{plf}$
$\mathrm{w}_{\text {LIB }}:=\mathrm{TW}_{\text {IB }} \cdot \mathrm{LL}=350 \cdot$ plf
$\mathrm{w}_{\mathrm{uIB}}:=(1.2)\left(\mathrm{w}_{\mathrm{DIB}}\right)+(1.6)\left(\mathrm{w}_{\mathrm{LIB}}\right)=1207 \cdot \mathrm{plf}$
$\mathrm{M}_{\mathrm{uIB}}:=\frac{\mathrm{w}_{\mathrm{uIB}}{ }^{\mathrm{L}_{\mathrm{IB}}{ }^{2}}}{8}=136 \cdot \mathrm{ft} \cdot \mathrm{kip}$
$\mathrm{V}_{\mathrm{uIB}}:=\frac{\mathrm{w}_{\mathrm{uIB}}{ }^{\mathrm{L}} \mathrm{IB}}{2}=18.1 \cdot \mathrm{kips}$

Load to Interior Girder:

$\mathrm{P}_{\mathrm{uG}}:=2 \cdot \mathrm{~V}_{\mathrm{uIB}}=36.211 \mathrm{kips} \quad$ Part (f)
$\mathrm{V}_{\mathrm{uG}}:=\mathrm{P}_{\mathrm{uG}}=36.211 \mathrm{kips}$
$\mathrm{M}_{\mathrm{uG}}:=\frac{\mathrm{P}_{\mathrm{uG}} \cdot \mathrm{L}_{\mathrm{G}}}{3}=253.5 \mathrm{ft} \cdot \mathrm{kips}$
Part (g)

Loads to Spandrel Beam:

$\mathrm{L}_{\mathrm{SB}}:=30 \mathrm{ft}$
$\mathrm{TW}_{\mathrm{SB}}:=3.5 \mathrm{ft}+6 \mathrm{in}=4 \mathrm{ft}$
$\mathrm{DL}_{\mathrm{SB}}:=\mathrm{DL}_{\text {floor }}+\frac{50 \mathrm{plf}}{\mathrm{TW}_{\mathrm{SB}}}=85.1 \mathrm{psf}$
${ }^{w_{D S B}}:=\mathrm{TW}_{\mathrm{SB}} \cdot \mathrm{DL}_{\mathrm{SB}}+\mathrm{w}_{\mathrm{wall}}=1125.5 \cdot \mathrm{plf}$
${ }^{\mathrm{w}} \mathrm{LSB}:=\mathrm{TW}_{\mathrm{SB}} \cdot \mathrm{LL}=200 \cdot \mathrm{plf}$
$\mathrm{w}_{\mathrm{uSB}}:=(1.2)\left(\mathrm{w}_{\mathrm{DSB}}\right)+(1.6)\left(\mathrm{w}_{\mathrm{LSB}}\right)=1671 \cdot \mathrm{plf} \quad$ Part (d)
$\mathrm{M}_{\mathrm{uSB}}:=\frac{\mathrm{w}_{\mathrm{uSB}}{ }^{\mathrm{L}_{\mathrm{SB}}{ }^{2}}}{8}=188 \cdot \mathrm{ft} \cdot \mathrm{kip}$

$$
\mathrm{V}_{\mathrm{uSB}}:=\frac{\mathrm{w}_{\mathrm{uSB}}{ }^{\mathrm{L}_{\mathrm{SB}}}}{2}=25.1 \cdot \mathrm{kips}
$$

Part (e)

Given Loads:
Uniform load, w
Concentrated Load, P
D = 500plf
$\mathrm{D}=11 \mathrm{k}$
$\mathrm{L}=800 \mathrm{plf}$
$\mathrm{S}=15 \mathrm{k}$
S = 600plf
Beam length $=25 \mathrm{ft}$.
$\mathrm{W}=+12 \mathrm{k}$ or -12 k
$\mathrm{E}=+8 \mathrm{k}$ or -8 k

Do the following:
a) Describe a practical framing scenario where these loads could all occur as shown.
b) Determine the maximum moment for each individual load effect (D, L, S, W, E)
c) Develop a spreadsheet to determine the worst-case bending moments for the code-required load combinations.
Uniform Loads Conccentrated Loads $\quad \mathrm{L}_{\mathrm{B}}:=25 \mathrm{ft}$

