System Dynami cs and Response 1st Edition Kelly Sol utions Manual

Chapter 1
1 Introduction
1.1 Equation (a) of the problem statement is used to solve for h as
0 (@)

h=———

AT -T,)
The Principle of Dimensional Homogeneity is used to determine the dimensions of the
heat transfer coefficient. Using the F-L-T system dimensions of the quantities in Equation

(@) are
[Q]{%} (b)
[A]=[1] (b)
[T-T1.]=[®] ©)

Thus from Equations (a)-(d) the dimensions of the heat transfer coefficient are

hl- [T .F(a'l._l_2 }

F
— d
{T-@- L} @
Possible units for the heat transfer coefficient using the SI system are " while
m-s-
possible units using the English system are :
ft-s-R
1.2 The Reynolds number is defined as
Re = ﬂ (a)
U
The dimensions of the quantities on the left-hand side of Equation (a) are obtained using
Table 1.2 as
M
[o]= L—} (b)
L
Vi =|— c
[V] M ©)
[D]=[L] d)
M
A e
(1] [L,T} (€)

Substituting Equations (b)-(e) in Equation (a) leads to
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=[1] (f)

Equation (f) shows that the Reynolds number is dimensionless.

1.3 The capacitance of a capacitor is defined by

i
C=—0o a
& (@)
dt
The dimension of i is that of electric current, which is a basic dimension. The dimensions
of electric potential are obtained from Table 1.2 as

F-L
vl=|— b
[v] [ — } (b)
Thus the dimensions of the time rate of change of electric potential are

dv F-L
kintag ©
Use of Equation (c) in Equation (a) leads to
[
cl=l o
i-T?
i2.T?
p— d
= @
1.4 (a) The natural frequency of a mass-spring system is
0, =% @
m

where m is mass with dimension [M] and Kk is stiffness with dimensions in the M-L-T

system of {MZ} . Thus the dimensions of natural frequency are
T
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[o,]=| | T

1

(b) The natural frequency of the system is 100 Hz, which for calculations must be
converted to r/s,

o =20 cycles
S
_ (20 cyclesj(zﬂ r ]
S cycles
~125.7 2 (©)
Equation (a) is rearranged as
k=mao? (d)

Substitution of known values into Equation (d) leads to

2
k=(0.1 kg)(125.7 ﬁj
S

_1.58x10° N (e)
m

1.5 (a) The mass of the carbon nanotube is calculated as
m = pAL = p(zr? )L
kg
m3
3.78x10% kg
(b) Conversion between TPa and psi leads to

E =1.1TPa =1.1x10% ﬁz
m

2 2
:(1.1x1012 ﬁ](o.zzsﬁj( 1m j ( 1t )
m? N A\ 3.28ft) \12in

. b
in?

(c) Calculation of the natural frequency leads to

= (1300 jﬂ(O.34X109 m)’(80x10° m)

=1.60x10
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w=22.37 14
PAL

(1.1x1012 '\'2]2(0.34x109 m)’
m

=22.37

(1300 ;gg}z(o.mxlo-g J(80x10° m)’

~1.73x10° =
S

= [1.73x101° ij(%j
S 27r

=2.75x10° Hz

Converting to Hz gives

1.6 The power of the motor is calculated as
p_ 900 kW - hr
24 hr
=37.5kW (@)
The power is converted to English units using the conversions of Table 1.1
P =37.5x10° W

03 Nm

0.225ij (3.28ft]
-m
N m

=37.5x1

{
=37.5x10°
S

_277x0¢ 1P (b)
S

Conversion to horsepower leads to

ft-lb| 1hp
s | 550ft-Ib
S
=50.3hp (©)

P =2.77x10"

