1 Introduction

1.1 Equation (a) of the problem statement is used to solve for h as

$$
\begin{equation*}
h=\frac{\dot{Q}}{A\left(T-T_{\infty}\right)} \tag{a}
\end{equation*}
$$

The Principle of Dimensional Homogeneity is used to determine the dimensions of the heat transfer coefficient. Using the F-L-T system dimensions of the quantities in Equation (a) are

$$
\begin{gather*}
{[\dot{Q}]=\left[\frac{\mathrm{F} \cdot \mathrm{~L}}{\mathrm{~T}}\right]} \tag{b}\\
{[A]=\left[\mathrm{L}^{2}\right]} \tag{b}\\
{\left[T-T_{\infty}\right]=[\Theta]} \tag{c}
\end{gather*}
$$

Thus from Equations (a)-(d) the dimensions of the heat transfer coefficient are

$$
\begin{align*}
{[h] } & =\left[\frac{\mathrm{F} \cdot \mathrm{~L}}{\mathrm{~T} \cdot \Theta \cdot \mathrm{~L}^{2}}\right] \\
& =\left[\frac{\mathrm{F}}{\mathrm{~T} \cdot \Theta \cdot \mathrm{~L}}\right] \tag{d}
\end{align*}
$$

Possible units for the heat transfer coefficient using the SI system are $\frac{\mathrm{N}}{\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K}}$ while possible units using the English system are $\frac{\mathrm{lb}}{\mathrm{ft} \cdot \mathrm{s} \cdot \mathrm{R}}$.
1.2 The Reynolds number is defined as

$$
\begin{equation*}
\operatorname{Re}=\frac{\rho V D}{\mu} \tag{a}
\end{equation*}
$$

The dimensions of the quantities on the left-hand side of Equation (a) are obtained using Table 1.2 as

$$
\begin{align*}
& {[\rho]=\left[\frac{M}{\mathrm{~L}^{3}}\right]} \tag{b}\\
& {[\mathrm{V}]=\left[\frac{\mathrm{L}}{\mathrm{~T}}\right]} \tag{c}\\
& {[\mathrm{D}]=[\mathrm{L}]} \tag{d}\\
& {[\mu]=\left[\frac{\mathrm{M}}{\mathrm{~L} \cdot \mathrm{~T}}\right]} \tag{e}
\end{align*}
$$

Substituting Equations (b)-(e) in Equation (a) leads to

$$
\begin{align*}
{[\mathrm{Re}] } & =\left[\frac{\frac{\mathrm{M}}{\mathrm{~L}^{3}} \cdot \frac{\mathrm{~L}}{\mathrm{~T}} \cdot \mathrm{~L}}{\frac{\mathrm{M}}{\mathrm{~L} \cdot \mathrm{~T}}}\right] \\
& =\left[\frac{\mathrm{M} \cdot \mathrm{~L}^{3} \cdot \mathrm{~T}}{\mathrm{M} \cdot \mathrm{~L}^{3} \cdot \mathrm{~T}}\right] \\
& =[1] \tag{f}
\end{align*}
$$

Equation (f) shows that the Reynolds number is dimensionless.
1.3 The capacitance of a capacitor is defined by

$$
\begin{equation*}
C=\frac{i}{\frac{d v}{d t}} \tag{a}
\end{equation*}
$$

The dimension of i is that of electric current, which is a basic dimension. The dimensions of electric potential are obtained from Table 1.2 as

$$
\begin{equation*}
[v]=\left[\frac{\mathrm{F} \cdot \mathrm{~L}}{\mathrm{i} \cdot \mathrm{~T}}\right] \tag{b}
\end{equation*}
$$

Thus the dimensions of the time rate of change of electric potential are

$$
\begin{equation*}
\left[\frac{d v}{d t}\right]=\left[\frac{\mathrm{F} \cdot \mathrm{~L}}{\mathrm{i} \cdot \mathrm{~T}^{2}}\right] \tag{c}
\end{equation*}
$$

Use of Equation (c) in Equation (a) leads to

$$
\begin{align*}
{[C] } & =\left[\frac{\mathrm{i}}{\frac{\mathrm{~F} \cdot \mathrm{~L}}{\mathrm{i} \cdot \mathrm{~T}^{2}}}\right] \\
& =\left[\frac{\mathrm{i}^{2} \cdot \mathrm{~T}^{2}}{\mathrm{~F} \cdot \mathrm{~L}}\right] \tag{d}
\end{align*}
$$

1.4 (a) The natural frequency of a mass-spring system is

$$
\begin{equation*}
\omega_{n}=\sqrt{\frac{k}{m}} \tag{a}
\end{equation*}
$$

where m is mass with dimension [M] and k is stiffness with dimensions in the M-L-T system of $\left[\frac{\mathrm{M}}{\mathrm{T}^{2}}\right]$. Thus the dimensions of natural frequency are

$$
\left.\left.\begin{array}{rl}
{\left[\omega_{n}\right]} & =\left[\left(\frac{\mathrm{M}}{\mathrm{~T}^{2}}\right.\right. \\
\mathrm{M}
\end{array}\right)^{\frac{1}{2}}\right]
$$

(b)
(b) The natural frequency of the system is 100 Hz , which for calculations must be converted to r / s,

$$
\begin{align*}
\omega_{n} & =20 \frac{\text { cycles }}{\mathrm{s}} \\
& =\left(20 \frac{\text { cycles }}{\mathrm{s}}\right)\left(2 \pi \frac{\mathrm{r}}{\text { cycles }}\right) \\
& =125.7 \frac{\mathrm{r}}{\mathrm{~s}} \tag{c}
\end{align*}
$$