$$
\begin{array}{lll}
{ }^{\mathrm{w}} & :=500 \mathrm{plf} & \mathrm{P}_{\mathrm{D}}:=11 \mathrm{kips} \\
{ }^{\mathrm{w}} & \\
{ }_{\mathrm{L}}:=800 \mathrm{plf} & \mathrm{P}_{\mathrm{S}}:=15 \mathrm{kips} & \\
{ }^{\mathrm{w}} & :=600 \mathrm{plf} & \mathrm{P}_{\mathrm{W}}:=12 \mathrm{kips} \\
& \mathrm{P}_{\mathrm{E}}:=8 \mathrm{kips} & \mathrm{P}_{\text {Eup }}:=-12 \mathrm{kips} \\
& =-8 \mathrm{kips}
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{D}}:=\frac{\mathrm{w}_{\mathrm{D}} \cdot \mathrm{~L}_{\mathrm{B}}{ }^{2}}{8}+\frac{\mathrm{P}_{\mathrm{D}} \cdot \mathrm{~L}_{\mathrm{B}}}{4}=108 \mathrm{ft} \cdot \mathrm{kips} & \mathrm{M}_{\mathrm{W}}:=\frac{\mathrm{P}_{\mathrm{W}} \cdot \mathrm{~L}_{\mathrm{B}}}{4}=75 \mathrm{ft} \cdot \mathrm{kips} \quad \mathrm{M}_{\mathrm{Wup}}:=\frac{\mathrm{P}_{\mathrm{Wup}} \cdot \mathrm{~L}_{\mathrm{B}}}{4}=-75 \mathrm{ft} \cdot \mathrm{kips} \\
\mathrm{M}_{\mathrm{L}}:=\frac{{ }_{\mathrm{W}}^{\mathrm{L}}}{} \cdot \mathrm{~L}_{\mathrm{B}}{ }^{2} & 8 \\
8 & 62 \mathrm{ft} \cdot \mathrm{kips} \\
\mathrm{M}_{\mathrm{E}}:=\frac{\mathrm{P}_{\mathrm{E}} \cdot \mathrm{~L}_{\mathrm{B}}}{4}=50 \mathrm{ft} \cdot \mathrm{kips} \quad \mathrm{M}_{\text {Eup }}:=\frac{\mathrm{P}_{\text {Eup }} \cdot \mathrm{L}_{\mathrm{B}}}{4}=-50 \mathrm{ft} \cdot \mathrm{kips}
\end{array}
$$

$$
\mathrm{M}_{\mathrm{S}}:=\frac{\mathrm{w}_{\mathrm{S}} \cdot \mathrm{~L}_{\mathrm{B}}^{2}}{8}+\frac{\mathrm{P}_{\mathrm{S}} \cdot \mathrm{~L}_{\mathrm{B}}}{4}=141 \mathrm{ft} \cdot \mathrm{kips}
$$

$$
\mathrm{LC} 1:=\left(1.4 \cdot \mathrm{M}_{\mathrm{D}}\right)=151 \mathrm{ft} \cdot \mathrm{kips}
$$

$$
\mathrm{LC} 2:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{L}}\right)+\left(0.5 \cdot \mathrm{M}_{\mathrm{S}}\right)=300 \mathrm{ft} \cdot \mathrm{kips}
$$

$$
\mathrm{LC} 3 \mathrm{a}:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(0.8 \cdot \mathrm{M}_{\mathrm{L}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{S}}\right)=404 \mathrm{ft} \cdot \mathrm{kips}
$$

$$
\mathrm{LC} 3 \mathrm{~b}:=\left(1 \cdot 2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(0.8 \cdot \mathrm{M}_{\mathrm{W}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{S}}\right)=414 \mathrm{ft} \cdot \mathrm{kips}
$$

$$
\mathrm{LC} 4:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{W}}\right)+\left(\mathrm{M}_{\mathrm{L}}\right)+\left(0.5 \cdot \mathrm{M}_{\mathrm{S}}\right)=382 \mathrm{ft} \cdot \mathrm{kips}
$$

$$
\mathrm{LC} 5:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(\mathrm{M}_{\mathrm{E}}\right)+\left(\mathrm{M}_{\mathrm{L}}\right)+\left(0.2 \cdot \mathrm{M}_{\mathrm{S}}\right)=270 \mathrm{ft} \cdot \mathrm{kips}
$$

$$
\text { LC6 := }\left(0.9 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(1.6 \cdot \mathrm{M}_{\text {Wup }}\right)=-23 \mathrm{ft} \cdot \mathrm{kips}
$$

$$
\mathrm{LC} 7:=\left(0.9 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(\mathrm{M}_{\mathrm{Eup}}\right)=47 \mathrm{ft} \cdot \mathrm{kips}
$$

$$
M_{\max }:=\max (\mathrm{LC} 1, \mathrm{LC} 2, \mathrm{LC} 3 \mathrm{a}, \mathrm{LC} 3 \mathrm{~b}, \mathrm{LC} 4, \mathrm{LC} 5)=414 \mathrm{ft} \cdot \mathrm{kips}
$$

$$
\mathrm{M}_{\operatorname{maxUp}}:=\min (\mathrm{LC} 6, \mathrm{LC} 7)=-23 \mathrm{ft} \cdot \mathrm{kips}
$$

Given:
Beam is HSS8x8x3/8, Length $=28 \mathrm{ft}$.
Pipe 6 STD is hung from the beam and is full of water (assume load is uniformly distributed) $5 / 8 "$ thick ice is around the HSS8x8 and P6

