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1   Introduction 
 

1.1 Equation (a) of the problem statement is used to solve for h as 

(a)                                               
)( ∞−

=
TTA

Qh
&

 

The Principle of Dimensional Homogeneity is used to determine the dimensions of the 
heat transfer coefficient. Using the F-L-T system dimensions of the quantities in Equation 
(a) are 
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T
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[ ] [ ] (b)                                              L2=A  
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Thus from Equations (a)-(d) the dimensions of the heat transfer coefficient are 

[ ]
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Possible units for the heat transfer coefficient using the SI system are 
Ksm

N 
⋅⋅

while 

possible units using the English system are 
Rsft

lb
⋅⋅

. 

1.2 The Reynolds number is defined as 

(a)                                                   Re
µ

ρVD
=  

The dimensions of the quantities on the left-hand side of Equation (a) are obtained using 
Table 1.2 as 

[ ]

[ ]

[ ] [ ]

[ ] (e)                                                      
TL

M
(d)                                                            LD

(c)                                                          
T
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⎢⎣
⎡

⋅
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=
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⎤
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Substituting Equations (b)-(e) in Equation (a) leads to 
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[ ]
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Equation (f) shows that the Reynolds number is dimensionless. 

1.3 The capacitance of a capacitor is defined by 

(a)                                                       

dt
dv
iC =  

The dimension of is that of electric current, which is a basic dimension. The dimensions 
of electric potential are obtained from Table 1.2 as 

i

[ ] (b)                                                     
Ti
LF
⎥⎦
⎤

⎢⎣
⎡
⋅
⋅

=v  

Thus the dimensions of the time rate of change of electric potential are 

(c)                                      
Ti
LF

2 ⎥⎦
⎤

⎢⎣
⎡
⋅
⋅

=⎥⎦
⎤

⎢⎣
⎡

dt
dv  

Use of Equation (c) in Equation (a) leads to 

[ ]

(d)                                                  
LF
Ti      

Ti
LF

i

22

2

⎥
⎦

⎤
⎢
⎣

⎡
⋅
⋅

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅
⋅
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1.4 (a) The natural frequency of a mass-spring system is 

(a)                                                       
m
k

n =ω  

where m is mass with dimension [M] and k is stiffness with dimensions in the M-L-T 

system of ⎥⎦
⎤

⎢⎣
⎡

2T
M . Thus the dimensions of natural frequency are 
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[ ]

(b)                                                  
T
1        

M
T
M 2

1

2

⎥⎦
⎤

⎢⎣
⎡=

⎥
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(b) The natural frequency of the system is 100 Hz, which for calculations must be 
converted to r/s,  

(c)                                                         
s
r 7.125    

cycles
r2

s
cycles 20     

s
cycles 20

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞
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Equation (a) is rearranged as 
(d)                                                 2

nmk ω=  
Substitution of known values into Equation (d) leads to 

( )

(e)                                              
m
N 1058.1   

s
r 7.125kg 1.0

3

2

x

k

=

⎟
⎠
⎞

⎜
⎝
⎛=

 

1.5 (a) The mass of the carbon nanotube is calculated as 
( )

( ) (
kg 3.78x10    

m 1080m 1034.0
m
kg 1300     

23-

929
3

2

−−⎟
⎠
⎞

⎜
⎝
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==

xx

LrALm

π

πρρ

) 

(b) Conversion between TPa and psi leads to 

2
8

22

2
12

2
12

in
lb 1060.1    

in 12
ft 1

ft 3.28
m 1

N
lb 225.0

m
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m
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(c) Calculation of the natural frequency leads to 

 
Copyright © 2008 Nelson Thomson Learning. All rights reserved. 