Equation (a) is rearranged as

$$
\begin{equation*}
k=m \omega_{n}^{2} \tag{d}
\end{equation*}
$$

Substitution of known values into Equation (d) leads to

$$
\begin{align*}
k & =(0.1 \mathrm{~kg})\left(125.7 \frac{\mathrm{r}}{\mathrm{~s}}\right)^{2} \\
& =1.58 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}} \tag{e}
\end{align*}
$$

1.5 (a) The mass of the carbon nanotube is calculated as

$$
\begin{aligned}
m & =\rho A L=\rho\left(\pi r^{2}\right) L \\
& =\left(1300 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \pi\left(0.34 \times 10^{-9} \mathrm{~m}\right)^{2}\left(80 \times 10^{-9} \mathrm{~m}\right) \\
& 3.78 \times 10^{-23} \mathrm{~kg}
\end{aligned}
$$

(b) Conversion between TPa and psi leads to

$$
\begin{aligned}
E & =1.1 \mathrm{TPa}=1.1 \times 10^{12} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& =\left(1.1 \times 10^{12} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right)\left(0.225 \frac{\mathrm{lb}}{\mathrm{~N}}\right)\left(\frac{1 \mathrm{~m}}{3.28 \mathrm{ft}}\right)^{2}\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right)^{2} \\
& =1.60 \times 10^{8} \frac{\mathrm{lb}}{\mathrm{in}^{2}}
\end{aligned}
$$

(c) Calculation of the natural frequency leads to

Chapter 1

$$
\begin{aligned}
\omega & =22.37 \sqrt{\frac{E I}{\rho A L^{4}}} \\
& =22.37 \sqrt{\frac{\left(1.1 \times 10^{12} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right) \frac{\pi}{4}\left(0.34 \times 10^{-9} \mathrm{~m}\right)^{4}}{\left(1300 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \pi\left(0.34 \times 10^{-9}\right)^{2}\left(80 \times 10^{-9} \mathrm{~m}\right)^{4}}} \\
& =1.73 \times 10^{10} \frac{\mathrm{r}}{\mathrm{~s}}
\end{aligned}
$$

Converting to Hz gives

$$
\begin{aligned}
\omega & =\left(1.73 \times 10^{10} \frac{\mathrm{r}}{\mathrm{~s}}\right)\left(\frac{1 \text { cycle }}{2 \pi \mathrm{r}}\right) \\
& =2.75 \times 10^{9} \mathrm{~Hz}
\end{aligned}
$$

1.6 The power of the motor is calculated as

$$
\begin{align*}
P & =\frac{900 \mathrm{~kW} \cdot \mathrm{hr}}{24 \mathrm{hr}} \\
& =37.5 \mathrm{~kW} \tag{a}
\end{align*}
$$

The power is converted to English units using the conversions of Table 1.1

$$
\begin{aligned}
P & =37.5 \times 10^{3} \mathrm{~W} \\
& =37.5 \times 10^{3} \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~s}} \\
& =37.5 \times 10^{3} \frac{\mathrm{~N}\left(\frac{0.225 \mathrm{lb}}{\mathrm{~N}}\right) \cdot \mathrm{m}\left(\frac{3.28 \mathrm{ft}}{\mathrm{~m}}\right)}{\mathrm{s}} \\
& =2.77 \times 10^{4} \frac{\mathrm{ft} \cdot \mathrm{lb}}{\mathrm{~s}}
\end{aligned}
$$

(b)

Conversion to horsepower leads to

$$
\begin{align*}
P & =2.77 \times 10^{4} \frac{\mathrm{ft} \cdot \mathrm{lb}}{\mathrm{~s}}\left(\frac{1 \mathrm{hp}}{\frac{550 \mathrm{ft} \cdot \mathrm{lb}}{\mathrm{~s}}}\right) \\
& =50.3 \mathrm{hp} \tag{c}
\end{align*}
$$

1.7 The conversion of density from English units to SI units is

$$
\begin{align*}
\rho & =1.94 \frac{\text { slugs }}{\mathrm{ft}^{3}} \\
& =1.94 \frac{\text { slugs }}{\mathrm{ft}^{3}}\left(\frac{1 \mathrm{~kg}}{0.00685 \text { slugs }}\right)\left(\frac{3.28 \mathrm{ft}}{1 \mathrm{~m}}\right)^{3} \\
& =9.99 \times 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \tag{a}
\end{align*}
$$

1.8 The constant acceleration of the train is

$$
\begin{equation*}
a=-6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \tag{a}
\end{equation*}
$$

The velocity is obtained using Equation (a) as

$$
\begin{equation*}
v(t)=-6 t+C \tag{b}
\end{equation*}
$$

The constant of integration is evaluated by requiring

$$
\begin{align*}
v(t=0) & =180 \frac{\mathrm{~km}}{\mathrm{hr}} \\
& =180 \frac{\mathrm{~km}}{\mathrm{hr}}\left(\frac{1000 \mathrm{~m}}{\mathrm{~km}}\right)\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right) \\
& =50 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{c}
\end{align*}
$$

Using Equation (c) in Equation (b) leads to

$$
\begin{equation*}
v(t)=-6 t+50 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{d}
\end{equation*}
$$

The train stops when its velocity is zero,

$$
\begin{align*}
& 0=-6 t+50 \\
& t=8.33 \mathrm{~s} \tag{e}
\end{align*}
$$

The distance traveled is obtained by integrating Equation (d) and assuming $x(0)=0$, leading to

$$
\begin{equation*}
x(t)=-3 t^{2}+50 t \tag{f}
\end{equation*}
$$

The distance traveled before the train stops is

$$
\begin{align*}
x(8.33) & =-3(8.33)^{2}+50(8.33) \\
& =208.3 \mathrm{~m} \tag{g}
\end{align*}
$$