Find:
a) The uniform load in PLF for each load item (self wt., ice, water)
b) The maximum bending moment in the beam

Dead Loads

$\mathrm{w}_{8 \mathrm{x} 8}:=37.61 \mathrm{plf}$
$\gamma_{\text {ice }}:=56 \mathrm{pcf}$
${ }^{\mathrm{W}}{ }_{\mathrm{P} 6}:=19 \mathrm{plf}$

$\mathrm{A}_{\mathrm{ice} 8 \mathrm{x} 8}:=\mathrm{t}_{\text {ice }}(4)(8 \mathrm{in}+0.625 \mathrm{in})=21.563 \cdot \mathrm{in}^{2}$
$\mathrm{A}_{\text {iceP6 }}:=\pi \cdot \frac{\left[\left[\mathrm{O}_{\mathrm{dia}}+\left(2 \cdot \mathrm{t}_{\mathrm{ice}}\right)\right]^{2}-\mathrm{O}_{\mathrm{dia}}{ }^{2}\right]}{4}=14.245 \cdot \mathrm{in}^{2}$
$w_{\text {ice } 8 \mathrm{x} 8}:=\gamma_{\text {ice }} \cdot \mathrm{A}_{\text {ice } 8 \mathrm{x} 8}=8.385 \cdot$ plf
$\mathrm{w}_{\text {iceP6 }}:=\gamma_{\text {ice }} \cdot \mathrm{A}_{\text {iceP6 }}=5.54 \cdot$ plf
$\mathrm{w}_{\text {water }}:=\gamma_{\text {water }} \cdot \frac{\pi \cdot \mathrm{I}_{\mathrm{dia}}{ }^{2}}{4}=12.54 \cdot \mathrm{plf}$
$w_{\text {total }}:=w_{\text {ice } 8 x 8}+w_{\text {iceP6 }}+w_{\text {water }}{ }^{+w_{8 x}}{ }^{+} w_{\text {P6 }}=83.075 \cdot \mathrm{plf}$
$\mathrm{M}_{\mathrm{B}}:=\frac{\mathrm{w}_{\text {total }}{ }^{\mathrm{L}_{\mathrm{B}}{ }^{2}}}{8}=8.141 \cdot \mathrm{ft} \cdot \mathrm{kip} \quad$ part b
$\mathrm{V}_{\mathrm{B}}:=\frac{\mathrm{w}_{\text {total }}{ }^{\mathrm{L}} \mathrm{B}}{2}=1.16 \cdot \mathrm{kips}$

$$
\begin{aligned}
& \text { Uniform Loads Conccentrated Loads } \quad \mathrm{L}_{\mathrm{B}}:=25 \mathrm{ft} \\
& { }^{W_{D}}:=500 \mathrm{plf} \quad \mathrm{P}_{\mathrm{D}}:=11 \mathrm{kips} \\
& { }^{w_{L}}:=800 \text { plf } \quad P_{S}:=15 k i p s \\
& \mathrm{w}_{\mathrm{S}}:=600 \mathrm{plf} \quad \quad \mathrm{P}_{\mathrm{W}}:=12 \mathrm{kips} \quad \mathrm{P}_{\mathrm{Wup}}:=-12 \mathrm{kips} \\
& \mathrm{P}_{\mathrm{E}}:=8 \text { kips } \quad \mathrm{P}_{\text {Eup }}:=-8 \text { kips } \\
& M_{D}:=\frac{w_{D} \cdot L_{B}^{2}}{8}+\frac{P_{D} \cdot L_{B}}{4}=108 \mathrm{ft} \cdot \mathrm{kips} \quad \mathrm{M}_{W}:=\frac{\mathrm{P}_{W} \cdot \mathrm{~L}_{B}}{4}=75 \mathrm{ft} \cdot \mathrm{kips} \quad \mathrm{M}_{\text {Wup }}:=\frac{\mathrm{P}_{\text {Wup }} \cdot \mathrm{L}_{\mathrm{B}}}{4}=-75 \mathrm{ft} \cdot \mathrm{kips} \\
& \begin{array}{l}
\mathrm{M}_{\mathrm{L}}:=\frac{\mathrm{w}_{\mathrm{L}} \cdot{ }^{2}{ }^{2}}{8}=62 \mathrm{ft} \cdot \mathrm{kips} \\
\mathrm{M}_{\mathrm{S}}:=\frac{{ }^{w_{S}} \cdot{ }^{2}{ }^{2}}{8}+\frac{\mathrm{P}_{\mathrm{S}} \cdot \mathrm{~L}_{\mathrm{B}}}{4}=141 \mathrm{ft} \cdot \mathrm{kips}
\end{array} \\
& \mathrm{LC} 1:=\left(1.4 \cdot \mathrm{M}_{\mathrm{D}}\right)=151 \mathrm{ft} \cdot \mathrm{kips} \\
& \mathrm{LC} 2:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{L}}\right)+\left(0.5 \cdot \mathrm{M}_{\mathrm{S}}\right)=300 \mathrm{ft} \cdot \mathrm{kips} \\
& \text { LC3a }:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(0.8 \cdot \mathrm{M}_{\mathrm{L}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{S}}\right)=404 \mathrm{ft} \cdot \mathrm{kips} \\
& \text { LC3b }:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(0.8 \cdot \mathrm{M}_{\mathrm{W}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{S}}\right)=414 \mathrm{ft} \cdot \mathrm{kips} \\
& \mathrm{LC} 4:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{W}}\right)+\left(\mathrm{M}_{\mathrm{L}}\right)+\left(0.5 \cdot \mathrm{M}_{\mathrm{S}}\right)=382 \mathrm{ft} \cdot \mathrm{kips} \\
& \mathrm{LC} 5:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(\mathrm{M}_{\mathrm{E}}\right)+\left(\mathrm{M}_{\mathrm{L}}\right)+\left(0.2 \cdot \mathrm{M}_{\mathrm{S}}\right)=270 \mathrm{ft} \cdot \mathrm{kips} \\
& \text { LC6 : }=\left(0.9 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(1.6 \cdot \mathrm{M}_{\text {Wup }}\right)=-23 \mathrm{ft} \cdot \mathrm{kips} \\
& \text { LC7 : }=\left(0.9 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(\mathrm{M}_{\mathrm{Eup}}\right)=47 \mathrm{ft} \cdot \mathrm{kips} \\
& \mathrm{M}_{\text {max }}:=\max (\mathrm{LC} 1, \mathrm{LC} 2, \mathrm{LC} 3 \mathrm{a}, \mathrm{LC} 3 \mathrm{~b}, \mathrm{LC} 4, \mathrm{LC} 5)=414 \mathrm{ft} \cdot \mathrm{kips} \\
& M_{\text {maxUp }}:=\min (\text { LC6, LC7 })=-23 \mathrm{ft} \cdot \mathrm{kips}
\end{aligned}
$$

