Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Find the complement and supplement of the angle 55°.

a. Complement: 45° Supplement: 145°

b. Complement: 125° Supplement: 35°

c. Complement: 145° Supplement: 235°

d. Complement: 125° Supplement: 305°

e. Complement: 35° Supplement: 125°

2. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 6, find b.

d. $5\sqrt{13}$

e. None of the above.

3. Solve for *x* in the following right triangle:

3

b. 2

d. 4

4. Find the lengths of the shortest two sides of a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, if the length of the longest side is 16.

a.
$$4, \frac{8}{\sqrt{3}}$$

d.
$$4, \frac{4}{\sqrt{3}}$$

b.
$$4, 4\sqrt{3}$$

e.
$$8, \frac{\sqrt{3}}{\sqrt{3}}$$

c.
$$8, 8\sqrt{3}$$

5. Find the length of the shorter sides of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle if the length of the hypotenuse is 21.

a.
$$\frac{21\sqrt{2}}{2}$$

d.
$$\frac{21\sqrt{3}}{3}$$

b.
$$\frac{21\sqrt{2}}{4}$$

e.
$$\frac{21\sqrt{3}}{2}$$

c.
$$\frac{21}{2}$$

____ 6. Graph the following parabola.

$$f(x) = -\frac{1}{2}x^2 - 2$$

a.

d.

b.

e. None of the above.

c.

 7.	Find the distance between the two points $(-5, 8)$ and $(19, 53)$.

- a. 102
 - b. 51
 - c. 48
 - d. 153
 - e. 99

- 8. Determine two coterminal angles (one positive and one negative) for $\theta = -503^{\circ}$.
 - a. 127°, 233°
 - b. 307°, -413°
 - c. 127°, 323°
 - d. 217°, 143°
 - e. 217°, 323°

- 9. Determine which of the following points is located in quadrant 4.
 - a. (-3, 7)

d. (-7, -3)

b. (3, -7)

e. (7, 3)

- c. (-7, 3)
- ____
 - 10. Which of the following points lies on the unit circle?
 - a. $\left(\frac{-7}{11}, \frac{4\sqrt{2}}{11}\right)$
 - b. $\left(\frac{5}{9}, \frac{-4\sqrt{2}}{9}\right)$
 - c. $\left(\frac{-7}{9}, \frac{-4\sqrt{2}}{9}\right)$
 - d. $\left(\frac{-5}{13}, \frac{-4\sqrt{2}}{13}\right)$
 - e. None of the above.

- ____ 11. Given $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following:
 - csc 30°
 - a. $\csc 30^{\circ} = \frac{\sqrt{3}}{3}$
 - b. $\csc 30^{\circ} = \frac{\sqrt{2}}{2}$
 - c. $csc 30^{\circ} = \sqrt{3}$
 - d. $csc 30^{\circ} = 2$
 - e. undefined
 - 12. Given the figure below, determine the value of $\sin \theta$.

- a. $\sin \theta = -\frac{3}{5}$
- b. $\sin \theta = \frac{4}{3}$
- c. $\sin \theta = -\frac{4}{5}$
- d. $\sin \theta = -\frac{3}{4}$
- e. $\sin \theta = \frac{3}{4}$

- 13. The point (3,4) is on the terminal side of an angle in standard position. Determine the exact value of
 - a. $\cos \theta = -\frac{5}{3}$

 - b. $\cos \theta = \frac{4}{3}$ c. $\cos \theta = \frac{3}{4}$ d. $\cos \theta = -\frac{4}{3}$
 - e. $\cos \theta = \frac{3}{5}$
- 14. Indicate the two quadrants θ could terminate in if $\tan \theta = -\frac{13}{23}$.
 - a. Quadrants II and III
 - b. Quadrants I and III
 - c. Quadrants I and IV

- d. Quadrants II and IV
- e. Quadrants III and IV

- ____ 15. Evaluate sin 300°.

- d. $\frac{-\sqrt{2}}{2}$

- ____ 16. Find $\sin \theta$ if $\csc \theta = \frac{-23}{19}$.

_____ 17. Find
$$\tan \theta$$
 if $\sec \theta = \frac{\sqrt{170}}{7}$ and $\csc \theta = \frac{\sqrt{170}}{11}$.

b. $\frac{170}{77}$ c. $\frac{7}{11}$

- ____ 18. If $\sin \theta = \frac{-6}{\sqrt{85}}$ and θ terminates in QIII, find $\cos \theta$.

d. $\frac{-\sqrt{85}}{49}$ e. $\frac{6}{7}$

b. $\frac{-7}{\sqrt{85}}$ c. $\frac{7}{\sqrt{85}}$

____ 19. Suppose $\csc \theta = 7$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.
$$\sin \theta = \frac{1}{7}$$

$$\cos\theta = \frac{4\sqrt{3}}{7}$$

$$\tan\theta = \frac{1}{4\sqrt{3}}$$

$$\sec \theta = \frac{7}{4\sqrt{3}}$$

$$\cot \theta = 4\sqrt{3}$$

b.
$$\sin \theta = \frac{1}{7}$$

$$\cos\theta = \frac{-4\sqrt{3}}{7}$$

$$\tan \theta = -4\sqrt{3}$$

$$\sec\theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = \frac{-1}{4\sqrt{3}}$$

$$\sin \theta = \frac{-4\sqrt{3}}{7}$$

$$\cos \theta = \frac{1}{7}$$

$$\tan \theta = \frac{-1}{4\sqrt{3}}$$

$$\sec \theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = -4\sqrt{3}$$

d.
$$\sin \theta = \frac{-4\sqrt{3}}{7}$$

$$\cos \theta = \frac{1}{7}$$

$$\tan \theta = -4\sqrt{3}$$

$$\sec \theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = \frac{-1}{4\sqrt{3}}$$

e.
$$\sin \theta = \frac{1}{7}$$

$$\cos\theta = \frac{-4\sqrt{3}}{7}$$

$$\tan \theta = \frac{-1}{4\sqrt{3}}$$

$$\sec \theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = -4\sqrt{3}$$

20. If $\csc \theta = -11$, find $\csc^3 \theta$.

e. -1,331

b.
$$\frac{-1}{22}$$

21. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.