3



Chapter 1 

( )

( ) ( )

s
r 1.73x10     

m 10801034.0
m
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4m
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Converting to Hz gives 

Hz 1075.2    
r 2

cycle 1
s
r 1073.1

9

10

x

x

=

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=

π
ω

 

1.6 The power of the motor is calculated as 

(a)                                      kW         5.37   
hr 24

hrkW 900

=

⋅
=P

 

The power is converted to English units using the conversions of Table 1.1 

(b)                                                            
s
lbft 1077.2     

s
m

ft 3.28m
N

lb 0.225N
105.37    

s
mN 37.5x10    

 W105.37

4

3

3

3

⋅
=

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛

=

⋅
=

=

x

x

xP

 

Conversion to horsepower leads to 

(c)                                                            hp 3.50     

 

s
lbft 550

hp 1
s
lbft 1077.2 4

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅
⋅

= xP
 

1.7 The conversion of density from English units to SI units is 
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(a)                                                               
m
kg 1099.9    

m 1
ft 28.3

slugs 0.00685
kg 1

ft
slugs 94.1    

ft
slugs 94.1

3
3

3

3

3

x=

⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=ρ

 

1.8 The constant acceleration of the train is  

(a)                                                          
s
m 6 2−=a  

The velocity is obtained using Equation (a) as 
(b)                                                  6)( Cttv +−=  

The constant of integration is evaluated by requiring  

(c)                                                                    
s
m 50           

s 3600
hr 1

km
m 1000

hr
km 180            

hr
km 180)0(

=

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=

==tv

 

Using Equation (c) in Equation (b) leads to 

(d)                                                
s
m 506)( +−= ttv  

The train stops when its velocity is zero,  

(e)                                                        s 33.8
5060

=
+−=

t
t

 

The distance traveled is obtained by integrating Equation (d) and assuming x(0)=0, 
leading to 

(f)                                                  503)( 2 tttx +−=  
The distance traveled before the train stops is 

(g)                                                     m 3.208            
)33.8(50)33.8(3)33.8( 2

=
+−=x

 

1.9 The differential equation for the angular velocity of a shaft is  

(a)                                                 Tc
dt
dJ t =+ ωω  

Each term in Equation (a) has the same dimensions, those of torque or [ . The 

dimensions of angular velocity are 

]LF ⋅

⎥⎦
⎤

⎢⎣
⎡
T
1 . Thus the dimensions of are tc
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[ ]

[ ] (b)                                                 TLF      
T
1
LF

⋅⋅=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⋅

=tc
 

1.10 The equation for the torque applied to the armature is  
(a)                                               faa iiKT =  

Equation (a) is rearranged as 

(b)                                                   
fa

a ii
TK =  

The dimensions of torque are [ ]LF ⋅  thus the dimensions of the constant are 

[ ] (c)                                            
i

LF
2 ⎥⎦
⎤

⎢⎣
⎡ ⋅

=aK  

The equation for the back emf is 
(d)                                             ωfviKv =  

Equation (d) is rearranged as 

(e)                                                    
ωf

v i
vK =  

The dimensions of voltage are ⎥⎦
⎤

⎢⎣
⎡
⋅
⋅
Ti
LF and the dimensions of angular velocity are ⎥⎦

⎤
⎢⎣
⎡
T
1 . 

The dimensions of the constant are vK

[ ]

(f)                                               
i

LF      

T
1i

Ti
LF

2 ⎥⎦
⎤

⎢⎣
⎡ ⋅

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⋅
⋅

=vK
 

It is clear from Equations (c) and (f) that the dimensions of [ ] [ va KK  and ]are the same. 

These dimensions are the same as those of inductance (Table 1.2). 

1.11 (a) The dimensions of are determined from Equation (a) Q&

( ) (a)                                                  44
bTTAQ −= εσ&  

[ ][ ] (b)                                        
T

LF
TL

LF 42
42 ⎥⎦

⎤
⎢⎣
⎡ ⋅

=Θ⎥⎦
⎤

⎢⎣
⎡

Θ⋅⋅
⋅ L  

(b) The differential equations governing the temperature in the body is  

(c)                              0)( 44 =−+ bTT
dt
dTc σερ  

The perturbation in temperature in the radiating body is defined by 
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(d)                                                          1bbsb TTT +=  
This leads to a perturbation in the temperature of the receiving body defined as 

(e)                                                                  1TTT s +=  
Substitution of equations (d) and (e) in Equation (c) leads to 

