Chapter 2
 Right Triangle Trigonometry

2.1 Definition II: Right Triangle Trigonometry

EVEN SOLUTIONS

2. Using Definition II and Figure 8, we would refer to a as the side opposite A, b as the side adjacent to A, and c as the hypotenuse.
3. a. cosine (ii)
b. cosecant (iii)
c. cotangent (i)
4. Using the Pythagorean Theorem, first find a :

$$
\begin{aligned}
a^{2}+8^{2} & =17^{2} \\
a^{2}+64 & =289 \\
a^{2} & =225 \\
a & =15
\end{aligned}
$$

Using $a=15, b=8$, and $c=17$, write the six trigonometric functions of A :

$$
\begin{array}{lll}
\sin A=\frac{a}{c}=\frac{15}{17} & \cos A=\frac{b}{c}=\frac{8}{17} & \tan A=\frac{a}{b}=\frac{15}{8} \\
\csc A=\frac{c}{a}=\frac{17}{15} & \sec A=\frac{c}{b}=\frac{17}{8} & \cot A=\frac{b}{a}=\frac{8}{15}
\end{array}
$$

the Pythagorean Theorem, first find c :

$$
\begin{aligned}
5^{2}+2^{2} & =c^{2} \\
25+4 & =c^{2} \\
c^{2} & =29 \\
c & =\sqrt{29}
\end{aligned}
$$

Using $a=5, b=2$, and $c=\sqrt{29}$, write the six trigonometric functions of A :

$$
\begin{array}{lll}
\sin A=\frac{a}{c}=\frac{5}{\sqrt{29}}=\frac{5 \sqrt{29}}{29} & \cos A=\frac{b}{c}=\frac{2}{\sqrt{29}}=\frac{2 \sqrt{29}}{29} & \tan A=\frac{a}{b}=\frac{5}{2} \\
\csc A=\frac{c}{a}=\frac{\sqrt{29}}{5} & \sec A=\frac{c}{b}=\frac{\sqrt{29}}{2} & \cot A=\frac{b}{a}=\frac{2}{5}
\end{array}
$$

10. Using the Pythagorean Theorem, first find c :

$$
\begin{aligned}
5^{2}+(\sqrt{11})^{2} & =c^{2} \\
25+11 & =c^{2} \\
c^{2} & =36 \\
c & =6
\end{aligned}
$$

Using $a=5, b=\sqrt{11}$, and $c=6$, write the six trigonometric functions of A :
$\sin A=\frac{a}{c}=\frac{5}{6}$
$\cos A=\frac{b}{c}=\frac{\sqrt{11}}{6}$
$\tan A=\frac{a}{b}=\frac{5}{\sqrt{11}}=\frac{5 \sqrt{11}}{11}$
$\csc A=\frac{c}{a}=\frac{6}{5}$
$\sec A=\frac{c}{b}=\frac{6}{\sqrt{11}}=\frac{6 \sqrt{11}}{11}$
$\cot A=\frac{b}{a}=\frac{\sqrt{11}}{5}$
12. Using the Pythagorean Theorem, first find a :

$$
\begin{aligned}
a^{2}+3^{2} & =4^{2} \\
a^{2}+9 & =16 \\
a^{2} & =7 \\
a & =\sqrt{7}
\end{aligned}
$$

Using $a=\sqrt{7}, b=3$, and $c=4$, find the three trigonometric functions of A :

$$
\sin A=\frac{a}{c}=\frac{\sqrt{7}}{4} \quad \cos A=\frac{b}{c}=\frac{3}{4} \quad \tan A=\frac{a}{b}=\frac{\sqrt{7}}{3}
$$

Now use the Cofunction Theorem to find the three trigonometric functions of B :

$$
\sin B=\cos A=\frac{3}{4} \quad \cos B=\sin A=\frac{\sqrt{7}}{4} \quad \tan B=\cot A=\frac{b}{a}=\frac{3}{\sqrt{7}}=\frac{3 \sqrt{7}}{7}
$$

14. Using the Pythagorean Theorem, first find c :

$$
\begin{aligned}
3^{2}+1^{2} & =c^{2} \\
9+1 & =c^{2} \\
c^{2} & =10 \\
c & =\sqrt{10}
\end{aligned}
$$

Using $a=3, b=1$, and $c=\sqrt{10}$, find the three trigonometric functions of A :

$$
\sin A=\frac{a}{c}=\frac{3}{\sqrt{10}}=\frac{3 \sqrt{10}}{10} \quad \cos A=\frac{b}{c}=\frac{1}{\sqrt{10}}=\frac{\sqrt{10}}{10} \quad \tan A=\frac{a}{b}=\frac{3}{1}=3
$$

Now use the Cofunction Theorem to find the three trigonometric functions of B :

$$
\sin B=\cos A=\frac{1}{\sqrt{10}}=\frac{\sqrt{10}}{10} \quad \cos B=\sin A=\frac{3}{\sqrt{10}}=\frac{3 \sqrt{10}}{10} \quad \tan B=\cot A=\frac{b}{a}=\frac{1}{3}
$$

16. Using the Pythagorean Theorem, first find c :

$$
\begin{aligned}
1^{2}+(\sqrt{5})^{2} & =c^{2} \\
1+5 & =c^{2} \\
c^{2} & =6 \\
c & =\sqrt{6}
\end{aligned}
$$

Using $a=1, b=\sqrt{5}$, and $c=\sqrt{6}$, find the three trigonometric functions of A :

$$
\sin A=\frac{a}{c}=\frac{1}{\sqrt{6}}=\frac{\sqrt{6}}{6} \quad \cos A=\frac{b}{c}=\frac{\sqrt{5}}{\sqrt{6}}=\frac{\sqrt{30}}{6} \quad \tan A=\frac{a}{b}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}
$$

Now use the Cofunction Theorem to find the three trigonometric functions of B :

$$
\sin B=\cos A=\frac{\sqrt{5}}{\sqrt{6}}=\frac{\sqrt{30}}{6} \quad \cos B=\sin A=\frac{1}{\sqrt{6}}=\frac{\sqrt{6}}{6} \quad \tan B=\cot A=\frac{b}{a}=\sqrt{5}
$$

18. Using the Pythagorean Theorem, first find c :

$$
\begin{aligned}
x^{2}+x^{2} & =c^{2} \\
c^{2} & =2 x^{2} \\
c & =\sqrt{2} x
\end{aligned}
$$

Using $a=x, b=x$, and $c=\sqrt{2} x$, find the three trigonometric functions of A :

$$
\sin A=\frac{a}{c}=\frac{x}{\sqrt{2} x}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \quad \cos A=\frac{b}{c}=\frac{x}{\sqrt{2} x}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \quad \tan A=\frac{a}{b}=\frac{x}{x}=1
$$

Now use the Cofunction Theorem to find the three trigonometric functions of B :

$$
\sin B=\cos A=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \quad \cos B=\sin A=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \quad \tan B=\cot A=\frac{b}{a}=\frac{x}{x}=1
$$

20. The coordinates of point B are $B(8,6)$. Using the Pythagorean Theorem, first find c :

$$
\begin{aligned}
6^{2}+8^{2} & =c^{2} \\
36+64 & =c^{2} \\
c^{2} & =100 \\
c & =10
\end{aligned}
$$

Using $a=6, b=8$, and $c=10$, find the three trigonometric functions of A :

$$
\sin A=\frac{a}{c}=\frac{6}{10}=\frac{3}{5} \quad \cos A=\frac{b}{c}=\frac{8}{10}=\frac{4}{5} \quad \tan A=\frac{a}{b}=\frac{6}{8}=\frac{3}{4}
$$

22. Since $b \leq c, \frac{c}{b} \geq 1$. Since $\sec \theta=\frac{c}{b} \geq 1$, it is impossible for $\sec \theta=\frac{1}{2}$.
23. Since $b \leq c, \frac{c}{b} \geq 1$ and can be as large as possible. Since $\sec \theta=\frac{c}{b}, \sec \theta$ can be as large as possible.
24. Using the Cofunction Theorem, $\cos 70^{\circ}=\sin 20^{\circ}$.
25. Using the Cofunction Theorem, $\cot 22^{\circ}=\tan 68^{\circ}$.
26. Using the Cofunction Theorem, $\csc y=\sec \left(90^{\circ}-y\right)$.
27. Using the Cofunction Theorem, $\sin \left(90^{\circ}-y\right)=\cos y$.
28. Complete the table, using the ratio identity $\sec x=\frac{1}{\cos x}:\left\{\begin{array}{c|c|c|}\hline 0^{\circ} & 1 & 1 \\ 30^{\circ} & \frac{\sqrt{3}}{2} & \frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} \\ 45^{\circ} & \frac{\sqrt{2}}{2} & \frac{2}{\sqrt{2}}=\sqrt{2} \\ 60^{\circ} & \frac{1}{2} & 2 \\ 90^{\circ} & 0 & \text { undefined } \\ \hline\end{array}\right.$
29. Simplifying the expression: $5 \sin ^{2} 60^{\circ}=5\left(\frac{\sqrt{3}}{2}\right)^{2}=5 \cdot \frac{3}{4}=\frac{15}{4}$
30. Simplifying the expression: $\cos ^{3} 60^{\circ}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
31. Simplifying the expression: $\left(\sin 60^{\circ}+\cos 60^{\circ}\right)^{2}=\left(\frac{\sqrt{3}}{2}+\frac{1}{2}\right)^{2}=\left(\frac{\sqrt{3}+1}{2}\right)^{2}=\frac{4+2 \sqrt{3}}{4}=\frac{2+\sqrt{3}}{2}$
32. Simplifying the expression: $\left(\sin 45^{\circ}-\cos 45^{\circ}\right)^{2}=\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)^{2}=0^{2}=0$
33. Simplifying the expression: $\tan ^{2} 45^{\circ}+\tan ^{2} 60^{\circ}=1^{2}+(\sqrt{3})^{2}=1+3=4$
34. Simplifying the expression: $6 \cos x=6 \cos 30^{\circ}=6 \square \frac{\sqrt{3}}{2}=3 \sqrt{3}$
35. Simplifying the expression: $-2 \sin \left(90^{\circ}-y\right)=-2 \sin \left(90^{\circ}-45^{\circ}\right)=-2 \sin 45^{\circ}=-2 \square \frac{\sqrt{2}}{2}=-\sqrt{2}$
36. Simplifying the expression: $5 \sin 2 y=5 \sin \left(2 \square 45^{\circ}\right)=5 \sin 90^{\circ}=5 \square 1=5$
37. Simplifying the expression: $2 \cos \left(90^{\circ}-z\right)=2 \cos \left(90^{\circ}-60^{\circ}\right)=2 \cos 30^{\circ}=2 \square \frac{\sqrt{3}}{2}=\sqrt{3}$
38. Finding the exact value: $\csc 30^{\circ}=\frac{1}{\sin 30^{\circ}}=\frac{1}{1 / 2}=2$
39. Finding the exact value: $\sec 60^{\circ}=\frac{1}{\cos 60^{\circ}}=\frac{1}{1 / 2}=2$
40. Finding the exact value: $\cot 30^{\circ}=\frac{\cos 30^{\circ}}{\sin 30^{\circ}}=\frac{\sqrt{3} / 2}{1 / 2}=\sqrt{3}$
41. Finding the exact value: $\csc 45^{\circ}=\frac{1}{\sin 45^{\circ}}=\frac{1}{1 / \sqrt{2}}=\sqrt{2}$
42. Finding the exact value: $\sec 90^{\circ}=\frac{1}{\cos 90^{\circ}}=\frac{1}{0}$, which is undefined
43. Finding the exact value: $\cot 0^{\circ}=\frac{\cos 0^{\circ}}{\sin 0^{\circ}}=\frac{1}{0}$, which is undefined
44. First find a using the Pythagorean Theorem:

$$
\begin{aligned}
3.68^{2}+b^{2} & =5.93^{2} \\
b^{2} & =5.93^{2}-3.68^{2} \\
b^{2} & =21.6225 \\
b & =4.65
\end{aligned}
$$

Now find $\sin A$ and $\cos A$:

$$
\sin A=\frac{a}{c}=\frac{3.68}{5.93} \approx 0.62 \quad \cos A=\frac{b}{c}=\frac{4.65}{5.93} \approx 0.78
$$

Using the Cofunction Theorem:

$$
\sin B=\cos A \approx 0.78
$$

$$
\cos B=\sin A \approx 0.62
$$

68. First find c using the Pythagorean Theorem:

$$
\begin{aligned}
13.64^{2}+4.77^{2} & =c^{2} \\
c^{2} & =208.8025 \\
c & =14.45
\end{aligned}
$$

Now find $\sin A$ and $\cos A$:

$$
\sin A=\frac{a}{c}=\frac{13.64}{14.45} \approx 0.94 \quad \cos A=\frac{b}{c}=\frac{4.77}{14.45} \approx 0.33
$$

Using the Cofunction Theorem:

$$
\sin B=\cos A \approx 0.33
$$

$$
\cos B=\sin A \approx 0.94
$$

70. Since $C G=C D=3$, using the Pythagorean Theorem:

$$
\begin{aligned}
(C G)^{2}+(C D)^{2} & =(D G)^{2} \\
3^{2}+3^{2} & =(D G)^{2} \\
9+9 & =(D G)^{2} \\
(D G)^{2} & =18 \\
D G & =\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

Now use the Pythagorean Theorem with $\triangle D G E$:

$$
\begin{aligned}
(D G)^{2}+(G E)^{2} & =(D E)^{2} \\
(3 \sqrt{2})^{2}+3^{2} & =(D E)^{2} \\
18+9 & =(D E)^{2} \\
(D E)^{2} & =27 \\
D E & =\sqrt{27}=3 \sqrt{3}
\end{aligned}
$$

Now, let θ represent the angle formed by diagonals $D E$ and $D G$. Therefore:

$$
\sin \theta=\frac{G E}{D E}=\frac{3}{3 \sqrt{3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \quad \cos \theta=\frac{D G}{D E}=\frac{3 \sqrt{2}}{3 \sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}
$$

72. Let $C G=C D=x$, using the Pythagorean Theorem:

$$
\begin{aligned}
(C G)^{2}+(C D)^{2} & =(D G)^{2} \\
x^{2}+x^{2} & =(D G)^{2} \\
(D G)^{2} & =2 x^{2} \\
D G & =\sqrt{2 x^{2}}=\sqrt{2} x
\end{aligned}
$$

Now use the Pythagorean Theorem with $\triangle D G E$:

$$
\begin{aligned}
(D G)^{2}+(G E)^{2} & =(D E)^{2} \\
(\sqrt{2} x)^{2}+x^{2} & =(D E)^{2} \\
2 x^{2}+x^{2} & =(D E)^{2} \\
(D E)^{2} & =3 x^{2} \\
D E & =\sqrt{3 x^{2}}=\sqrt{3} x
\end{aligned}
$$

Now, let θ represent the angle formed by diagonals $D E$ and $D G$. Therefore:

$$
\sin \theta=\frac{G E}{D E}=\frac{x}{\sqrt{3} x}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \quad \cos \theta=\frac{D G}{D E}=\frac{\sqrt{2} x}{\sqrt{3} x}=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}
$$

74. Using the distance formula:

$$
\begin{aligned}
\sqrt{(x-1)^{2}+(2-5)^{2}} & =(\sqrt{13})^{2} \\
(x-1)^{2}+9 & =13 \\
(x-1)^{2} & =4 \\
x-1 & =-2,2 \\
x & =-1,3
\end{aligned}
$$

76. A point on the terminal side is $(1,1)$. Drawing the angle in standard position:

77. A coterminal angle to -210° is 150°.
78. Since $\sin 35^{\circ}=\cos \left(90^{\circ}-35^{\circ}\right)=\cos 55^{\circ}$, the correct answer is d .
79. Simplifying the expression: $4 \cos ^{2} 30^{\circ}+2 \sin 30^{\circ}=4\left(\frac{\sqrt{3}}{2}\right)^{2}+2\left(\frac{1}{2}\right)=4 \square \frac{3}{4}+1=3+1=4$. The correct answer is c.