$$\sin \alpha (\csc \alpha - \sin \alpha)$$

a.
$$1 - \sin^2 \alpha$$

b.
$$\frac{\csc^2 \alpha - 1}{\csc^2 \alpha}$$

c.
$$\frac{\csc^2 \alpha - \sec^2 \alpha + \tan^2 \alpha}{\csc^2 \alpha}$$
d.
$$1 - \cot^2 \alpha$$

d.
$$1 - \cot^2 a$$

e.
$$\cos^2 \alpha$$

22. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.

$$(\sin x + \cos x)(\sin x - \cos x)$$

a.
$$2\sin^2 x - \sec^2 x - \tan^2 x$$

b.
$$\sin^2 x - \cos^2 x$$

c.
$$1 - 2\cos^2 x$$

d.
$$\csc^2 x - \cot^2 x - 2\cos^2 x$$

c.
$$1 - 2\cos^2 x$$
d.
$$\csc^2 x - \cot^2 x - 2\cos^2 x$$
e.
$$1 - 2\sin\left(\frac{\pi}{2} - x\right)\cos x$$

23. Which of the following is equivalent to the given expression?

$$\frac{\sin^2 x}{1 - \cos x}$$

a.
$$\tan x + \sin x$$

b.
$$1 + \cos x$$

c.
$$\csc x + \cot x$$

d.
$$tan x cot x - cos x$$

e.
$$\cot x \sin x + \tan x$$

24	Simplify the expression	$\sqrt{x^2+13}$	as much as possible after substituting	$\sqrt{13} \tan \theta$	for v
 <i>2</i> 4.	Simplify the expression	√1 × 1⊃	as much as possible after substituting	Δinamiα.	101 X.

a.
$$\sqrt{13} |\csc \theta|$$

b. $\sqrt{13} |\sin \theta|$
c. $\sqrt{13} |\sec \theta|$

b.
$$\sqrt{13} |\sin \theta|$$

c.
$$\sqrt{13}$$
 |sec θ

___ 25. Simplify the expression $\sqrt{30-6x^2}$ as much as possible after substituting $\sqrt{5} \sin \theta$ for x.

b.
$$\sqrt{30} |\csc \theta|$$

c. $\sqrt{30} |\tan \theta|$

d.
$$30 |\cos \theta|$$

e. $\sqrt{30} |\cos \theta|$

c.
$$\sqrt{30}$$
 $|tan \theta|$

Answer Section

- 1. E
- 2. D
- 3. B
- 4. C
- 5. A
- 6. B
- 7. B
- 8. D
- 9. B
- 10. C
- 11. D
- 12. C
- 13. E
- 14. D
- 15. E
- 16. E
- 17. E
- 18. B
- 19. E
- 20. E
- 21. D
- 22. A
- 23. B
- 24. C
- 25. E

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Find the complement and supplement of the angle 59°.

a. Complement: 31° Supplement: 121°

b. Complement: 121°
Supplement: 31°

c. Complement: 41°
Supplement: 141°

d. Complement: 149° Supplement: 239°

e. Complement: 121° Supplement: 301°

2. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 10, find b.

a. 9

b. √9

c. _{3√√29}

d. $\sqrt{46}$

e. None of the above.

3. Solve for *x* in the following right triangle:

a. 6

b. 4

c. 2

d. 5

e. 3

a.
$$6, 6\sqrt{3}$$

d.
$$12, \frac{12}{\sqrt{3}}$$

b.
$$6, \frac{6}{\sqrt{3}}$$

e.
$$_{12}$$
, $_{12}\sqrt{3}$

c.
$$6, \frac{12}{\sqrt{3}}$$

5. Find the length of the shorter sides of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle if the length of the hypotenuse is 17.

a.
$$\frac{17\sqrt{2}}{4}$$

d.
$$17\sqrt{3}$$

a.
$$\frac{17\sqrt{2}}{4}$$
b. $\frac{17\sqrt{2}}{2}$

e.
$$\frac{17}{2}$$

c.
$$\frac{17\sqrt{3}}{2}$$

____ 6. Graph the following parabola.

$$f(x) = -\frac{1}{3}x^2 - 2$$

a.

d.

b.

e. None of the above.

c.

7
/.
 , .

- 7. Find the distance between the two points (-7, -5) and (5, 11).
 - a. 40
 - b. 20
 - c. 17
 - d. 60
 - e. 37

- 8. Determine two coterminal angles (one positive and one negative) for $\theta = -506^{\circ}$.
 - a. 124°, 236°
 - b. 304°, -416°
 - c. 124°, 326°
 - d. 214°, 146°
 - e. 214°, 326°

- 9. Determine which of the following points is located in quadrant 4.
 - a. (-6, -4)

d. (4, -6)

b. (-4, 6)

e. (-6, 4)

- c. (6, 4)
- - 10. Which of the following points lies on the unit circle?
 - a. $\left(\frac{9}{13}, \frac{-2\sqrt{10}}{13}\right)$
 - b. $\left(\frac{-7}{11}, \frac{2\sqrt{10}}{11}\right)$
 - c. $\left(\frac{9}{11}, \frac{2\sqrt{10}}{11}\right)$
 - d. $\left(\frac{7}{15}, \frac{2\sqrt{10}}{15}\right)$
 - e. None of the above.

____ 11. Given $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following:

a.
$$\tan 30^{\circ} = \sqrt{3}$$

b.
$$\tan 30^{\circ} = 1$$

c.
$$\tan 30^{\circ} = \frac{\sqrt{2}}{2}$$

d.
$$\tan 30^{\circ} = \frac{\sqrt{3}}{3}$$

- e. undefined
- 12. Given the figure below, determine the value of $\sin \theta$.

a.
$$\sin \theta = -\frac{5}{13}$$

b.
$$\sin \theta = \frac{12}{5}$$

c.
$$\sin \theta = \frac{12}{13}$$

a.
$$\sin \theta = -\frac{5}{13}$$

b. $\sin \theta = \frac{12}{5}$
c. $\sin \theta = \frac{12}{13}$
d. $\sin \theta = -\frac{5}{12}$

e.
$$\sin \theta = \frac{5}{12}$$

- 13. The point (5, 12) is on the terminal side of an angle in standard position. Determine the exact value
 - a. $\sec \theta = -\frac{5}{13}$

 - b. $\sec \theta = \frac{5}{12}$ c. $\sec \theta = \frac{12}{5}$ d. $\sec \theta = -\frac{5}{12}$
 - e. $\sec \theta = \frac{13}{5}$
- 14. Indicate the two quadrants θ could terminate in if $\tan \theta = -\frac{21}{31}$.
 - a. Quadrants I and III
 - b. Quadrants II and III
 - c. Quadrants I and IV

- d. Quadrants II and IV
- e. Quadrants III and IV

- ____ 15. Evaluate sin 150°.