( ) ( ) ( )[ ] (f)                                  04
1

4
11 =+−+++ bbsss TTTTTT

dt
dc σερ  

Simplifying Equation (f) gives 

(g)                                      011
4

14
4

141 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

bs

b
bs

s
s T

T
T

T
TT

dt
dTc σερ  

Expanding the nonlinear terms, keeping only through the linear terms and noting that 
 bss TT =

(h)                                                     44

044

1
3

1
31

14141

bbss

bs

b
bs

s
s

TTTT
dt
dT

c

T
T

T
T
TT

dt
dTc

σεσερ

σερ

=+

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

 

1.12 The differential equation is linearized by using the small angle assumption which 
implies θθ ≈sin and 1cos ≈θ . Using these approximations in the differential equation 
leads to the linearized approximation as 

(a)                                                        0
4
1

3
1 222 =++ θθθ kLcLmL &&&  

1.13 The differential equation is linearized by using the small angle assumption which 
implies θθ ≈sin and 1cos ≈θ . Using these approximations in the differential equation 
leads to the linearized approximation as 

(a)                                             
23

1 2 xLyLmgmL &&&&&& =⎟
⎠
⎞

⎜
⎝
⎛ ++ θθ  

1.14 The nonlinear differential equations governing the concentration of the reactant and 
temperature are 

( )

(b)                            

(a)                                                  

)/(

)/(

dt
dTVcCeVQTqcTqc

qCCVeq
dt

dC
V

pA
RTE

pip

AiA
RTEA

ραλρρ

α

=+−−

=++

−

−

&
 

The reactor is operating at a steady-state when a perturbation in flow rate occurs 
according to 

(c)                                     )(tqqq ps +=  
The flow rate perturbation induces perturbations in concentration and temperature 
according to 
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(e)                                                        )(

(d)                                                 )(

tTTT

tCCC

ps

ApAsA

+=

+=
 

The steady-state conditions are defined by setting time derivatives to zero in Equation (a) 
leading to 
 

( )
)(                             0

)(                                                    
)/(

)/(

g

f

=+−−

=+
−

−

s

s

s

A
RTE

spsip

AissA
RTE

s

CeVQTcqTqc

CqCVeq

αλρρ

α
&

 

 
Substitution of Equations (d) and (e) into Equations (a) and (b) leads to 

[ ]( )( ) ( )

( ) ( ) ( ) [ ]( ) )(

)(

)(/

)(/

i

h

    

                                         

dt
dT

VcCCeVQTTcqqTcqq

CqqCCVeqq
dt

dC
V

p
pApA

TTRE
psppsipps

AipsApAs
TTRE

ps
Ap

s

ps

ps

ραλρρ

α

=++−++−+

+=++++

+−

+−

&

 
It is noted from Equation (f) of Example (1.6) that a linearization of the exponential terms 
in Equations (h) and (i) is 

)(
2

)( j                         p
RT

E

s

RT
E

TTR
E

Te
RT

E
ee ssps

−−
+

−

+=  

Use of Equation (j) in Equations (h) and (i) and rearrangement leads to 

( ) ( )

( ) ( ) ( ) ( )

)(                                                                                                                        

)(                     

2

2

l

k

dt
dT

Vc

CCTe
RT
EeVQTTcqqTcqq

CqqCCTe
RT
EeVqq

dt
dC

V

p
p

ApAp
RT
E

s

RT
E

psppsipps

AipsApAsp
RT
E

s

RT
E

ps
Ap

s

ss

ss

ρ

αλρρ

α

=

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−++−+

+=+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++

−−

−−

&  

Equations (g) and (h) are used to simplify Equations (k) and (l) to 

( )

( ) ( )

)(

)(

2

2

n

m

                                                                                                                        

                                                                                                                             

dt
dT

Vc

CCTe
RT

EVCeVTqTqTqcTcq

Cq

CCTe
RT

EVCVeCqCqCq
dt

dC
V

p
p

ApAp
RT
E

s
Ap

RT
E

pppssppipp

Aip

ApAsp
RT
E

s
Ap

RT
E

AppAspAps
Ap

s

ss

ss

ρ

αλαλρρ

αα

=

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++−

=

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+++++

−−

−−

 
Neglecting products of perturbations Equations (m) and (n) are rearranged as 
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( ) )(     0