1.9 The differential equation for the angular velocity of a shaft is

$$
\begin{equation*}
J \frac{d \omega}{d t}+c_{t} \omega=T \tag{a}
\end{equation*}
$$

Each term in Equation (a) has the same dimensions, those of torque or $[F \cdot L]$. The dimensions of angular velocity are $\left[\frac{1}{T}\right]$. Thus the dimensions of c_{t} are

Chapter 1

$$
\begin{align*}
{\left[c_{t}\right] } & =\left[\frac{\mathrm{F} \cdot \mathrm{~L}}{\frac{1}{\mathrm{~T}}}\right] \\
& =[\mathrm{F} \cdot \mathrm{~L} \cdot \mathrm{~T}] \tag{b}
\end{align*}
$$

1.10 The equation for the torque applied to the armature is

$$
\begin{equation*}
T=K_{a} i_{a} i_{f} \tag{a}
\end{equation*}
$$

Equation (a) is rearranged as

$$
\begin{equation*}
K_{a}=\frac{T}{i_{a} i_{f}} \tag{b}
\end{equation*}
$$

The dimensions of torque are $[\mathrm{F} \cdot \mathrm{L}]$ thus the dimensions of the constant are

$$
\begin{equation*}
\left[K_{a}\right]=\left[\frac{\mathrm{F} \cdot \mathrm{~L}}{\mathrm{i}^{2}}\right] \tag{c}
\end{equation*}
$$

The equation for the back emf is

$$
\begin{equation*}
v=K_{v} i_{f} \omega \tag{d}
\end{equation*}
$$

Equation (d) is rearranged as

$$
\begin{equation*}
K_{v}=\frac{v}{i_{f} \omega} \tag{e}
\end{equation*}
$$

The dimensions of voltage are $\left[\frac{\mathrm{F} \cdot \mathrm{L}}{\mathrm{i} \cdot \mathrm{T}}\right]$ and the dimensions of angular velocity are $\left[\frac{1}{\mathrm{~T}}\right]$. The dimensions of the constant K_{v} are

$$
\begin{align*}
{\left[K_{v}\right] } & =\left[\frac{\frac{\mathrm{F} \cdot \mathrm{~L}}{\mathrm{i} \cdot \mathrm{~T}}}{\mathrm{i} \frac{1}{\mathrm{~T}}}\right] \\
& =\left[\frac{\mathrm{F} \cdot \mathrm{~L}}{\mathrm{i}^{2}}\right] \tag{f}
\end{align*}
$$

It is clear from Equations (c) and (f) that the dimensions of $\left[K_{a}\right]$ and $\left[K_{v}\right]$ are the same. These dimensions are the same as those of inductance (Table 1.2).
1.11 (a) The dimensions of \dot{Q} are determined from Equation (a)

$$
\begin{gather*}
\dot{Q}=\sigma A \varepsilon\left(T^{4}-T_{b}^{4}\right) \tag{a}\\
{\left[\frac{\mathrm{F} \cdot \mathrm{~L}}{\mathrm{~L}^{2} \cdot \mathrm{~T} \cdot \Theta^{4}}\right]\left[L^{2} \llbracket \Theta^{4}\right]=\left[\frac{\mathrm{F} \cdot \mathrm{~L}}{\mathrm{~T}}\right]} \tag{b}
\end{gather*}
$$

(b) The differential equations governing the temperature in the body is

$$
\begin{equation*}
\rho c \frac{d T}{d t}+\sigma \varepsilon\left(T^{4}-T_{b}^{4}\right)=0 \tag{c}
\end{equation*}
$$

The perturbation in temperature in the radiating body is defined by

$$
\begin{equation*}
T_{b}=T_{b s}+T_{b 1} \tag{d}
\end{equation*}
$$

This leads to a perturbation in the temperature of the receiving body defined as

$$
\begin{equation*}
T=T_{s}+T_{1} \tag{e}
\end{equation*}
$$

Substitution of equations (d) and (e) in Equation (c) leads to

$$
\begin{equation*}
\rho c \frac{d}{d t}\left(T_{s}+T_{1}\right)+\sigma \varepsilon\left[\left(T_{s}+T_{1}\right)^{4}-\left(T_{b s}+T_{b 1}\right)^{4}\right]=0 \tag{f}
\end{equation*}
$$

Simplifying Equation (f) gives

$$
\begin{equation*}
\rho c \frac{d T_{1}}{d t}+\sigma \varepsilon\left[T_{s}^{4}\left(1+\frac{T_{1}}{T_{s}}\right)^{4}-T_{b s}^{4}\left(1+\frac{T_{b 1}}{T_{b s}}\right)^{4}\right]=0 \tag{g}
\end{equation*}
$$

Expanding the nonlinear terms, keeping only through the linear terms and noting that $T_{s}=T_{b s}$

$$
\begin{align*}
& \rho c \frac{d T_{1}}{d t}+\sigma \varepsilon\left[T_{s}^{4}\left(4 \frac{T_{1}}{T_{s}}\right)-T_{b s}^{4}\left(4 \frac{T_{b 1}}{T_{b s}}\right)\right]=0 \\
& \rho c \frac{d T_{1}}{d t}+4 \sigma \varepsilon T_{s}^{3} T_{1}=4 \sigma \varepsilon T_{b s}^{3} T_{b 1} \tag{h}
\end{align*}
$$

1.12 The differential equation is linearized by using the small angle assumption which implies $\sin \theta \approx \theta$ and $\cos \theta \approx 1$. Using these approximations in the differential equation leads to the linearized approximation as

$$
\begin{equation*}
\frac{1}{3} m L^{2} \ddot{\theta}+\frac{1}{4} c L^{2} \dot{\theta}+k L^{2} \theta=0 \tag{a}
\end{equation*}
$$