ODD SOLUTIONS

1. triangle measure
2. $a=\sqrt{c^{2}-b^{2}}$
$=\sqrt{(5)^{2}-(3)^{2}}$
$=\sqrt{25-9}$
$=\sqrt{16}=4$
$\sin A=\frac{a}{c}=\frac{4}{5} \quad \cot A=\frac{b}{a}=\frac{3}{4}$
$\cos A=\frac{b}{c}=\frac{3}{5} \quad \sec A-\frac{c}{b}=\frac{5}{3}$
$\tan A=\frac{a}{b}=\frac{4}{3} \quad \csc A=\frac{c}{a}=\frac{5}{4}$
3. $c=\sqrt{a^{2}+b^{2}}$

Pythagorean Theorem
Substitute known values
Simplify
$\sec A=\frac{c}{b}=\frac{3}{\sqrt{5}}=\frac{3 \sqrt{5}}{5}$
Pythagorean Theorem
Substitute known values Simplify
$\csc A=\frac{c}{a}=\frac{3}{2}$
$=\sqrt{4+5}$
$=\sqrt{9}=3$
$\sin A=\frac{a}{c}=\frac{2}{3}$
$\cos A=\frac{b}{c}=\frac{\sqrt{5}}{3}$
$\tan A=\frac{a}{b}=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5}$
$=\sqrt{(2)^{2}+(\sqrt{5})^{2}}$

$$
\cot A=\frac{b}{a}=\frac{\sqrt{5}}{2}
$$

3. complement
4. $\quad \begin{aligned} c & =\sqrt{a^{2}+b^{2}} \\ & =\sqrt{(2)^{2}+(1)^{2}} \\ & =\sqrt{4+1} \\ & =\sqrt{5}\end{aligned}$

$$
\begin{array}{ll}
\sin A=\frac{a}{c}=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5} & \cot A=\frac{b}{a}=\frac{1}{2} \\
\cos A=\frac{b}{c}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5} & \sec A=\frac{c}{b}=\frac{\sqrt{5}}{1} \\
\tan A=\frac{a}{b}=\frac{2}{1}=2 & \csc A=\frac{c}{a}=\frac{\sqrt{5}}{2}
\end{array}
$$ Pythagorean Theorem Substitute known values Simplify

y
y
11. $b=\sqrt{c^{2}-a^{2}}$

$$
\begin{array}{ll}
=\sqrt{(6)^{2}-(5)^{2}} & \text { Substitute } \\
=\sqrt{36-25} & \text { Simplify } \\
=\sqrt{11} &
\end{array}
$$

Pythagorean Theorem

$$
\sin A=\frac{a}{c}=\frac{5}{6}
$$

$$
\sin B=\frac{b}{c}=\frac{\sqrt{11}}{6}
$$

$$
\cos A=\frac{b}{c}=\frac{\sqrt{11}}{6} \quad \cos B=\frac{a}{c}=\frac{5}{6}
$$

$$
\tan A=\frac{a}{b}=\frac{5}{\sqrt{11}}=\frac{5 \sqrt{11}}{11} \quad \tan B=\frac{b}{a}=\frac{\sqrt{11}}{5}
$$

13. $c=\sqrt{a^{2}+b^{2}}$

Pythagorean Theorem

$$
\begin{aligned}
& =\sqrt{(1)^{2}+(1)^{2}} \\
& =\sqrt{1+1} \\
& =\sqrt{2}
\end{aligned}
$$

15. $b=\sqrt{c^{2}-a^{2}}$

$$
\begin{array}{ll}
=\sqrt{10^{2}-6^{2}} & \text { Substitute known values } \\
=\sqrt{100-36} & \text { Simplify } \\
=\sqrt{64}=8 &
\end{array}
$$

17.

$$
\begin{aligned}
a & =\sqrt{c^{2}-b^{2}} & & \text { Pythagorean Theorem } \\
& =\sqrt{(2 x)^{2}-(x)^{2}} & & \text { Substitute known values } \\
& =\sqrt{4 x^{2}-x^{2}} & & \text { Simplify } \\
& =\sqrt{3 x^{2}} & & \\
& =x \sqrt{3} & &
\end{aligned}
$$

Pythagorean Theorem

$$
\sin A=\frac{a}{c}=\frac{x \sqrt{3}}{2 x}=\frac{\sqrt{3}}{2}
$$

$$
\sin B=\frac{b}{c}=\frac{x}{2 x}=\frac{1}{2}
$$

$$
\cos A=\frac{b}{c}=\frac{x}{2 x}=\frac{1}{2} \quad \cos B=\frac{a}{c}=\frac{x \sqrt{3}}{2 x}=\frac{\sqrt{3}}{2}
$$

$$
\tan A=\frac{a}{b}=\frac{x \sqrt{3}}{x}=\sqrt{3}
$$

$$
\tan B=\frac{b}{a}=\frac{x}{x \sqrt{3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}
$$

$$
\begin{array}{ll}
\sin A=\frac{a}{c}=\frac{6}{10}=\frac{3}{5} & \sin B=\frac{b}{c}=\frac{8}{10}=\frac{4}{5} \\
\cos A=\frac{b}{c}=\frac{8}{10}=\frac{4}{5} & \cos B=\frac{a}{c}=\frac{6}{10}=\frac{3}{5} \\
\tan A=\frac{a}{b}=\frac{6}{8}=\frac{3}{4} & \tan B=\frac{b}{a}=\frac{8}{6}=\frac{4}{3}
\end{array}
$$

$$
\begin{array}{ll}
\sin A=\frac{a}{c}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} & \sin B=\frac{b}{c}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
\cos A=\frac{b}{c}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} & \cos B=\frac{a}{c}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
\tan A=\frac{a}{b}=\frac{1}{1}=1 & \tan B=\frac{b}{a}=\frac{1}{1}=1
\end{array}
$$

19. The coordinates of B are $(4,3)$.

$$
\begin{aligned}
& a=3, \quad b=4, \quad c=5 \\
& \sin A=\frac{a}{c}=\frac{3}{5} \\
& \cos A=\frac{b}{c}=\frac{4}{5} \\
& \tan A=\frac{a}{b}=\frac{3}{4}
\end{aligned}
$$

21. $\cos \theta=\frac{\operatorname{adj} \text { side }}{\text { hyp }}=\frac{3}{1}$ For this to be true, the adjacent side would have to be three times larger than the hypotenuse. This is impossible since the hypotenuse is the longest side of a right triangle.
22. $\tan \theta=\frac{\text { opp side }}{\text { adj side }}$ The opposite and adjacent sides can be any number greater than 0 . If we choose a very large number for the opposite side and a very small number for the adjacent side, the ratio will approach infinity.
23. $\sin 10^{\circ}=\cos \left(90^{\circ}-10^{\circ}\right)=\cos 80^{\circ}$
24. $\tan 8^{\circ}=\cot \left(90^{\circ}-8^{\circ}\right)=\cot 82^{\circ}$
25. $\sin x^{\circ}=\cos \left(90^{\circ}-x^{\circ}\right)$
26. $\tan \left(90^{\circ}-x^{\circ}\right)=\cot x^{\circ}$
27. $\quad \csc x=\frac{1}{\sin x}$
$\csc 45^{\circ}=\frac{1}{1 / \sqrt{2}}=\sqrt{2}$
$\csc 0^{\circ}=\frac{1}{0}$ undefined
$\csc 60^{\circ}=\frac{1}{\sqrt{3} / 2}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
$\csc 30^{\circ}=\frac{1}{1 / 2}=2$
$\csc 90^{\circ}=\frac{1}{1}=1$
28. $4 \sin 30^{\circ}=4\left(\frac{1}{2}\right)=2$
29. $\left(2 \cos 30^{\circ}\right)^{2}=\left[2\left(\frac{\sqrt{3}}{2}\right)\right]^{2}=(\sqrt{3})^{2}=3$
30. $\sin ^{2} 60^{\circ}+\cos ^{2} 60^{\circ}=\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$

$$
\begin{aligned}
& =\frac{3}{4}+\frac{1}{4} \\
& =\frac{4}{4} \\
& =1
\end{aligned}
$$

41. $\sin ^{2} 45^{\circ}-2 \sin 45^{\circ} \cos 45^{\circ}+\cos ^{2} 45^{\circ}=\left(\frac{\sqrt{2}}{2}\right)^{2}-2\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)+\left(\frac{\sqrt{2}}{2}\right)^{2}$

$$
=\frac{2}{4}-2\left(\frac{2}{4}\right)+\frac{2}{4}=0
$$

43. $\left(\tan 45^{\circ}+\tan 60^{\circ}\right)^{2}=(1+\sqrt{3})^{2}$

$$
\begin{aligned}
& =(1+\sqrt{3})(1+\sqrt{3}) \\
& =1+2 \sqrt{3}+3=4+2 \sqrt{3}
\end{aligned}
$$

45. $2 \sin 30^{\circ}=2\left(\frac{1}{2}\right)$

$$
=1
$$

$$
\text { 47. } \begin{aligned}
4 \cos \left(z-30^{\circ}\right) & =4 \cos \left(60^{\circ}-30^{\circ}\right) \\
& =4 \cos 30^{\circ} \\
& =4\left(\frac{\sqrt{3}}{2}\right)=2 \sqrt{3}
\end{aligned}
$$

49. $-3 \sin 2\left(30^{\circ}\right)=-3 \sin 60^{\circ}$

$$
\begin{aligned}
& =-3\left(\frac{\sqrt{3}}{2}\right) \\
& =-\frac{3 \sqrt{3}}{2}
\end{aligned}
$$

51. $2 \cos \left(3 x-45^{\circ}\right)=2 \cos \left(3 \cdot 30^{\circ}-45^{\circ}\right)$

$$
=2 \cos \left(90^{\circ}-45^{\circ}\right)
$$

$$
=2 \cos 45^{\circ}
$$

$$
=2 \cdot \frac{\sqrt{2}}{2}=\sqrt{2}
$$

53. $\sec 30^{\circ}=\frac{1}{\cos 30^{\circ}}$

Reciprocal identity

$$
\begin{array}{ll}
=\frac{1}{\sqrt{3} / 2} & \text { Substitute exact value from Table } 1 \\
=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} & \text { Division of fractions }
\end{array}
$$

55. $\quad \csc 60^{\circ}=\frac{1}{\sin 60^{\circ}}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{3} / 2} \\
& =\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

57. $\cot 45^{\circ}=\frac{\cos 45^{\circ}}{\sin 45^{\circ}}$ Ratio identity
$=\frac{\sqrt{2} / 2}{\sqrt{2} / 2}$ Substitute values from Table 1
$=1 \quad$ Simplify
58. $\sec 45^{\circ}=\frac{1}{\cos 45^{\circ}}$

$$
\begin{aligned}
& =\frac{1}{1 / \sqrt{2}} \\
& =\sqrt{2}
\end{aligned}
$$

63. $\quad \csc 90^{\circ}=\frac{1}{\sin 90^{\circ}}$

$$
=\frac{1}{1}=1
$$

65. $a=\sqrt{c^{2}-b^{2}}$

$$
=\sqrt{(9.62)^{2}-(8.88)^{2}}
$$

$$
=\sqrt{13.69}
$$

$$
=3.70
$$

67. $c=\sqrt{a^{2}+b^{2}}$

$$
\begin{aligned}
& =\sqrt{(19.44)^{2}+(5.67)^{2}} \\
& =\sqrt{410.0625} \\
& =20.25
\end{aligned}
$$

69. $C H=\sqrt{\left(C D^{2}\right)+(D H)^{2}}$

$$
=\sqrt{5^{2}+5^{2}}
$$

$$
=\sqrt{25+25}
$$

$$
=\sqrt{50}=5 \sqrt{2}
$$

$$
\sin \theta=\frac{F H}{C F}
$$

$$
=\frac{5}{5 \sqrt{3}}
$$

$$
=\frac{\sqrt{3}}{3}
$$

71. $C H=\sqrt{\left(C D^{2}\right)+(D H)^{2}}$

$$
\begin{aligned}
& =\sqrt{x^{2}+x^{2}} \\
& =\sqrt{2 x^{2}} \\
& =x \sqrt{2}
\end{aligned}
$$

61. $\cot 60^{\circ}=\frac{\cos 60^{\circ}}{\sin 60^{\circ}}$

$$
=\frac{1 / 2}{\sqrt{3} / 2}
$$

$$
=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \quad \text { Simplify }
$$

Reciprocal identity
Substitute values and simplify

$$
\begin{aligned}
& \sin A=\frac{a}{c}=\frac{3.70}{9.62}=0.38 \\
& \cos A=\frac{b}{c}=\frac{8.88}{9.62}=0.92 \\
& \sin B=\frac{b}{c}=\frac{8.88}{9.62}=0.92 \\
& \cos B=\frac{a}{c}=\frac{3.70}{9.62}=0.38
\end{aligned}
$$

$$
\sin A=\frac{a}{c}=\frac{19.44}{20.25}=0.96
$$

$$
\cos A=\frac{b}{c}=\frac{5.67}{20.25}=0.28
$$

$$
\sin B=\frac{b}{c}=\frac{5.67}{20.25}=0.28
$$

$$
\cos B=\frac{a}{c}=\frac{19.44}{20.25}=0.96
$$

$$
C F=\sqrt{(C H)^{2}+(F H)^{2}}
$$

$$
=\sqrt{(5 \sqrt{2})^{2}+(5)^{2}}
$$

$$
=\sqrt{50+25}
$$

$$
=\sqrt{75}=5 \sqrt{3}
$$

$$
\cos \theta=\frac{C H}{C F}
$$

$$
=\frac{5 \sqrt{2}}{5 \sqrt{3}}
$$

$$
=\frac{\sqrt{2}}{\sqrt{3}} \text { or } \frac{\sqrt{6}}{3}
$$

$$
C F=\sqrt{(C H)^{2}+(F H)^{2}}
$$

$$
=\sqrt{(x \sqrt{2})^{2}+x^{2}}
$$

$$
=\sqrt{2 x^{2}+x^{2}}
$$

$$
=\sqrt{3 x^{2}}=x \sqrt{3}
$$

Ratio identity
Substitute values from Table 1

$$
\begin{array}{rlrl}
\sin \theta & =\frac{F H}{C F} & & \begin{aligned}
\cos \theta & =\frac{C H}{C F} \\
& =\frac{x}{x \sqrt{3}} \\
& =\frac{\sqrt{3}}{3} \\
& =\frac{x \sqrt{2}}{x \sqrt{3}} \\
\text { 73. } & r
\end{aligned} \\
=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance formula } \\
& =\sqrt{[3-(-1)]^{2}+[-2-(-4)]^{2}} & & \text { Substitute known values } \\
& =\sqrt{4^{2}+2^{2}} & & \text { Simplify } \\
& =\sqrt{16+4} & & \\
& =\sqrt{20}=2 \sqrt{5} &
\end{array}
$$

75. The terminal side is the line $y=-x$. Some points in quadrant II on the line $y=-x$ are $(-1,1),(-2,2)$, and $(-3,3)$.
76. $-135^{\circ}+360^{\circ}=225^{\circ}$
77. $\sin A=\frac{a}{c}=\frac{16}{20}=\frac{4}{5} \quad$ The answer is c.
78. Statement a is false because $\sin 30^{\circ}=\frac{1}{2}$.

2.2 Calculators and Trigonometric Functions of an Acute Angle

EVEN SOLUTIONS

2. If $\theta=7.25^{\circ}$ in decimal degrees, then the 7 represents the number of degrees, the 2 represents the number of tenths of a degree, and the 5 represents the number of hundredths of a degree.
3. On a calculator, the $\mathrm{SIN}^{-1}, \mathrm{COS}^{-1}$, and TAN^{-1} keys allow us to find an angle given the value of a trigonometric function.
4. Adding the angles: $11^{\circ} 41^{\prime}+32^{\circ} 16^{\prime}=43^{\circ} 57^{\prime}$
5. Adding the angles: $63^{\circ} 38^{\prime}+24^{\circ} 52^{\prime}=87^{\circ} 90^{\prime}=88^{\circ} 30^{\prime}$
6. Adding the angles: $77^{\circ} 21^{\prime}+26^{\circ} 44^{\prime}=104^{\circ} 5^{\prime}$
7. Subtracting the angles: $90^{\circ}-62^{\circ} 25^{\prime}=89^{\circ} 60^{\prime}-62^{\circ} 25^{\prime}=27^{\circ} 35^{\prime}$
8. Subtracting the angles: $180^{\circ}-132^{\circ} 39^{\prime}=179^{\circ} 60^{\prime}-132^{\circ} 39^{\prime}=47^{\circ} 21^{\prime}$
9. Subtracting the angles: $89^{\circ} 38^{\prime}-28^{\circ} 58^{\prime}=88^{\circ} 98^{\prime}-28^{\circ} 58^{\prime}=60^{\circ} 40^{\prime}$
10. Converting to degrees and minutes: $83.6^{\circ}=83^{\circ}+0.6^{\circ}=83^{\circ}+0.6\left(60^{\prime}\right)=83^{\circ} 36^{\prime}$
11. Converting to degrees and minutes: $78.5^{\circ}=78^{\circ}+0.5^{\circ}=78^{\circ}+0.5\left(60^{\prime}\right)=78^{\circ} 30^{\prime}$
12. Converting to degrees and minutes: $43.85^{\circ}=43^{\circ}+0.85^{\circ}=43^{\circ}+0.85\left(60^{\prime}\right)=43^{\circ} 51^{\prime}$
13. Converting to degrees and minutes: $8.3^{\circ}=8^{\circ}+0.3^{\circ}=8^{\circ}+0.3\left(60^{\prime}\right)=8^{\circ} 18^{\prime}$
14. Converting to decimal degrees: $74^{\circ} 54^{\prime}=74^{\circ}+54^{\prime}=74^{\circ}+\left(\frac{54}{60}\right)^{\circ}=74.9^{\circ}$
15. Converting to decimal degrees: $21^{\circ} 15^{\prime}=21^{\circ}+15^{\prime}=21^{\circ}+\left(\frac{15}{60}\right)^{\circ}=21.25^{\circ}$
16. Converting to decimal degrees: $39^{\circ} 10^{\prime}=39^{\circ}+10^{\prime}=39^{\circ}+\left(\frac{10}{60}\right)^{\circ} \approx 39.17^{\circ}$
17. Converting to decimal degrees: $78^{\circ} 37^{\prime}=78^{\circ}+37^{\prime}=78^{\circ}+\left(\frac{37}{60}\right)^{\circ}=78.62^{\circ}$
18. Calculating the value: $\cos 79.2^{\circ} \approx 0.1874$
19. Calculating the value: $\sin 4^{\circ} \approx 0.0698$

Chapter 2
38. Calculating the value: $\tan 41.88^{\circ} \approx 0.8966$
40. Calculating the value: $\cot 29^{\circ}=\frac{1}{\tan 29^{\circ}} \approx 1.8040$
42. Calculating the value: $\sec 18.7^{\circ}=\frac{1}{\cos 18.7^{\circ}} \approx 1.0557$
44. Calculating the value: $\csc 77.77^{\circ}=\frac{1}{\sin 77.77^{\circ}} \approx 1.0232$
46. Calculating the value: $\sin 75^{\circ} 50^{\prime}=\sin \left(75 \frac{5}{6}\right)^{\circ} \approx 0.9696$
48. Calculating the value: $\tan 45^{\circ} 19^{\prime}=\tan \left(45 \frac{19}{60}\right)^{\circ} \approx 1.0111$
50. Calculating the value: $\cos 6^{\circ} 4^{\prime}=\cos \left(6 \frac{1}{15}\right)^{\circ} \approx 0.9944$
52. Calculating the value: $\csc 48^{\circ} 48^{\prime}=\csc \left(48 \frac{48}{60}\right)^{\circ}=\csc 48.8^{\circ}=\frac{1}{\sin 48.8^{\circ}} \approx 1.3291$

54. Completing the table:	x	$\csc x$	$\sec x$	$\cot x$
0°	error (undefined)	1	error (undefined)	
15°	3.8637	1.0353	3.7321	
30°	2	1.1547	1.7321	
45°	1.4142	1.4142	1	
60°	1.1547	2	0.5774	
75°	1.0353	3.8637	0.2679	
90°	1	error (undefined)	error (undefined)	
55. Finding the angle $\theta: \theta=\sin ^{-1}(0.7139) \approx 45.6^{\circ}$
56. Finding the angle $\theta: \theta=\cos ^{-1}(0.0945) \approx 84.6^{\circ}$
57. Finding the angle $\theta: \theta=\tan ^{-1}(6.2703) \approx 80.9^{\circ}$
58. Since $\sec \theta=8.0101, \cos \theta=\frac{1}{8.0101}$, so $\theta=\cos ^{-1}\left(\frac{1}{8.0101}\right) \approx 82.8^{\circ}$.
59. Since $\csc \theta=4.2319, \sin \theta=\frac{1}{4.2319}$, so $\theta=\sin ^{-1}\left(\frac{1}{4.2319}\right) \approx 13.7^{\circ}$.
60. Since $\cot \theta=7.0234, \tan \theta=\frac{1}{7.0234}$, so $\theta=\tan ^{-1}\left(\frac{1}{7.0234}\right) \approx 8.1^{\circ}$.
61. Finding the angle $\theta: \theta=\sin ^{-1}(0.9459) \approx 71.0672^{\circ}=71^{\circ}+0.0672\left(60^{\prime}\right)=71^{\circ} 4^{\prime}$
62. Finding the angle $\theta: \theta=\tan ^{-1}(2.4652) \approx 67.9202^{\circ}=67^{\circ}+0.9202\left(60^{\prime}\right)=67^{\circ} 55^{\prime}$
63. Since $\sec \theta=1.9102, \cos \theta=\frac{1}{1.9102}$.