1.7 The conversion of density from English units to SI units is

4
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slugs
ﬂ3

3
_104 slugs 1kg (3.28ft}
ft* (0.00685slugs \ 1m

— 9.99x10° % @)

p =194

1.8 The constant acceleration of the train is

a=-6 mz (a)
S
The velocity is obtained using Equation (a) as
v(t)=-6t+C (b)
The constant of integration is evaluated by requiring
km

v(t=0)=180—
hr

:180k_m[1000 mj( 1hr j

hr { km 3600s
—50 ©
S
Using Equation (c) in Equation (b) leads to
v(t) = -6t +50 (d)
s
The train stops when its velocity is zero,
0=-6t+50
t=8.33s (e)

The distance traveled is obtained by integrating Equation (d) and assuming x(0)=0,
leading to

x(t) = =3t* + 50t (f)
The distance traveled before the train stops is
x(8.33) = —3(8.33)* +50(8.33)

=208.3m (9)
1.9 The differential equation for the angular velocity of a shaft is
dw
J E +Cw= T (a)

Each term in Equation (a) has the same dimensions, those of torque or [F-L]. The

dimensions of angular velocity are [_H . Thus the dimensions of c, are
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L
ol 1}
T
F-L-T] (b)
1.10 The equation for the torque applied to the armature is
T = Kaiaif (a)
Equation (a) is rearranged as
K, = L (b)

@
-

[
The dimensions of torque are [F-L] thus the dimensions of the constant are

[K,]= [%} ©

The equation for the back emf is

v=K,i;o (d)
Equation (d) is rearranged as
K, = (e)
i

The dimensions of voltage are {F _:_‘} and the dimensions of angular velocity are {_ﬂ :
|-

The dimensions of the constant K, are
F-L

K1=|1-T

<J= 1
T

) [Fiﬂ 0

It is clear from Equations (c) and (f) that the dimensions of [K_ ]and [K, ]are the same.

These dimensions are the same as those of inductance (Table 1.2).

1.11 (a) The dimensions of Q are determined from Equation (a)
Q=aAg(T4—T4) @)

Lz o }[ 1*]e*]- { } (b)

(b) The differential equations governing the temperature in the body is
m%+ag(T4—Tb4)=0 (©
The perturbation in temperature in the radiating body is defined by
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Ty =Ty + Ty (d)
This leads to a perturbation in the temperature of the receiving body defined as
T=T,+T, ()]
Substitution of equations (d) and () in Equation (c) leads to
d
po g TaT)roel(T 4 ) (1, 4T, ) |0 ()
Simplifying Equation (f) gives
4 4
dTl 4 Tl 4 Tbl
—+oe| T, |1+—| -T.|1+—]| |=0
pC dt O-g[ S ( TSJ bs Tbs (g)

Expanding the nonlinear terms, keeping only through the linear terms and noting that

Ts = Tbs
pcﬂJrag T 4T_1 -T. h =0
dt T, T
dT, 3 :
pCE +40el [T, =4oel [T, (h)

1.12 The differential equation is linearized by using the small angle assumption which
implies sin@ ~fand cosd ~1. Using these approximations in the differential equation
leads to the linearized approximation as

%mLzéJr%cLzéJrkLZe:O (a)

1.13 The differential equation is linearized by using the small angle assumption which
implies sin@ ~fand cosd ~1. Using these approximations in the differential equation
leads to the linearized approximation as

%mL29+(mg%+ yjez L (a)

1.14 The nonlinear differential equations governing the concentration of the reactant and
temperature are

Vv d;:tA +(q +one‘E"RT))CA =qC,, (a)

e, T, = pae, T —Q + AVae = ®VC, = pVc, Z—I (b)

The reactor is operating at a steady-state when a perturbation in flow rate occurs
according to

q=0,+0,() (c)

The flow rate perturbation induces perturbations in concentration and temperature
according to
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CA = CAs +CAp ) (d)
T=T, +Tp ®) (e)

The steady-state conditions are defined by setting time derivatives to zero in Equation (a)
leading to

(0, +ave =™, =q.C, ()
e, T — e, T, —Q+ AVae =FC, =0 (9)