)(                                                                                                                    

2

2

p

o

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++−

−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++

−−

−−

Asp
RT
E

s
Ap

RT
E

pssppipp
p

p

AspAip

Asp
RT
E

s
Ap

RT
E

AppAps
Ap

CTe
RT
EVCeVTqTqcTcq

dt
dT

Vc

CqCq

CTe
RT
EVCVeCqCq

dt
dC

V

ss

ss

αλαλρρρ

αα

 
1.15 The specific heat is related to temperature by 

(a)                                       6.2
3

5.1
21 TATAAcp ++=  

The transient temperature is the steady-state temperature plus a perturbation, 
(b)                                                         ps TTT +=  

Substituting Equation (b) into Equation (a) leads to 
( ) ( )

(c)                         11    

                         
6.2

6.2
3

5.1
5.1

21

6.25.1
21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

++++=

s

p
s

s

p
s

pspsP

T
T

TA
T
T

TAA

TTTTAAc

 

Using the binominal expansion to linearize Equation (c) leads to 

(d)                  6.215.11 6.2
3

5.1
21 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

s

p
s

s

p
sp T

T
TA

T
T

TAAc  

The differential equation for the time-dependent temperature is 

(e)                                                       11
∞=+ T

R
T

Rdt
dTc p  

Substituting Equations (b) and (d) into Equation (e) along with ps TTT ∞∞∞ += leads to 

( ) ( ) ( ) (f)    116.215.11 6.2
3

5.1
21 pspsps

s

p
s

s

p
s TT

R
TT

R
TT

dt
d

T
T

TA
T
T

TAA ∞∞ +=+++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

Noting that the steady-state is defined by 0=
dt

dTs and ss TT ∞= reduces Equation (f) to 

(g)                    116.215.11 6.2
3

5.1
21 pp

p

s

p
s

s

p
s T

R
T

Rdt
dT

T
T

TA
T
T

TAA ∞=+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++  

Terms such as 
dt

dT
T p

p are nonlinear. Equation (g) is linearized by noting that 1<<
s

p

T
T

 

( ) (h)                                116.2
3

5.1
21 pp

p
ss T

R
T

Rdt
dT

TATAA ∞=+++  

1.16 The force acting on the piston at any instant is 
(a)                                                pAF =  

where A is the area of the piston head. The pressure is related to the density by 
(b)                                                 γρCp =  
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The mass of air in the cylinder is constant and is calculated when the piston is in 
equilibrium as 

(c)                                                      0 Ahm ρ=  
where 0ρ is the density of the air in equilibrium. Using Equation (b) in Equation (c) leads 
to  

(d)                                        

1

0 Ah
C
p

m
γ
⎟
⎠
⎞

⎜
⎝
⎛=  

where is the pressure in the cylinder when the piston is in equilibrium. At any instant 
the mass is calculated as  

0p

(e)                                      )(   

)(
1

xhA
C
p

xhAm

−⎟
⎠
⎞

⎜
⎝
⎛=

−=

γ

ρ

 

Since the mass is constant, Equations (d) and (e) are equated leading to 

(f)                                          0

γ

⎟
⎠
⎞

⎜
⎝
⎛

−
=

xh
hpp  

Substitution of Equation (f) into Equation (a) leads to 

(g)                                              0

γ

⎟
⎠
⎞

⎜
⎝
⎛

−
=

xh
hApF  

(b) Equation (g) is rearranged as 

(h)                                       10

γ−

⎟
⎠
⎞

⎜
⎝
⎛ −=

h
xApF  

Since 1<
h
x a binomial expansion can be used on the right-hand side of Equation (h). 