Finding the angle $\theta: \theta=\cos ^{-1}\left(\frac{1}{1.9102}\right) \approx 58.4323^{\circ}=58^{\circ}+0.4323\left(60^{\prime}\right)=58^{\circ} 26^{\prime}$
74. Calculating the values: $\sin 13^{\circ} \approx 0.2250$ and $\cos 77^{\circ} \approx 0.2250$
76. Calculating the values: $\sec 6.7^{\circ} \approx 1.0069$ and $\csc 83.3^{\circ} \approx 1.0069$
78. Calculating the values: $\tan 35^{\circ} 15^{\prime}=\tan 35.25^{\circ} \approx 0.7067$ and $\cot 54^{\circ} 45^{\prime}=\cot 54.75^{\circ} \approx 0.7067$
80. Calculating the value: $\cos ^{2} 58^{\circ}+\sin ^{2} 58^{\circ}=1$
82. To calculate $B, B=\sin ^{-1}(4.321)$, which results in an error message. Since, for any angle $B, \sin B \leq 1$, it is impossible to find an angle B such that $\sin B=4.321$.

Chapter 2
Page 65
Problem Set 2.2
© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
84. To calculate $\cot 0^{\circ}$, we would find $\tan 0^{\circ}=0$ then find the reciprocal. This results in an error message. Since $\frac{1}{0}$ is an undefined value, $\cot 0^{\circ}$ is undefined.
86. a. Completing the table:

x	3°	2.5°	2°	1.5°	1°	0.5°	0°
$\cot x$	19.1	22.9	28.6	38.2	57.3	114.6	undefined

b. Completing the table:

x	0.6°	0.5°	0.4°	0.3°	0.2°	0.1°	0°
$\cot x$	95.5	114.6	143.2	191.0	286.5	573.0	undefined

88. Using $\alpha=36.597^{\circ}$ and $h=5$ in the shadow angle formula:

$$
\begin{aligned}
\tan \theta & =\left(\sin 36.597^{\circ}\right)\left(\tan \left(5^{\circ} 15^{\circ}\right)\right) \approx 2.2250 \\
\theta & =\tan ^{-1}(2.2250) \approx 65.8^{\circ}
\end{aligned}
$$

90. First find the value of $r: r=\sqrt{(-\sqrt{3})^{2}+1^{2}}=\sqrt{3+1}=\sqrt{4}=2$

Finding the three trigonometric functions using $x=-\sqrt{3}, y=1$, and $r=2$:

$$
\sin \theta=\frac{y}{r}=\frac{1}{2} \quad \cos \theta=\frac{x}{r}=-\frac{\sqrt{3}}{2} \quad \tan \theta=\frac{y}{x}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}
$$

92. Let $(-1,-1)$ be a point on the terminal side of -135°. First find the value of r : $r=\sqrt{1^{2}+(-1)^{2}}=\sqrt{1+1}=\sqrt{2}$

Finding the three trigonometric functions using $x=-1, y=-1$, and $r=\sqrt{2}$:

$$
\sin \theta=\frac{y}{r}=\frac{-1}{\sqrt{2}}=-\frac{\sqrt{2}}{2} \quad \cos \theta=\frac{x}{r}=\frac{-1}{\sqrt{2}}=-\frac{\sqrt{2}}{2} \quad \tan \theta=\frac{y}{x}=\frac{-1}{-1}=1
$$

94. Since $\tan \theta=-\frac{3}{4}$ and θ terminates in quadrant II (where $x<0$ and $y>0$), choose $x=-4$ and $y=3$. Finding r :

$$
r=\sqrt{(-4)^{2}+3^{2}}=\sqrt{16+9}=\sqrt{25}=5
$$

Finding the remaining trigonometric functions using $x=-4, y=3$, and $r=5$:

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r}=\frac{3}{5} & \cos \theta=\frac{x}{r}=-\frac{4}{5} & \cot \theta=\frac{x}{y}=-\frac{4}{3} \\
\csc \theta=\frac{r}{y}=\frac{5}{3} & \sec \theta=\frac{r}{x}=-\frac{5}{4} &
\end{array}
$$

96. Since $\sec \theta>0, x>0$. Thus for $\tan \theta<0$, we must have $y<0$. Thus the terminal side of θ lies in quadrant IV.
97. Converting to decimal degrees: $76^{\circ} 36^{\prime}=76^{\circ}+36^{\prime}=76^{\circ}+\left(\frac{36}{60}\right)^{\circ}=76.6^{\circ}$. The correct answer is b.
98. Since $\cot \theta=x, \tan \theta=\frac{1}{x}$. Then $\theta=\tan ^{-1}\left(\frac{1}{x}\right)$. The correct answer is a.

ODD SOLUTIONS

1. minutes, seconds
2. $37^{\circ} 45^{\prime}$
$+26^{\circ} 24^{\prime}$
$63^{\circ} 69^{\prime}=64^{\circ} 9^{\prime}$ since $60^{\prime}=1^{\circ}$
3.

. $61^{\circ} 33^{\prime}$
$+45^{\circ} 16^{\prime}$
$106^{\circ} 49^{\prime}$
3. value, angle
7. $51^{\circ} 55^{\prime}$
$+37^{\circ} 45^{\prime}$

$$
88^{\circ} 100^{\prime}=89^{\circ} 40^{\prime}
$$

11. $\begin{gathered}90^{\circ} \\ -34^{\circ} 12^{\prime}\end{gathered} \begin{array}{r}89^{\circ} 60^{\prime} \\ \end{array} \begin{array}{r}34^{\circ} 12^{\prime} \\ \\ \\ \end{array} 5^{\circ} 48^{\prime}$
12. $180^{\circ}=179^{\circ} 60^{\prime}$ Change 1° to 60^{\prime} $-120^{\circ} 17^{\prime} \quad-120^{\circ} 17^{\prime}$ $59^{\circ} 43^{\prime}$
13. $\quad 35.4^{\circ}=35^{\circ}+0.4(60)^{\prime}$

$$
=35^{\circ}+24^{\prime}
$$

$$
=35^{\circ} 24^{\prime}
$$

21. $\quad 92.55^{\circ}=92^{\circ}+0.55(60)^{\prime}$

$$
=92^{\circ}+33^{\prime}
$$

$$
=92^{\circ} 33^{\prime}
$$

25. $45^{\circ} 12^{\prime}=45+\frac{12}{60}$
$=45.2^{\circ}$
26. $17^{\circ} 20^{\prime}=17+\frac{20}{60}$
$=17.33^{\circ}$
27. $76^{\circ} 24^{\prime}=75^{\circ} 84^{\prime}$ $-22^{\circ} 34^{\prime} \quad-22^{\circ} 34^{\prime}$ $53^{\circ} 50^{\prime}$
28. $16.25^{\circ}=16^{\circ}+0.25(60)^{\prime}$ $=16^{\circ}+15^{\prime}$ $=16^{\circ} 15^{\prime}$
29. $19.9^{\circ}=19^{\circ}+0.9(60)^{\prime}$ $=19^{\circ}+54^{\prime}$ $=19^{\circ} 54^{\prime}$
30. $62^{\circ} 36^{\prime}=62+\frac{36}{60}$ $=62.6^{\circ}$
31. $48^{\circ} 27^{\prime}=48+\frac{27}{60}$
$=48.45^{\circ}$
32. Scientific Calculator: $27.2 \quad \sin$

Graphing Calculator: $\sin (27.2)$ ENTER
Answer to 4 places: 0.4571
35. Scientific Calculator: $18 \cos$

Graphing Calculator: $\cos (18)$ ENTER
Answer to 4 places: 0.9511
37. Scientific Calculator: $87.32 \tan$

Graphing Calculator: \tan (87.32) ENTER
Answer to 4 places: 21.3634
39. $\quad \cot 31^{\circ}=\frac{1}{\tan 31^{\circ}}$

Scientific Calculator: $31 \tan 1 / x$
Graphing Calculator: tan (31$) x^{-1}$ ENTER
Answer: 1.6643
41. $\sec 48.2^{\circ}=\frac{1}{\cos 48.2^{\circ}}$

Scientific Calculator: $48.2 \cos 1 / x$
Graphing Calculator: $\cos (48.2) x^{-1}$
Answer: 1.5003
43. $\csc 14.15^{\circ}=\frac{1}{\sin 14.15^{\circ}}$

Scientific Calculator: $14.15 \sin 1 / x$
Graphing Calculator: $\sin (14.15) x^{-1}$ ENTER
Answer: 4.0906
45. $24^{\circ} 30^{\prime}=24+\frac{30}{60}=24.5^{\circ}$

Scientific Calculator: $24.5 \cos$
Graphing Calculator: cos (24.5)ENTER
Answer: 0.9100
47. $42^{\circ} 15^{\prime}=42+\frac{15}{60}$

$$
=42.25^{\circ}
$$

Scientific Calculator: 42.25 tan
Graphing Calculator: $\tan (42.25) E N T E R$
Answer: 0.9083
49. $56^{\circ} 40^{\prime}=56+\frac{40}{60}=56.67^{\circ}$

Scientific Calculator: 56.67 sin
Graphing Calculator: $\sin (56.67) E N T E R$
Answer: 0.8355
51. $45^{\circ} 54^{\prime}=45+\frac{54}{60}$

$$
=45.9^{\circ}
$$

$\sec 45.9^{\circ}=\frac{1}{\cos 45.9^{\circ}}$
Scientific Calculator: $45.9 \cos 1 / x$
Graphing Calculator: $\cos (45.9) x^{-1}$ ENTER
Answer: 1.4370
53. Use your calculator to find the values of the sine, cosine, and tangent of each angle:

x	$\sin x$	$\cos x$	$\tan x$
0°	0	1	0
15°	0.2588	0.9659	0.2679
30°	0.5	0.8660	0.5774
45°	0.7071	0.7071	1
60°	0.8660	0.5	1.7321
75°	0.9659	0.2588	3.7321
90°	1	0	Error (undefined)

55. Scientific Calculator: 0.9770 inv cos

Graphing Calculator: 2nd cos 0.9770 ENTER
Answer: 12.3°
57. Scientific Calculator: 0.6873 inv tan

Graphing Calculator: 2nd tan (0.6873) ENTER
Answer: 34.5
59. Scientific Calculator: $0.9813 \mathrm{inv} \sin$

Graphing Calculator: 2nd sin (0.9813) ENTER
Answer: 78.9°
61. $\sec \theta=1.0191$
$\frac{1}{\cos \theta}=1.0191$
$\cos \theta=\frac{1}{1.0191}$
63. $\csc \theta=1.8214$
$\frac{1}{\sin \theta}=1.8214$
$\sin \theta=\frac{1}{1.8214}$
65. $\cot \theta=0.6873$
$\frac{1}{\tan \theta}=0.6873$
$\tan \theta=\frac{1}{0.6873}$

Scientific Calculator: $\quad 1 \div 1.0191 \backsim \operatorname{inv} \cos$
Graphing Calculator: $\quad 2 n d \cos (1 \div 1.0191)$ ENTER
Answer: 11.1°
Scientific Calculator: $\quad 1 \overleftarrow{\div} 1.8214 \square \operatorname{inv} \sin$
Graphing Calculator: $\quad 2 n d$ sin $(1 \div 1.8214)$ ENTER
Answer: 33.3°
Scientific Calculator: $\quad 1 \div 0.6873=\operatorname{inv} \tan$
Graphing Calculator: $\quad 2 n d \tan 1 \div 0.6873)$ ENTER
Answer: 55.5
67. Scientific Calculator: 0.4112 inv \cos

Answer in decimal degrees is 65.719°
Convert the decimal part to minutes: $\quad 0.719 \times 60 \square$
Graphing Calculator: 2nd $\cos (0.4112 \square$ 2nd APPS DMS ENTER
Answer: $\theta=65^{\circ} 43^{\prime}$
69. $\cot \theta=5.5764$
$\frac{1}{\tan \theta}=5.5764$
$\tan \theta=\frac{1}{5.5764}$
Scientific Calculator: $1 \underset{\square}{\circ} 5.5764 \square$ inv \tan
Answer in decimal degrees is 10.1666°
Convert the decimal part to minutes: $0.1666 \times 60 \square$
Graphing Calculator: 2nd tan (5.5764$)$ 2nd APPS DMS ENTER
Answer: $\quad \theta=10^{\circ} 10^{\prime}$
71. $\csc \theta=7.0683$
$\frac{1}{\sin \theta}=7.0683$
$\sin \theta=\frac{1}{7.0683}$
Scientific Calculator: $1 \div 7.0683=\operatorname{inv} \sin$
Answer in decimal degrees is 8.1333°
Convert the decimal part to minutes: $0.133 \times 60 \square$
Graphing Calculator: 2nd $\sin (1 \div 7.0683)$ 2nd APPS \square DMS ENTER
Answer: $\theta=8^{\circ} 8^{\prime}$

73. Scientific Calculator: $23 \sin$ and 67	\cos

Graphing Calculator: $\sin 23 \boxed{E N T E R}$

$$
\cos (67 \triangle E N T E R
$$

Both answers should be 0.3907 .
75. To calculate $\sec 34.5^{\circ}=\frac{1}{\cos 34.5^{\circ}}$:

Scientific Calculator: $34.5 \cos 1 / x$
Graphing Calculaltor: $\cos (34.5) x^{-1}$ ENTER
To calculate $\csc 55.5^{\circ}=\frac{1}{\sin 55.5^{\circ}}$:
Scientific Calculator: $55.5 \sin 1 / x$
Graphing Calculaltor: $\sin 55.5$) x^{-1} ENTER
Both answers should be 1.2134 .
77. Scientific Calculator: $4.5 \tan$

Graphing Calculaltor: $\tan (4.5)$ ENTER
To calculate $\cot 85.5^{\circ}=\frac{1}{\tan 85.5^{\circ}}$:
Scientific Calculator: $85.5 \tan 1 / x$
Graphing Calculaltor: $\tan (85.5) x^{-1}$ ENTER
Both answers should be 0.0787 .
79. Scientific Calculator: $37 \boxed{\cos } x^{2}+37 \sin x^{2}=$

Graphing Calculator: $\cos \left(37 \boxed{)} x^{2}+\sin (37) x^{2}\right.$ ENTER
Answer should be 1 .
81. Scientific Calculator: 1.234 inv \sin

Graphing Calculator: 2nd $\sin 1.234$ ENTER
You should get an error message. The sine of an angle can never be greater than 1 .
83. Scientific Calculator: 90 tan

Graphing Calculaltor: $\tan (90)$ ENTER
You should get an error message. The tangent of 90° is undefined.
87. $\tan \theta=\sin \alpha \tan \left(h \cdot 15^{\circ}\right)$ where $\alpha=35.282^{\circ}$ and $h=2$

$$
\begin{aligned}
\tan \theta & =\sin \left(35.282^{\circ}\right) \tan \left(2 \cdot 15^{\circ}\right) \\
& =.333478 \\
\theta & =\tan ^{-1}(.333478) \\
\theta & =18.4^{\circ}
\end{aligned}
$$

89. $(x, y)=(3,-2)$
$\sin \theta=\frac{y}{r}=\frac{-2}{\sqrt{13}}=-\frac{2 \sqrt{13}}{13}$
$x=3$ and $y=-2$
$\cos \theta=\frac{x}{r}=\frac{3}{\sqrt{13}}=\frac{3 \sqrt{13}}{13}$
$r=\sqrt{3^{2}+(-2)^{2}}$
$=\sqrt{9+4}=\sqrt{13}$

$$
\tan \theta=\frac{y}{x}=\frac{-2}{3}=-\frac{2}{3}
$$

91. A point on the terminal side of an angle of 90° in standard position is $(0,1)$, where

$$
x=0, y=1, \text { and } r=1
$$

$$
\sin 90^{\circ}=\frac{y}{r}=\frac{1}{1}=1
$$

$$
\cos 90^{\circ}=\frac{x}{r}=\frac{0}{1}=0
$$

$$
\tan 90^{\circ}=\frac{y}{x}=\frac{1}{0} \text { is undefined }
$$

93. $\cos \theta=-\frac{5}{13}$ and θ is in QIII. In QIII, both x and y are negative.

$$
\cos \theta=\frac{x}{r}=\frac{-5}{13}
$$

$x=-5$ and $r=13$
$\sin \theta=\frac{y}{r}=\frac{-12}{13}=-\frac{12}{13}$

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
(-5)^{2}+y^{2}=13^{2}
\end{gathered}
$$

$$
\tan \theta=\frac{y}{x}=\frac{-12}{-5}=\frac{12}{5}
$$

$$
\cot \theta=\frac{x}{y}=\frac{-5}{-12}=\frac{5}{12}
$$

$$
25+y^{2}=169
$$

$$
\sec \theta=\frac{r}{x}=\frac{13}{-5}=-\frac{13}{5}
$$

$$
y^{2}=144
$$

$$
\csc \theta=\frac{r}{y}=\frac{13}{-12}=-\frac{13}{12}
$$

$$
y= \pm 12
$$

$$
y=-12 \text { because } \theta \text { is in QIII }
$$

95. The $\sin \theta$ is positive in QI and QII.

The $\cos \theta$ is negative in QII and QIII.
Therefore, θ must lie in QII.
97. $\begin{aligned} & 67^{\circ} 22^{\prime}= \\ &-34^{\circ} 30^{\prime}\end{aligned} \quad-36^{\circ} 82^{\prime}$ Change 1° to 60^{\prime}

$$
32^{\circ} 52^{\prime}
$$

The answer is d.