1.13 The differential equation is linearized by using the small angle assumption which implies $\sin \theta \approx \theta$ and $\cos \theta \approx 1$. Using these approximations in the differential equation leads to the linearized approximation as

$$
\begin{equation*}
\frac{1}{3} m L^{2} \ddot{\theta}+\left(m g \frac{L}{2}+\ddot{y}\right) \theta=L \ddot{x} \tag{a}
\end{equation*}
$$

1.14 The nonlinear differential equations governing the concentration of the reactant and temperature are

$$
\begin{align*}
& V \frac{d C_{A}}{d t}+\left(q+\alpha V e^{-E /(R T)}\right) C_{A}=q C_{A i} \tag{a}\\
& \rho q c_{p} T_{i}-\rho q c_{p} T-\dot{Q}+\lambda V \alpha e^{-E /(R T)} C_{A}=\rho V c_{p} \frac{d T}{d t} \tag{b}
\end{align*}
$$

The reactor is operating at a steady-state when a perturbation in flow rate occurs according to

$$
\begin{equation*}
q=q_{s}+q_{p}(t) \tag{c}
\end{equation*}
$$

The flow rate perturbation induces perturbations in concentration and temperature according to

$$
\begin{align*}
& C_{A}=C_{A s}+C_{A p}(t) \tag{d}\\
& T=T_{s}+T_{p}(t) \tag{e}
\end{align*}
$$

The steady-state conditions are defined by setting time derivatives to zero in Equation (a) leading to

$$
\begin{align*}
& \left(q_{s}+\alpha V e^{-E /\left(R T_{s}\right)}\right) C_{A_{S}}=q_{s} C_{A i} \tag{f}\\
& \rho q C_{p} T_{i}-\rho q_{s} c_{p} T_{s}-\dot{Q}+\lambda V \alpha e^{-E /\left(R T_{s}\right)} C_{A_{s}}=0 \tag{g}
\end{align*}
$$

Substitution of Equations (d) and (e) into Equations (a) and (b) leads to

$$
\begin{align*}
& V \frac{d C_{A p}}{d t}+\left(q_{s}+q_{p}+\alpha V e^{-E\left[R\left(T_{s}+T_{p}\right)\right]}\right)\left(C_{A s}+C_{A p}\right)=\left(q_{s}+q_{p}\right) C_{A i} \tag{h}\\
& \rho\left(q_{s}+q_{p}\right) c_{p} T_{i}-\rho\left(q_{s}+q_{p}\right) c_{p}\left(T_{s}+T_{p}\right)-\dot{Q}+\lambda V \alpha e^{-E\left[R\left(T_{s}+T_{p}\right)\right]}\left(C_{A_{s}}+C_{A p}\right)=\rho V c_{p} \frac{d T_{p}}{d t} \tag{i}
\end{align*}
$$

It is noted from Equation (f) of Example (1.6) that a linearization of the exponential terms in Equations (h) and (i) is

$$
e^{-\frac{E}{R\left(T_{s}+T_{p}\right)}}=e^{-\frac{E}{R T_{s}}}+\frac{E}{R T_{s}^{2}} e^{-\frac{E}{R T_{s}}} T_{p}
$$

Use of Equation (j) in Equations (h) and (i) and rearrangement leads to

$$
\begin{align*}
& V \frac{d C_{A p}}{d t}+\left[q_{s}+q_{p}+\alpha V\left(e^{-\frac{E}{R T_{s}}}+\frac{E}{R T_{s}^{2}} e^{-\frac{E}{R T_{s}}} T_{p}\right)\right]\left(C_{A s}+C_{A p}\right)=\left(q_{s}+q_{p}\right) C_{A i} \tag{k}\\
& \begin{aligned}
\rho\left(q_{s}+q_{p}\right) c_{p} T_{i} & -\rho\left(q_{s}+q_{p}\right) c_{p}\left(T_{s}+T_{p}\right)-\dot{Q}+\lambda V \alpha\left[e^{-\frac{E}{R T_{s}}}+\frac{E}{R T_{s}^{2}} e^{-\frac{E}{R T_{s}}} T_{p}\right]\left(C_{A_{s}}+C_{A p}\right) \\
& =\rho V c_{p} \frac{d T_{p}}{d t}
\end{aligned}
\end{align*}
$$

Equations (g) and (h) are used to simplify Equations (k) and (l) to

$$
\begin{align*}
& V \frac{d C_{A p}}{d t}+q_{s} C_{A p}+q_{p} C_{A s}+q_{p} C_{A p}+\alpha V e^{-\frac{E}{R T_{s}}} C_{A p}+\alpha V\left(\frac{E}{R T_{s}^{2}} e^{-\frac{E}{R T_{s}}} T_{p}\right)\left(C_{A s}+C_{A p}\right) \\
& \quad=q_{p} C_{A i} \tag{m}\\
& \rho q_{p} c_{p} T_{i}-\rho c_{p}\left(q_{p} T_{s}+q_{s} T_{p}+q_{p} T_{p}\right)+\lambda V \alpha e^{-\frac{E}{R T_{s}}} C_{A p}+\lambda V \alpha\left[\frac{E}{R T_{s}^{2}} e^{-\frac{E}{R T_{s}}} T_{p}\right]\left(C_{A_{s}}+C_{A p}\right) \\
& =\rho V c_{p} \frac{d T_{p}}{d t}
\end{align*}
$$

(n)