Problem 2-14 (see framing plan)
Assuming a roof dead load of 25 psf and a 25 degree roof slope, determine the following using the IBC factored load combinations. Neglect the rain load, R and assume the snow load, S is zero:
d. Determine the tributary areas of $\mathrm{B} 1, \mathrm{G} 1, \mathrm{C} 1$, and W1
e. The uniform dead and roof live load and the factored loads on B1 in PLF
f. The uniform dead and roof live load on G1 and the factored loads in PLF (Assume G1 is uniformly loaded)
g. The total factored axial load on column C1, in kips
h. The total factored uniform load on W1 in PLF (assume trib. length of 50 ft .)

Slope $:=25 \quad \underset{\mathrm{w}}{\mathrm{F}}:=12 \cdot \tan \left(\right.$ Slope $\left.\cdot \frac{\pi}{180}\right)=5.596 \quad \begin{array}{ll}\mathrm{L}_{\mathrm{B}}:=45 \mathrm{ft} & \mathrm{TW}_{\mathrm{B}}:=5 \mathrm{ft} \\ \mathrm{L}_{\mathrm{G}}:=25 \mathrm{ft} & \mathrm{TW}_{\mathrm{W}}:=2 \cdot \mathrm{~L}_{\mathrm{G}}=50 \mathrm{ft}\end{array} \quad \mathrm{D}:=25 \mathrm{psf}$
$\mathrm{R}_{2}:=1.2-(0.05 \cdot \mathrm{~F})=0.92$

Part (a):

$\mathrm{TA}_{\mathrm{B} 1}:=\mathrm{L}_{\mathrm{B}} \cdot \mathrm{TW}_{\mathrm{B}}=225 \mathrm{ft}^{2} \quad \mathrm{R}_{1 \mathrm{~B} 1}:=1.2-\frac{0.001 \cdot \mathrm{TA}_{\mathrm{B} 1}}{1 \mathrm{ft}^{2}}=0.975$
$\mathrm{TA}_{\mathrm{G} 1}:=\mathrm{L}_{\mathrm{G}} \cdot \frac{\mathrm{L}_{\mathrm{B}}}{2}=562.5 \mathrm{ft}^{2} \quad \quad \mathrm{R}_{1 \mathrm{G} 1}:=1.2-\frac{0.001 \cdot \mathrm{TA}_{\mathrm{G} 1}}{1 \mathrm{ft}^{2}}=0.638$
$\mathrm{TA}_{\mathrm{C} 1}:=\mathrm{L}_{\mathrm{G}} \cdot \frac{\mathrm{L}_{\mathrm{B}}}{2}=563 \mathrm{ft}^{2} \quad \mathrm{R}_{1 \mathrm{C} 1}:=1.2-\frac{0.001 \cdot \mathrm{TA}_{\mathrm{C} 1}}{1 \mathrm{ft}^{2}}=0.638$
$\mathrm{TW}_{\mathrm{W} 1}:=\mathrm{TW}_{\mathrm{W}} \cdot \frac{\mathrm{L}_{\mathrm{B}}}{2}=1125 \mathrm{ft}^{2} \quad \mathrm{R}_{1 \mathrm{~W} 1}:=0.6$