- ____ 16. Find $\sin \theta$ if $\csc \theta = \frac{-19}{17}$.

____ 17. Find
$$\tan \theta$$
 if $\sec \theta = \frac{\sqrt{218}}{7}$ and $\csc \theta = \frac{\sqrt{218}}{13}$.

a. $\frac{218}{91}$ b. $\frac{13}{7}$ c. $\frac{7}{13}$

- ____ 18. If $\sin \theta = \frac{-6}{\sqrt{85}}$ and θ terminates in QIV, find $\cos \theta$.

____ 19. Suppose $\csc \theta = 15$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.
$$\sin \theta = \frac{-4\sqrt{14}}{15}$$

$$\cos\theta = \frac{1}{15}$$

$$\tan \theta = \frac{-1}{4\sqrt{14}}$$

$$\sec \theta = \frac{-15}{4\sqrt{14}}$$

$$\cot \theta = -4\sqrt{14}$$

b.
$$\sin \theta = \frac{1}{15}$$

$$\cos\theta = \frac{4\sqrt{14}}{15}$$

$$\tan\theta = \frac{1}{4\sqrt{14}}$$

$$\sec \theta = \frac{15}{4\sqrt{14}}$$

$$\cot \theta = 4\sqrt{14}$$

c.
$$\sin \theta = \frac{1}{15}$$

$$\cos\theta = \frac{-4\sqrt{14}}{15}$$

$$\tan \theta = -4\sqrt{14}$$

$$\sec \theta = \frac{-15}{4\sqrt{14}}$$

$$\cot \theta = \frac{-1}{4\sqrt{14}}$$

d.
$$\sin \theta = \frac{-4\sqrt{14}}{15}$$

$$\cos \theta = \frac{1}{15}$$

$$\tan \theta = -4\sqrt{14}$$

$$\sec \theta = \frac{-15}{4\sqrt{14}}$$

$$\cot \theta = \frac{-1}{4\sqrt{14}}$$

e.
$$\sin \theta = \frac{1}{15}$$

$$\cos\theta = \frac{-4\sqrt{14}}{15}$$

$$\tan \theta = \frac{-1}{4\sqrt{14}}$$

$$\sec \theta = \frac{-15}{4\sqrt{14}}$$

$$\cot \theta = -4\sqrt{14}$$

____ 20. If $\csc \theta = -12$, find $\csc^3 \theta$.

- a. $\frac{-1}{36}$
- b. $\frac{-1}{1,728}$
- c. -1.728

- d. -36
- e. 1,728

21. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.

 $\sin \alpha (\csc \alpha - \sin \alpha)$

a.
$$1 - \sin^2 \alpha$$

b.
$$\frac{\csc^2 \alpha - 1}{\csc^2 \alpha}$$

c.
$$\frac{\csc^2 \alpha - \sec^2 \alpha + \tan^2 \alpha}{\csc^2 \alpha}$$

d.
$$1-\cot^2 \alpha$$

22. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.

$$(\tan x + 1)^2$$

a.
$$tan^2x + 1$$

b.
$$\sec^2 x + 2\tan x$$

c.
$$\frac{1 + 2\sin x \cos x}{\cos^2 x}$$

d.
$$\tan^2 x + 2\tan x + 1$$

e.
$$\sec^2 x (1 + 2\sin x \cos x)$$

23. Which of the following is equivalent to the given expression?

$$\frac{\sin^2 x}{1 - \cos x}$$

a.
$$tan x + sin x$$

b.
$$1 + \cos x$$

c.
$$\csc x + \cot x$$

d.
$$tan x cot x - cos x$$

e.
$$\cot x \sin x + \tan x$$

24. Simplify the expression $\sqrt{x^2 + 6}$ as much as possible after substituting $\sqrt{6} \tan \theta$ for x.

b.
$$\sqrt{6}$$
 |sec θ

a.
$$6|\sec \theta|$$

b. $\sqrt{6}|\sec \theta|$
c. $\sqrt{6}|\sin \theta|$

d.
$$6|\csc\theta|$$

e. $\sqrt{6}|\csc\theta|$

____ 25. Simplify the expression $\sqrt{70-7x^2}$ as much as possible after substituting $\sqrt{10} \sin \theta$ for x.

a.
$$\sqrt{70} |\tan \theta|$$

a.
$$\sqrt{70} |\tan \theta|$$

b. $\sqrt{70} |\cos \theta|$
c. $70 |\cos \theta|$

d.
$$\sqrt{70} |\csc \theta|$$

e. $70|\csc \theta|$

Answer Section

- 1. A
- 2. C
- 3. E
- 4. E
- 5. B
- 6. C
- 7. B
- 8. D
- 9. D
- 10. C
- 11. D
- 12. C
- 13. E
- 14. D
- 15. D
- 16. A
- 17. B
- 18. C
- 19. E
- 20. C
- 21. D
- 22. A
- 23. B
- 24. B
- 25. B

Multiple Choice/Short Answer

Identify the choice that best completes the statement or answers the question/Use the space provided to write your answer.

- ___ 1. Find the complement and supplement of the angle 54°.
 - a. Complement: 36°
 Supplement: 126°
 - b. Complement: 126°
 Supplement: 36°
 c. Complement: 46°

Supplement: 146°

- d. Complement: 144°

 Supplement: 234°

 e. Complement: 126°

 Supplement: 306°
- 2. Determine two coterminal angles (one positive and one negative) for $\theta = -457^{\circ}$.

3. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 6, find b.

a.
$$\sqrt{13}$$

b.
$$\sqrt{397}$$

- d. $5\sqrt{13}$
- e. None of the above.
- 4. Solve for *x* in the following right triangle:

- a. 9
- b. (
- c. 5

- d. 8
- e.

5. Find the lengths of the shortest two sides of a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, if the length of the longest side is 16.

a. 4,
$$\frac{8}{\sqrt{3}}$$

d. 4,
$$\frac{4}{\sqrt{3}}$$

b.
$$4, 4\sqrt{3}$$

d.
$$4, \frac{4}{\sqrt{3}}$$
 e. $8, \frac{8}{\sqrt{3}}$

c.
$$8, 8\sqrt{3}$$

6. Find the length of the shorter sides of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle if the length of the hypotenuse is 21.

a.
$$\frac{21\sqrt{2}}{2}$$

d.
$$\frac{21\sqrt{3}}{3}$$

b.
$$\frac{21\sqrt{2}}{4}$$

e.
$$\frac{21\sqrt{3}}{2}$$

c.
$$\frac{21}{2}$$

7. Given the figure below, determine the value of $\sin \theta$.

_____ 8. Graph the following parabola.

$$f(x) = -\frac{1}{3}x^2 - 2$$

a.

d.

b.

e. None of the above.

c.

- 9. Find the distance between the two points (-5, 8) and (19, 53).

 - b. 51
 - c. 48
 - d. 153
 - e. 99

- 10. Determine which of the following points is located in quadrant 4.

 $\begin{array}{ll} d. & \left(-3, -6\right) \\ e. & \left(6, -3\right) \end{array}$

- c. (3, 6)
- 11. Which of the following points lies on the unit circle?

 - e. None of the above.
 - 12. Given $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following: sec 30°

 13.	Indicate the two quadrants θ	could terminate in if $\tan \theta = -$	$\frac{17}{25}$
			25

- a. Quadrants III and IV
- b. Quadrants I and III
- c. Quadrants I and IV

- d. Quadrants II and III
- e. Quadrants II and IV

____ 15. Find
$$\sin \theta$$
 if $\csc \theta = \frac{-19}{17}$.

- c. $\frac{17}{19}$

- 16. Find $\tan \theta$ if $\sec \theta = \frac{\sqrt{290}}{11}$ and $\csc \theta = \frac{\sqrt{290}}{13}$.

- 17. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.

$$(2-2\cos x)(2+2\cos x)$$

- a. $4 \cos^2 x$ b. $4 4\cos^2 x$ c. $4\sin^2 x$ d. $\frac{4}{\csc^2 x}$ e. $\frac{4}{1 + \cot^2 x}$

____ 18. If
$$\sin \theta = \frac{-8}{\sqrt{89}}$$
 and θ terminates in QIV, find $\cos \theta$.

a.
$$\frac{5}{8}$$

a.
$$\frac{5}{8}$$
b. $\frac{-5}{8}$

d.
$$\frac{5}{\sqrt{89}}$$

e.
$$\frac{\sqrt{89}}{25}$$

19. The point (7,24) is on the terminal side of an angle in standard position. Determine the exact value of $\sin \theta$.

____ 20. Suppose $\csc \theta = 7$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.
$$\sin \theta = \frac{1}{7}$$

$$\cos\theta = \frac{4\sqrt{3}}{7}$$

$$\tan \theta = \frac{1}{4\sqrt{3}}$$

$$\sec \theta = \frac{7}{4\sqrt{3}}$$

$$\cot \theta = 4\sqrt{3}$$

b.
$$\sin \theta = \frac{1}{7}$$

$$\cos\theta = \frac{-4\sqrt{3}}{7}$$

$$\tan\theta = \frac{-1}{4\sqrt{3}}$$

$$\sec \theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = -4\sqrt{3}$$

c.
$$\sin \theta = \frac{-4\sqrt{3}}{7}$$

$$\cos \theta = \frac{1}{7}$$

$$\tan \theta = -4\sqrt{3}$$

$$\sec \theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = \frac{-1}{4\sqrt{3}}$$

d.
$$\sin \theta = \frac{-4\sqrt{3}}{7}$$

$$\cos \theta = \frac{1}{7}$$

$$\tan \theta = \frac{-1}{4\sqrt{3}}$$

$$\sec \theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = -4\sqrt{3}$$

e.
$$\sin \theta = \frac{1}{7}$$

$$\cos\theta = \frac{-4\sqrt{3}}{7}$$

$$\tan \theta = -4\sqrt{3}$$

$$\sec \theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = \frac{-1}{4\sqrt{3}}$$

____ 21. If $\csc \theta = -14$, find $\csc^3 \theta$.

- a. $\frac{-1}{42}$
- b. <u>- 1</u> 2,744
- c. 2,744

- d. -2,744
- e. -42

22. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.

$$\sec \phi \left(\frac{\sin \phi}{\tan \phi} \right)$$

- a. $\sec^2 \phi \tan^2 \phi$
- b. $\sin^2 \phi + \cos^2 \phi$ c. $\csc^2 \phi \cot^2 \phi$
- d. $\cos^2 \phi \sin^2 \phi$
- 23. Simplify the expression $\sqrt{x^2 + 11}$ as much as possible after substituting $\sqrt{11} \tan \theta$ for x.
 - a. $\sqrt{11} |\sec \theta|$

d. $\sqrt{11} |\sin \theta|$ e. $11 |\csc \theta|$

b. $11|\sec\theta|$

- c. $\sqrt{11} |\csc \theta|$
- 24. Simplify the expression $\sqrt{30-10x^2}$ as much as possible after substituting $\sqrt{3} \sin \theta$ for x.
 - a. 30|cos *θ*|

d. $\sqrt{30} |\tan \theta|$ e. $30|\csc \theta|$

b. $\sqrt{30} |\cos \theta|$ c. $\sqrt{30} |\csc \theta|$

- 25. Which of the following is equivalent to the given expression?

$$\frac{\cot^2 x}{\csc x + 1}$$

Answer Section

- 1. A
- 2. 263°, 97°
- 3. D
- 4. B
- 5. C
- 6. A
- 7. $\sin \theta = -\frac{4}{5}$
- 8. D
- 9. B
- 10. E
- 11. D
- 12. $\sec 30^{\circ} = \frac{2\sqrt{3}}{3}$
- 13. E
- 14. D
- 15. B
- 16. B
- 17. A
- 18. D
- 19. $\sin \theta = \frac{24}{25}$
- 20. B
- 21. D
- 22. D
- 23. A
- 24. B
- 25. $\csc x 1$

Multiple Choice/Short Answer

Identify the choice that best completes the statement or answers the question/Use the space provided to write your answer.