Neglecting products of perturbations Equations (m) and (n) are rearranged as

$$
\begin{align*}
& V \frac{d C_{A p}}{d t}+q_{s} C_{A p}+q_{p} C_{A p}+\alpha V e^{-\frac{E}{R T_{s}}} C_{A p}+\alpha V\left(\frac{E}{R T_{s}^{2}} e^{-\frac{E}{R T_{s}}} T_{p}\right) C_{A s} \\
& \quad=q_{p} C_{A i}-q_{p} C_{A s} \tag{o}\\
& \rho V c_{p} \frac{d T_{p}}{d t}-\rho q_{p} c_{p} T_{i}+\rho c_{p}\left(q_{p} T_{s}+q_{s} T_{p}\right)+\lambda V \alpha e^{-\frac{E}{R T_{s}}} C_{A p}+\lambda V \alpha\left[\frac{E}{R T_{s}^{2}} e^{-\frac{E}{R T_{s}}} T_{p}\right] C_{A s}=0 \tag{p}
\end{align*}
$$

1.15 The specific heat is related to temperature by

$$
\begin{equation*}
c_{p}=A_{1}+A_{2} T^{1.5}+A_{3} T^{2.6} \tag{a}
\end{equation*}
$$

The transient temperature is the steady-state temperature plus a perturbation,

$$
\begin{equation*}
T=T_{s}+T_{p} \tag{b}
\end{equation*}
$$

Substituting Equation (b) into Equation (a) leads to

$$
\begin{align*}
c_{P} & =A_{1}+A_{2}\left(T_{s}+T_{p}\right)^{1.5}+\left(T_{s}+T_{p}\right)^{2.6} \\
& =A_{1}+A_{2} T_{s}^{1.5}\left(1+\frac{T_{p}}{T_{s}}\right)^{1.5}+A_{3} T_{s}^{2.6}\left(1+\frac{T_{p}}{T_{s}}\right)^{2.6} \tag{c}
\end{align*}
$$

Using the binominal expansion to linearize Equation (c) leads to

$$
\begin{equation*}
c_{p}=A_{1}+A_{2} T_{s}^{1.5}\left(1+1.5 \frac{T_{p}}{T_{s}}\right)+A_{3} T_{s}^{2.6}\left(1+2.6 \frac{T_{p}}{T_{s}}\right) \tag{d}
\end{equation*}
$$

The differential equation for the time-dependent temperature is

$$
\begin{equation*}
c_{p} \frac{d T}{d t}+\frac{1}{R} T=\frac{1}{R} T_{\infty} \tag{e}
\end{equation*}
$$

Substituting Equations (b) and (d) into Equation (e) along with $T_{\infty}=T_{\infty s}+T_{\infty p}$ leads to

$$
\begin{equation*}
\left[A_{1}+A_{2} T_{s}^{1.5}\left(1+1.5 \frac{T_{p}}{T_{s}}\right)+A_{3} T_{s}^{2.6}\left(1+2.6 \frac{T_{p}}{T_{s}}\right)\right] \frac{d}{d t}\left(T_{s}+T_{p}\right)+\frac{1}{R}\left(T_{s}+T_{p}\right)=\frac{1}{R}\left(T_{\infty s}+T_{\infty p}\right) \tag{f}
\end{equation*}
$$

Noting that the steady-state is defined by $\frac{d T_{s}}{d t}=0$ and $T_{s}=T_{\infty s}$ reduces Equation (f) to

$$
\begin{equation*}
\left[A_{1}+A_{2} T_{s}^{1.5}\left(1+1.5 \frac{T_{p}}{T_{s}}\right)+A_{3} T_{s}^{2.6}\left(1+2.6 \frac{T_{p}}{T_{s}}\right)\right] \frac{d T_{p}}{d t}+\frac{1}{R} T_{p}=\frac{1}{R} T_{\infty p} \tag{g}
\end{equation*}
$$

Terms such as $T_{p} \frac{d T_{p}}{d t}$ are nonlinear. Equation (g) is linearized by noting that $\left|\frac{T_{p}}{T_{s}}\right| \ll 1$

$$
\begin{equation*}
\left(A_{1}+A_{2} T_{s}^{1.5}+A_{3} T_{s}^{2.6}\right) \frac{d T_{p}}{d t}+\frac{1}{R} T_{p}=\frac{1}{R} T_{\infty p} \tag{h}
\end{equation*}
$$

1.16 The force acting on the piston at any instant is

$$
\begin{equation*}
F=p A \tag{a}
\end{equation*}
$$

where A is the area of the piston head. The pressure is related to the density by

$$
\begin{equation*}
p=C \rho^{\gamma} \tag{b}
\end{equation*}
$$

The mass of air in the cylinder is constant and is calculated when the piston is in equilibrium as

$$
\begin{equation*}
m=\rho_{0} A h \tag{c}
\end{equation*}
$$

where ρ_{0} is the density of the air in equilibrium. Using Equation (b) in Equation (c) leads to

$$
\begin{equation*}
m=\left(\frac{p_{0}}{C}\right)^{\frac{1}{\gamma}} A h \tag{d}
\end{equation*}
$$

where p_{0} is the pressure in the cylinder when the piston is in equilibrium. At any instant the mass is calculated as

$$
\begin{align*}
m & =\rho A(h-x) \\
& =\left(\frac{p}{C}\right)^{\frac{1}{\gamma}} A(h-x) \tag{e}
\end{align*}
$$

Since the mass is constant, Equations (d) and (e) are equated leading to

$$
\begin{equation*}
p=p_{0}\left(\frac{h}{h-x}\right)^{\gamma} \tag{f}
\end{equation*}
$$

Substitution of Equation (f) into Equation (a) leads to

$$
\begin{equation*}
F=p_{0} A\left(\frac{h}{h-x}\right)^{\gamma} \tag{g}
\end{equation*}
$$

(b) Equation (g) is rearranged as

$$
\begin{equation*}
F=p_{0} A\left(1-\frac{x}{h}\right)^{-\gamma} \tag{h}
\end{equation*}
$$

Since $\frac{x}{h}<1$ a binomial expansion can be used on the right-hand side of Equation (h). Using the binomial expansion keeping only through the linear term leads to

$$
\begin{equation*}
F=p_{0} A+\frac{\not p_{0} A}{h} x \tag{e}
\end{equation*}
$$