2.3 Solving Right Triangles

EVEN SOLUTIONS

2. If the sides of a triangle are accurate to three significant digits, then angles should be measured to the nearest tenth of a degree, or the nearest ten minutes.
3. In general, round answers so that the number of significant digits in your answer matches the number of significant digits in the least significant number given in the problem.
4. a. three
b. three
c. five
d. three
5. a. five
b. five
c. five
d. seven
6. Begin by drawing $\triangle A B C$:

Therefore:

$$
\begin{aligned}
\sin 52^{\circ} & =\frac{a}{15} \\
a & =15 \sin 52^{\circ} \approx 12 \mathrm{ft}
\end{aligned}
$$

12. Begin by drawing $\triangle A B C$:

Therefore:

$$
\begin{aligned}
\cos 64^{\circ} & =\frac{55}{c} \\
c \cos 64^{\circ} & =55 \\
c & =\frac{55}{\cos 64^{\circ}} \approx 125 \mathrm{~m} \approx 130 \mathrm{~m}
\end{aligned}
$$

14. Begin by drawing $\triangle A B C$:

Therefore:

$$
\begin{aligned}
\cos 24.5^{\circ} & =\frac{a}{3.45} \\
a & =3.45 \cos 24.5^{\circ} \approx 3.14 \mathrm{ft}
\end{aligned}
$$

16. Begin by drawing $\triangle A B C$:

Therefore:

$$
\begin{aligned}
\tan 17.71^{\circ} & =\frac{b}{43.21} \\
b & =43.21 \tan 17.71^{\circ} \approx 13.80 \mathrm{in} .
\end{aligned}
$$

18. Begin by drawing $\triangle A B C$:

Therefore:

$$
\begin{aligned}
\tan A & =\frac{16}{29} \\
A & =\tan ^{-1}\left(\frac{16}{29}\right) \approx 29^{\circ}
\end{aligned}
$$

20. Begin by drawing $\triangle A B C$:

Therefore:

$$
\begin{aligned}
\cos A & =\frac{2.7}{7.7} \\
A & =\cos ^{-1}\left(\frac{2.7}{7.7}\right) \approx 69^{\circ}
\end{aligned}
$$

22. Begin by drawing $\triangle A B C$:

Therefore:

$$
\begin{aligned}
\sin A & =\frac{2.345}{5.678} \\
A & =\sin ^{-1}\left(\frac{2.345}{5.678}\right) \approx 24.39^{\circ}
\end{aligned}
$$

24. Begin by drawing $\triangle A B C$ and label missing information:

Note that $B=90^{\circ}-71^{\circ}=19^{\circ}$. Therefore:

$$
\begin{aligned}
\sin 71^{\circ} & =\frac{a}{36} \\
a & =36 \sin 71^{\circ} \approx 34 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\cos 71^{\circ} & =\frac{b}{36} \\
b & =36 \cos 71^{\circ} \approx 12 \mathrm{~m}
\end{aligned}
$$

26. Begin by drawing $\triangle A B C$ and label missing information:

Note that $B=90^{\circ}-48.3^{\circ}=41.7^{\circ}$. Therefore:

$$
\begin{aligned}
\sin 48.3^{\circ} & =\frac{3.48}{c} \\
c \sin 48.3^{\circ} & =3.48 \\
c & =\frac{3.48}{\sin 48.3^{\circ}} \approx 4.66 \mathrm{in} .
\end{aligned}
$$

$$
\begin{aligned}
\cos 48.3^{\circ} & =\frac{b}{4.66} \\
b & =4.66 \cos 48.3^{\circ} \approx 3.10 \mathrm{in} .
\end{aligned}
$$

28. Begin by drawing $\triangle A B C$ and label missing information:

Note that $B=90^{\circ}-66^{\circ} 54^{\prime}=89^{\circ} 60^{\prime}-66^{\circ} 54^{\prime}=23^{\circ} 6^{\prime}$. So:

$$
\begin{aligned}
\cos 66^{\circ} 54^{\prime} & =\frac{88.22}{c} \\
c \cos 66^{\circ} 54^{\prime} & =88.22 \\
c & =\frac{88.22}{\cos 66^{\circ} 54^{\prime}} \approx 224.9 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\tan 66^{\circ} 54^{\prime} & =\frac{a}{88.22} \\
a & =88.22 \tan 66^{\circ} 54^{\prime} \approx 206.8 \mathrm{~cm}
\end{aligned}
$$

30. Begin by drawing $\triangle A B C$ and label missing information:

Note that $A=90^{\circ}-21^{\circ}=69^{\circ}$. Therefore:

$$
\begin{array}{rlrl}
\cos 69^{\circ} & =\frac{b}{4.2} & \sin 69^{\circ} & =\frac{a}{4.2} \\
b & =4.2 \cos 69^{\circ} \approx 1.5 \mathrm{ft} & a & =4.2 \sin 69^{\circ} \approx 3.9 \mathrm{ft}
\end{array}
$$

32. Begin by drawing $\triangle A B C$ and label missing information:

Note that $A=90^{\circ}-53^{\circ} 30^{\prime}=89^{\circ} 60^{\prime}-53^{\circ} 30^{\prime}=36^{\circ} 30^{\prime}$. So:

$$
\begin{aligned}
\cos 36^{\circ} 30^{\prime} & =\frac{125}{c} \\
c \cos 36^{\circ} 30^{\prime} & =125 \\
c & =\frac{125}{\cos 36^{\circ} 30^{\prime}} \approx 156 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\tan 36^{\circ} 30^{\prime} & =\frac{a}{125} \\
a & =125 \tan 36^{\circ} 30^{\prime} \approx 92.5 \mathrm{~mm}
\end{aligned}
$$

34. Begin by drawing $\triangle A B C$ and label missing information:

Note that $A=90^{\circ}-44.44^{\circ}=45.56^{\circ}$. Therefore:

$$
\begin{array}{rlrl}
\sin 45.56^{\circ} & =\frac{5.555}{c} & \tan 45.56^{\circ} & =\frac{5.555}{b} \\
c \sin 45.56^{\circ} & =5.555 & b \tan 45.56^{\circ} & =5.555 \\
c & =\frac{5.555}{\sin 45.56^{\circ}} \approx 7.780 \mathrm{mi} & b & =\frac{5.555}{\tan 45.56^{\circ}} \approx 5.447 \mathrm{mi}
\end{array}
$$

36. Begin by drawing $\triangle A B C$ and label missing information:

Therefore: $c=\sqrt{85^{2}+99^{2}} \approx 130 \mathrm{ft}$. Finding the angles:

$$
\begin{aligned}
\tan A & =\frac{99}{85} \\
A & =\tan ^{-1}\left(\frac{99}{85}\right) \approx 49^{\circ} \\
B & =90^{\circ}-49^{\circ}=41^{\circ}
\end{aligned}
$$

38. Begin by drawing $\triangle A B C$ and label missing information:

Therefore: $b=\sqrt{73.6^{2}-62.3^{2}} \approx 39.2 \mathrm{~cm}$. Finding the angles:

$$
\begin{aligned}
\sin A & =\frac{62.3}{73.6} \\
A & =\sin ^{-1}\left(\frac{62.3}{73.6}\right) \approx 57.8^{\circ} \\
B & =90^{\circ}-57.8^{\circ}=32.2^{\circ}
\end{aligned}
$$

40. Since the right triangle is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, its height is 2.0 . Therefore:

$$
\begin{aligned}
\tan A & =\frac{2.0}{3.0} \\
A & =\tan ^{-1}\left(\frac{2.0}{3.0}\right) \approx 34^{\circ}
\end{aligned}
$$

42. Re-drawing the figure:

Using the right triangle:

$$
\begin{aligned}
\cos 62^{\circ} & =\frac{19}{19+x} \\
(19+x) \cos 62^{\circ} & =19 \\
19+x & =\frac{19}{\cos 62^{\circ}} \\
x & =\frac{19}{\cos 62^{\circ}}-19 \approx 21
\end{aligned}
$$

46. Re-drawing the figure:

First find x :

$$
\begin{aligned}
\tan 48^{\circ} & =\frac{x}{24} \\
x & =24 \tan 48^{\circ} \approx 27
\end{aligned}
$$

44. Re-drawing the figure:

Using the right triangle:

$$
\begin{aligned}
\cos 45^{\circ} & =\frac{r}{r+15} \\
(r+15) \cos 45^{\circ} & =r \\
r \cos 45^{\circ}+15 \cos 45^{\circ} & =r \\
15 \cos 45^{\circ} & =r-r \cos 45^{\circ} \\
15 \cos 45^{\circ} & =r\left(1-\cos 45^{\circ}\right) \\
r & =\frac{15 \cos 45^{\circ}}{1-\cos 45^{\circ}} \\
r & =\frac{15\left(\frac{\sqrt{2}}{2}\right)}{1-\frac{\sqrt{2}}{2}}=\frac{15 \sqrt{2}}{2-\sqrt{2}} \approx 36
\end{aligned}
$$

48. Re-drawing the figure:

First find x :

$$
\begin{aligned}
\sin 49^{\circ} & =\frac{x}{19} \\
x & =19 \sin 49^{\circ} \approx 14
\end{aligned}
$$

Now find h :

$$
\begin{aligned}
\tan 53^{\circ} & =\frac{h}{47} \\
h & =27 \tan 53^{\circ} \approx 35
\end{aligned}
$$

50. Re-drawing the figure:

First find x :

$$
\begin{aligned}
\cos 48^{\circ} & =\frac{x}{12} \\
x & =12 \cos 48^{\circ} \approx 8.0
\end{aligned}
$$

Now find y :

$$
\begin{aligned}
\cos 23^{\circ} & =\frac{8+y}{17} \\
8+y & =17 \cos 23^{\circ} \\
y & =17 \cos 23^{\circ}-8 \approx 7.6
\end{aligned}
$$

Now find $\angle A B D$:

$$
\begin{aligned}
\tan \angle A B D & =\frac{32}{14} \\
\angle A B D & =\tan ^{-1}\left(\frac{32}{14}\right) \approx 66^{\circ}
\end{aligned}
$$

52. Re-drawing the figure:

First find h :

$$
\begin{aligned}
\sin 32^{\circ} & =\frac{h}{56} \\
h & =56 \sin 32^{\circ} \approx 30
\end{aligned}
$$

Now find x :

$$
\begin{aligned}
\tan 48^{\circ} & =\frac{30}{x} \\
x \tan 48^{\circ} & =30 \\
x & =\frac{30}{\tan 48^{\circ}} \approx 27
\end{aligned}
$$

54. Re-drawing the figure:

Note that $\tan 61^{\circ}=\frac{h}{x}$, so $h=x \tan 61^{\circ}$. Also note that $\tan 32^{\circ}=\frac{h}{14+x}$, so $h=(14+x) \tan 32^{\circ}$. Setting these two expressions equal:

$$
\begin{aligned}
x \tan 61^{\circ} & =(14+x) \tan 32^{\circ} \\
x \tan 61^{\circ} & =14 \tan 32^{\circ}+x \tan 32^{\circ} \\
x \tan 61^{\circ}-x \tan 32^{\circ} & =14 \tan 32^{\circ} \\
x\left(\tan 61^{\circ}-\tan 32^{\circ}\right) & =14 \tan 32^{\circ} \\
x & =\frac{14 \tan 32^{\circ}}{\tan 61^{\circ}-\tan 32^{\circ}} \approx 7.4
\end{aligned}
$$

56. Since $G C=C D=3.00$, using the Pythagorean Theorem: $G D=\sqrt{3^{2}+3^{2}}=\sqrt{18}=3 \sqrt{2}$. Therefore:

$$
\begin{aligned}
\tan \angle G D E & =\frac{G E}{G D}=\frac{3}{3 \sqrt{2}}=\frac{1}{\sqrt{2}} \\
\angle G D E & =\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right) \approx 35.3^{\circ}
\end{aligned}
$$

58. First find $\angle C A B$:

$$
\begin{aligned}
\tan (\angle C A B) & =\frac{66}{54} \\
\angle C A B & =\tan ^{-1}\left(\frac{66}{54}\right) \approx 50.71^{\circ}
\end{aligned}
$$

Now find $\angle E A B$:

$$
\begin{aligned}
\tan (\angle E A B) & =\frac{78}{54} \\
\angle E A B & =\tan ^{-1}\left(\frac{78}{54}\right) \approx 55.30^{\circ}
\end{aligned}
$$

Therefore: $\angle C A E=\angle E A B-\angle C A B=55.30^{\circ}-50.71^{\circ} \approx 4.6^{\circ}$
60. Let O represent the center of the goal.

First find $\angle O A D$:

$$
\begin{aligned}
\tan (\angle O A D) & =\frac{6}{54} \\
\angle O A D & =\tan ^{-1}\left(\frac{6}{54}\right) \approx 6.34^{\circ}
\end{aligned}
$$

Now find $\angle O A F$:

$$
\begin{aligned}
\tan (\angle O A F) & =\frac{12}{54} \\
\angle O A F & =\tan ^{-1}\left(\frac{12}{54}\right) \approx 12.53^{\circ}
\end{aligned}
$$

Therefore: $\angle D A F=\angle O A F-\angle O A D=12.53^{\circ}-6.34^{\circ} \approx 6.2^{\circ}$
Since $\angle C A E$ is also 6.2°, the sum of the angles is 12.4°.
62. Since 12.4° is much greater than 4.6°, the chance of scoring is much better from the center than from the corner of the penalty area.
64. From Example 5, we have:

$$
\begin{aligned}
\cos 135^{\circ} & =\frac{139-h}{125} \\
-\frac{1}{\sqrt{2}} & =\frac{139-h}{125} \\
-\frac{125}{\sqrt{2}} & =139-h \\
h & =139+\frac{125}{\sqrt{2}} \approx 227.4
\end{aligned}
$$

The rider is approximately 230 ft above the ground.
66. First note that the distance from the ground to the low point of Colossus is $174-165=9 \mathrm{ft}$. The radius is 82.5 ft .

Since $x+h=82.5+9=91.5, x=91.5-h$. Therefore:

$$
\begin{aligned}
\cos \theta & =\frac{x}{82.5}=\frac{91.5-h}{82.5} \\
91.5-h & =82.5 \cos \theta \\
h & =91.5-82.5 \cos \theta
\end{aligned}
$$

a. Substituting $\theta=150^{\circ}: h=91.5-82.5 \cos 150^{\circ} \approx 163 \mathrm{ft}$
b. Substituting $\theta=240^{\circ}: h=91.5-82.5 \cos 240^{\circ} \approx 133 \mathrm{ft}$
c. Substituting $\theta=315^{\circ}: h=91.5-82.5 \cos 315^{\circ} \approx 33.2 \mathrm{ft}$
68. First note that the distance from the ground to the low point of the High Roller is $550-520=30 \mathrm{ft}$.

The radius is 260 ft . Since $x+h=260+30=290, x=290-h$. Therefore:

$$
\begin{aligned}
\cos \theta & =\frac{x}{260}=\frac{290-h}{260} \\
290-h & =260 \cos \theta \\
h & =290-260 \cos \theta
\end{aligned}
$$

Substituting $\theta=110^{\circ}: h=290-260 \cos 110^{\circ} \approx 379 \mathrm{ft} \approx 380 \mathrm{ft}$
70. Entering the functions $Y_{1}=-\frac{7}{640}(X-80)^{2}+70$ and $Y_{2}=\tan ^{-1}\left(\frac{Y_{1}}{X}\right)$, complete the table:

X	10	5	1	0.5	0.1	0.01
Y_{1}	16.4063	8.4766	1.7391	0.8723	0.1749	0.0175
Y_{2}	58.6°	59.5°	60.1°	60.2°	60.2°	60.3°

Based on these results, it appears the angle between the cannon and the horizontal is approximately 60.3°.
72. Since $\csc B=5, \sin B=\frac{1}{5}$, so $\sin ^{2} B=\left(\frac{1}{5}\right)^{2}=\frac{1}{25}$.
74. Finding $\cos ^{2} A: \cos ^{2} A=1-\sin ^{2} A=1-\left(\frac{3}{4}\right)^{2}=1-\frac{9}{16}=\frac{7}{16}$

So $\cos A= \pm \frac{\sqrt{7}}{4}$. Since A terminates in quadrant II, where $x<0, \cos A<0$. Thus $\cos A=-\frac{\sqrt{7}}{4}$.
76. First find $\sin \theta$ (note $\sin \theta<0$ since θ terminates in quadrant IV):

$$
\sin \theta=-\sqrt{1-\cos ^{2} \theta}=-\sqrt{1-\frac{1}{5}}=-\sqrt{\frac{4}{5}}=-\frac{2}{\sqrt{5}}=-\frac{2 \sqrt{5}}{5}
$$

Now find the other four trigonometric ratios using $x=1, y=-2$, and $r=\sqrt{5}$:

$$
\sec \theta=\frac{r}{x}=\sqrt{5} \quad \csc \theta=\frac{r}{y}=-\frac{\sqrt{5}}{2} \quad \tan \theta=\frac{y}{x}=-2 \quad \cot \theta=\frac{x}{y}=-\frac{1}{2}
$$

78. Since $\csc \theta=-2, \sin \theta=-\frac{1}{2}$. Now find $\cos \theta$ (note that $\cos \theta<0$ since θ terminates in quadrant III):

$$
\cos \theta=-\sqrt{1-\sin ^{2} \theta}=-\sqrt{1-\left(-\frac{1}{2}\right)^{2}}=-\sqrt{1-\frac{1}{4}}=-\sqrt{\frac{3}{4}}=-\frac{\sqrt{3}}{2}
$$

Now find the other three trigonometric ratios using $x=-\sqrt{3}, y=-1$, and $r=2$:

$$
\sec \theta=\frac{r}{x}=-\frac{2}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3} \quad \tan \theta=\frac{y}{x}=\frac{-1}{-\sqrt{3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \quad \cot \theta=\frac{x}{y}=\frac{-\sqrt{3}}{-1}=\sqrt{3}
$$

80. Finding side b :

$$
\begin{aligned}
\cos A & =\frac{b}{c} \\
\cos 58^{\circ} & =\frac{b}{15} \\
b & =15 \cos 58^{\circ} \approx 7.9 \mathrm{ft}
\end{aligned}
$$

The correct answer is c.
82. Let x represent the height of the rider above the center of the wheel (which is 51.5 feet above the ground). Since the point of the rider is 50° above the horizontal, we have:

$$
\begin{aligned}
\sin 50^{\circ} & =\frac{h-51.5}{45} \\
h-51.5 & =45 \sin 50^{\circ} \\
h & =51.5+45 \sin 50^{\circ} \approx 86 \mathrm{ft}
\end{aligned}
$$

The correct answer is c.