1. Determine two coterminal angles (one positive and one negative) for $\theta = -477^{\circ}$.

- 2. Find the complement and supplement of the angle 59°.
 - a. Complement: 121° Supplement: 301°
 - b. Complement: 41° Supplement: 141°
 - c. Complement: 149° Supplement: 239°

- d. Complement: 121° Supplement: 31°
- e. Complement: 31° Supplement: 121°
- 3. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 2, find b.
 - a. 17
 - b. $\sqrt{365}$
 - c. $\sqrt{357}$

- d. $\sqrt{17}$
- e. None of the above.
- ___ 4. Solve for *x* in the following right triangle:

- a. 1
- b. 5
- c. 4

- d. 3
- e. 2

a. 4,
$$\frac{4}{\sqrt{3}}$$

d.
$$4, \frac{8}{\sqrt{3}}$$

b.
$$4, 4\sqrt{3}$$

d. 4,
$$\frac{8}{\sqrt{3}}$$
 e. 8, $\frac{8}{\sqrt{3}}$

6. The point (8, 15) is on the terminal side of an angle in standard position. Determine the exact value of $\cot \theta$.

7. Find the length of the shorter sides of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle if the length of the hypotenuse is 17.

a.
$$\frac{17\sqrt{3}}{3}$$

d.
$$17\sqrt{2}$$

b.
$$\frac{17\sqrt{3}}{2}$$

e.
$$\frac{17\sqrt{2}}{2}$$

c.
$$\frac{17}{2}$$

8. Given the figure below, determine the value of $\sin \theta$.

____ 9. Graph the following parabola.

$$f(x) = -\frac{1}{3}x^2 - 2$$

a.

d.

b.

e. None of the above.

c.

10. Determine which of the following points is located in quadrant 4.

a.
$$(6, 4)$$

b. $(-6, -4)$

____ 11. Find $\tan \theta$ if $\sec \theta = \frac{\sqrt{530}}{13}$ and $\csc \theta = \frac{\sqrt{530}}{19}$.

d.
$$-\frac{13}{10}$$

12. Which of the following points lies on the unit circle?

a.
$$\left(\frac{-7}{11}, \frac{2\sqrt{10}}{11}\right)$$

b.
$$\left(\frac{7}{15}, \frac{2\sqrt{10}}{15}\right)$$

a.
$$\left(\frac{-7}{11}, \frac{2\sqrt{10}}{11}\right)$$

b. $\left(\frac{7}{15}, \frac{2\sqrt{10}}{15}\right)$
c. $\left(\frac{9}{11}, \frac{2\sqrt{10}}{11}\right)$

d.
$$\left(\frac{9}{13}, \frac{-2\sqrt{10}}{13}\right)$$

e. None of the above.

13. Given $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following: csc 30°

14. Which of the following is equivalent to the given expression?

$$\frac{\cos^2 x}{1 + \sin x}$$

- a. tan x + cos x
- b. $1 \sin x$
- c. $\csc x + \cot x$
- d. $tan x \cot x \sin x$
- e. $\cot x \cos x + \tan x$

15. Evaluate sin 240°.

- 16. Indicate the two quadrants θ could terminate in if $\tan \theta = -\frac{21}{31}$.
 - a. Quadrants I and III
 - b. Quadrants II and IV
 - c. Quadrants I and IV

- d. Quadrants II and III
- Quadrants III and IV

- ____ 17. Find $\sin \theta$ if $\csc \theta = \frac{-17}{13}$.

- 18. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.

$$(\tan x + 1)^2$$

- $\tan^2 x + 1$
- b. $\sec^2 x + 2\tan x$
- c. $\frac{1+2\sin x \cos x}{\cos^2 x}$ d. $\tan^2 x + 2\tan x + 1$

____ 19. If
$$\sin \theta = \frac{-6}{\sqrt{85}}$$
 and θ terminates in QIV, find $\cos \theta$.

a.
$$\frac{7}{\sqrt{85}}$$

d.
$$\frac{-7}{\sqrt{85}}$$

c.
$$\frac{\sqrt{85}}{49}$$

20. Find the distance between the two points (-7, -4) and (41, 16).

- a. 104
- b. 52
- c. 49
- d. 156
- e. 101

21. Suppose $\csc \theta = 9$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.
$$\sin \theta = \frac{1}{9}$$

$$\cos\theta = \frac{4\sqrt{5}}{9}$$

$$\tan \theta = \frac{1}{4\sqrt{5}}$$

$$\sec \theta = \frac{9}{4\sqrt{5}}$$

$$\cot \theta = 4\sqrt{5}$$

b.
$$\sin \theta = \frac{1}{9}$$

$$\cos\theta = \frac{-4\sqrt{5}}{9}$$

$$\tan\theta = \frac{-1}{4\sqrt{5}}$$

$$\sec \theta = \frac{-9}{4\sqrt{5}}$$

$$\cot \theta = -4\sqrt{5}$$

c.
$$\sin \theta = \frac{-4\sqrt{5}}{9}$$

$$\cos\theta = \frac{1}{9}$$

$$\tan \theta = -4\sqrt{5}$$

$$\sec \theta = \frac{-9}{4\sqrt{5}}$$

$$\cot \theta = \frac{-1}{4\sqrt{5}}$$

d.
$$\sin \theta = \frac{-4\sqrt{5}}{9}$$

$$\cos \theta = \frac{1}{9}$$

$$\tan \theta = \frac{-1}{4\sqrt{5}}$$

$$\sec \theta = \frac{-9}{4\sqrt{5}}$$

$$\cot \theta = -4\sqrt{5}$$

e.
$$\sin \theta = \frac{1}{9}$$

$$\cos\theta = \frac{-4\sqrt{5}}{9}$$

$$\tan\theta = -4\sqrt{5}$$

$$\sec \theta = \frac{-9}{4\sqrt{5}}$$

$$\cot \theta = \frac{-1}{4\sqrt{5}}$$

____ 22. If
$$\csc \theta = -12$$
, find $\csc^3 \theta$.

c.
$$\frac{-1}{1,728}$$

e.
$$\frac{-1}{36}$$

23. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.