The linear stiffness is obtained from Equation (e) as

$$
\begin{equation*}
k=\frac{\not p_{0} A}{h} \tag{f}
\end{equation*}
$$

1.17 The appropriate superposition of the voltage in Figure P1.17 is illustrated below

$$
+12+\underset{2}{(24-6 \mathrm{t}) \mathrm{u}(\mathrm{t}-2)}
$$

The mathematical representation of the voltage source is

$$
v(t)=12[u(t)-u(t-2)]+(24-6 t)[u(t-2)-u(t-4)]
$$

1.18 The superposition of the force of Figure P1.18 is illustrated below.

mathematical representation of the force is

$$
\begin{equation*}
F(t)=300[u(t)-u(t-15)]-300[u(t-15)-u(t-30)] \tag{a}
\end{equation*}
$$

1.19 The superposition of the cam displacement over one period is shown below

(a) The mathematical representation of the displacement over one period is

$$
\begin{align*}
x(t)= & 0.04[u(t)-u(t-0.05)]+0.002[u(t-0.05)-u(t-0.25) \\
& +(0.012-0.04 t)[u(t-0.25)-u(t-0.3)] \tag{a}
\end{align*}
$$

(b) The period of the cycle is 0.5 s . Thus the displacement over the second period is obtained by replacing t by $t+0.5$ in Equation (a). The displacement over the kth period is obtained by replacing t by $t+(k-1)(0.5)$ in Equation (a). The total displacement is obtained by summing over all periods

$$
\begin{gather*}
x(t)=\sum_{k=1}^{K}\{0.04[u(t-.5 k+.5)-u(t-.5 k+.45)]+.002[u(t-0.5 k+.45)-u(t-.5 k+.25)] \\
+(0.02 k-0.008-0.04 t)[u(t-0.5 k+.25)-u(t-0.5 k+0.2]]\} \tag{b}
\end{gather*}
$$

where K is the smallest integer greater than $\mathrm{t} /(0.05)$.
1.20 Integration of Newton's second law with respect to time leads to the principle of impulse and momentum

$$
\begin{equation*}
I=\int_{t_{1}}^{t_{2}} F d t=m\left(v_{2}-v_{1}\right) \tag{a}
\end{equation*}
$$

where the total impulse applied between t_{1} and t_{2} is $\int_{t_{1}}^{t_{2}} F d t$. The $12 \mathrm{~N} \cdot$ simpulse is applied instantaneously to the 4 -kg particle when it is at rest. Application of the principle of impulse and momentum leads to

$$
\begin{align*}
& 12 \mathrm{~N} \cdot \mathrm{~s}=(4 \mathrm{~kg}) v_{2} \\
& v_{2}=\frac{12 \mathrm{~N} \cdot \mathrm{~s}}{4 \mathrm{~kg}} \\
& \quad=3 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{b}
\end{align*}
$$

1.21 The equation for the voltage drop across an inductor is

$$
\begin{equation*}
v=L \frac{d i}{d t} \tag{a}
\end{equation*}
$$

Integration of Equation (a) with respect to time leads to

$$
\begin{equation*}
\int_{0}^{t} v d t=L\left(i_{2}-i_{1}\right) \tag{b}
\end{equation*}
$$

The initial current is zero. Solving Equation (b) for i_{2} leads to

$$
\begin{align*}
i_{2} & =\frac{\int_{0}^{t} v d t}{L} \\
& =\frac{20 \mathrm{~V} \cdot \mathrm{~s}}{0.4 \mathrm{H}} \\
& =50 \mathrm{~A} \tag{c}
\end{align*}
$$

1.22 The mathematical representation of the force is

$$
\begin{equation*}
F(t)=100 \delta(t)+150 \delta(t-2.5)+50 \delta(t-3.8) \tag{a}
\end{equation*}
$$

1.23 The MATLAB file Problem1_23 which determines the steady-state response of a series LRC circuit is listed below

```
% Problem1_23.m
% Steady-state response of seties LRC circuit
clear
disp('Steady-state response of series LRC circuit')
% Input parameters
disp('Input resistance in ohms')
R=input('>> ')
disp('Input capacitance in farads')
C=input('>>')
disp('Input inductance in henrys')
L=input('>> ')
disp('Input source frequency in r/s')
om=input('>> ')
disp('Input source amplitude in V')
V0=input('>> ')
% Calculates parameters
disp('Natural freqeuncy in r/s =')
```

```
omn=1/(L*C)^0.5
disp('Dimensionless damping ratio =')
zeta=R/2*(C/L)^0.5
disp('Phase angle in rad=')
C1=om^2-omn^2;
C2=2*zeta*om*omn;
phi=atan2(C1,C2)
disp('Steady-state amplitude in A =')
C3=V0*om/L;
C4=1/(C1^2+C2^2)^0.5;
I=C3*C4
tf=10*pi/om;
dt=tf/200;
for k=1:201
    t(k)=(k-1)*dt;
    i(k)=I*sin(om*t(k)+phi);
end
plot(t,i)
xlabel('t (s)')
ylabel('i (A)')
title('Steady-state response of series LRC circuit')
str1=['R=',num2str(R),' \Omega'];
str2=['C=',num2str(C),' F'];
str3=['L=',num2str(L),' H'];
str4=['lomega=',num2str(om),' r/s'];
str5=['V_0=',num2str(V0),' V'];
text(0.9*tf,I,str1)
text(0.9*tf,0.8*I,str2)
text(0.9*tf,0.6*I,str3)
text(0.9*tf,0.4*I,str4)
text(0.9*tf,0.2*I,str5)
```