Substitution of Equations (d) and (e) into Equations (a) and (b) leads to

V dthP +(qs +qp +aveiE/[R(Ts+Tp)]XCAs +CAp): (qs +qpkAi (h)
. dT
pla, +qp)cpTi — pla, +qp)3p(TS +Tp)—Q +/1Vae’E'[R(TS*T")](CAS +CAp): Ve, —2 (i)

dt

It is noted from Equation (f) of Example (1.6) that a linearization of the exponential terms
in Equations (h) and (i) is

___E B g _E
e R(Ts +Ty) —e RT, + RT2 e RTSTp (j)
Use of Equation (j) in Equations (h) and (i) and rearrangement leads to
dc - E =
\ thp +[qs +q, +0N(e "t RT 2 € RTSTpJ](CAs +CAp): (qs + qpkAi (k)

E E

pla, +a,)e,T - pla, +9, ), (T, +T,)-Q +/1V0{€RTS + Riz eRTSTp}(CAS +C,)

S

PV a7, ()
P Tt

Equations (g) and (h) are used to simplify Equations (k) and (I) to

dc = =
V—"24q.C, +0,Cp +7,C,, +aVe :C,, +av{RE e RTsTp}(c:AS +C,)

dt T?
= quAi (m)
e T
pa,¢,T, - pc,(a,T, +9,T, +q,T, )+ AVae *C,, +2,V0{RT2 e RTsTp}(cAs +C,)
e dT, -
= c — n
PV dt

Neglecting products of perturbations Equations (m) and (n) are rearranged as
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dt 2

S

dCAp 7RI'EFS E 7Ri
\ +0,C,, +09,C,, +aVe T:Cy +aV T e T, |Cp

= quAi - quAs (O)

2
S

dTp 7; E 7;
pVCpT—pqupTi+pCp(qus+qup)+/1Vae 'Cpp +AVal ore T, [C, =0 (p)

1.15 The specific heat is related to temperature by

15 2.6
C, =A +AT” +AT (@)
The transient temperature is the steady-state temperature plus a perturbation,
T=T+T, (b)

Substituting Equation (b) into Equation (a) leads to
Co = A+ AT +T J2 (T, +T, F°

T 15 T 2.6
= A+ A2T51'5(1+ T—"] + AT (1+T—F’J ©)
Using the binominal expansion to linearize Equation (c) leads to
c, =A+AT 1+15T—p +AT?® 1+26T—p (d)
p s . TS s . Ts
The differential equation for the time-dependent temperature is
c ar + lT = lT (e

dt R R~
Substituting Equations (b) and (d) into Equation (e) along with T, =T +T, leads to

15 Tp 2.6 Tp d 1 _i
{Al + AT, (1+1.5TJ+ AT, (1+ 2.6fﬂa( S+Tp)+ﬁ( +T,)= - (T.+T.,) ®

Noting that the steady-state is defined by dthS =0and T, =T_, reduces Equation (f) to

T T,)|dT, 1 1
+ AT 1415 |+ AT 1426 || =2+ =T, ==T
|:A1 2°s ( TS J A3 S TS dt R p R op (g)
dTp - - - - - - Tp
Termssuchas T, Tare nonlinear. Equation (Q) is linearized by noting that T <<1
S
dT, 1 1
+ATP AT )L+ =T ==T h
(A+ AT AT 2T, =0T, (h)
1.16 The force acting on the piston at any instant is
F=pA ()
where A is the area of the piston head. The pressure is related to the density by
p=Cp’ (b)
9
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The mass of air in the cylinder is constant and is calculated when the piston is in
equilibrium as

m = p,Ah (c)
where p, is the density of the air in equilibrium. Using Equation (b) in Equation (c) leads
to

X |

_[Po
m—[cj Ah (d)

where p,is the pressure in the cylinder when the piston is in equilibrium. At any instant
the mass is calculated as

m = pA(h —x)

1

P\
=|—=| A(h—x e
(2] a0 ©

Since the mass is constant, Equations (d) and (e) are equated leading to
h '

- — f
p po(h - XJ (f)

Substitution of Equation (f) into Equation (a) leads to
h /4
F = —
poA(h - Xj ()

F - poA(l—ﬁj_y (h)

(b) Equation (g) is rearranged as

Since %<1a binomial expansion can be used on the right-hand side of Equation (h).