Part (b):

$\mathrm{L}_{\mathrm{rB} 1}:=\max \left[0.6 \cdot 20 \mathrm{psf},\left(\mathrm{R}_{1 \mathrm{B1} 1} \cdot \mathrm{R}_{2} \cdot 20 \mathrm{psf}\right)\right]=17.9 \cdot \mathrm{psf}$
${ }^{\mathrm{w}} \mathrm{DB} 1:=\mathrm{TW}_{\mathrm{B}} \cdot \mathrm{D}=125 \cdot \mathrm{plf} \quad{ }^{\mathrm{w}} \mathrm{LrB}:=\mathrm{TW}_{\mathrm{B}} \cdot \mathrm{L}_{\mathrm{rB} 1}=90 \cdot \mathrm{plf} \quad \quad \mathrm{w}_{\mathrm{uB} 1}:=\left(1 \cdot 2 \cdot{ }^{\mathrm{w}} \mathrm{DB} 1\right)+\left(1.6 \cdot{ }^{\mathrm{w}} \mathrm{LrB} 1\right)=294 \cdot \mathrm{plf}$

Part (c):

$\mathrm{L}_{\mathrm{rG} 1}:=\max \left[0.6 \cdot 20 \mathrm{psf},\left(\mathrm{R}_{1 \mathrm{G} 1} 1 \cdot \mathrm{R}_{2} \cdot 20 \mathrm{psf}\right)\right]=12 \cdot \mathrm{psf}$
${ }^{W_{D G 1}}:=\frac{\mathrm{L}_{\mathrm{B}}}{2} \cdot \mathrm{D}=563 \cdot$ plf $\quad{ }^{\mathrm{W}_{\mathrm{LGG}}}:=\frac{\mathrm{L}_{\mathrm{B}}}{2} \cdot \mathrm{~L}_{\mathrm{rG} 1}=270 \cdot \mathrm{plf} \quad \quad \mathrm{w}_{\mathrm{UG} 1}:=\left(1 \cdot 2 \cdot{ }^{\mathrm{W}}{ }_{\mathrm{DG} 1}\right)+\left(1.6 \cdot{ }^{\mathrm{W}} \mathrm{LrG1}\right)=1107 \cdot \mathrm{plf}$

Part (d):

$\mathrm{L}_{\mathrm{rC} 1}:=\max \left[0.6 \cdot 20 \mathrm{psf},\left(\mathrm{R}_{1 \mathrm{Cl}} \cdot \mathrm{R}_{2} \cdot 20 \mathrm{psf}\right)\right]=12 \cdot \mathrm{psf}$
$\mathrm{P}_{\mathrm{DC} 1}:=\mathrm{TA}_{\mathrm{C} 1} \cdot \mathrm{D}=14 \cdot \mathrm{kips} \quad \mathrm{P}_{\mathrm{LrC} 1}:=\mathrm{TA}_{\mathrm{C} 1} \cdot \mathrm{~L}_{\mathrm{rC} 1}=7 \cdot \mathrm{kips} \quad \mathrm{P}_{\mathrm{uC} 1}:=\left(1.2 \cdot \mathrm{P}_{\mathrm{DC} 1}\right)+\left(1.6 \cdot \mathrm{P}_{\mathrm{LrC} 1}\right)=28 \cdot \mathrm{kips}$

Part (e):

$\mathrm{L}_{\mathrm{rW} 1}:=\max \left[0.6 \cdot 20 \mathrm{psf},\left(\mathrm{R}_{1 \mathrm{~W} 1} \cdot \mathrm{R}_{2} \cdot 20 \mathrm{psf}\right)\right]=12 \cdot \mathrm{psf}$

A 3-story building has columns spaced at 25 ft in both orthogonal directions, and is subjected to the roof and floor loads shown below. Using a column load summation table, calculate the cumulative axial loads on a typical interior column. Develop this table using a spreadsheet.

Roof Loads:	2nd \& 3rd floor loads
Dead, D = 20psf	Dead, D = 60psf
Snow, S = 45psf	Live, L = 100psf

All other loads are 0

Column Load Table

$\mathrm{L} 1=25 \mathrm{ft}$
$\mathrm{L} 2=25 \mathrm{ft}$

									Cumulative		Max. Load
Level	TA	D	S	L	wu1	wu2	Pu1	Pu2	Pu1	Pu2	
	(ft. ${ }^{2}$)	(psf)	(psf)	(psf)	(psf)	(psf)	(kips)	(kips)	(kips)	(kips)	(kips)
Roof	625	20	45	0	46.5	96	29.06	60.00	29.06	60.00	60.00
3rd	625	60	0	100	232	122	145.00	76.25	174.06	136.25	174.06
2nd	625	60	0	100	232	122	145.00	76.25	319.06	212.50	319.06

Pu1, wu1 = 1.2D+1.6L+0.5S
Pu2, wu2 = 1.2D+0.5L+1.6S

Using the floor plan below, assume a floor live load, $\mathrm{Lo}_{\mathrm{o}}=60 \mathrm{psf}$. Determine the tributary areas and the design floor live load, L in PSF by applying a live load reduction, if applicable.