$$\sin \alpha (\csc \alpha - \sin \alpha)$$

a.
$$1 - \sin^2 \alpha$$

b.
$$\frac{\csc^2 \alpha - 1}{\csc^2 \alpha}$$

csc
$$\alpha$$

$$\frac{\csc^2 \alpha - \sec^2 \alpha + \tan^2 \alpha}{\csc^2 \alpha}$$
d. $1 - \cot^2 \alpha$

d.
$$1 - \cot^2 \alpha$$

e.
$$\cos^2 \alpha$$

24. Simplify the expression $\sqrt{x^2 + 10}$ as much as possible after substituting $\sqrt{10} \tan \theta$ for x.

a.
$$\sqrt{10} \left| \csc \theta \right|$$

b.
$$\sqrt{10} |\sec \theta|$$

e.
$$\sqrt{10} |\sin \theta|$$

25. Simplify the expression
$$\sqrt{66-11x^2}$$
 as much as possible after substituting $\sqrt{6} \sin \theta$ for x.

c.
$$\sqrt{66} |\tan \theta|$$

d.
$$\sqrt{66 \log 6}$$

d.
$$\sqrt{66} |\csc \theta|$$

e. $\sqrt{66} |\cos \theta|$

Answer Section

- 1. 243°, 117°
- 2. E
- 3. C
- 4. E
- 5. C
- 6. $\cot \theta = \frac{8}{15}$
- 7. E
- 8. $\sin \theta = -\frac{4}{5}$
- 9. A
- 10. C
- 11. C
- 12. C
- 13. $csc 30^{\circ} = 2$
- 14. B
- 15. D
- 16. B
- 17. C
- 18. A
- 19. A
- 20. B
- 21. B
- 22. D
- 23. D
- 24. B
- 25. E

Multiple Choice/Short Answer

Identify the choice that best completes the statement or answers the question/Use the space provided to write your answer.

1. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.

b.
$$\frac{\csc\rho\sin\rho + \sec\rho\cos\rho}{\cos\rho}$$

c.
$$\frac{\tan \rho \cos \rho + \sin \rho}{\sin \rho \cos \rho}$$

2. Find the complement and supplement of the angle 59°.

a. Complement: 121°

Supplement: 31°

b. Complement: 31° Supplement: 121°

c. Complement: 121° Supplement: 301°

d. Complement: 41°

Supplement: 141°

e. Complement: 149° Supplement: 239°

3. Determine which of the following points is located in quadrant 4.

a.
$$(-3, -6)$$

d.
$$(-3, 6)$$

e. $(6, -3)$

- ____ 4. Wh
- 4. Which of the following points lies on the unit circle?

a.
$$\left(\frac{-7}{11}, \frac{-4\sqrt{2}}{11}\right)$$

b.
$$\left(\frac{-7}{9}, \frac{4\sqrt{2}}{9}\right)$$

c.
$$\left(\frac{5}{9}, \frac{4\sqrt{2}}{9}\right)$$

d.
$$\left(\frac{-5}{13}, \frac{4\sqrt{2}}{13}\right)$$

- e. None of the above.
- 5 T -440 1 4
 - 5. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 2, find b.

a.
$$\sqrt{357}$$

b.
$$\sqrt{365}$$

- c. $\sqrt{17}$
- 6. Determine two coterminal angles (one positive and one negative) for $\theta = -453^{\circ}$.

7. Solve for *x* in the following right triangle:

- 6 a.
- b. 7
- c. 5

- d. 3
- e. 4
- 8. Find the lengths of the shortest two sides of a $30^{\circ} 60^{\circ} 90^{\circ}$ triangle, if the length of the longest side is 20.
 - a. $10, 10\sqrt{3}$
 - b. $10, \frac{10}{\sqrt{3}}$

- d. 5, $5\sqrt{3}$ e. 5, $\frac{5}{\sqrt{3}}$
- 9. Given the figure below, determine the value of $\sin \theta$.

10. Indicate the two quadrants θ could terminate in if $\tan \theta = -\frac{1}{2}$	$-\frac{17}{25}$.
--	--------------------

a. Quadrants III and IV

b. Quadrants II and IV

c. Quadrants I and III

e. Quadrants II and III

a.
$$\frac{-\sqrt{3}}{2}$$

b. $\frac{-1}{2}$

c. $\frac{1}{2}$

e. $\frac{-\sqrt{2}}{2}$

12. The point (8,15) is on the terminal side of an angle in standard position. Determine the exact value of $\cot \theta$.

____ 13. Find
$$\sin \theta$$
 if $\csc \theta = \frac{-37}{31}$.

a.
$$\frac{6}{37}$$

b. <u>- 6</u>

c. $\frac{-31}{37}$

e. $\frac{31}{37}$

_____ 14. Find
$$\tan \theta$$
 if $\sec \theta = \frac{\sqrt{410}}{11}$ and $\csc \theta = \frac{\sqrt{410}}{17}$.

a. $\frac{410}{187}$

b. <u>187</u> 410

c. $-\frac{11}{17}$

d.
$$\frac{17}{11}$$

e. <u>11</u>

15. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.

