Chapter 2 Past, Present and Future World Energy Use

2.1 A quantity increases at a rate of 1.5% per year. What is its doubling time?

Solution The doubling time t_{D} is related to the growth rate $R($ for small R) by

$$
t_{D}=\frac{100 \ln 2}{R}
$$

If $R=1.5 \%$ then the doubling time (in years will be given as

$$
t_{\mathrm{D}}=100 \times \ln (2) /(1.5)=46.2 \text { years }
$$

2.2 The population of a particular country was 1.1 million in 1940 and 3.4 million in 2010. Calculate the growth rate (in \% per year). The growth rate was constant over that period of time.

Solution For constant growth the population at a time t relative to $t=0$ is given by

$$
N(t)=N_{0} \exp (a t)
$$

In this problem $N(t) / N_{0}=3.4 \times 10^{6} / 1.1 \times 10^{6}=3.1$ and for a time period of $2010-1940=70$ years we solve for a as

$$
a=\frac{1}{t} \ln \left(\frac{N(t)}{N_{0}}\right)
$$

or $a=(1 / 70) \times(\ln (3.1))=0.0162 \mathrm{y}^{-1}$
Thus the growth rate in percent will be 1.62% per year.
2.3 Consider the earth to be a sphere with a radius of $6378 \mathrm{~km} .71 \%$ of its surface area is covered with water. The population density in Japan is currently 337 people per km^{2}. What would the population of the earth be if the population density on land was, on the average, the same as in Japan. Compare this with a current actual world population of about 7 billion.

Solution The total area of the earth (including oceans) is

$$
A=4 \pi r^{2}=(4) \times(3.14) \times(6378 \mathrm{~km})^{2}=5.1 \times 10^{8} \mathrm{~km}^{2} .
$$

If 71% is water then the remaining land area is

$$
\left(5.1 \times 10^{8} \mathrm{~km}^{2}\right) \times(0.29)=1.48 \times 10^{8} \mathrm{~km}^{2}
$$

To attain a population density of 337 people per km^{2} will, therefore, require a total population of

$$
\left(1.48 \times 10^{8} \mathrm{~km}^{2}\right) \times\left(337 \mathrm{~km}^{-2}\right)=49.8 \text { billion } .
$$

This is 7 times the current world population and well above virtually all estimates of a maximum sustainable population.
2.4 A country has a constant annual growth rate of 5%. How long will it take for the population to increase by a factor of 10 ?

Solution The population as a function of time will be given by

$$
N(t)=N_{0} \exp (a t)
$$

Solving for t gives

$$
t=\frac{1}{a} \ln \left(\frac{N(t)}{N_{0}}\right)
$$

The constant a is related to the growth rate as

$$
R=100 \times(\exp (a)-1)
$$

Solving this for the constant a in terms of the given growth rate gives

$$
a=\ln (1+R / 100)=\ln (1.05)=0.0488 \mathrm{y}^{-1}
$$

Sustainable Energy SI- Chapter 2: Past, Present and Future world Energy Use

Substituting this value and $N(t) / N_{0}=10$ in the above gives the time as

$$
t=\left(1 / 0.0488 \mathrm{y}^{-1}\right) \times \ln (10)=47.2 \text { years. }
$$

Sustainable Energy SI- Chapter 2: Past, Present and Future world Energy Use