Using the binomial expansion keeping only through the linear term leads to

F= p0A+7p°Ax (e)
The linear stiffness is obtained from Equation (e) as
oA
k= f
™ (f)
10
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1.17 The appropriate superposition of the voltage in Figure P1.17 is illustrated below

1 1
12 " 12u(t) 12 <‘» 12u(t-2)
- = - - —t—

(24-6t)u(t-2)
+ 12 - 12
\ (24-6t)u(t-4)
| - | A -
o T

; 4\ 2 4\—

The mathematical representation of the voltage source is
v(t) =12[u(t) —u(t — 2)]+ (24 - 6t)u(t — 2) —u(t — 4)]

1.18 The superposition of the force of Figure P1.18 is illustrated below.

)

300 +—— 300 300

-300 T

+ —|—+_ - I I

0T The

-300 |

mathematical representation of the force is
F (t) = 300[u(t) — u(t —15)] — 300[u(t —15) —u(t — 30)]

11
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1.19 The superposition of the cam displacement over one period is shown below

.04u(t-.05
.002 04u(t) / (t-.05)
I —H— = I > - l[ >
05 253 05
.002u(t-.05) .002u(t-.25)
+.002F ————  _ =
| - | -
| - i -
.05 25

+ (.012-.04t)u(t-.25)
\ - (012-04t)u(t-3)
| -

| - -
.25\ -3\
(a) The mathematical representation of the displacement over one period is
x(t) = 0.04[u(t) — u(t — 0.05)]+ 0.002[u(t — 0.05) — u(t — 0.25)
+(0.012 - 0.04t)[u(t — 0.25) —u(t — 0.3)] (@)
(b) The period of the cycle is 0.5 s. Thus the displacement over the second period is
obtained by replacing t by t+0.5 in Equation (a). The displacement over the kth period is

obtained by replacing t by t+(k-1)(0.5) in Equation (a). The total displacement is obtained
by summing over all periods

x(t) = i{0.04[u(t — .5k +.5) —u(t — .5k +.45)]+.002[u(t — 0.5k +.45) — u(t — .5k +.25)]

+(0.02k — 0.008 — 0.04t )[u(t — 0.5k +.25) — u(t — 0.5k +0.2]]} (b)

where K is the smallest integer greater than t/(0.05).

1.20 Integration of Newton’s second law with respect to time leads to the principle of
impulse and momentum

| = tj Fdt =m(v, —v,) @)

L't

t
where the total impulse applied between t, andt,is det. The 12 N-simpulse is
4
applied instantaneously to the 4-kg particle when it is at rest. Application of the principle
of impulse and momentum leads to

12
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12N-s=(4kg)v,
12N-s
Vv, =
4 kg

=30 (b)
S

1.21 The equation for the voltage drop across an inductor is

di
= L—
v o @

Integration of Equation (a) with respect to time leads to
t
[vdt = L(i, -i,) (b)
0

The initial current is zero. Solving Equation (b) for i, leads to

j.vdt
_ 0

I, = L
_20V-s
0.4H

=50 A ©)

1.22 The mathematical representation of the force is
F(t) =1005(t) +1505(t — 2.5) + 505 (t — 3.8) (a)

1.23 The MATLAB file Probleml 23 which determines the steady-state response of a
series LRC circuit is listed below

% Problem1_23.m

% Steady-state response of seties LRC circuit
clear

disp('Steady-state response of series LRC circuit’)
% Input parameters

disp(‘Input resistance in ohms')
R=input('>>")

disp('Input capacitance in farads'’)
C=input(>>")

disp(‘'Input inductance in henrys')
L=input(>>")

disp(‘'Input source frequency in r/s’)
om=input('>>")

disp(‘'Input source amplitude in V")
VO=input(>>")

