McKeague/Turner Trigonometry 8e - Chapter 2 Form A

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Find the complement and supplement of the angle 55°.
a. Complement: 45°
d. Complement: 125°
Supplement: 145°
Supplement: 305°
b. Complement: 125°
e. Complement: 35°
Supplement: 35°
Supplement: 125°
c. Complement: 145°

Supplement: 235°
2. Let triangle $A B C$ be a right triangle with $C=90^{\circ}$. If $c=19$ and $a=6$, find b.
a. $\sqrt{13}$
d. $5 \sqrt{13}$
b. $\sqrt{397}$
e. None of the above.
c. 13
3. Solve for x in the following right triangle:

a. 3
b. 2
c. 1
d. 4
e. 5

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

4. Find the lengths of the shortest two sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, if the length of the longest side is 16.
a. $4, \frac{8}{\sqrt{3}}$
b. $4,4 \sqrt{3}$
c. $8,8 \sqrt{3}$
d. $4, \frac{4}{\sqrt{3}}$
e. $8, \frac{8}{\sqrt{3}}$
5. Find the length of the shorter sides of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle if the length of the hypotenuse is 21 .
a. $\frac{21 \sqrt{2}}{2}$
b. $\frac{21 \sqrt{2}}{4}$
d. $\frac{21 \sqrt{3}}{3}$
e. $\frac{21 \sqrt{3}}{2}$
C. $\frac{21}{2}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

\qquad 6. Graph the following parabola.
$f(x)=-\frac{1}{2} x^{2}-2$
a.

d.

b.

e. None of the above.
c.

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

7. Find the distance between the two points $(-5,8)$ and $(19,53)$.
a. 102
b. 51
c. 48
d. 153
e. 99
8. Determine two coterminal angles (one positive and one negative) for $\theta=-503^{\circ}$.
a. $127^{\circ},-233^{\circ}$
b. $307^{\circ},-413^{\circ}$
c. $127^{\circ},-323^{\circ}$
d. $217^{\circ},-143^{\circ}$
e. $217^{\circ},-323^{\circ}$
9. Determine which of the following points is located in quadrant 4.
a. $(-3,7)$
b. $(3,-7)$
c. $(-7,3)$
d. $(-7,-3)$
e. $(7,3)$
10. Which of the following points lies on the unit circle?
a. $\left(\frac{-7}{11}, \frac{4 \sqrt{2}}{11}\right)$
b. $\left(\frac{5}{9}, \frac{-4 \sqrt{2}}{9}\right)$
c. $\left(\frac{-7}{9}, \frac{-4 \sqrt{2}}{9}\right)$
d. $\left(\frac{-5}{13}, \frac{-4 \sqrt{2}}{13}\right)$
e. None of the above.

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

11. Given $\sin 30^{\circ}=\frac{1}{2}$ and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$, determine the following:
$\csc 30^{\circ}$
a. $\csc 30^{\circ}=\frac{\sqrt{3}}{3}$
b. $\quad \csc 30^{\circ}=\frac{\sqrt{2}}{2}$
c. $\quad \csc 30^{\circ}=\sqrt{3}$
d. $\csc 30^{\circ}=2$
e. undefined
12. Given the figure below, determine the value of $\sin \theta$.

a. $\sin \theta=-\frac{3}{5}$
b. $\sin \theta=\frac{4}{3}$
c. $\sin \theta=-\frac{4}{5}$
d. $\sin \theta=-\frac{3}{4}$
e. $\sin \theta=\frac{3}{4}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

13. The point $(3,4)$ is on the terminal side of an angle in standard position. Determine the exact value of $\cos \theta$.
a. $\cos \theta=-\frac{5}{3}$
b. $\cos \theta=\frac{4}{3}$
c. $\cos \theta=\frac{3}{4}$
d. $\cos \theta=-\frac{4}{3}$
e. $\cos \theta=\frac{3}{5}$
14. Indicate the two quadrants θ could terminate in if $\tan \theta=-\frac{13}{23}$.
a. Quadrants II and III
d. Quadrants II and IV
b. Quadrants I and III
e. Quadrants III and IV
c. Quadrants I and IV
15. Evaluate $\sin 300^{\circ}$.
a. $\frac{-1}{2}$
b. $\frac{1}{2}$
c. $\frac{\sqrt{3}}{2}$
d. $\frac{-\sqrt{2}}{2}$
e. $\frac{-\sqrt{3}}{2}$
16. Find $\sin \theta$ if $\csc \theta=\frac{-23}{19}$.
a. $\frac{4}{23}$
b. $\frac{4}{19}$
c. $\frac{-4}{23}$
d. $\frac{19}{23}$
e. $\frac{-19}{23}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

17. Find $\tan \theta$ if $\sec \theta=\frac{\sqrt{170}}{7}$ and $\csc \theta=\frac{\sqrt{170}}{11}$.
a. $-\frac{7}{11}$
b. $\frac{170}{77}$
c. $\frac{7}{11}$
d. $\frac{77}{170}$
e. $\frac{11}{7}$
18. If $\sin \theta=\frac{-6}{\sqrt{85}}$ and θ terminates in QIII, find $\cos \theta$.
a. $\frac{-6}{7}$
d. $\frac{-\sqrt{85}}{49}$
b. $\frac{-7}{\sqrt{85}}$
e. $\frac{6}{7}$
c. $\frac{7}{\sqrt{85}}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