B-1, interior beam
B-2, Spandrel beam
G-1, interior girder
$\mathrm{C}-1$, interior column
C-2, corner column
$\mathrm{L}_{\mathrm{B}}:=40 \mathrm{ft} \quad \mathrm{L}_{\mathrm{G}}:=30 \mathrm{ft} \quad \mathrm{TW}_{\mathrm{B}}:=10 \mathrm{ft} \quad \mathrm{L}_{\mathrm{O}}:=60 \mathrm{psf}$
$\mathrm{TA}_{\mathrm{B} 1}:=\mathrm{L}_{\mathrm{B}} \cdot \mathrm{TW}_{\mathrm{B}}=400 \mathrm{ft}^{2} \quad \mathrm{~K}_{\mathrm{LLB} 1}:=2 \quad \mathrm{~L}_{\mathrm{B} 1}:=\min \left[\mathrm{L}_{\mathrm{o}}, \mathrm{L}_{\mathrm{o}} \cdot\left(0.25+\frac{15}{\sqrt{\frac{\mathrm{~K}_{\mathrm{LLB} 1} \cdot \mathrm{TA}_{\mathrm{B} 1}}{1 \mathrm{ft}^{2}}}}\right)\right]=46.82 \cdot \mathrm{psf}$
$\begin{array}{lll}\mathrm{TA}_{\mathrm{B} 2}:=\mathrm{L}_{\mathrm{B}} \cdot \frac{\mathrm{TW}_{\mathrm{B}}}{2}=200 \mathrm{ft}^{2} & \mathrm{~K}_{\mathrm{LLB} 2}:=1 & \mathrm{~L}_{\mathrm{B} 2}:=\min \left[\mathrm{L}_{\mathrm{O}}, \mathrm{L}_{0} \cdot\left(0.25+\frac{15}{\sqrt{\frac{\mathrm{~K}_{\mathrm{LLB} 2} \cdot \mathrm{TA}_{\mathrm{B} 2}}{1 \mathrm{ft}^{2}}}}\right)\right]=60 \cdot \mathrm{psf} \\ \mathrm{TA}_{\mathrm{G} 1}:=4 \cdot \mathrm{TW}_{\mathrm{B}} \cdot \frac{\mathrm{L}_{\mathrm{B}}}{2}=800 \mathrm{ft}^{2} & \mathrm{~K}_{\mathrm{LLG} 1}:=2 & \mathrm{~L}_{\mathrm{G} 1}:=\min \left[\mathrm{L}_{\mathrm{o}}, \mathrm{L}_{\mathrm{o}} \cdot\left(0.25+\frac{15}{\sqrt{\frac{\mathrm{~K}_{\mathrm{LLG} 1} \cdot \mathrm{TA}_{\mathrm{G} 1}}{1 \mathrm{ft}^{2}}}}\right)\right]=37.5 \cdot \mathrm{psf}\end{array}$
$\mathrm{TA}_{\mathrm{C} 1}:=\mathrm{L}_{\mathrm{G}} \cdot \mathrm{L}_{\mathrm{B}}=1200 \mathrm{ft}^{2} \quad \quad \mathrm{~K}_{\mathrm{LLC} 1}:=4 \quad \mathrm{~L}_{\mathrm{C} 1}:=\max \left[\left(0.5 \cdot \mathrm{~L}_{\mathrm{o}}\right), \mathrm{L}_{\mathrm{o}} \cdot\left(0.25+\frac{15}{\sqrt{\frac{\mathrm{~K}_{\mathrm{LLC} 1} \cdot \mathrm{TA} \mathrm{C} 1}{}}}\right)\right]=30 \cdot \mathrm{psf}$
$\mathrm{TA}_{\mathrm{C} 2}:=\frac{\mathrm{L}_{\mathrm{G}}}{2} \cdot \frac{\mathrm{~L}_{\mathrm{B}}}{2}=300 \mathrm{ft}^{2} \quad \quad \mathrm{~K}_{\mathrm{LLC} 2}:=2 \quad \mathrm{~L}_{\mathrm{C} 2}:=\max \left[\left(0.5 \cdot \mathrm{~L}_{\mathrm{o}}\right), \mathrm{L}_{\mathrm{o}} \cdot\left(0.25+\frac{15}{\sqrt{\frac{\mathrm{~K}_{\mathrm{LLC} 2} \cdot \mathrm{TA}_{\mathrm{C} 2}}{}}}\right)\right]=51.7 \cdot \mathrm{psf}$

NOTE: Use the NYS snow map for this assignment (see
http://publicecodes.cyberregs.com/st/ny/st/b200v07/st_ny_st_b200v07_16_par085.htm).
Given:
Location - Massena, NY; elevation is less than 1000 feet
Total roof DL $=25 \mathrm{psf}$
Ignore roof live load; consider load combination 1.2D+1.6S only
Use normal occupancy, temperature, and exposure conditions
Length of B-1, B-2 is 30 ft .