The MATLAB workspace from a sample execution of Problem1_23.m is
>> Problem1_23
Steady-state response of series LRC circuit
Input resistance in ohms
>> 100
$\mathrm{R}=$
100

Input capacitance in farads
$\gg 0.2 \mathrm{e}-6$

$$
C=
$$

$2.0000 \mathrm{e}-007$

```
Input inductance in henrys
>> 0.5
L =
    0.5000
Input source frequency in r/s
>> 2000
om =
        2000
Input source amplitude in V
>> 120
V0 =
```

 120
 Natural freqeuncy in $\mathrm{r} / \mathrm{s}=$
omn $=$
3.1623e+003
Dimensionless damping ratio $=$
zeta $=$
0.0316
Phase angle in rad=
phi $=$
-1.5042
Steady-state amplitude in $\mathrm{A}=$
$\mathrm{I}=$

Chapter 1

$$
0.0798
$$

>>

The resulting steady-state plot is

1.24 The MATALB file Prolbem1_24.m is listed below

```
% Problem1_24.m
%(a) Input two five by five matrices
disp('Please input matrix A by row')
for i=1:5
    for j=1:5
        str={['Enter A(',num2str(i),num2str(j),')']};
        disp(str)
        A(i,j)=input('>> ');
    end
end
disp('Please input matrix B by row')
for i=1:5
    for j=1:5
        str={['Enter B(',num2str(i),num2str(j),')']};
        disp(str)
        B(i,j)=input('>> ');
    end
end
A
```

```
B
% (b) =A+B
C=A+B
% (c) D=A*B
D=A*B
% (d) det(A)
detA=det(A)
% eigenvalues and eigenvectors of A
[x,Y]=eigs(A);
disp('Eigenvalues of A')
Y
disp('Matrix of eigenvalues of A')
x
A sample output from execution of the file is shown below
>> clear
>> Problem1_24
Please input matrix A by row
    'Enter A(11)'
>> 1
    'Enter A(12)'
>>0
    'Enter A(13)'
>> 12
    'Enter A(14)'
>> -1
    'Enter A(15)'
>> 21
    'Enter A(21)'
>> 14
    'Enter A(22)'
>> -3
    'Enter A(23)'
>> 2
    'Enter A(24)'
>>0
```

Chapter 1

```
    'Enter A(25)'
>>-22
    'Enter A(31)'
>> 11
    'Enter A(32)'
>> 12
    'Enter A(33)'
>> 10
    'Enter A(34)'
>> -4
    'Enter A(35)'
>> 12
    'Enter A(41)'
>> 10
    'Enter A(42)'
>> 11
    'Enter A(43)'
>> 18
    'Enter A(44)'
>> 12
    'Enter A(45)'
>> 21
    'Enter A(51)'
>> 10
    'Enter A(52)'
>> 11
    'Enter A(53)'
>> 31
    'Enter A(54)'
>> 21
    'Enter A(55)'
```

```
>> 11
Please input matrix B by row
    'Enter B(11)'
>> 21
    'Enter B(12)'
>>-21
    'Enter B(13)'
>> 21
    'Enter B(14)'
>> 10
    'Enter B(15)'
>> 9
    'Enter B(21)'
>> 8
    'Enter B(22)'
>> 2
    'Enter B(23)'
>>2
    'Enter B(24)'
>> 4
    'Enter B(25)'
>> -5
    'Enter B(31)'
>> 16
    'Enter B(32)'
>> 12
    'Enter B(33)'
>> 11
    'Enter B(34)'
>> 18
    'Enter B(35)'
```

Chapter 1

```
>> 11
    'Enter B(41)'
>> 21
    'Enter B(42)'
>> 32
    'Enter B(43)'
>> 14
    'Enter B(44)'
>> 19
    'Enter B(45)'
>> 12
    'Enter B(51)'
>> 12
    'Enter B(52)'
>>9
    'Enter B(53)'
>> -5
    'Enter B(54)'
>> 13
    'Enter B(55)'
>> 21
A =
    1
    14
    11
    10}1011 18 18 12 21 
    10
```

```
B =
    21 -21 21 10
    8 2 2 4 -5
    16
    21
    12
C=
    22
    22
    27
    31
    22
D =
\begin{tabular}{ccccc}
444 & 280 & 34 & 480 & 570 \\
38 & -474 & 420 & -122 & -299 \\
547 & -107 & 249 & 418 & 353 \\
1090 & 601 & 493 & 969 & 818 \\
1367 & 955 & 812 & 1244 & 859
\end{tabular}
detA=
    -1171825
```

Eigenvalues of A

Matrix of eigenvalues of A
$\mathrm{x}=$
$-0.3664 \quad-0.1632 \quad-0.3379-0.4681 i \quad-0.3379+0.4681 i \quad 0.2658$

Chapter 1

0.1869	0.7510	0.7187	0.7187	-0.4106	
-0.2133	-0.4463	$0.0528+0.2510 \mathrm{i}$	$0.0528-0.2510 \mathrm{i}$	-0.4042	
-0.6060	-0.2256	$-0.0845-0.0753 \mathrm{i}$	$-0.0845+0.0753 \mathrm{i}$	0.6726	
-0.6466	0.3991	$-0.2465+0.1043 \mathrm{i}$	$-0.2465-0.1043 \mathrm{i}$	0.3808	