Using the binomial expansion keeping only through the linear term leads to 

(e)                                                0
0 x

h
Ap

ApF
γ

+=  

The linear stiffness is obtained from Equation (e) as 

(f)                                                             0

h
Ap

k
γ

=  
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1.17 The appropriate superposition of the voltage in Figure P1.17 is illustrated below 
 

 
The mathematical representation of the voltage source is 

[ ] ( )[ ])4()2(624)2()(12)( −−−−+−−= tututtututv  

1.18 The superposition of the force of Figure P1.18 is illustrated below. 
 
 
 
 
 
 
 
 
 
 
 
 
The 

mathematical representation of the force is  
(a)                  )]30()15([300)]15()([300)( −−−−−−= tututututF  
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1.19 The superposition of the cam displacement over one period is shown below 

 
 
(a) The mathematical representation of the displacement over one period is 

[ ]
)()]3.0()25.0()[04.0012.0(

)25.0()05.0([002.0)05.0()(04.0)(
a                                                        −−−−+

−−−+−−=
tutut

tututututx
 

(b) The period of the cycle is 0.5 s. Thus the displacement over the second period is 
obtained by replacing t by t+0.5 in Equation (a). The displacement over the kth period is 
obtained by replacing t by t+(k-1)(0.5) in Equation (a). The total displacement is obtained 
by summing over all periods 

[ ]{

( )[ ]} )(                    ]2.05.0()25.5.0(04.0008.002.0                   

)]25.5.()45.5.0([002.)45.5.()5.5.(04.0)(
1

b+−−+−−−+

+−−+−++−−+−= ∑
=

ktuktutk

ktuktuktuktutx
K

k  

 
where K is the smallest integer greater than t/(0.05). 
 
1.20 Integration of Newton’s second law with respect to time leads to the principle of 
impulse and momentum 

(a)                                              )( 12

2

1

vvmFdtI
t

t

−== ∫  

where the total impulse applied between is . The 12 impulse is 

applied instantaneously to the 4-kg particle when it is at rest. Application of the principle 
of impulse and momentum leads to  

21  tand t ∫
2

1

t

t

Fdt sN ⋅
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( )

(b)                                                                    
s
m 3    

kg 4
sN 12
kg 4sN 12

2

2

=

⋅
=

=⋅

v

v

 

1.21 The equation for the voltage drop across an inductor is  

(a)                                                        
dt
diLv =  

Integration of Equation (a) with respect to time leads to 

( ) (b)                                                            12
0

iiLvdt
t

−=∫  

The initial current is zero. Solving Equation (b) for leads to 2i

(c)                                                 A          50    
H 0.4

sV 20    

0
2

=

⋅
=

=
∫

L

vdt
i

t

 

1.22 The mathematical representation of the force is 
(a)                           )8.3(50)5.2(150)(100)( −+−+= ttttF δδδ  

 
1.23 The MATLAB file Problem1_23 which determines the steady-state response of a 
series LRC circuit is listed below 
 
% Problem1_23.m 
% Steady-state response of seties LRC circuit 
clear 
disp('Steady-state response of series LRC circuit') 
% Input parameters 
disp('Input resistance in ohms') 
R=input('>> ') 
disp('Input capacitance in farads') 
C=input('>>') 
disp('Input inductance in henrys') 
L=input('>> ') 
disp('Input source frequency in r/s') 
om=input('>> ') 
disp('Input source amplitude in V') 
V0=input('>> ') 
% Calculates parameters 
disp('Natural freqeuncy in r/s =') 
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omn=1/(L*C)^0.5 
disp('Dimensionless damping ratio =') 
zeta=R/2*(C/L)^0.5 
disp('Phase angle in rad=') 
C1=om^2-omn^2; 
C2=2*zeta*om*omn; 
phi=atan2(C1,C2) 
disp('Steady-state amplitude in A =') 
C3=V0*om/L; 
C4=1/(C1^2+C2^2)^0.5; 
I=C3*C4 
tf=10*pi/om; 
dt=tf/200; 
for k=1:201 
    t(k)=(k-1)*dt; 
    i(k)=I*sin(om*t(k)+phi); 
end 
plot(t,i) 
xlabel('t (s)') 
ylabel('i (A)') 
title('Steady-state response of series LRC circuit') 
str1=['R=',num2str(R),' \Omega']; 
str2=['C=',num2str(C),' F']; 
str3=['L=',num2str(L),' H']; 
str4=['\omega=',num2str(om),' r/s']; 
str5=['V_0=',num2str(V0),' V']; 
text(0.9*tf,I,str1) 
text(0.9*tf,0.8*I,str2) 
text(0.9*tf,0.6*I,str3) 
text(0.9*tf,0.4*I,str4) 
text(0.9*tf,0.2*I,str5) 
 