% Calculates parameters

disp('Natural fregeuncy in r/s =)

13
Copyright © 2008 Nelson Thomson Learning. All rights reserved.



Chapter 1

omn=1/(L*C)"0.5
disp('Dimensionless damping ratio =')
zeta=R/2*(C/L)"0.5
disp('Phase angle in rad=")
Cl=om”"2-omn”"2;
C2=2*zeta*om*omn;
phi=atan2(C1,C2)
disp('Steady-state amplitude in A =")
C3=V0*omi/L;
C4=1/(C172+C2"2)"0.5;
I=C3*C4
tf=10*pi/om;
dt=tf/200;
for k=1:201

t(K)=(k-1)*dt;

i(K)=1*sin(om*t(k)+phi);
end
plot(t,i)
xlabel('t (s)")
ylabel('i (A)")
title('Steady-state response of series LRC circuit’)
str1=['R=",num2str(R),' \Omega'];
str2=['C=",num2str(C)," F'];
str3=['L=",num2str(L),' H'];
str4=["\omega=",num2str(om)," r/s'];
str5=['V_0=",num2str(\VV0),' V'];
text(0.9*tf,1,strl)
text(0.9*tf,0.8*1,str2)
text(0.9*tf,0.6*1,str3)
text(0.9*tf,0.4*1,str4)
text(0.9*tf,0.2*1,str5)

The MATLAB workspace from a sample execution of Problem1l 23.m is
>> Probleml 23
Steady-state response of series LRC circuit
Input resistance in ohms
>> 100
R =
100

Input capacitance in farads
>>0.2e-6

14
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C=
2.0000e-007

Input inductance in henrys
>> (0.5

L=
0.5000

Input source frequency in r/s
>> 2000

om =
2000

Input source amplitude in V
>> 120

V0 =

120
Natural fregeuncy in r/s =
omn =

3.1623e+003
Dimensionless damping ratio =
zeta =

0.0316

Phase angle in rad=
phi =

-1.5042

Steady-state amplitude in A =

15
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0.0798

>>

The resulting steady-state plot is

Steady-state response of series LRC circuit
DDB T T T

0.06 | i F

0.04

i
0.02

=€ ok

-0.02

-0.04 |-

0.06

L 1 L
0004 0006 0008 OO 0012 0014 0016
t(s)

-0.08 -
a 0.002

1.24 The MATALSB file Prolbem1_24.m is listed below

% Problem1_24.m
%(a) Input two five by five matrices
disp(‘'Please input matrix A by row')
for i=1:5
for j=1:5
str={['Enter A(',num2str(i),num2str(j),")'1};
disp(str)
A(i,j)=input(>>");
end
end
disp(‘Please input matrix B by row’)
for i=1:5
for j=1:5
str={['Enter B(',num2str(i),num2str(j),")T};
disp(str)
B(i,j))=input(>>");
end
end
A

16
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B

% (b) =A+B

C=A+B

% (c) D=A*B

D=A*B

% (d) det(A)

detA=det(A)

% eigenvalues and eigenvectors of A
[x,Y]=eigs(A);

disp('Eigenvalues of A")

Y

disp('Matrix of eigenvalues of A")
X

A sample output from execution of the file is shown below
>> clear
>> Probleml_24
Please input matrix A by row
‘Enter A(11)'

>> 1
‘Enter A(12)'

>> (0
‘Enter A(13)'

>>12
‘Enter A(14)'

>> -1
‘Enter A(15)'

>>21
‘Enter A(21)'

>> 14
‘Enter A(22)'

>> -3
‘Enter A(23)'

>> 2
'Enter A(24)'

>>(

17
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‘Enter A(25)'

>>-22
‘Enter A(31)'

>>11
‘Enter A(32)'

>> 12
‘Enter A(33)'

>>10
‘Enter A(34)'

>> -4
‘Enter A(35)'