ODD SOLUTIONS

1. left, right, first nonzero, not
2. \quad a. 2 b. 3 c. 2 d. 2
3. $\cos 42^{\circ}=\frac{b}{89}$

$$
\begin{aligned}
b & =89 \cos 42^{\circ} \\
& =89(0.7431) \\
& =66 \mathrm{~cm}
\end{aligned}
$$

3. sides, angles
4.

a. 4 b. 6
c. 4
d. 4

Cosine relationship
Multiply both sides by 89
Substitute value for $\cos 42^{\circ}$
Answer rounded to 2 significant digits
11. $\sin 34^{\circ}=\frac{22}{c}$

$$
c \sin 34^{\circ}=22
$$

$$
c=\frac{22}{\sin 34^{\circ}}
$$

$$
c=\frac{22}{0.5592}
$$

$$
c=39 \mathrm{~m}
$$

13. $\sin 16.9^{\circ}=\frac{b}{7.55}$
$b=7.55 \sin 16.9^{\circ}$
$=7.55(0.2907)$

$$
=2.19 \mathrm{~cm}
$$

15. $\tan 55.33^{\circ}=\frac{12.34}{a}$

$$
a \tan 55.33^{\circ}=12.34
$$

$$
a=\frac{12.34}{\tan 55.33^{\circ}}
$$

$$
a=\frac{12.34}{1.4458}
$$

$$
a=8.535 \mathrm{yd}
$$

17. $\tan B=\frac{32.4}{42.3}$

$$
=0.7659
$$

$$
B=\tan ^{-1}(0.7659)
$$

$$
B=37.5^{\circ}
$$

19. $\sin B=\frac{9.8}{12}$

$$
\begin{aligned}
& =0.8166 \\
B & =\cos ^{-1}(0.8166) \\
& =55^{\circ}
\end{aligned}
$$

21. $\cos B=\frac{23.32}{45.54}$

$$
=0.5120
$$

$$
B=\cos ^{-1}(0.5120)
$$

$$
=59.20^{\circ}
$$

23. First, we find $\angle B$:

Next, we find side a :

$$
\begin{aligned}
\sin 25^{\circ} & =\frac{a}{24} \\
a & =24 \sin 25^{\circ} \\
a & =10 \mathrm{~m}
\end{aligned}
$$

Last, we find side b :

$$
\begin{aligned}
\cos 25^{\circ} & =\frac{b}{24} \\
b & =24 \sin 25^{\circ} \\
b & =22 \mathrm{~m}
\end{aligned}
$$

Sine relationship
Multiply both sides by c
Divide both sides by $\sin 34^{\circ}$

Substitute value for $\sin 34^{\circ}$
Answer rounded to 2 significant digits
Sine relationship
Multiply both sides by 7.55
Substitute value for $\cos 24.5^{\circ}$
Answer rounded to 3 significant digits
Tangent relationship
Multiply both sides by a
Divide both sides by $\tan 55.33^{\circ}$
Substitute value for $\tan 55.33^{\circ}$
Answer rounded to 4 significant digits
Tangent relationship
Divide
Use calculator to find angle
Answer rounded to the nearest tenth of a degree
Sine relationship
Divide
Use calculator to find angle
Answer rounded to the nearest degree
Cosine relationship
Divide 23.32 by 45.54
Use calculator to find angle
Answer rounded to the nearest hundredth of a degree

$$
\angle B=90^{\circ}-\angle A=90^{\circ}-25^{\circ}=65^{\circ}
$$

Sine relationship
Multiply both sides by 24
Answer rounded to 2 significant digits

Cosine relationship
Multiply both sides by 24
Answer rounded to 2 significant digits
25. First, we find $\angle B$:

$$
\begin{aligned}
\angle B=90^{\circ}- & \angle A \\
& =90^{\circ}-32.6^{\circ}=57.4^{\circ}
\end{aligned}
$$

Next, we find side c :

$$
\begin{aligned}
\sin 32.6^{\circ} & =\frac{43.4}{c} \\
c & =\frac{43.4}{\sin 32.6^{\circ}} \\
& =80.6 \mathrm{in}
\end{aligned}
$$

Sine relationship
Multiply both sides by c then divide by $\sin 32.6^{\circ}$
Answer rounded to 3 significant digits
Last, we find side b :

$$
\begin{aligned}
\tan 57.4^{\circ} & =\frac{b}{43.4} \\
b & =43.4 \tan 57.4^{\circ} \\
& =67.9 \mathrm{in}
\end{aligned}
$$

27. First, we find $\angle B$:

Next, we find side a :

$$
\begin{aligned}
\tan 10^{\circ} 42^{\prime} & =\frac{a}{5.932} \\
\tan 10.7^{\circ} & =\frac{a}{5.932} \\
a & =5.932 \tan 10.7^{\circ} \\
a & =1.121 \mathrm{~cm}
\end{aligned}
$$

Last, we find side c :

$$
\begin{aligned}
\cos 10.7^{\circ} & =\frac{5.932}{c} \\
c & =\frac{5.932}{\cos 10.7^{\circ}} \\
c & =6.037 \mathrm{~cm}
\end{aligned}
$$

Tangent relationship
Change angle to decimal degrees
Multiply both sides by 5.932
Answer rounded to 4 significant digits

Cosine relationship

Multiply both sides by c then divide by $\cos 10.7^{\circ}$
Answer rounded to 4 significant digits
29. First, we find $\angle A$:

$$
\begin{aligned}
\angle A & =90^{\circ}-76^{\circ} \\
& =14^{\circ}
\end{aligned}
$$

Next, we find side a :

$$
\begin{aligned}
\cos 76^{\circ} & =\frac{a}{5.8} \\
a & =5.8 \cos 76^{\circ} \\
& =1.4 \mathrm{ft}
\end{aligned}
$$

Last, we find side b :

$$
\begin{aligned}
\sin 76^{\circ} & =\frac{b}{5.8} \\
b & =5.8 \sin 76^{\circ}=5.6 \mathrm{ft}
\end{aligned}
$$

Cosine relationship
Multiply both sides by 5.8
Answer rounded to 2 significant digits

Sine relationship
Multiply both sides by 5.8 and round to 2 significant digits
31.

First, we find $\angle A$:

$$
\begin{aligned}
\angle A & =90^{\circ}-\angle B \\
& =90^{\circ}-26^{\circ} 30^{\prime} \\
& =63^{\circ} 30^{\prime}
\end{aligned}
$$

Next, we find side a :

$$
\tan 26^{\circ} 30^{\prime}=\frac{324}{a}
$$

Tangent relationship

$$
\tan 26.5^{\circ}=\frac{324}{a}
$$

Change angle to decimal degrees

$$
a=\frac{324}{\tan 26.5^{\circ}}
$$

Multiply both sides by a then divide by $\tan 26.5^{\circ}$

$$
a=650 \mathrm{~mm}
$$

Answer rounded to 3 significant digits
Last, we find side c :

$$
\begin{aligned}
\sin 26.5^{\circ} & =\frac{324}{c} \\
c & =\frac{324}{\sin 26.5^{\circ}} \\
& =726 \mathrm{~mm}
\end{aligned}
$$

Sine relationship
Multiply both sides by c then divide by $\sin 26.5^{\circ}$
Answer rounded to 3 significant digits
33. First, we find $\angle A$:

$$
\begin{aligned}
\angle A & =90^{\circ}-23.45^{\circ} \\
& =66.55^{\circ}
\end{aligned}
$$

Next, we find side b :

$$
\begin{aligned}
\tan 23.45^{\circ} & =\frac{b}{5.432} & & \text { Tangent relationship } \\
b & =5.432 \tan 23.45^{\circ} & & \text { Multiply both sides by } 5.432 \\
& =2.356 \mathrm{mi} & & \text { Answer rounded to } 4 \text { significant digits }
\end{aligned}
$$

Last, we find side c :

$$
\begin{aligned}
\cos 23.45^{\circ} & =\frac{5.432}{c} \\
c & =\frac{5.432}{\cos 23.45^{\circ}} \\
& =5.921 \mathrm{mi}
\end{aligned}
$$

Cosine relationship

Multiply both sides by c and then divide by $\cos 23.45^{\circ}$
Answer rounded to 4 significant digits
35. First, we find $\angle A$:

$$
\begin{aligned}
\tan A & =\frac{37}{87} \\
& =0.4253 \\
A & =\tan ^{-1}(0.4253) \\
& =23^{\circ}
\end{aligned}
$$

Tangent relationship
Divide 37 by 87
Use calculator to find angle
Answer rounded to nearest degree
Next, we find $\angle B$:

$$
\angle B=90^{\circ}-\angle A=90^{\circ}-23^{\circ}=67^{\circ}
$$

Last, we find c :

$$
\begin{aligned}
c^{2} & =37^{2}+87^{2} \\
& =1369+7569 \\
& =8938 \\
c & = \pm 95 \\
& =95 \mathrm{ft}
\end{aligned}
$$

Pythagorean Theorem
Simplify
Simplify
Take square root of both sides
c must be positive
37. First, we find $\angle A$:

$$
\begin{aligned}
\cos A & =\frac{377.3}{588.5} \\
& =0.6411 \\
A & =\cos ^{-1}(0.6411) \\
& =50.12^{\circ}
\end{aligned}
$$

Cosine relationship
Divide
Use calculator to find angle
Answer rounded to nearest hundredth of a degree
Next, we find $\angle B$:

$$
\begin{aligned}
\angle B & =90^{\circ}-\angle A \\
& =90^{\circ}-50.12^{\circ} \\
& =39.88^{\circ}
\end{aligned}
$$

Last, we find side a :

$$
\begin{aligned}
a^{2}+377.3^{2} & =588.5^{2} \\
a^{2} & =203,976.96 \\
a & = \pm 451.6 \\
& =451.6 \mathrm{in}
\end{aligned}
$$

Pythagorean Theorem
Subtract and simplify
Take square root of both sides
a must be positive
39. Using $\triangle B C D$, we find $B D$:

$$
\begin{aligned}
\sin 30^{\circ} & =\frac{B D}{6.0} \\
B D & =6.0 \sin 30^{\circ} \\
& =3
\end{aligned}
$$

Sine relationship
Multiply both sides by 6
Exact answer
Next, we find $\angle A$

$$
\begin{aligned}
\sin A & =\frac{3}{4.0} \\
& =0.75 \\
A & =\sin ^{-1}(0.75) \\
A & =49^{\circ}
\end{aligned}
$$

Sine relationship
Divide
Use calculator to find angle
Answer rounded to the nearest degree
41.

$$
\begin{aligned}
\sin 31^{\circ} & =\frac{12}{x+12} & & \text { Sine relationship } \\
(x+12) \sin 31^{\circ} & =12 & & \text { Multiply both sides by } x+12 \\
x+12 & =\frac{12}{\sin 31^{\circ}} & & \text { Divide both sides by } \sin 31^{\circ} \\
x & =\frac{12}{\sin 31^{\circ}}-12=11 & & \text { Subtract } 12 \text { from both sides and round to } 2 \text { significant digits }
\end{aligned}
$$

43. $\cos 65^{\circ}=\frac{r}{r+22}$

$$
r=(r+22) \cos 65^{\circ}
$$

Multiply both side by $r+22$

$$
r=r \cos 65^{\circ}+22 \cos 65^{\circ}
$$

Use distributive property

$$
r-r \cos 65^{\circ}=22 \cos 65^{\circ}
$$

Subtract $r \cos 65^{\circ}$ from both sides

$$
r\left(1-\cos 65^{\circ}\right)=22 \cos 65^{\circ}
$$

Factor left side

$$
r=\frac{22 \cos 65^{\circ}}{1-\cos 65^{\circ}}
$$

Divide both sides by $1-\cos 65^{\circ}$

$$
=16
$$

Answer rounded to 2 significant digits
45. Using $\triangle A B C$, we find side x :

$$
\begin{aligned}
\tan 62^{\circ} & =\frac{x}{42} \\
x & =42 \tan 62^{\circ} \\
& =79
\end{aligned}
$$

Tangent relationship
Multiply both sides by 42
Answer rounded to 2 significant digits
Next, using $\triangle A B D$, we find side h :

$$
\begin{aligned}
\tan 27^{\circ} & =\frac{h}{x} \\
& =\frac{h}{79} \\
h & =79 \\
h & =40
\end{aligned}
$$

Tangent relationship

$$
=\frac{h}{79} \quad \text { Substitute value for } x
$$

$$
h=79 \tan 27^{\circ} \quad \text { Multiply both sides by } 79
$$

Answer rounded to 2 significant digits
47. Using $\triangle A B C$, we find side x :

$$
\begin{aligned}
\sin 41^{\circ} & =\frac{x}{32} \\
x & =32 \sin 41^{\circ} \\
& =21
\end{aligned}
$$

Sine relationship
Multiply both sides by 32
Answer rounded to 2 significant digits

Next, using $\triangle A B D$, we find $\angle A B D$:

$$
\begin{aligned}
\tan \angle A B D & =\frac{h}{x} \\
& =\frac{19}{21} \\
& =0.9047 \\
\angle A B D & =\tan ^{-1}(0.9047) \\
\angle A B D & =42^{\circ}
\end{aligned}
$$

49. Using $\triangle B C D$, we find side x :

$$
\begin{aligned}
\cos 58^{\circ} & =\frac{x}{14} \\
x & =14 \cos 58^{\circ} \\
x & =7.4
\end{aligned}
$$

Next, using $\triangle A B C$, we find y :

$$
\begin{aligned}
\cos 41^{\circ} & =\frac{x+y}{18} \\
x+y & =18 \cos 41^{\circ} \\
x+y & =13.58 \\
7.4+y & =13.58 \\
y & =6.18 \approx 6.2
\end{aligned}
$$

Tangent relationship

Substitute known values
Divide 19 by 21
Use calculator to find angle
Answer rounded to the nearest degree

Cosine relationship
Multiply both sides by 14
Answer rounded to 2 significant digits

Cosine relationship
Multiply both sides by 18
Evaluate right side
Substitute value for x
Subtract 7.4 from both sides and round to 2 significant digits
51. Using $\triangle A B C$, we find side h :

$$
\begin{aligned}
\sin 41^{\circ} & =\frac{h}{28} \\
h & =28 \sin 41^{\circ} \\
& =18
\end{aligned}
$$

Sine relationship
Multiply both sides by 28
Answer rounded to 2 significant digits
Next, using $\triangle B C D$, we find side x :

$$
\begin{aligned}
\tan 58^{\circ} & =\frac{h}{x} \\
\tan 58^{\circ} & =\frac{18}{x} \\
x & =\frac{18}{\tan 58^{\circ}}=11
\end{aligned}
$$

Tangent relationship
Substitute value found for h
Solve for x and round to 2 significant digits
53. Since h is in both $\triangle A B C$ and $\triangle B C D$, we will solve for h in the two triangles:

In $\triangle B C D, \tan 57^{\circ}=\frac{h}{x}$
Tangent relationship

$$
h=x \tan 57^{\circ}
$$

Multiply both sides by x
In $\triangle A B C, \tan 43^{\circ}=\frac{h}{x+y}$

$$
\begin{aligned}
& h=(x+y) \tan 43^{\circ} \\
& h=(x+11) \tan 43^{\circ}
\end{aligned}
$$

Therefore, $x \tan 57^{\circ}=(x+11) \tan 43^{\circ}$

$$
x \tan 57^{\circ}=x \tan 43+11 \tan 43^{\circ}
$$

Tangent relationship
Multiply both sides by $x+y$
Substitute value for y
Property of equality
Distribution Property
$x \tan 57^{\circ}-x \tan 43^{\circ}=11 \tan 43^{\circ}$
$x\left(\tan 57^{\circ}-\tan 43^{\circ}\right)=11 \tan 43^{\circ}$

$$
x=\frac{11 \tan 43^{\circ}}{\tan 57^{\circ}-\tan 43^{\circ}}=17
$$

Subtract $x \tan 43^{\circ}$ from both sides
Factor left side
Divide both sides by $\tan 57^{\circ}-\tan 43^{\circ}$
55. From Problem 69 in Problem Set 2.1, we found that

$$
\begin{aligned}
\sin \theta & =\frac{1}{\sqrt{3}} \\
& =0.5774 \\
\theta & =\sin ^{-1}(0.5774)=35.3^{\circ}
\end{aligned}
$$

57. From Problem 69 in Problem Set 2.1, we found that

$$
\begin{aligned}
\cos \theta & =\frac{\sqrt{2}}{\sqrt{3}} \\
& =0.8165 \\
\theta & =\cos ^{-1}(0.8165)=35.3^{\circ}
\end{aligned}
$$

59. We know that $E C=D F=6 \mathrm{ft}, E B=78 \mathrm{ft}, C B=72 \mathrm{ft}, D B=60 \mathrm{ft}$, and $\angle F A B=45^{\circ}$.

$$
\begin{aligned}
& \tan \angle E A B=\frac{78}{54} \\
& \tan \angle C A B=\frac{72}{54} \\
& \tan \angle D A B=\frac{60}{54} \\
& \angle E A B=\tan ^{-1} \frac{78}{54} \\
& \angle C A B=\tan ^{-1} \frac{72}{54} \\
& \angle D A B=\tan ^{-1} \frac{60}{54} \\
& \angle E A B=55.3^{\circ} \\
& \angle C A B=53.1^{\circ} \\
& \angle D A B=48.0^{\circ} \\
& \angle E A C=\angle E A B-\angle C A B \quad \text { and } \quad \angle D A F=\angle D A B-\angle F A B \\
& =55.3^{\circ}-53.1^{\circ}=2.2^{\circ} \\
& =48.0^{\circ}-45^{\circ}=3.0^{\circ}
\end{aligned}
$$