The MATLAB workspace from a sample execution of Problem1_23.m is  
 
>> Problem1_23 
Steady-state response of series LRC circuit 
Input resistance in ohms 
>> 100 
 
R = 
 
   100 
 
Input capacitance in farads 
>>0.2e-6 
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C = 
 
  2.0000e-007 
 
Input inductance in henrys 
>> 0.5 
 
L = 
 
    0.5000 
 
Input source frequency in r/s 
>> 2000 
 
om = 
 
        2000 
 
Input source amplitude in V 
>> 120 
 
V0 = 
 
   120 
 
Natural freqeuncy in r/s = 
 
omn = 
 
  3.1623e+003 
 
Dimensionless damping ratio = 
 
zeta = 
 
    0.0316 
 
Phase angle in rad= 
 
phi = 
 
   -1.5042 
 
Steady-state amplitude in A = 
 
I = 
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    0.0798 
 
>> 
 
The resulting steady-state plot is  

 
 

1.24 The MATALB file Prolbem1_24.m is listed below 
 
% Problem1_24.m 
%(a) Input two five by five matrices 
disp('Please input matrix A by row') 
for i=1:5 
    for j=1:5 
        str={['Enter A(',num2str(i),num2str(j),')']}; 
        disp(str) 
        A(i,j)=input('>> '); 
    end 
end 
disp('Please input matrix B by row') 
for i=1:5 
    for j=1:5 
        str={['Enter B(',num2str(i),num2str(j),')']}; 
        disp(str) 
        B(i,j)=input('>> '); 
    end 
end 
A 
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B 
% (b) =A+B 
C=A+B 
% (c) D=A*B 
D=A*B 
% (d) det(A) 
detA=det(A) 
% eigenvalues and eigenvectors of A 
[x,Y]=eigs(A); 
disp('Eigenvalues of A') 
Y 
disp('Matrix of eigenvalues of A') 
x 
 
A sample output from execution of the file is shown below 
 
>> clear 
>> Problem1_24 
Please input matrix A by row 
    'Enter A(11)' 
 
>> 1 
    'Enter A(12)' 
 
>> 0 
    'Enter A(13)' 
 
>> 12 
    'Enter A(14)' 
 
>> -1 
    'Enter A(15)' 
 
>> 21 
    'Enter A(21)' 
 
>> 14 
    'Enter A(22)' 
 
>> -3 
    'Enter A(23)' 
 
>> 2 
    'Enter A(24)' 
 
>> 0 
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    'Enter A(25)' 
 
>> -22 
    'Enter A(31)' 
 
>> 11 
    'Enter A(32)' 
 
>> 12 
    'Enter A(33)' 
 
>> 10 
    'Enter A(34)' 
 
>> -4 
    'Enter A(35)' 
 
>> 12 
    'Enter A(41)' 
 
>> 10 
    'Enter A(42)' 
 
>> 11 
    'Enter A(43)' 
 
>> 18 
    'Enter A(44)' 
 
>> 12 
    'Enter A(45)' 
 
>> 21 
    'Enter A(51)' 
 
>> 10 
    'Enter A(52)' 
 
>> 11 
    'Enter A(53)' 
 
>> 31 
    'Enter A(54)' 
 
>> 21 
    'Enter A(55)' 
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>> 11 
Please input matrix B by row 
    'Enter B(11)' 
 
>> 21 
    'Enter B(12)' 
 
>> -21 
    'Enter B(13)' 
 
>> 21 
    'Enter B(14)' 
 