>>12
‘Enter A(41)'

>> 10
‘Enter A(42)'

>>11
‘Enter A(43)'

>>18
‘Enter A(44)'

>>12
‘Enter A(45)'

>>21
‘Enter A(51)'

>> 10
‘Enter A(52)'

>>11
'Enter A(53)'

>>31
‘Enter A(54)'

>>21
'Enter A(55)'

18
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>>11
Please input matrix B by row
‘Enter B(11)'

>>21
‘Enter B(12)'

>>-21
‘Enter B(13)'

>>21
‘Enter B(14)'

>> 10
‘Enter B(15)'

>>9
‘Enter B(21)'

>> 8
‘Enter B(22)'

>>2
‘Enter B(23)'

>> 2
‘Enter B(24)'

>> 4
‘Enter B(25)'

>> -5
‘Enter B(31)'

>> 16
‘Enter B(32)'

>>12
‘Enter B(33)'

>>11
‘Enter B(34)'

>> 18
‘Enter B(35)'

19
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>>11
‘Enter B(41)'

>>21
‘Enter B(42)'

>> 32
‘Enter B(43)'

>> 14
‘Enter B(44)'

>>19
‘Enter B(45)'

>>12
‘Enter B(51)'

>>12
‘Enter B(52)'

>>9
‘Enter B(53)'

>> -5
‘Enter B(54)'

>> 13
‘Enter B(55)'

>> 21
A=

1 0 12 -1 21
14 -3 2 0 -22
11 12 10 -4 12
10 11 18 12 21
10 11 31 21 11

20
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21 -21 21 10 9
8 2 2 4 -5

16 12 11 18 11

21 32 14 19 12
12 9 5 13 21

22 -21 33 9 30
22 -1 4 4 -27

27 24 21 14 23
31 43 32 31 33
22 20 26 34 32

D=

444 280 34 480 570
38 -474 420 -122 -299

547 -107 249 418 353
1090 601 493 969 818
1367 955 812 1244 859

detA =

-1171825

Eigenvalues of A

Y =
43.3949 0 0 0 0
0 -18.9247 0 0 0
0 0 -1.8896 -11.6121i 0 0
0 0 0 -1.8896 +11.6121i 0
0 0 0 0 10.3091

Matrix of eigenvalues of A
X =

-0.3664 -0.1632 -0.3379 - 0.4681i -0.3379 + 0.4681i 0.2658

21
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0.1869 0.7510 0.7187 0.7187 -0.4106

-0.2133 -0.4463 0.0528 + 0.2510i 0.0528 - 0.2510i -0.4042
-0.6060 -0.2256 -0.0845 - 0.0753i -0.0845 + 0.0753i 0.6726
-0.6466 0.3991 -0.2465 + 0.1043i -0.2465 - 0.1043i 0.3808

1.25 A MATLAB file to calculate and plot A(r,<)is given below

% Plots the function LAMBDA(r,zeta) as a function of r for several values of
% zeta
% Specify four values of zeta
zetal=0.1,
zeta2=0.4;
zeta3=0.8;
zetad=1.5;
% Define values of r for calculations
for i=1:400

r(i)=(i-1)*.01;
% Calculate function
LAMBDAL(1)=r(i)*2/((1-r(i)*2)"2+(2*zetal*r(i))*2)"0.5;
LAMBDAZ2(i)=r(i)*2/((1-r(i)"2)"2+(2*zeta2*r(i))"2)"0.5;
LAMBDAS3(i)=r(i)*2/((1-r(i)*2)"2+(2*zeta3*r(i))*2)"0.5;
LAMBDAA4(1)=r(i) 2/((1-r(i)*2)"2+(2*zetad*r(i))"2)"0.5;
end
plot(r,LAMBDAL,-'r,LAMBDA2," r,LAMBDA3,-.",,LAMBDA4,--")
xlabel('r)
ylabel('\Lambda')
strl=['\zeta=',num2str(zetal)];
str2=["\zeta=",num2str(zeta2)];
str3=['\zeta=",num2str(zeta3)];
str4=['\zeta=",num2str(zeta4)];
legend(strl,str2,str3,str4)
title("\Lambda vs. r')

The resulting output from execution of the .m file is the following plot

22
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1.26 The MATALB .m file Problem1_26 which determines and plots the step response of

an underdamped mechanical system is shown below.