Find:

a) Flat roof snow load and sloped roof snow load in psf
b) Sliding snow load in psf
c) Determine the depth of the balanced snow load and the sliding snow load on B-1 and B-2 in feet.
d) Draw a free-body diagram of B-1 showing the service dead and snow loads in plf
e) Find the factored Moment and Shear in B-1.

Problem 2-17

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{g}}:=60 \mathrm{psf} \\
& \mathrm{C}_{\mathrm{e}}:=1.0 \\
& \mathrm{C}_{\mathrm{t}}:=1.0 \quad \mathrm{I}_{\mathrm{S}}:=1.0 \quad \theta:=\operatorname{atan}\left(\frac{10}{12}\right) \cdot\left(\frac{180}{\pi}\right)=39.806 \\
& \mathrm{C}_{\mathrm{S}}:=\frac{5}{3}-\frac{\theta}{45}=0.782 \quad \mathrm{~W}_{\mathrm{SL}}:=60 \mathrm{ft} \\
& \mathrm{P}_{\mathrm{f}}:=0.7 \mathrm{p}_{\mathrm{g}} \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{S}}=42 \cdot \mathrm{psf} \quad \mathrm{P}_{\mathrm{S}}:=\mathrm{P}_{\mathrm{f}} \cdot \mathrm{C}_{\mathrm{S}}=32.848 \cdot \mathrm{psf} \quad \text { part (a) } \\
& \mathrm{P}_{\mathrm{SL}}:=\frac{0.4 \cdot \mathrm{P}_{\mathrm{f}} \cdot \mathrm{~W}_{\mathrm{SL}}}{15 \mathrm{ft}}=67.2 \cdot \mathrm{psf} \quad \text { part (b) } \\
& \gamma_{\text {snow }}:=\frac{0.13}{1 \mathrm{ft}} \cdot \mathrm{p}_{\mathrm{g}}+14 \mathrm{pcf}=21.8 \cdot \mathrm{pcf} \\
& \mathrm{~h}_{\mathrm{bal}}:=\frac{\mathrm{P}_{\mathrm{f}}}{\gamma_{\text {Snow }}}=1.927 \mathrm{ft} \quad \mathrm{~h}_{\mathrm{SL}}:=\frac{\mathrm{P}_{\mathrm{SL}}}{\gamma_{\text {Snow }}}=3.083 \mathrm{ft} \quad \text { part (c) } \\
& \mathrm{L}_{\mathrm{B}}:=30 \mathrm{ft} \quad \mathrm{TW}:=6 \mathrm{ft} \quad \mathrm{D}:=25 \mathrm{psf} \\
& { }^{\mathrm{w}_{\mathrm{D}}}:=\mathrm{TW} \cdot \mathrm{D}=150 \cdot \mathrm{plf} \quad{ }_{\mathrm{w}}^{\mathrm{S}} \mathrm{~S}:=\mathrm{TW} \cdot \mathrm{P}_{\mathrm{f}}=252 \cdot \mathrm{plf} \quad{ }_{\mathrm{w}}^{\mathrm{SL}}, ~:=\mathrm{TW} \cdot \mathrm{P}_{\mathrm{SL}}=403.2 \cdot \mathrm{plf} \quad \text { part (d) } \\
& \mathrm{w}_{\mathrm{u}}:=\left(1.2 \cdot \mathrm{w}_{\mathrm{D}}\right)+\left[1.6 \cdot\left(\mathrm{w}_{\mathrm{S}}+\mathrm{w}_{\mathrm{SL}}\right)\right]=1228.3 \cdot \mathrm{plf} \\
& \mathrm{M}_{\mathrm{u}}:=\frac{\mathrm{w}_{\mathrm{u}} \mathrm{~L}_{\mathrm{B}}^{2}}{8}=138.2 \cdot \mathrm{ft} \cdot \mathrm{kips} \quad \mathrm{~V}_{\mathrm{u}}:=\frac{\mathrm{w}_{\mathrm{u}} \mathrm{~L}_{\mathrm{B}}}{2}=18.4 \cdot \mathrm{kips} \quad \boldsymbol{\operatorname { a r f t }}(\boldsymbol{e})
\end{aligned}
$$