Therefore, the sum of the angles is 5.2°.
63.

$$
\begin{aligned}
\cos 120^{\circ} & =\frac{x}{125}=\frac{139-h}{125} \\
125 \cos 120^{\circ} & =139-h \\
h & =139-125 \cos 120^{\circ} \\
& =201.5 \\
& =200 \mathrm{ft}
\end{aligned}
$$

Solve for h

Round to 2 significant digits
65. $r=98.5$
c. $\quad r+12=98.5+12=110.5$

$$
h=110.5-x
$$

$$
\cos 45.0^{\circ}=\frac{x}{98.5}
$$

$$
x=98.5 \cos 45.0^{\circ}
$$

$$
=69.7
$$

$$
h=110.5-69.7
$$

$$
=40.8 \mathrm{ft}
$$

67. The radius of the London Eye is $\frac{135}{2}=67.5$.

$$
\begin{aligned}
\cos \theta & =\frac{67.5-44.5}{67.5} \\
& =\frac{23}{67.5} \\
\theta & =\cos ^{-1}(0.6592) \\
\theta & =70.1^{\circ}
\end{aligned}
$$

71. $\sec \theta=2$

$$
\begin{aligned}
\cos \theta & =\frac{1}{\sec \theta} & & \text { Reciprocal identity } \\
& =\frac{1}{2} & & \text { Substitute known value }
\end{aligned}
$$

$\cos ^{2} \theta=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \quad$ Square both sides

$$
\begin{aligned}
& \text { a. } \quad h=12+98.5+x \\
& \cos 60.0^{\circ}=\frac{x}{98.5} \\
& x=98.5 \cos 60.0^{\circ} \\
& =49.25 \\
& h=12+98.5+49.25 \\
& =159.8 \approx 160 \mathrm{ft} \\
& \text { b. } \quad h=12+98.5+x \\
& \cos 30.0^{\circ}=\frac{x}{98.5} \\
& x=98.5 \cos 30.0^{\circ} \\
& =85.3 \\
& h=12+98.5+85.3 \\
& =195.8 \approx 196 \mathrm{ft}
\end{aligned}
$$

73. $\cos \theta=-\sqrt{1-\sin ^{2} \theta}$

Pythagorean identity, θ in QIII

$$
\begin{aligned}
& =-\sqrt{1-\left(-\frac{2}{3}\right)^{2}}=-\sqrt{1-\frac{4}{9}} \\
& =-\sqrt{\frac{5}{9}}=-\frac{\sqrt{5}}{3}
\end{aligned}
$$

75. $\cos \theta=-\sqrt{1-\sin ^{2} \theta}$

Pythagorean identity, θ in QII

$$
=-\sqrt{1-\left(\frac{\sqrt{3}}{2}\right)^{2}}
$$

Substitute known value

$$
=-\sqrt{1-\frac{3}{4}}
$$

Simplify

$$
=-\sqrt{\frac{1}{4}}=-\frac{1}{2}
$$

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \text { Ratio identity } \quad \csc \theta=\frac{1}{\sin \theta}
$$

Reciprocal identity

$$
=\frac{\sqrt{3} / 2}{-1 / 2} \quad \text { Substitute known values } \quad=\frac{1}{\sqrt{3} / 2}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}
$$

$$
=-\sqrt{3} \quad \text { Simplify }
$$

$$
\sec \theta=\frac{1}{\cos \theta} \quad \text { Reciprocal identity } \quad \cot \theta=\frac{1}{\tan \theta} \quad \text { Reciprocal identity }
$$

$$
=\frac{1}{-1 / 2}=-2
$$

$$
=\frac{1}{-\sqrt{3}}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}
$$

77. $\cos \theta=\frac{1}{\sec \theta}$

Reciprocal identity

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \text { Ratio identity }
$$

$$
=-\frac{1}{2}
$$

Substitute known values

$$
=\frac{-\sqrt{3} / 2}{-1 / 2}
$$

Substitute values
$\sin \theta=-\sqrt{1-\cos ^{2} \theta} \quad$ Pythagorean identity, θ in QIII $\quad=\sqrt{3}$

$$
\begin{array}{lrl}
=-\sqrt{1-\left(-\frac{1}{2}\right)^{2}} & \text { Substitute value for } \cos \theta & \cot \theta
\end{array}=\frac{1}{\tan \theta} \quad \text { Reciprocal identity }
$$

81. $\tan B=\frac{35}{58}$

$$
B=31^{\circ}
$$

The answer is b.

2.4 Applications

EVEN SOLUTIONS

2. If an observer positioned at the vertex of an angle views an object in the direction of the non-horizontal side of the angle, then this side is called the line of sight of the observer.
3. The bearing of a line is always measured as an angle from the north or south rotating toward the east or west.
4. Sketching a figure:

5. Sketching a figure:

6. Sketching a figure:

7. Sketching a figure:

8. Call x the length of each side. Note the figure:

Therefore:

$$
\begin{aligned}
\sin 60^{\circ} & =\frac{12.3}{x} \\
x \sin 60^{\circ} & =12.3 \\
x & =\frac{12.3}{\sin 60^{\circ}} \approx 14.2
\end{aligned}
$$

The length of each side is 14.2 in .
16. Call w the length of the shorter side (width), and s, t the required angles. Note the figure:

Find w using the Pythagorean Theorem:

$$
\begin{aligned}
278^{2}+w^{2} & =348^{2} \\
w^{2} & =348^{2}-278^{2}=43820 \\
w & \approx 209
\end{aligned}
$$

Now find angles s and t :

$$
\begin{aligned}
\cos s & =\frac{278}{348} \\
s & =\cos ^{-1}\left(\frac{278}{348}\right) \approx 37.0^{\circ} \\
t & =90^{\circ}-37.0^{\circ}=53.0^{\circ}
\end{aligned}
$$

The shorter side is 209 mm , and the two angles are 37.0° and 53.0°.
18. Let h represent the height of the hill. Draw the figure:

Therefore:

$$
\begin{aligned}
\sin 6.5^{\circ} & =\frac{h}{2.5} \\
h & =2.5 \sin 6.5^{\circ} \approx 0.28
\end{aligned}
$$

The hill is approximately 0.28 mi high, which is approximately 1,480 feet.
20. Let s represent the angle between the ladder and the wall. Draw the figure:

Therefore:

$$
\begin{aligned}
\tan s & =\frac{4.5}{8.5} \\
s & =\tan ^{-1}\left(\frac{4.5}{8.5}\right) \approx 28^{\circ}
\end{aligned}
$$

The angle between the ladder and the wall is approximately 28°.
22. Let h represent the height of the building. Draw the figure:

Therefore:

$$
\begin{aligned}
\tan 73.4^{\circ} & =\frac{h}{37.5} \\
h & =37.5 \tan 73.4^{\circ} \approx 126
\end{aligned}
$$

The height of the building is approximately 126 feet.
24. Draw the figure with the associated labels:

The sum $x+y$ represents the width of the sand pile. Using the two triangles:

$$
\begin{aligned}
\tan 29^{\circ} & =\frac{15}{x} \\
x \tan 29^{\circ} & =15 \\
x & =\frac{15}{\tan 29^{\circ}} \approx 27.1
\end{aligned}
$$

$$
\tan 17^{\circ}=\frac{15}{y}
$$

$$
y \tan 17^{\circ}=15
$$

$$
y=\frac{15}{\tan 17^{\circ}} \approx 49.1
$$

The width of the sand pile is therefore $27.1+49.1 \approx 76$ feet.
26. a. First note that $\frac{5}{8} \mathrm{in} .=\frac{5}{8} \cdot 1600=1000 \mathrm{ft}$, which is the horizontal distance between Stacey and Travis.
b. There are 8 contour intervals between Stacey and Travis, which corresponds to a vertical distance of $8 \cdot 40=320 \mathrm{ft}$.
c. Let s represent the elevation angle. Construct the triangle:

Therefore:

$$
\begin{aligned}
\tan s & =\frac{320}{1000}=0.32 \\
s & =\tan ^{-1}(0.32) \approx 17.7^{\circ}
\end{aligned}
$$

The elevation angle from Travis to Stacey is approximately 17.7°.
28. Construct the figure:

First consider the triangle:
Now consider the triangle:

Therefore:

$$
\begin{aligned}
\tan 63.2^{\circ} & =\frac{60.0}{x} \\
x \tan 63.2^{\circ} & =60.0 \\
x & =\frac{60.0}{\tan 63.2^{\circ}} \approx 30.3 \mathrm{ft}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\tan 34.5^{\circ} & =\frac{60-h}{30.3} \\
60-h & =30.3 \tan 34.5^{\circ} \\
h & =60-30.3 \tan 34.5^{\circ} \approx 39.2 \mathrm{ft}
\end{aligned}
$$

The building next door is approximately 39.2 feet tall.
30. Construct the figure:

To find his distance from the starting point, use the Pythagorean Theorem:

$$
\begin{aligned}
d^{2} & =3.5^{2}+2.3^{2}=17.54 \\
d & =\sqrt{17.54} \approx 4.2 \mathrm{mi}
\end{aligned}
$$

Now find angle s:

$$
\begin{aligned}
\tan s & =\frac{3.5}{2.3} \\
s & =\tan ^{-1}\left(\frac{3.5}{2.3}\right) \approx 57^{\circ}
\end{aligned}
$$

His bearing is $\mathrm{S} 88^{\circ} \mathrm{W}$.
32. Construct the figure:

Therefore:

$$
\begin{aligned}
\tan 18.2^{\circ} & =\frac{d}{21.0} \\
d & =21.0 \tan 18.2^{\circ} \approx 6.90
\end{aligned}
$$

The distance from the tree to the rock is 6.90 yards.
34. Construct the figure:

Therefore:

$$
\begin{array}{rlrl}
\sin 63^{\circ} 50^{\prime} & =\frac{e}{111} & \cos 63^{\circ} 50^{\prime} & =\frac{s}{111} \\
e & =111 \sin 63^{\circ} 50^{\prime} \approx 99.6 \mathrm{mi} & s & =111 \cos 63^{\circ} 50^{\prime} \approx 48.9 \mathrm{mi}
\end{array}
$$

The boat travels 48.9 mi south and 99.6 mi east.
36. Draw the figure:

From the smaller triangle:

$$
\begin{aligned}
\tan 65^{\circ} & =\frac{h}{x} \\
x \tan 65^{\circ} & =h \\
x & =\frac{h}{\tan 65^{\circ}}
\end{aligned}
$$

From the larger triangle:

$$
\begin{aligned}
\tan 54^{\circ} & =\frac{h}{25+x} \\
(25+x) \tan 54^{\circ} & =h \\
25+x & =\frac{h}{\tan 54^{\circ}} \\
x & =\frac{h}{\tan 54^{\circ}}-25
\end{aligned}
$$

Setting these two expressions equal:

$$
\begin{aligned}
\frac{h}{\tan 65^{\circ}} & =\frac{h}{\tan 54^{\circ}}-25 \\
h \cot 65^{\circ} & =h \cot 54^{\circ}-25 \\
h \cot 65^{\circ}-h \cot 54^{\circ} & =-25 \\
h\left(\cot 65^{\circ}-\cot 54^{\circ}\right) & =-25 \\
h & =\frac{25}{\cot 54^{\circ}-\cot 65^{\circ}} \approx 96
\end{aligned}
$$

The height of the obelisk is approximately 96 feet.
38. First find the length $C B$:

$$
\begin{aligned}
\tan 12.3^{\circ} & =\frac{426}{C B} \\
C B \tan 12.3^{\circ} & =426 \\
C B & =\frac{426}{\tan 12.3^{\circ}} \approx 1,954 \mathrm{ft}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\sin \angle B C A & =\frac{A B}{C B} \\
\sin 57.5^{\circ} & =\frac{A B}{1954} \\
A B & =1954 \sin 57.5^{\circ} \approx 1,650 \mathrm{ft}
\end{aligned}
$$

A rescue boat at A will have to travel approximately 1,650 feet to reach any survivors at point B.
40. Construct a figure:

First note that each person is $\frac{35}{\sqrt{2}} \mathrm{ft} \approx 24.7 \mathrm{ft}$ from the base of the tree. Let h represent the height of the tree. Now construct the triangle:

Therefore:

$$
\begin{aligned}
\tan 58^{\circ} & =\frac{h}{24.7} \\
h & =24.7 \tan 58^{\circ} \approx 40 \mathrm{ft}
\end{aligned}
$$

The tree is approximately 27 feet tall.
42. Construct the figure (not drawn to scale):

Using the Pythagorean Theorem:

$$
\begin{aligned}
x^{2}+3960^{2} & =3964.55^{2} \\
x^{2}+15,681,600 & =15,717,656.7 \\
x^{2} & =36,056.7 \\
x & \approx 190
\end{aligned}
$$

The plane is 190 miles from the horizon. Now find angle A :

$$
\begin{aligned}
\sin A & =\frac{3960}{3964.55} \\
A & =\sin ^{-1}\left(\frac{3960}{3964.55}\right) \approx 87.3^{\circ}
\end{aligned}
$$

44. Construct the figure:

Consider the two triangles:

Therefore:

$$
\begin{aligned}
\tan 75^{\circ} & =\frac{y}{x} \\
y & =x \tan 75^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\tan 65^{\circ} & =\frac{y}{2.5-x} \\
y & =(2.5-x) \tan 65^{\circ}
\end{aligned}
$$

Setting these two expressions equal:

$$
\begin{aligned}
(2.5-x) \tan 65^{\circ} & =x \tan 75^{\circ} \\
2.5 \tan 65^{\circ}-x \tan 65^{\circ} & =x \tan 75^{\circ} \\
2.5 \tan 65^{\circ} & =x \tan 75^{\circ}+x \tan 65^{\circ} \\
2.5 \tan 65^{\circ} & =x\left(\tan 75^{\circ}+\tan 65^{\circ}\right) \\
x & =\frac{2.5 \tan 65^{\circ}}{\tan 75^{\circ}+\tan 65^{\circ}} \approx 0.91
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\cos 65^{\circ} & =\frac{2.5-x}{d}=\frac{2.5-0.91}{d}=\frac{1.59}{d} \\
d \cos 65^{\circ} & =1.59 \\
d & =\frac{1.59}{\cos 65^{\circ}} \approx 3.8 \mathrm{mi}
\end{aligned}
$$

Tim is approximately 3.8 miles from the missile when it is launched.
46. Note that $\sin \theta_{1}=\frac{1}{\sqrt{2}}, \sin \theta_{2}=\frac{1}{\sqrt{3}}, \sin \theta_{3}=\frac{1}{\sqrt{4}}, \ldots$, thus $\sin \theta_{n}=\frac{1}{\sqrt{n+1}}$.
48. a. Let x represent the height that is illuminated on the floor. Then:

$$
\begin{aligned}
\tan 84^{\circ} & =\frac{4}{x} \\
x & =\frac{4}{\tan 84^{\circ}} \approx 0.42
\end{aligned}
$$

The illuminated area is then: $(0.42)(6.5) \approx 2.7 \mathrm{ft}^{2}$.
b. Following the procedure from part a:

$$
\begin{aligned}
\tan 37^{\circ} & =\frac{4}{x} \\
x & =\frac{4}{\tan 37^{\circ}} \approx 5.31
\end{aligned}
$$

The illuminated area is then: $(5.31)(6.5) \approx 34.5 \mathrm{ft}^{2}$. The area is much larger on the winter day.
50. Simplifying: $\frac{1}{\sin \theta}-\sin \theta=\frac{1}{\sin \theta}-\sin \theta \cdot \frac{\sin \theta}{\sin \theta}=\frac{1-\sin ^{2} \theta}{\sin \theta}=\frac{\cos ^{2} \theta}{\sin \theta}$
52. Working from the left side: $\cos \theta \csc \theta \tan \theta=\cos \theta \cdot \frac{1}{\sin \theta} \cdot \frac{\sin \theta}{\cos \theta}=\frac{\sin \theta \cos \theta}{\sin \theta \cos \theta}=1$
54. Working from the left side: $(1-\cos \theta)(1+\cos \theta)=1-\cos \theta+\cos \theta-\cos ^{2} \theta=1-\cos ^{2} \theta=\sin ^{2} \theta$
56. Working from the left side: $1-\frac{\cos \theta}{\sec \theta}=1-\frac{\cos \theta}{1 / \cos \theta}=1-\cos ^{2} \theta=\sin ^{2} \theta$
58. Let h represent the height of the flagpole. Then:

$$
\begin{aligned}
\tan 74.3^{\circ} & =\frac{h}{22.5} \\
h & =22.5 \tan 74.3^{\circ} \approx 80.0
\end{aligned}
$$

The flagpole is 80.0 feet tall. The correct answer is d.
60. Construct a figure:

First note that each person is $\frac{35}{\sqrt{2}} \mathrm{ft} \approx 24.7 \mathrm{ft}$ from the base of the tree. Let h represent the height of the tree. Now construct the triangle:

Therefore:

$$
\begin{aligned}
\tan 65^{\circ} & =\frac{h}{24.7} \\
h & =24.7 \tan 65^{\circ} \approx 53 \mathrm{ft}
\end{aligned}
$$

The tree is approximately 53 feet tall. The correct answer is a.