% Problem1_26.m

% Step response of an underdamped mechanical system
% Input natural frequency and damping ratio

clear

disp('Step response of underdamped mechanical system’)
disp(‘Please input natural frequency in r/s")
om=input('>>")

disp(‘'Please input the dimensionless damping ratio’)
zeta=input(>>")

% Damped natural frequency

omd=om*(1-zeta"2)"0.5;

Cl=zeta*om/omd;

C2=1/om"2;

C3=zeta*om;

tf=10*pi/omd;

dt=tf/500;

for i=1:501

t(i)=(i-1)*dt;
X(i1)=C2*(1-exp(-C3*t(i))*(C1*sin(omd*t(i))-cos(omd*t(i))));
end

plot(t,x)

xlabel('t (s)")

ylabel('x (m)")
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str1=['Step response of underdamped mechancial system with
\omega_n=",num2str(om),'and \zeta=",num2str(zeta)]

title(strl)

str2=['x(t)=",num2str(C2), [1-e"-"',num2str(C3),(',num2str(C1),'sin(',num2str(omd),t)-
cos(',num2str(omd),'t))]']

text(tf/4,C2/2,str2)

Output from execution of Problem1_26 follows
>> Probleml_26

Step response of underdamped mechanical system
Please input natural frequency in r/s

>> 100

om =

100

Please input the dimensionless damping ratio
>>0.1

zeta =

0.1000

}{Stﬁmespnnse of underdamped mechancial system with a =100and £=0.1

x()=0.0001[1-e”" 00, 1005in(39. 49671)- cos (99, 45671))]
04} :

1 1 1
0 0.0s 0.1 015 0.2 0.25 0.3 035

0.z
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1.27 The perturbation in liquid level is

h(t) = gR{L—e ™) (a)
(@) Since the argument of a transcendental function must be dimensionless the
dimensions of the product of resistance and area must be time. Thus the dimensions of

resistance must be {%}

(b) Note that the steady-state value of the liquid-level perturbation is gR. The MATLAB

file Problem1_27.m which calculates and plots h(t) from t=0 until h is within 1 percent of
its steady-state value is given below

disp('Please enter resistance in s/m”2 ")
R=input('>>")
% Final value of h
hf=0.99*q*R;
dt=0.01*R*A;
h1=0;
h(1)=0;
t(1)=0;
i=1;
while hl<hf
iI=i+1;
t(i)=t(i-1)+dt;
h(i)=g*R*(1-exp(-t(i)/(R*A)));
h1=h(i);
end
plot(t,h)
xlabel('t (s)")
ylabel('h (m)")
title('Perturbation flow rate vs time')
strl=['A=",num2str(A)," m"3/s']
str2=['R=",num2str(R)," s/m"2']
str3=['g=",num2str(q)," m"3/s']
text(0.5*t(i),0.5*h(i),strl);
text(0.5*t(i),0.4*h(i),str2);
text(0.5*t(i),0.3*h(i),str3);

Sample output from execution of Problem1 27.m is given below

>> Please enter tank area in m"2
>> 100

A=
100

Please enter flow rate in m”3/s
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>>0.2

q =
0.2000

Response 1st Edition Kelly Sol utions Manual

Please enter resistance in s/m”2

>>15

R =

15

strl =

A=100 m"3/s

str2 =

R=15 s/m"2

str3 =

g=0.2 m"3/s

>>

Perturbation flow rate vs time

25} -
2 - -
181 A=100 mi/s .
R=15 &/m?
1 - -
g=0.2 P
ost -
|:| 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 000 7000
t(s)
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