1.25 A MATLAB file to calculate and plot $\Lambda(r, \zeta)$ is given below
\% Plots the function LAMBDA(r,zeta) as a function of r for several values of \% zeta
\% Specify four values of zeta
zeta1=0.1;
zeta2=0.4;
zeta3=0.8;
zeta4=1.5;
\% Define values of r for calculations
for $\mathrm{i}=1: 400$
$\mathrm{r}(\mathrm{i})=(\mathrm{i}-1)^{*} .01$;
\% Calculate function
LAMBDA1(i)=r(i)^2/((1-r(i)^2)^2+(2*zeta1*r(i))^2)^0.5;
LAMBDA2(i)=r(i)^2/((1-r(i)^2)^2+(2*zeta2*r(i))^2)^0.5;
LAMBDA3(i) $\left.=\mathrm{r}(\mathrm{i})^{\wedge} 2 /\left(\left(1-\mathrm{r}(\mathrm{i})^{\wedge}\right)^{\wedge}\right)^{\wedge}+(2 * z e t a 3 * r(i))^{\wedge}\right)^{\wedge} 0.5$;
LAMBDA4(i)=r(i)^2/((1-r(i)^2)^2+(2*zeta4*r(i))^2)^0.5;
end
plot(r,LAMBDA1,'-',r,LAMBDA2,'.',r,LAMBDA3,'-.',r,LAMBDA4,'--')
xlabel('r')
ylabel('\Lambda')
str1=['\zeta=',num2str(zeta1)];
str2=['Izeta=',num2str(zeta2)];
str3=['\zeta=',num2str(zeta3)];
str4=['\zeta=',num2str(zeta4)];
legend(str1,str2,str3,str4)
title('\Lambda vs. r')
The resulting output from execution of the .m file is the following plot

1.26 The MATALB .m file Problem1_26 which determines and plots the step response of an underdamped mechanical system is shown below.

```
% Problem1_26.m
% Step response of an underdamped mechanical system
% Input natural frequency and damping ratio
clear
disp('Step response of underdamped mechanical system')
disp('Please input natural frequency in r/s')
om=input('>> ')
disp('Please input the dimensionless damping ratio')
zeta=input('>> ')
% Damped natural frequency
omd=om*(1-zeta^2)^0.5;
C1=zeta*om/omd;
C2=1/om}^2
C3=zeta*om;
tf=10*pi/omd;
dt=tf/500;
for i=1:501
t(i)=(i-1)*dt;
x(i)=C2*(1-exp(-C3*t(i))*(C1*sin(omd*t(i))-cos(omd*t(i))));
end
plot(t,x)
xlabel('t (s)')
ylabel('x (m)')
```

str1=['Step response of underdamped mechancial system with lomega_n=',num2str(om),'and \zeta=',num2str(zeta)]
title(str1)
str2=['x(t)=',num2str(C2),'[1-e^-^',num2str(C3),'^t(',num2str(C1),'sin(',num2str(omd),'t)cos(',num2str(omd),'t))]'] text(tf/4,C2/2,str2)

Output from execution of Problem1_26 follows
>> Problem1_26
Step response of underdamped mechanical system
Please input natural frequency in r / s
>> 100
om =
100
Please input the dimensionless damping ratio
>> 0.1
zeta $=$
0.1000

1.27 The perturbation in liquid level is

$$
\begin{equation*}
h(t)=q R\left(1-e^{-t /(R A)}\right) \tag{a}
\end{equation*}
$$

(a) Since the argument of a transcendental function must be dimensionless the dimensions of the product of resistance and area must be time. Thus the dimensions of resistance must be $\left[\frac{\mathbf{T}}{\mathbf{L}^{2}}\right]$
(b) Note that the steady-state value of the liquid-level perturbation is $q R$. The MATLAB file Problem1_27.m which calculates and plots $h(t)$ from $t=0$ until h is within 1 percent of its steady-state value is given below
disp('Please enter resistance in $\mathrm{s} / \mathrm{m}^{\wedge} \mathrm{2}^{\prime}$)
R=input('>> ')
\% Final value of h
$\mathrm{hf}=0.99 * \mathrm{q}$ *R;
$\mathrm{dt}=0.01 * \mathrm{R}^{*}$;
h1=0;
$\mathrm{h}(1)=0$;
$\mathrm{t}(1)=0$;
$\mathrm{i}=1$;
while h1<hf
$\mathrm{i}=\mathrm{i}+1$;
$\mathrm{t}(\mathrm{i})=\mathrm{t}(\mathrm{i}-1)+\mathrm{dt}$;
$h(i)=q * R *(1-\exp (-t(i) /(R * A))) ;$
h1=h(i);
end
plot(t, h)
xlabel('t (s)')
ylabel('h (m)')
title('Perturbation flow rate vs time')
str1=['A=',num2str(A),' m^3/s']
str2=['R=',num2str(R),' s/m^2']
str3=['q=',num2str(q),' m^3/s']
text($\left.0.5^{*} \mathrm{t}(\mathrm{i}), 0.5^{*} \mathrm{~h}(\mathrm{i}), \mathrm{str} 1\right)$;
text(0.5*t(i), $\left.0.4^{*} \mathrm{~h}(\mathrm{i}), \mathrm{str} 2\right)$;
text(0.5*t(i), $0.3 * h(i), s t r 3) ;$
Sample output from execution of Problem1_27.m is given below
>> Please enter tank area in $\mathrm{m}^{\wedge} 2$
>> 100
$\mathrm{A}=$

Please enter flow rate in $\mathrm{m}^{\wedge} 3 / \mathrm{s}$

Chapter 1

```
>> 0.2
q=
    0 . 2 0 0 0
```

Please enter resistance in $\mathrm{s} / \mathrm{m}^{\wedge} 2$
>> 15
$\mathrm{R}=$
15
$\operatorname{str} 1=$
$\mathrm{A}=100 \mathrm{~m} \wedge 3 / \mathrm{s}$
str2 $=$
$\mathrm{R}=15 \mathrm{~s} / \mathrm{m}^{\wedge} 2$
str3 $=$
$\mathrm{q}=0.2 \mathrm{~m} \wedge 3 / \mathrm{s}$

Copyright © 2008 Nelson Thomson Learning. All rights reserved.