NOTE: Use the NYS snow map for this assignment (see
http://publicecodes.cyberregs.com/st/ny/st/b200v07/st_ny_st_b200v07_16_par085.htm).
Given:
Location - Pottersville, NY; elevation is 1500 feet
Total roof DL $=20 \mathrm{psf}$
Ignore roof live load; consider load combination $1.2 \mathrm{D}+1.6 \mathrm{~S}$ only
Use normal occupancy, temperature, and exposure conditions
Find:
a) Flat roof snow load
b) Depth and width of the leeward drift and windward drifts; which one controls the design of J-1?
c) Determine the depth of the balanced snow load and controlling drift snow load
d) Draw a free-body diagram of J-1 showing the service dead and snow loads in PLF

$$
\mathrm{p}_{\mathrm{g}}:=70 \mathrm{psf}+10 \mathrm{psf}=80 \cdot \mathrm{psf} \quad \mathrm{C}_{\mathrm{e}}:=1.0 \quad \mathrm{C}_{\mathrm{t}}:=1.0 \quad \mathrm{I}_{\mathrm{S}}:=1.0
$$

$$
\mathrm{P}_{\mathrm{f}}:=0.7 \mathrm{p}_{\mathrm{g}} \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{S}}=56 \cdot \mathrm{psf} \quad \text { part (a) }
$$

$$
\mathrm{L}_{\mathrm{uW}}:=200 \mathrm{ft} \quad \mathrm{~h}_{\mathrm{dW}}:=0.75 \mathrm{ft} \cdot\left[0.43 \cdot\left(\frac{\mathrm{~L}_{\mathrm{uW}}}{1 \mathrm{ft}}\right)^{\frac{1}{3}} \cdot\left[\left(\frac{\mathrm{p}_{\mathrm{g}}+10 \mathrm{psf}}{1 \mathrm{psf}}\right)^{\frac{1}{4}}\right]-1.5\right]=4.684 \mathrm{ft}
$$

$$
\mathrm{L}_{\mathrm{uL}}:=150 \mathrm{ft} \quad \mathrm{~h}_{\mathrm{dL}}:=1 \mathrm{ft} \cdot\left[0.43 \cdot\left(\frac{\mathrm{~L}_{\mathrm{uL}}}{1 \mathrm{ft}}\right)^{\frac{1}{3}} \cdot\left[\left(\frac{\mathrm{p}_{\mathrm{g}}+10 \mathrm{psf}}{1 \mathrm{psf}}\right)^{\frac{1}{4}}\right]-1.5\right]=5.537 \mathrm{ft}
$$

$$
\begin{aligned}
\gamma_{\text {Snow }} & :=\frac{0.13}{1 \mathrm{ft}} \cdot \mathrm{p}_{\mathrm{g}}+14 \mathrm{pcf}=24.4 \cdot \mathrm{pcf} \quad \mathrm{~h}_{\mathrm{bal}}:=\frac{\mathrm{P}_{\mathrm{f}}}{\gamma_{\mathrm{Snow}}}=2.295 \mathrm{ft} \\
\mathrm{w}_{\mathrm{W}} & :=4 \cdot \mathrm{~h}_{\mathrm{dW}}=18.736 \mathrm{ft} \quad \quad{ }_{\mathrm{W}} \mathrm{~L}:=4 \cdot \mathrm{~h}_{\mathrm{dL}}=22.148 \mathrm{ft} \quad \text { part (b) }
\end{aligned}
$$

The Leeward drift will control the design

$$
\left.\begin{array}{l}
\mathrm{SD}:=\gamma_{\mathrm{Snow}} \cdot \mathrm{~h}_{\mathrm{dL}}=135.1 \cdot \mathrm{psf} \quad \text { part (c) } \\
\mathrm{L}_{\mathrm{B}}:=100 \mathrm{ft} \quad \mathrm{TW}:=8 \mathrm{ft} \quad \mathrm{D}:=20 \mathrm{psf} \\
\mathrm{w}_{\mathrm{D}}:=\mathrm{TW} \cdot \mathrm{D}=160 \cdot \mathrm{plf} \quad{ }_{\mathrm{w}}^{\mathrm{S}}
\end{array}:=\mathrm{TW} \cdot \mathrm{P}_{\mathrm{f}}=448 \cdot \mathrm{plf} \quad{ }^{\mathrm{w}} \mathrm{SD}:=\mathrm{TW} \cdot \mathrm{SD}=1081 \cdot \mathrm{plf}\right)
$$

Factored - Dead Load; ws $=160$ plf

Factored - Snow Load; ws $=448$ plf, wSD $=1081$ plf
$-2.45[\mathrm{Kip} / \mathrm{ft}]$

Factored - Shear
V2=56.06[Kip]

Factored - Moment

Using the values from the previous section, draw a free-body diagram of J-1 assuming the 150 ' and 200 ' buildings are separated by a distance of 6 ft . Use the maximum drift load from the leeward side only for this part.

$\mathrm{S}_{\mathrm{N}}:=6 \mathrm{ft} \quad \mathrm{SD}_{6}:=\frac{\left(20-\frac{\mathrm{S}}{1 \mathrm{ft}}\right)}{20} \cdot \mathrm{w}_{\mathrm{SD}}=757 \mathrm{plf}$

At elevation 1500, $\mathrm{pg}=70 \mathrm{psf}+(2)(1500-1000) / 100=80 \mathrm{psf}($ Pottersville $)$