>> 10 
    'Enter B(15)' 
 
>> 9 
    'Enter B(21)' 
 
>> 8 
    'Enter B(22)' 
 
>> 2 
    'Enter B(23)' 
 
>> 2 
    'Enter B(24)' 
 
>> 4 
    'Enter B(25)' 
 
>> -5 
    'Enter B(31)' 
 
>> 16 
    'Enter B(32)' 
 
>> 12 
    'Enter B(33)' 
 
>> 11 
    'Enter B(34)' 
 
>> 18 
    'Enter B(35)' 
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>> 11 
    'Enter B(41)' 
 
>> 21 
    'Enter B(42)' 
 
>> 32 
    'Enter B(43)' 
 
>> 14 
    'Enter B(44)' 
 
>> 19 
    'Enter B(45)' 
 
>> 12 
    'Enter B(51)' 
 
>> 12 
    'Enter B(52)' 
 
>> 9 
    'Enter B(53)' 
 
>> -5 
    'Enter B(54)' 
 
>> 13 
    'Enter B(55)' 
 
>> 21 
 
A = 
 
     1     0    12    -1    21 
    14    -3     2     0   -22 
    11    12    10    -4    12 
    10    11    18    12    21 
    10    11    31    21    11 
 
 
 
 
 
 

 
Copyright © 2008 Nelson Thomson Learning. All rights reserved. 

20



Chapter 1 
 

B = 
 
    21   -21    21    10     9 
     8     2     2     4    -5 
    16    12    11    18    11 
    21    32    14    19    12 
    12     9    -5    13    21 
 
 
C = 
 
    22   -21    33     9    30 
    22    -1     4     4   -27 
    27    24    21    14    23 
    31    43    32    31    33 
    22    20    26    34    32 
 
 
D = 
 
         444         280          34         480         570 
          38        -474         420        -122        -299 
         547        -107         249         418         353 
        1090         601         493         969         818 
        1367         955         812        1244         859 
 
 
detA = 
 
    -1171825 
 
Eigenvalues of A 
 
Y = 
 
  43.3949                  0                  0                  0                  0           
        0           -18.9247                  0                  0                  0           
        0                  0            -1.8896 -11.6121i        0                  0           
        0                  0                  0            -1.8896 +11.6121i        0           
        0                  0                  0                  0            10.3091           
 
Matrix of eigenvalues of A 
 
x = 
 
  -0.3664            -0.1632            -0.3379 - 0.4681i  -0.3379 + 0.4681i   0.2658           
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   0.1869             0.7510             0.7187             0.7187            -0.4106           
  -0.2133            -0.4463             0.0528 + 0.2510i   0.0528 - 0.2510i  -0.4042           
  -0.6060            -0.2256            -0.0845 - 0.0753i  -0.0845 + 0.0753i   0.6726           
  -0.6466             0.3991            -0.2465 + 0.1043i  -0.2465 - 0.1043i   0.3808           
 
1.25 A MATLAB file to calculate and plot ),( ζrΛ is given below 
% Plots the function LAMBDA(r,zeta) as a function of r for several values of 
% zeta 
% Specify four values of zeta 
zeta1=0.1; 
zeta2=0.4; 
zeta3=0.8; 
zeta4=1.5; 
% Define values of r for calculations 
for i=1:400 
    r(i)=(i-1)*.01; 
% Calculate function 
LAMBDA1(i)=r(i)^2/((1-r(i)^2)^2+(2*zeta1*r(i))^2)^0.5; 
LAMBDA2(i)=r(i)^2/((1-r(i)^2)^2+(2*zeta2*r(i))^2)^0.5; 
LAMBDA3(i)=r(i)^2/((1-r(i)^2)^2+(2*zeta3*r(i))^2)^0.5; 
LAMBDA4(i)=r(i)^2/((1-r(i)^2)^2+(2*zeta4*r(i))^2)^0.5; 
end 
plot(r,LAMBDA1,'-',r,LAMBDA2,'.',r,LAMBDA3,'-.',r,LAMBDA4,'--') 
xlabel('r') 
ylabel('\Lambda') 
str1=['\zeta=',num2str(zeta1)]; 
str2=['\zeta=',num2str(zeta2)]; 
str3=['\zeta=',num2str(zeta3)]; 
str4=['\zeta=',num2str(zeta4)]; 
legend(str1,str2,str3,str4) 
title('\Lambda vs. r') 
 
The resulting output from execution of the .m file is the following plot 
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1.26 The MATALB .m file Problem1_26 which determines and plots the step response of 
an underdamped mechanical system is shown below. 