ODD SOLUTIONS

1. elevation, depression
2. north-south

For problems 5 through 11, see diagrams in textbook answer section.
13. To find the height, h, we can use the Pythagorean Theorem:

$$
\begin{aligned}
h^{2}+(16)^{2} & =(42)^{2} \\
h^{2}+256 & =1,764 \\
h^{2} & =1,508 \\
h & = \pm \sqrt{1,508}=39 \mathrm{~cm}
\end{aligned}
$$

To find angle θ, we can use the cosine ratio:

$$
\begin{aligned}
\cos \theta & =\frac{16}{42} \\
\theta & =\cos ^{-1}\left(\frac{16}{42}\right)=68^{\circ}
\end{aligned}
$$

The height is 39 cm and the two equal angles are 68°.
15. Consider the right triangle with sides of 25.3 cm and 5.2 cm (one-half of the diameter):

$$
\begin{aligned}
\tan \theta & =\frac{25.3}{5.2} \\
& =4.8654 \\
\theta & =\tan ^{-1}(4.8654) \\
& =78.4^{\circ}
\end{aligned}
$$

The angle the side makes with the base is 78.4°.
17. To find the length of the escalator, x, we use the sine ratio:

$$
\begin{aligned}
& \sin 33^{\circ}=\frac{21}{x} \\
& x=\frac{21}{\sin 33^{\circ}} \\
& =\frac{21}{0.5446}=39 \mathrm{ft}
\end{aligned}
$$

The length of the escalator is 39 feet.
19. $\sin \theta=\frac{43.2}{72.5}$

$$
\begin{aligned}
& =0.5959 \\
\theta & =\sin ^{-1}(0.5959) \\
& =36.6^{\circ}
\end{aligned}
$$

The angle the rope makes with the pole is 36.6°

21. We use the tangent ratio to find the angle of elevation to the sun, θ :

$$
\begin{aligned}
\tan \theta & =\frac{73.0}{51.0} \\
& =1.4313 \\
\theta & =\tan ^{-1}(1.4313) \\
& =55.1^{\circ}
\end{aligned}
$$

The angle of elevation to the sun is 55.1°.

23. $\quad \tan 11^{\circ}=\frac{x}{150}$

$$
\begin{aligned}
& x=150 \tan 11^{\circ}=29 \mathrm{~cm} \\
\tan 12^{\circ}= & \frac{y}{150} \\
y= & 150 \tan 12^{\circ} \\
= & 32 \mathrm{~cm}
\end{aligned}
$$

The vertical dimension of the mirror is $x+y$ or 61 cm .
25. a. horizontal distance $=0.50(1,600)=800 \mathrm{ft}$
b. vertical distance $=$ (number of contour intervals)(40)

$$
\begin{aligned}
& =5(40) \\
& =200 \mathrm{ft}
\end{aligned}
$$

c. $\tan \theta=\frac{\text { vertical distance }}{\text { horizontal distance }}$

$$
\begin{aligned}
& =\frac{200}{800} \\
& =0.25 \\
\theta & =\tan ^{-1}(0.25) \\
& =14^{\circ}
\end{aligned}
$$

27. $\tan 59^{\circ}=\frac{9.8}{y}$

$$
y=\frac{9.8}{\tan 59^{\circ}}=\frac{9.8}{1.6643}=5.9
$$

$$
\tan 47^{\circ}=\frac{9.8}{\tan 59^{\circ}}
$$

$$
\begin{aligned}
x & =y \tan 47^{\circ} \\
& =5.9(1.0724)=6.3 \mathrm{ft}
\end{aligned}
$$

The vertical dimension of the door is 6.3 feet.
29. We use the Pythagorean Theorem to find the distance x :

$$
\begin{aligned}
x^{2} & =25^{2}+18^{2} \\
& =625+324 \\
& =949
\end{aligned}
$$

$x=31 \mathrm{mi}$
We use the tangent relationship to find angle θ :

$$
\begin{aligned}
\tan \theta & =\frac{18}{25} \\
& =0.72 \\
\theta & =\tan ^{-1}(0.72) \\
& =36^{\circ}
\end{aligned}
$$

To find the bearing we add $42^{\circ}+36^{\circ}=78^{\circ}$. The boat is 31 miles from the harbor entrance and its bearing is $\mathrm{N} 78^{\circ} \mathrm{E}$.
31. $\tan 65^{\circ}=\frac{x}{18}$

$$
\begin{aligned}
x & =18 \tan 65^{\circ} \\
& =18(2.1445) \\
& =39 \mathrm{mi}
\end{aligned}
$$

The distance from Lompoc to Buellton is 39 miles.

33. We will call the west distance, x and the north distance, y :

$$
\begin{array}{rlrl}
\sin 37^{\circ} 10^{\prime} & =\frac{x}{79.5} & \cos 37^{\circ} 10^{\prime}=\frac{y}{79.5} \\
x & =79.5 \sin 37^{\circ} 10^{\prime} & & y=79.5 \cos 37^{\circ} 10^{\prime} \\
& =48.0 \mathrm{mi} & & =63.4 \mathrm{mi}
\end{array}
$$

The boat has traveled 48.0 miles west and 63.4 miles north.
35. In $\triangle A B C, \tan 42.17^{\circ}=\frac{h}{x+33}$

$$
\begin{aligned}
h & =(x+33) \tan 42.17^{\circ} \\
\text { In } \triangle B C D, \tan 47.5^{\circ} & =\frac{h}{x} \\
h & =x \tan 47.5^{\circ}
\end{aligned}
$$

Therefore, $x \tan 47.5^{\circ}=(x+33) \tan 42.17^{\circ}$

$$
\begin{aligned}
x \tan 47.5^{\circ}-x \tan 42.17^{\circ} & =33 \tan 42.17^{\circ} \\
x\left(\tan 47.5^{\circ}-\tan 42.17^{\circ}\right) & =33 \tan 42.17^{\circ} \\
x & =\frac{33 \tan 42.17^{\circ}}{\tan 47.5^{\circ}-\tan 42.17^{\circ}}=161 \mathrm{ft}
\end{aligned}
$$

The person at point A is 161 feet from the base of the antenna.
37. $\tan 86.6^{\circ}=\frac{x}{24.8}$

$$
\begin{aligned}
x & =24.8 \tan 86.6^{\circ} \\
& =24.8(16.8319) \\
& =417.431 \\
\tan 10.7^{\circ} & =\frac{h}{x} \\
h & =x \tan 10.7^{\circ} \\
& =(417.431)(0.18895) \\
& =78.9 \mathrm{ft}
\end{aligned}
$$

The tree is 78.9 feet high.
39. First, we will find each person's distance from the pole, x, using the Pythagorean Theorem:

$$
\begin{aligned}
x^{2}+x^{2} & =25^{2} \\
2 x^{2} & =625 \\
x^{2} & =312.5 \\
x & =17.678 \mathrm{ft}
\end{aligned}
$$

Next, we will find the height of the pole, h, using the tangent relationship:

$$
\begin{aligned}
\tan 56^{\circ} & =\frac{h}{17.678} \\
h & =17.678 \tan 56^{\circ} \\
& =26 \mathrm{ft}
\end{aligned}
$$

The height of the pole is 26 feet.
41.

$$
\begin{aligned}
\sin 76.6^{\circ} & =\frac{r}{r+112} \\
r & =(r+112) \sin 76.6^{\circ} \\
r & =r \sin 76.6^{\circ}+112 \sin 76.6^{\circ} \\
r-r \sin 76.6^{\circ} & =112 \sin 76.6^{\circ} \\
r\left(1-\sin 76.6^{\circ}\right) & =112 \sin 76.6^{\circ} \\
r & =\frac{112 \sin 76.6^{\circ}}{1-\sin 76.6^{\circ}} \\
& =\frac{112(0.9728)}{1-0.9728} \\
& =\frac{108.9509}{0.02722} \\
& =4,000 \mathrm{mi}
\end{aligned}
$$

The radius of the earth is 4,000 miles.
43. We want to find x and y in terms of h

$$
\begin{array}{rlrl}
\tan 53^{\circ} & =\frac{h}{x} & \tan 31^{\circ}=\frac{h}{y} \\
x \tan 53^{\circ} & =h & y \tan 31^{\circ}=h \\
x & =\frac{h}{\tan 53^{\circ}} & y=\frac{h}{\tan 31^{\circ}}
\end{array}
$$

We know that $x+y=15$. Therefore,

$$
\begin{aligned}
\frac{h}{\tan 53^{\circ}}+\frac{h}{\tan 31^{\circ}} & =15 \\
h\left(\frac{1}{\tan 53^{\circ}}+\frac{1}{\tan 31^{\circ}}\right) & =15 \\
h(0.7536+1.6643) & =15 \\
2.4179 h & =15 \\
h & =\frac{15}{2.4179}=6.2 \mathrm{mi}
\end{aligned}
$$

The ship is 6.2 miles from the shore.
45. $\quad \tan \theta_{1}=\frac{1}{1}$

$$
\tan \theta_{2}=\frac{1}{\sqrt{2}} \quad \tan \theta_{3}=\frac{1}{\sqrt{3}}
$$

$$
=1 \quad=0.7071 \quad=0.5774
$$

$$
\theta_{1}=\tan ^{-1}(1)
$$

$$
\theta_{2}=\tan ^{-1}(0.7071)
$$

$$
\theta_{3}=\tan ^{-1}(0.5774)
$$

$$
\theta_{1}=45.00^{\circ}
$$

$$
\theta_{2}=35.26^{\circ}
$$

$$
\theta_{3}=30.00^{\circ}
$$

49. $(\sin \theta-\cos \theta)^{2}=(\sin \theta-\cos \theta)(\sin \theta-\cos \theta)$

$$
\begin{aligned}
& =\sin ^{2} \theta-2 \sin \theta \cos \theta+\cos ^{2} \theta \\
& =\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta \\
& =1-2 \sin \theta \cos \theta
\end{aligned}
$$

51. $\sin \theta \cot \theta=\sin \theta \cdot \frac{\cos \theta}{\sin \theta} \quad$ Ratio identity

$$
\begin{array}{ll}
=\frac{\sin \theta \cos \theta}{\sin \theta} & \text { Multiplication of fractions } \\
=\cos \theta & \text { Division of common factor }
\end{array}
$$

53. $\frac{\sec \theta}{\tan \theta}=\frac{\frac{1}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}}$

$$
=\frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}
$$

$$
\begin{array}{ll}
=\frac{1}{\sin \theta} & \text { Multiplication of fra } \\
=\csc \theta & \\
-\cos \theta=\frac{1}{\cos \theta}-\cos \theta & \text { Reciprocal identity }
\end{array}
$$

$$
\left.\begin{array}{rl}
& =\frac{1}{\cos \theta}-\cos \theta \cdot \frac{\cos \theta}{\cos \theta}
\end{array} \text { L.C.D. is } \cos \theta\right] \text { = } \begin{array}{ll}
\frac{1-\cos ^{2} \theta}{\cos \theta} & \text { Subtraction of fractions } \\
= & \frac{\sin ^{2} \theta}{\cos \theta}
\end{array} \text { Pythagorean identity }
$$

2.5 Vectors: A Geometric Approach

EVEN SOLUTIONS

2. Two vectors are equivalent if they have the same magnitude and direction.
3. A vector is in standard position if the tail of the vector is placed at the origin of a rectangular coordinate system.
4. If \mathbf{V} makes and angle θ with the positive x-axis when in standard position, then $\left|\mathbf{V}_{x}\right|=|\mathbf{V}| \cos \theta$ and $\left|\mathbf{V}_{y}\right|=|\mathbf{V}| \sin \theta$.
5. If a constant force \mathbf{F} is applied to an object and moves the object in a straight line a distance d at an angle θ with the force, then the work performed by the force is found by multiplying $|\mathbf{F}| \cos \theta$ and d.
6. Sketching the vector:

7. Sketching the vector:

8. Sketching the vector:

9. Sketching the vector:

10. Construct the figure for their position after 2 hours (multiply their rates by 2):

Using the Pythagorean Theorem: $d=\sqrt{550^{2}+510^{2}} \approx 750$ miles
To find the bearing from P_{1} to P_{2}, first find the vertical (north-south) change in their positions. This is given by: $550 \sin 45^{\circ}-510 \sin 45^{\circ} \approx 28.28$ miles
Construct the triangle:

Therefore:

$$
\begin{aligned}
\cos s & =\frac{28.28}{750} \\
s & =\cos ^{-1}\left(\frac{28.28}{750}\right) \approx 87.8^{\circ}
\end{aligned}
$$

The bearing from P_{1} to P_{2} is $\mathrm{S} 87.8^{\circ} \mathrm{W}$.
20. Computing the magnitudes of \mathbf{V}_{x} and \mathbf{V}_{y} :

$$
\begin{aligned}
& \left|\mathbf{V}_{x}\right|=17.6 \cos 72.6^{\circ} \approx 5.26 \\
& \left|\mathbf{V}_{y}\right|=17.6 \sin 72.6^{\circ} \approx 16.8
\end{aligned}
$$

22. Computing the magnitudes of \mathbf{V}_{x} and \mathbf{V}_{y} :

$$
\begin{aligned}
& \left|\mathbf{V}_{x}\right|=383 \cos 12^{\circ} 20^{\prime} \approx 374 \\
& \left|\mathbf{V}_{y}\right|=383 \sin 12^{\circ} 20^{\prime} \approx 81.8
\end{aligned}
$$

24. Computing the magnitudes of \mathbf{V}_{x} and \mathbf{V}_{y} :

$$
\begin{aligned}
& \left|\mathbf{V}_{x}\right|=84 \cos 90^{\circ}=0 \\
& \left|\mathbf{V}_{y}\right|=84 \sin 90^{\circ}=84
\end{aligned}
$$

26. Using the Pythagorean Theorem: $|\mathbf{V}|=\sqrt{54.2^{2}+14.5^{2}} \approx 56.1$
27. Using the Pythagorean Theorem: $|\mathbf{V}|=\sqrt{2.2^{2}+8.8^{2}} \approx 9.1$
28. Construct the triangle:

Therefore:

$$
\begin{aligned}
\sin 1.9^{\circ} & =\frac{x}{135} \\
x & =135 \sin 1.9^{\circ} \approx 4.48 \mathrm{miles}
\end{aligned}
$$

The plane will be approximately 4.48 miles off course.
32. Computing the magnitudes of \mathbf{V}_{x} and \mathbf{V}_{y} :

$$
\begin{aligned}
& \left|\mathbf{V}_{x}\right|=1,800 \cos 55^{\circ}=1,032 \frac{\mathrm{ft}}{\mathrm{sec}} \approx 1,000 \frac{\mathrm{ft}}{\mathrm{sec}} \\
& \left|\mathbf{V}_{y}\right|=1,800 \sin 55^{\circ} \approx 1,474 \frac{\mathrm{ft}}{\sec } \approx 1,500 \frac{\mathrm{ft}}{\mathrm{sec}}
\end{aligned}
$$

34. The horizontal distance traveled is $1.5 \square 1,032=1,548$ feet $\approx 1,500$ feet.
35. Draw the figure corresponding to $t=3$ hours:

The west and south distances are given by:
west: $960 \cos 55^{\circ} \approx 550 \mathrm{~km}$ south: $960 \sin 55^{\circ} \approx 790 \mathrm{~km}$
38. Using the Pythagorean Theorem: $|\mathbf{V}|=\sqrt{16.5^{2}+24.3^{2}} \approx 29.4 \mathrm{ft} / \mathrm{sec}$

The elevation angle is given by:

$$
\begin{aligned}
\tan \theta & =\frac{24.3}{16.5} \\
\theta & =\tan ^{-1}\left(\frac{24.3}{16.5}\right) \approx 55.8^{\circ}
\end{aligned}
$$

40. Construct the figure:

The total distance south and east is given by: east: $68 \cos 78^{\circ}+110 \cos 30^{\circ} \approx 110$ miles south: $68 \sin 78^{\circ}+110 \sin 30^{\circ} \approx 120$ miles
42. The corresponding force diagram would be:

44. The corresponding force diagram would be:

Therefore:

$$
\begin{aligned}
\sin 12.5^{\circ} & =\frac{|\mathbf{F}|}{25.0} \\
|\mathbf{F}| & =25.0 \sin 12.5^{\circ} \approx 5.41 \mathrm{lb}
\end{aligned}
$$

$$
\begin{aligned}
\cos 12.5^{\circ} & =\frac{|\mathbf{N}|}{25.0} \\
|\mathbf{N}| & =25.0 \cos 12.5^{\circ} \approx 24.4 \mathrm{lb}
\end{aligned}
$$

46. The corresponding force diagram would be:

Therefore:

$$
\begin{array}{rlrl}
\sin 50^{\circ} & =\frac{2,200}{|\mathbf{T}|} & \tan 50^{\circ} & =\frac{2,200}{|\mathbf{H}|} \\
|\mathbf{T}| \sin 50^{\circ} & =2,200 & |\mathbf{H}| \tan 50^{\circ} & =2,200 \\
|\mathbf{T}| & =\frac{2,200}{\sin 50^{\circ}} \approx 2,900 \mathrm{lb} & |\mathbf{H}|=\frac{2,200}{\tan 50^{\circ}} \approx 1,800 \mathrm{lb}
\end{array}
$$

48. The horizontal portion of the force is given by: $\left|\mathbf{F}_{x}\right|=|\mathbf{F}| \cos 35^{\circ}=15 \cos 35^{\circ} \mathrm{lb}$

The work is then given by: Work $=\left(15 \cos 35^{\circ}\right)(52) \approx 640 \mathrm{ft}-\mathrm{lb}$
50. The horizontal portion of the force is given by: $\left|\mathbf{F}_{X}\right|=|\mathbf{F}| \cos 15^{\circ}=85 \cos 15^{\circ} \mathrm{lb}$

The work is then given by: Work $=\left(85 \cos 15^{\circ}\right)(110) \approx 9,000 \mathrm{ft}-\mathrm{lb}$
52. Drawing the angle in standard position:

Since $r=1, \sin \left(-270^{\circ}\right)=1, \cos \left(-270^{\circ}\right)=0$, and $\tan \left(-270^{\circ}\right)$ is undefined.
54. Choose $(-1,1)$ as a point on the terminal side of θ. Then $r=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}$. Therefore:

$$
\sin \theta=\frac{y}{r}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \quad \cos \theta=\frac{x}{r}=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}
$$

56. Since $\cos \theta=\frac{x}{r}=-\frac{3}{5}=-\frac{6}{10}$, choose $x=-6$ and $r=10$. Now find y :

$$
\begin{aligned}
(-6)^{2}+y^{2} & =10^{2} \\
36+y^{2} & =100 \\
y^{2} & =64 \\
y & = \pm 8
\end{aligned}
$$

58. Using the Pythagorean Theorem: $|\mathbf{V}|=\sqrt{9.6^{2}+2.3^{2}} \approx 9.9$

Finding the angle:

$$
\begin{aligned}
\tan \theta & =\frac{2.3}{9.6} \\
\theta & =\tan ^{-1}\left(\frac{2.3}{9.6}\right) \approx 13^{\circ}
\end{aligned}
$$

The correct answer is c.
60. The horizontal portion of the force is given by: $\left|\mathbf{F}_{X}\right|=|\mathbf{F}| \cos 35^{\circ}=28 \cos 35^{\circ} \mathrm{lb}$

The work is then given by: Work $=\left(28 \cos 35^{\circ}\right)(150) \approx 3,400 \mathrm{ft}-\mathrm{lb}$
The correct answer is b.