$$(2-2\cos x)(2+2\cos x)$$

a.
$$4 - \cos^2 x$$

b.
$$4 - 4\cos^2 x$$
c. $4\sin^2 x$

c.
$$4\sin^2 x$$

e.
$$\frac{4}{1 + \cot^2 x}$$

____ 16. If $\sin \theta = \frac{-8}{\sqrt{113}}$ and θ terminates in QIII, find $\cos \theta$.

a.
$$\frac{-7}{\sqrt{113}}$$

b.
$$\frac{-7}{8}$$

c.
$$\frac{7}{8}$$

$$\sqrt{113}$$

d.
$$\frac{7}{\sqrt{113}}$$
 e. $\frac{-\sqrt{113}}{49}$

____ 17. Suppose $\csc \theta = 9$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.
$$\sin \theta = \frac{1}{9}$$

$$\cos\theta = \frac{-4\sqrt{5}}{9}$$

$$\tan \theta = -4\sqrt{5}$$

$$\sec \theta = \frac{-9}{4\sqrt{5}}$$

$$\cot \theta = \frac{-1}{4\sqrt{5}}$$

b.
$$\sin \theta = \frac{-4\sqrt{5}}{9}$$

$$\cos \theta = \frac{1}{9}$$

$$\tan\theta = \frac{-1}{4\sqrt{5}}$$

$$\sec \theta = \frac{-9}{4\sqrt{5}}$$

$$\cot \theta = -4\sqrt{5}$$

c.
$$\sin \theta = \frac{-4\sqrt{5}}{9}$$

$$\cos\theta = \frac{1}{9}$$

$$\tan \theta = -4\sqrt{5}$$

$$\sec \theta = \frac{-9}{4\sqrt{5}}$$

$$\cot \theta = \frac{-1}{4\sqrt{5}}$$

d.
$$\sin \theta = \frac{1}{9}$$

$$\cos\theta = \frac{4\sqrt{5}}{9}$$

$$\tan\theta = \frac{1}{4\sqrt{5}}$$

$$\sec \theta = \frac{9}{4\sqrt{5}}$$

$$\cot \theta = 4\sqrt{5}$$

e.
$$\sin \theta = \frac{1}{9}$$

$$\cos\theta = \frac{-4\sqrt{5}}{9}$$

$$\tan \theta = \frac{-1}{4\sqrt{5}}$$

$$\sec \theta = \frac{-9}{4\sqrt{5}}$$

$$\cot \theta = -4\sqrt{5}$$

____ 18. If $\csc \theta = -11$, find $\csc^3 \theta$.

- a. -33 b. <u>-1</u> 33
- c. $\frac{-1}{1331}$

- d. -1,331
- e. 1,331

- ____ 19. Find the length of the shorter sides of a 45° 45° 90° triangle if the length of the hypotenuse is 19.

 - a. $\frac{19\sqrt{3}}{2}$ b. $\frac{19\sqrt{3}}{3}$ c. $\frac{19\sqrt{2}}{2}$

- e. $\frac{19\sqrt{2}}{4}$

20. Graph the following parabola.

$$f(x) = -\frac{1}{2}x^2 - 2$$

a.

d.

None of the above.

21. Given $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following: tan 30°

- 22. Find the distance between the two points (9, 4) and (49, 79).

 - b. 85
 - c. 82
 - d. 255
 - e. 167
- 23. Simplify the expression $\sqrt{x^2 + 10}$ as much as possible after substituting $\sqrt{10} \tan \theta$ for x.
 - a. $\sqrt{10} |\sec \theta|$ b. $\sqrt{10} |\sin \theta|$

d. 10|csc *θ*|

e. 10|sec *θ*|

- c. $\sqrt{10} |\cos \theta|$
- 24. Simplify the expression $\sqrt{30-6x^2}$ as much as possible after substituting $\sqrt{5} \sin \theta$ for x.
 - a. 30|csc *θ*|

b. $\sqrt{30} |\csc \theta|$ c. $\sqrt{30} |\tan \theta|$

d. $30|\cos\theta|$ e. $\sqrt{30}|\cos\theta|$

- 25. Which of the following is equivalent to the given expression?

$$\frac{\sin^2 x}{1 - \cos x}$$

- a. tan x + sin x
- b. $1 + \cos x$
- c. cscx + cotx
- d. tan x cot x cos x
- e. $\cot x \sin x + \tan x$

Answer Section

- 1. D
- 2. B
- 3. E
- 4. B
- 5. A
- 6. 267°, 93°
- 7. E
- 8. A
- 9. $\sin \theta = -\frac{4}{5}$
- 10. B
- 11. A
- 12. $\cot \theta = \frac{8}{15}$
- 13. C
- 14. D
- 15. A
- 16. A
- 17. E
- 18. D
- 19. C
- 20. B

21.
$$\tan 30^\circ = \frac{\sqrt{3}}{3}$$

- 22. B
- 23. A
- 24. E
- 25. B

Multiple Choice

Identify the choice that best completes the statement or answers the question.

____ 1. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.

 $\cot \beta \sec \beta$

- a. $\frac{1}{\sin \beta}$
- b. $\frac{\sec \beta}{\tan \beta}$
- c. $\frac{1}{\cos \beta \tan \beta}$
- d. $\sec \beta$
- e. csc β
- 2. Find the complement and supplement of the angle 55°.
 - a. Complement: 45°
 - Supplement: 145° b. Complement: 125°
 - Supplement: 35°
 - c. Complement: 145° Supplement: 235°

- d. Complement: 35° Supplement: 125°
- e. Complement: 125° Supplement: 305°
- 3. Determine which of the following points is located in quadrant 4.
 - a. (-5, -6)
 - (6-5)
 - c. (5, 6)

- d. (-6, 5)
- e. (-5, 6)
- 4. Which of the following points lies on the unit circle?
 - a. $\left(\frac{-5}{7}, \frac{2\sqrt{6}}{7}\right)$
 - b. $\left(\frac{-5}{9}, \frac{-2\sqrt{6}}{9}\right)$
 - c. $\left(\frac{3}{7}, \frac{2\sqrt{6}}{7}\right)$
 - d. $\left(\frac{-3}{11}, \frac{2\sqrt{6}}{11}\right)$
 - e. None of the above.

5. Determine two coterminal angles (one positive and one negative) for $\theta = -526^{\circ}$.

6. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 6, find b.

a.
$$\sqrt{13}$$

d.
$$5\sqrt{13}$$

d. $5\sqrt{13}$ e. None of the above.