 
% Problem1_26.m 
% Step response of an underdamped mechanical system 
% Input natural frequency and damping ratio 
clear 
disp('Step response of underdamped mechanical system') 
disp('Please input natural frequency in r/s') 
om=input('>> ') 
disp('Please input the dimensionless damping ratio') 
zeta=input('>> ') 
% Damped natural frequency 
omd=om*(1-zeta^2)^0.5; 
C1=zeta*om/omd; 
C2=1/om^2; 
C3=zeta*om; 
tf=10*pi/omd; 
dt=tf/500; 
for i=1:501 
t(i)=(i-1)*dt; 
x(i)=C2*(1-exp(-C3*t(i))*(C1*sin(omd*t(i))-cos(omd*t(i)))); 
end 
plot(t,x) 
xlabel('t (s)') 
ylabel('x (m)') 
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str1=['Step response of underdamped mechancial system with 
\omega_n=',num2str(om),'and \zeta=',num2str(zeta)] 
title(str1) 
str2=['x(t)=',num2str(C2),'[1-e^-^',num2str(C3),'^t(',num2str(C1),'sin(',num2str(omd),'t)-
cos(',num2str(omd),'t))]'] 
text(tf/4,C2/2,str2) 

 
Output from execution of Problem1_26 follows 

 
>> Problem1_26 
Step response of underdamped mechanical system 
Please input natural frequency in r/s 
>> 100 

 
om = 

 
100 

 
Please input the dimensionless damping ratio 
>> 0.1 

 
zeta = 

 
    0.1000 
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1.27 The perturbation in liquid level is 
( ) )(1)( )/( aeqRth RAt                                    −−=  

(a) Since the argument of a transcendental function must be dimensionless the 
dimensions of the product of resistance and area must be time. Thus the dimensions of 

resistance must be ⎥⎦
⎤

⎢⎣
⎡

2L
T  

(b) Note that the steady-state value of the liquid-level perturbation is . The MATLAB 
file Problem1_27.m which calculates and plots h(t) from t=0 until h is within 1 percent of 
its steady-state value is given below 

qR

 
disp('Please enter resistance in s/m^2 ') 
R=input('>> ') 
% Final value of h 
hf=0.99*q*R; 
dt=0.01*R*A; 
h1=0; 
h(1)=0; 
t(1)=0; 
i=1; 
while h1<hf 
    i=i+1; 
    t(i)=t(i-1)+dt; 
    h(i)=q*R*(1-exp(-t(i)/(R*A))); 
    h1=h(i); 
end 
plot(t,h) 
xlabel('t (s)') 
ylabel('h (m)') 
title('Perturbation flow rate vs time') 
str1=['A=',num2str(A),' m^3/s'] 
str2=['R=',num2str(R),' s/m^2'] 
str3=['q=',num2str(q),' m^3/s'] 
text(0.5*t(i),0.5*h(i),str1); 
text(0.5*t(i),0.4*h(i),str2); 
text(0.5*t(i),0.3*h(i),str3); 

 
Sample output from execution of Problem1_27.m is given below 

 
>> Please enter tank area in m^2 
>> 100 

 
A = 

 
   100 

 
Please enter flow rate in m^3/s  
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>> 0.2 
 

q = 
 

    0.2000 
 

Please enter resistance in s/m^2  
>> 15 

 
R = 

 
    15 

 
str1 = 

 
A=100 m^3/s 

 
str2 = 

 
R=15 s/m^2 

 
 

str3 = 
 

q=0.2 m^3/s 
 

>> 
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