ODD SOLUTIONS

1. scalar, vector
2. horizontal, component, vertical, component
3. resultant, diagonal
4. zero, static equilibrium

For problems 9 through 15 , see textbook answer section for diagrams.
17. The first hour, the distance traveled is
$(9.50 \mathrm{mph})(1 \mathrm{hr})=9.50$ miles
The next hour and a half, the distance traveled is
$(8.00 \mathrm{mph})(1.5 \mathrm{hr})=12.0 \mathrm{miles}$
We will use the Pythagorean Theorem to find x :

$$
\begin{aligned}
x^{2} & =9.50^{2}+12.0^{2} \\
x^{2} & =234.25 \\
x & =15.3 \mathrm{mi}
\end{aligned}
$$

We will use the tangent ratio to find θ and then add 37.5° :

$$
\begin{aligned}
\tan \theta & =\frac{12.0}{9.50} \\
& =1.2632 \\
\theta & =\tan ^{-1}(1.2632)
\end{aligned}
$$

$$
=51.6^{\circ} \quad 51.6^{\circ}+37.5^{\circ}=89.1^{\circ}
$$

The balloon is 15.3 miles from its starting point. The bearing is $\mathrm{N} 89.1^{\circ} \mathrm{E}$.
19. $\left|V_{x}\right|=|V| \cos \theta$

$$
\left|V_{y}\right|=|V| \sin \theta
$$

$$
\begin{aligned}
& =13.8 \cos 24.2^{\circ} \\
& =12.6
\end{aligned}
$$

$$
=13.8 \sin 24.2^{\circ}
$$

$$
=5.66
$$

21. $\quad\left|V_{x}\right|=|V| \cos \theta$

$$
\left|V_{y}\right|=|V| \sin \theta
$$

$$
=425 \cos 36^{\circ} 10^{\prime}
$$

$$
=425 \sin 36^{\circ} 10^{\prime}
$$

$$
=425 \cos 36.17^{\circ}
$$

$$
=425 \sin 36.17^{\circ}
$$

$$
=425(0.8073)
$$

$$
=343
$$

$$
=425(0.5901)
$$

$$
=251
$$

23. $\left|V_{x}\right|=|V| \cos \theta$
$=64 \cos 0^{\circ}$
$\left|V_{y}\right|=|V| \sin \theta$
$=64 \sin 0^{\circ}$
$=64(1)=64$

$$
=64(0)=0
$$

25. $|V|=\sqrt{\left|V_{x}\right|^{2}+\left|V_{y}\right|^{2}}$
26. $|V|=\sqrt{\left|V_{x}\right|^{2}+\left|V_{y}\right|^{2}}$

$$
=\sqrt{(35.0)^{2}+(26.0)^{2}}
$$

$$
=\sqrt{(4.5)^{2}+(3.8)^{2}}
$$

$$
=\sqrt{1,225+676}
$$

$$
=\sqrt{20.25+14.44}
$$

$$
=\sqrt{1,901}
$$

$$
=\sqrt{34.69}
$$

$$
=43.6
$$

$$
=5.9
$$

29. To find the distance, x, the plane has flown off its course, we can use the sine ratio:

$$
\begin{aligned}
\sin 2.8^{\circ} & =\frac{x}{28} \\
x & =28 \sin 2.8^{\circ} \\
= & 1.37 \text { miles }
\end{aligned}
$$

31. $\quad\left|V_{x}\right|=|V| \cos \theta$

$$
=1,200 \cos 45^{\circ}
$$

$$
=1200(0.7071)
$$

$$
\begin{aligned}
\left|V_{y}\right| & =|V| \sin \theta \\
& =1,200 \sin 45^{\circ} \\
& =1200(0.7071)
\end{aligned}
$$

$=850$ feet per second
33. In 3 seconds, the bullet travels $3(850 \mathrm{ft} / \mathrm{sec})=2,550 \mathrm{ft}$.
35. $\quad\left|V_{x}\right|=130 \cos 48^{\circ} \quad\left|V_{y}\right|=130 \sin 48^{\circ}$
$=87$
$=97$
The ship has traveled 97 km south and 87 km east.
37. We are given that $\left|V_{x}\right|=35.0$ and $\left|V_{y}\right|=15.0$

$$
\begin{aligned}
|V| & =\sqrt{\left|V_{x}\right|^{2}+\left|V_{y}\right|^{2}} & \tan \theta & =\frac{\left|V_{y}\right|}{\left|V_{x}\right|} \\
& =\sqrt{(35.0)^{2}+(15.0)^{2}} & & =\frac{15.0}{35.0} \\
& =\sqrt{1,225+225} & & =0.4285 \\
& =\sqrt{1,450} & & \theta
\end{aligned}
$$

Therefore, the velocity of the arrow is 38.1 feet per second at an elevation of 23.2°.
39. To find the total distance traveled north, we must find the sum of $\left|V_{y}\right|$ and $\left|W_{y}\right|$ and to find the total distance traveled east, we must find the sum of $\left|V_{x}\right|$ and $\left|W_{x}\right|$.

We are given that $|V|$ is 170 mi . at an angle of inclination of $90^{\circ}-18^{\circ}$ or 72° and also that $|W|$ is 120 mi . at an angle of inclination of $90^{\circ}-49^{\circ}$ or 41°

$$
\left.\begin{array}{rlrl}
\left|V_{x}\right| & =|V| \cos \theta_{1} & \left|V_{y}\right| & =|V| \sin \theta_{1} \\
& =170 \cos 72^{\circ} & & =170 \sin 72^{\circ} \\
& =170(0.3090) & & =170(0.9510) \\
& =53 \mathrm{mi} & & =162 \mathrm{mi} \\
\left|W_{x}\right| & =|W| \cos \theta_{2} & & \left|W_{y}\right|
\end{array}\right)|W| \sin \theta_{2} .
$$

The total distance north is 240 miles and the total distance east is 140 miles, rounded to 2 significant digits.
41. $\quad|W|=42.0$

$$
\begin{aligned}
\cos 45.0^{\circ} & =\frac{|W|}{|T|} & \tan 45.0^{\circ} & =\frac{|H|}{|W|} \\
|T| & =\frac{|W|}{\cos 45.0^{\circ}} & |H| & =|W| \tan 45.0^{\circ} \\
& =\frac{42.0}{\cos 45.0^{\circ}} & & =42.0 \tan 45.0^{\circ} \\
& =59.4 \mathrm{lb} . & & =42.0 \mathrm{lb} .
\end{aligned}
$$

43. We are given that $|W|=8.0$

$$
\begin{aligned}
\cos 15^{\circ} & =\frac{|N|}{|W|} & \sin 15^{\circ} & =\frac{|F|}{|W|} \\
|N| & =|W| \cos 15^{\circ} & |F| & =|W| \sin 15^{\circ} \\
& =8.0(0.9659) & & =8.0(0.2588) \\
& =7.7 \text { pounds } & & =2.1 \text { pounds }
\end{aligned}
$$

45. $\quad|W|=42.0$

$$
\sin 52.0^{\circ}=\frac{|F|}{|W|}
$$

$$
\begin{aligned}
|F| & =|W| \sin 52.0^{\circ} \\
& =42.0 \sin 52.0^{\circ} \\
& =33.1 \mathrm{lb}
\end{aligned}
$$

47. $\theta=20^{\circ},|F|=40 \mathrm{lb}$, and $d=75 \mathrm{ft}$

$$
\begin{aligned}
\left|F_{x}\right|= & |F| \cos \theta \\
& =41 \cos 20^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\text { Work } & =\left|F_{x}\right| \cdot d \\
& =\left(41 \cos 20^{\circ}\right)(75) \\
& =2900 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

49. $\theta=30^{\circ},|F|=25 \mathrm{lb}$, and $d=350 \mathrm{ft}$

$$
\begin{aligned}
\left|F_{x}\right| & =|F| \cos \theta \\
& =25 \cos 30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\text { Work } & =\left|F_{x}\right| \cdot d \\
& =\left(25 \cos 30^{\circ}\right)(350) \\
& =7,600 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

51. $(x, y)=(-1,1)$

$$
\begin{aligned}
& x=-1, y=1 \text { and } r=\sqrt{2} \\
& \sin 135^{\circ}=\frac{y}{r}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
& \cos 135^{\circ}=\frac{x}{r}=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2} \\
& \tan 135^{\circ}=\frac{y}{x}=\frac{1}{-1}=-1
\end{aligned}
$$

53. A point on the line $y=2 x$ in quadrant I is $(1,2) . x=1, y=2$, and $r=\sqrt{1^{2}+2^{2}}=\sqrt{5}$

$$
\sin \theta=\frac{y}{r}=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5} \quad \cos \theta=\frac{x}{r}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}
$$

55. $\sin \theta=\frac{y}{r}=\frac{-4}{5}=\frac{-8}{10}$

$$
y=-8 \text { and } r=10
$$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
x^{2}+(-8)^{2} & =10^{2} \\
x^{2}+64 & =100 \\
x^{2} & =36 \\
x & = \pm 6
\end{aligned}
$$

Chapter 2 Test

1. First draw the triangle:

Note that $c=\sqrt{2^{2}+1^{2}}=\sqrt{5}$. Therefore:

$$
\begin{array}{lll}
\sin A=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5} & \cos A=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5} & \tan A=\frac{1}{2} \\
\sin B=\cos A=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5} & \cos B=\sin A=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5} & \tan B=\cot A=\frac{2}{1}=2
\end{array}
$$

2. First draw the triangle:

Note that $a=\sqrt{7^{2}-6^{2}}=\sqrt{13}$. Therefore:

$$
\begin{aligned}
& \sin A=\frac{\sqrt{13}}{7} \\
& \sin B=\cos A=\frac{6}{7}
\end{aligned}
$$

$$
\begin{aligned}
& \cos A=\frac{6}{7} \\
& \cos B=\sin A=\frac{\sqrt{13}}{7}
\end{aligned}
$$

$\tan A=\frac{\sqrt{13}}{6}$
$\tan B=\cot A=\frac{6}{\sqrt{13}}=\frac{6 \sqrt{13}}{13}$
3. First draw the triangle:

Note that $b=\sqrt{5^{2}-3^{2}}=\sqrt{16}=4$. Therefore:

$$
\begin{aligned}
& \sin A=\frac{3}{5} \\
& \sin B=\cos A=\frac{4}{5}
\end{aligned}
$$

$$
\cos A=\frac{4}{5}
$$

$$
\tan A=\frac{3}{4}
$$

$$
\cos B=\sin A=\frac{3}{5}
$$

$$
\tan B=\cot A=\frac{4}{3}
$$

4. Since $y \leq r, \frac{y}{r} \leq 1$. Therefore $\sin \theta=\frac{y}{r} \leq 1$, so it is impossible for $\sin \theta=2$.
5. $\sin 14^{\circ}=\cos \left(90^{\circ}-14^{\circ}\right)=\cos 76^{\circ}$
6. Simplifying: $\sin ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}=\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$
7. Simplifying: $\tan 45^{\circ}+\cot 45^{\circ}=1+1=2$
8. Simplifying: $\sin ^{2} 60^{\circ}-\cos ^{2} 30^{\circ}=\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{4}-\frac{3}{4}=0$
9. Simplifying: $\frac{1}{\csc 30^{\circ}}=\sin 30^{\circ}=\frac{1}{2}$
10. Adding: $48^{\circ} 31^{\prime}+24^{\circ} 52^{\prime}=72^{\circ} 83^{\prime}=73^{\circ} 23^{\prime}$
11. Converting to degrees and minutes: $73.2^{\circ}=73^{\circ}+0.2^{\circ}=73^{\circ}+0.2\left(60^{\prime}\right)=73^{\circ} 12^{\prime}$
12. Converting to decimal degrees: $2^{\circ} 48^{\prime}=2^{\circ}+48^{\prime}=2^{\circ}+\left(\frac{48}{60}\right)^{\circ}=2.8^{\circ}$
13. Calculating the value: $\sin 24^{\circ} 20^{\prime}=\sin \left(24 \frac{1}{3}\right)^{\circ} \approx 0.4120$
14. Calculating the value: $\cos 48.3^{\circ} \approx 0.6652$
15. Calculating the value: $\cot 71^{\circ} 20^{\prime}=\cot \left(71 \frac{1}{3}\right)^{\circ}=\frac{1}{\tan \left(71 \frac{1}{3}\right)^{\circ}} \approx 0.3378$
16. Since $\sin \theta=0.6459, \theta=\sin ^{-1}(0.6459) \approx 40.2^{\circ}$.
17. Since $\sec \theta=1.923, \cos \theta=\frac{1}{1.923}$, so $\theta=\cos ^{-1}\left(\frac{1}{1.923}\right) \approx 58.7^{\circ}$.
18. First sketch the triangle:

Using the Pythagorean Theorem: $c=\sqrt{104^{2}+68^{2}} \approx 124$. Therefore:

$$
\begin{aligned}
\tan A & =\frac{68}{104} \\
A & =\tan ^{-1}\left(\frac{68}{104}\right) \approx 33.2^{\circ} \\
B & =90^{\circ}-33.2^{\circ}=56.8^{\circ}
\end{aligned}
$$

19. First sketch the triangle:

Using the Pythagorean Theorem: $b=\sqrt{48.1^{2}-24.3^{2}} \approx 41.5$. Therefore:

$$
\begin{aligned}
\sin A & =\frac{24.3}{48.1} \\
A & =\sin ^{-1}\left(\frac{24.3}{48.1}\right) \approx 30.3^{\circ} \\
B & =90^{\circ}-30.3^{\circ}=59.7^{\circ}
\end{aligned}
$$

20. First sketch the triangle:

Note that $A=90^{\circ}-24.9^{\circ}=65.1^{\circ}$. Therefore:

$$
\begin{aligned}
\tan 65.1^{\circ} & =\frac{a}{305} \\
a & =305 \tan 65.1^{\circ} \approx 657
\end{aligned}
$$

$$
\begin{aligned}
\cos 65.1^{\circ} & =\frac{305}{c} \\
c \cos 65.1^{\circ} & =305 \\
c & =\frac{305}{\cos 65.1^{\circ}} \approx 724
\end{aligned}
$$

21. First sketch the triangle:

Note that $B=90^{\circ}-35^{\circ} 30^{\prime}=89^{\circ} 60^{\prime}-35^{\circ} 30^{\prime}=54^{\circ} 30^{\prime}$. Also:

$$
\begin{aligned}
\sin 35.5^{\circ} & =\frac{a}{0.462} \\
a & =0.462 \sin 35.5^{\circ} \approx 0.268
\end{aligned}
$$

$$
\begin{aligned}
\cos 35.5^{\circ} & =\frac{b}{0.462} \\
b & =0.462 \cos 35.5^{\circ} \approx 0.376
\end{aligned}
$$

22. First sketch the triangle:

Therefore:

$$
\begin{aligned}
\sin 71^{\circ} & =\frac{52}{x} \\
x \sin 71^{\circ} & =52 \\
x & =\frac{52}{\sin 71^{\circ}} \approx 55 \mathrm{~cm}
\end{aligned}
$$

23. Sketch the figure:

Therefore:

$$
\begin{aligned}
\tan 75.5^{\circ} & =\frac{h}{1.5} \\
h & =1.5 \tan 75.5^{\circ} \approx 5.8
\end{aligned}
$$

The post is approximately 5.8 feet tall.
24. Draw the figure:

Therefore:

$$
\begin{aligned}
\tan 47^{\circ} & =\frac{35}{x} \\
x \tan 47^{\circ} & =35 \\
x & =\frac{35}{\tan 47^{\circ}} \approx 32.64 \text { feet }
\end{aligned}
$$

$$
\begin{aligned}
\tan 43^{\circ} & =\frac{35}{y} \\
y \tan 43^{\circ} & =35 \\
y & =\frac{35}{\tan 43^{\circ}} \approx 37.53 \text { feet }
\end{aligned}
$$

The stakes are $32.6+37.5 \approx 70$ feet apart.
25. Let θ represent the required angle. Then:

$$
\begin{aligned}
\tan \theta & =\frac{31}{11} \\
\theta & =\tan ^{-1}\left(\frac{31}{11}\right) \approx 70^{\circ}
\end{aligned}
$$

26. The magnitudes are given by:

$$
\begin{aligned}
& \left|\mathbf{V}_{x}\right|=850 \cos 52^{\circ} \approx 523 \mathrm{ft} / \mathrm{sec} \approx 520 \mathrm{ft} / \mathrm{sec} \\
& \left|\mathbf{V}_{y}\right|=850 \sin 52^{\circ} \approx 670 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

27. Draw the figure:

Therefore the distances the ship has traveled are:
east: $120 \cos 30^{\circ} \approx 100$ miles
south: $120 \sin 30^{\circ}=60$ miles
28. Drawing the figure:

Now find the magnitude of \mathbf{H} :

$$
\begin{aligned}
\tan 25.5^{\circ} & =\frac{|\mathbf{H}|}{95.5} \\
|\mathbf{H}| & =95.5 \tan 25.5^{\circ} \approx 45.6
\end{aligned}
$$

Kelly must push horizontally with a force of 45.6 lb .
29. The corresponding force diagram would be:

Now find the magnitude of \mathbf{F} :

$$
\begin{aligned}
\sin 8.5^{\circ} & =\frac{|\mathbf{F}|}{58.0} \\
|\mathbf{F}| & =58.0 \sin 8.5^{\circ} \approx 8.57 \mathrm{lb}
\end{aligned}
$$

Tyler must push with a force of 8.57 lb .
30. The horizontal portion of the force is given by: $\left|\mathbf{F}_{X}\right|=|\mathbf{F}| \cos 40^{\circ}=44 \cos 40^{\circ} \mathrm{lb}$

The work is then given by: Work $=\left(44 \cos 40^{\circ}\right)(85) \approx 2,865 \mathrm{ft}-\mathrm{lb} \approx 2,900 \mathrm{ft}-\mathrm{lb} \mathrm{ft}-\mathrm{lb}$