7. Solve for x in the following right triangle:

b. 9

e. 10

8. Find the lengths of the shortest two sides of a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, if the length of the longest side is 16.

b. 4, $4\sqrt{3}$ c. 8, $\frac{8}{\sqrt{3}}$

d. $4, \frac{4}{\sqrt{3}}$

e. 8, $8\sqrt{3}$

 9.	Indicate the two quadrants θ	could terminate in if $\tan \theta = -$	13 23

a. Quadrants I and III

b. Quadrants III and IVc. Quadrants II and III

d. Quadrants I and IV

e. Quadrants II and IV

a.
$$\frac{-1}{2}$$

b. $\frac{1}{2}$

c. $\frac{\sqrt{3}}{2}$

d.
$$\frac{-\sqrt{2}}{2}$$

e. $\frac{-\sqrt{3}}{2}$

11. The point (7,24) is on the terminal side of an angle in standard position. Determine the exact value of $\csc \theta$.

____ 12. Find
$$\sin \theta$$
 if $\csc \theta = \frac{-17}{13}$.

a.
$$\frac{-13}{17}$$

b. $\frac{4}{13}$

c. $\frac{4}{17}$

d.
$$\frac{13}{15}$$

e. $\frac{-4}{17}$

____ 13. Find
$$\tan \theta$$
 if $\sec \theta = \frac{\sqrt{410}}{11}$ and $\csc \theta = \frac{\sqrt{410}}{17}$.

a.
$$\frac{11}{17}$$

b. $\frac{17}{11}$

c. $-\frac{11}{17}$

e. 410 187

____ 14. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.

$$(\tan x + 1)^2$$

a.
$$tan^2x + 1$$

b.
$$\sec^2 x + 2\tan x$$

b.
$$\sec^2 x + 2\tan x$$

c. $\frac{1 + 2\sin x \cos x}{\cos^2 x}$
d. $\tan^2 x + 2\tan x + 1$
e. $\sec^2 x(1 + 2\sin x \cos x)$

d.
$$tan^2x + 2tanx + 1$$

e.
$$\sec^2 x (1 + 2\sin x \cos x)$$

____ 15. If $\sin \theta = \frac{-6}{\sqrt{157}}$ and θ terminates in QIII, find $\cos \theta$.

a.
$$\frac{11}{\sqrt{157}}$$

d.
$$\frac{-6}{11}$$

b.
$$\frac{-\sqrt{157}}{121}$$

c.
$$\frac{-11}{\sqrt{157}}$$

16. Suppose $\csc \theta = 7$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.
$$\sin \theta = \frac{1}{7}$$

$$\cos\theta = \frac{-4\sqrt{3}}{7}$$

$$\tan \theta = -4\sqrt{3}$$

$$\sec \theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = \frac{-1}{4\sqrt{3}}$$

b.
$$\sin \theta = \frac{-4\sqrt{3}}{7}$$

$$\cos \theta = \frac{1}{7}$$

$$\tan\theta = -4\sqrt{3}$$

$$\sec\theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = \frac{-1}{4\sqrt{3}}$$

c.
$$\sin \theta = \frac{1}{7}$$

$$\cos\theta = \frac{4\sqrt{3}}{7}$$

$$\tan\theta = \frac{1}{4\sqrt{3}}$$

$$\sec \theta = \frac{7}{4\sqrt{3}}$$

$$\cot \theta = 4\sqrt{3}$$

d.
$$\sin \theta = \frac{1}{7}$$

$$\cos\theta = \frac{-4\sqrt{3}}{7}$$

$$\tan\theta = \frac{-1}{4\sqrt{3}}$$

$$\sec \theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = -4\sqrt{3}$$

e.
$$\sin \theta = \frac{-4\sqrt{3}}{7}$$

$$\cos \theta = \frac{1}{7}$$

$$\tan \theta = \frac{-1}{4\sqrt{3}}$$

$$\sec \theta = \frac{-7}{4\sqrt{3}}$$

$$\cot \theta = -4\sqrt{3}$$

17. Given $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following: $\sec 30^\circ$

____ 18. If
$$\csc \theta = -11$$
, find $\csc^3 \theta$.

d.
$$\frac{-1}{33}$$

b.
$$\frac{-1}{1,331}$$

c.
$$-1,331$$

 \perp 19. Find the length of the shorter sides of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle if the length of the hypotenuse is 17.

a.
$$\frac{17}{2}$$

d.
$$17\sqrt{3}$$

b.
$$\frac{17\sqrt{3}}{3}$$

e.
$$\frac{17\sqrt{2}}{2}$$

c.
$$\frac{17\sqrt{2}}{4}$$

20. Given the figure below, determine the value of $\sin \theta$.

____ 21. Graph the following parabola.

$$f(x) = -\frac{1}{2}x^2 - 2$$

a.

d.

b.

e. None of the above.

c.

22. Find the distance between the two points (4, 2) and (10, 10).

- b. 10
- c. 7
- d. 30
- e. 17

23. Which of the following is equivalent to the given expression?

$$\frac{\cos^2 x}{1+\sin x}$$

- a. tan x + cos x
- b. $1 \sin x$
- c. $\csc x + \cot x$
- d. $tan x \cot x \sin x$
- e. $\cot x \cos x + \tan x$

24. Simplify the expression $\sqrt{x^2 + 13}$ as much as possible after substituting $\sqrt{13} \tan \theta$ for x.

a. $\sqrt{13} \left| \csc \theta \right|$

d. 13|csc *θ*|

b. $\sqrt{13} |\sin \theta|$

e. 13|sec *θ*|

c. $\sqrt{13} |\sec \theta|$

25. Simplify the expression $\sqrt{30-6x^2}$ as much as possible after substituting $\sqrt{5} \sin \theta$ for x.

a. $\sqrt{30} |\tan \theta|$ b. $30|\csc \theta|$ c. $\sqrt{30} |\cos \theta|$

d. $\sqrt{30} |\csc \theta|$ e. $30|\cos \theta|$

McKeague/Turner Trigonometry Chapter 2 Form F Answer Section

- 1. D
- 2. D
- 3. B
- 4. A
- 5. 194°, 166°
- 6. D
- 7. D
- 8. E
- 9. E
- 10. E
- 11. $\csc \theta = \frac{25}{24}$
- 12. A
- 13. B
- 14. A
- 15. C
- 16. D

17.
$$\sec 30^\circ = \frac{2\sqrt{3}}{3}$$

- 18. C
- 19. E

$$20. \sin \theta = -\frac{4}{5}$$

- 21. B
- 22. B
- 23. B
- 24. C
- 25. C