19. Suppose $\csc \theta=7$ and θ terminates in QII. Find the remaining trigonometric ratios of θ.
a. $\sin \theta=\frac{1}{7}$
$\cos \theta=\frac{4 \sqrt{3}}{7}$
$\tan \theta=\frac{1}{4 \sqrt{3}}$
$\sec \theta=\frac{7}{4 \sqrt{3}}$
$\cot \theta=4 \sqrt{3}$
d. $\sin \theta=\frac{-4 \sqrt{3}}{7}$
$\cos \theta=\frac{1}{7}$
$\tan \theta=-4 \sqrt{3}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=\frac{-1}{4 \sqrt{3}}$
b. $\sin \theta=\frac{1}{7}$
$\cos \theta=\frac{-4 \sqrt{3}}{7}$
$\tan \theta=-4 \sqrt{3}$
e. $\sin \theta=\frac{1}{7}$
$\cos \theta=\frac{-4 \sqrt{3}}{7}$
$\tan \theta=\frac{-1}{4 \sqrt{3}}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=\frac{-1}{4 \sqrt{3}}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=-4 \sqrt{3}$
c.
$\sin \theta=\frac{-4 \sqrt{3}}{7}$
$\cos \theta=\frac{1}{7}$
$\tan \theta=\frac{-1}{4 \sqrt{3}}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=-4 \sqrt{3}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

20. If $\csc \theta=-11$, find $\csc ^{3} \theta$.
a. 1,331
d. $\frac{-1}{1,331}$
b. $\frac{-1}{33}$
e. $-1,331$
c. -33
21. Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent.
$\sin \alpha(\csc \alpha-\sin \alpha)$
a. $1-\sin ^{2} \alpha$
b. $\frac{\csc ^{2} \alpha-1}{\csc ^{2} \alpha}$
c. $\frac{\csc ^{2} \alpha-\sec ^{2} \alpha+\tan ^{2} \alpha}{\csc ^{2} \alpha}$
d. $1-\cot ^{2} \alpha$
e. $\cos ^{2} \alpha$
22. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.
$(\sin x+\cos x)(\sin x-\cos x)$
a. $2 \sin ^{2} x-\sec ^{2} x-\tan ^{2} x$
b. $\sin ^{2} x-\cos ^{2} x$
c. $1-2 \cos ^{2} x$
d. $\csc ^{2} x-\cot ^{2} x-2 \cos ^{2} x$
e. $1-2 \sin \left(\frac{\pi}{2}-x\right) \cos x$
23. Which of the following is equivalent to the given expression?
$\frac{\sin ^{2} x}{1-\cos x}$
a. $\tan x+\sin x$
b. $1+\cos x$
c. $\csc x+\cot x$
d. $\tan x \cot x-\cos x$
e. $\cot x \sin x+\tan x$

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

24. Simplify the expression $\sqrt{x^{2}+13}$ as much as possible after substituting $\sqrt{13} \tan \theta$ for x.
a. $\sqrt{13}|\csc \theta|$
b. $\sqrt{13}|\sin \theta|$
c. $\sqrt{13}|\sec \theta|$
d. $13|\csc \theta|$
e. $13|\sec \theta|$
25. Simplify the expression $\sqrt{30-6 x^{2}}$ as much as possible after substituting $\sqrt{5} \sin \theta$ for x.
a. $30|\csc \theta|$
b. $\sqrt{30}|\csc \theta|$
c. $\sqrt{30}|\tan \theta|$
d. $30|\cos \theta|$
e. $\sqrt{30}|\cos \theta|$

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

Answer Section

1. E
2. D
3. B
4. C
5. A
6. B
7. B
8. D
9. B
10. C
11. D
12. C
13. E
14. D
15. E
16. E
17. E
18. B
19. E
20. E
21. D
22. A
23. B
24. C
25. E

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Find the complement and supplement of the angle 59°.
a. Complement: 31°
d. Complement: 149°
Supplement: 121°
Supplement: 239°
b. Complement: 121°
e. Complement: 121°
Supplement: 301 ${ }^{\circ}$
c. Complement: 41°

Supplement: 141°
\qquad 2. Let triangle $A B C$ be a right triangle with $C=90^{\circ}$. If $c=19$ and $a=10$, find b.
a. 9
d. $\sqrt{461}$
b. $\sqrt{9}$
e. None of the above.
c. $3 \sqrt{29}$
\qquad 3. Solve for x in the following right triangle:

a. 6
b. 4
c. 2
d. 5
e. 3

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

4. Find the lengths of the shortest two sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, if the length of the longest side is 24.
a. $6,6 \sqrt{3}$
b. $6, \frac{6}{\sqrt{3}}$
c. $6, \frac{12}{\sqrt{3}}$
d. $12, \frac{12}{\sqrt{3}}$
e. $12,12 \sqrt{3}$
5. Find the length of the shorter sides of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle if the length of the hypotenuse is 17.
a. $\frac{17 \sqrt{2}}{4}$
b. $\frac{17 \sqrt{2}}{2}$
c. $\frac{17 \sqrt{3}}{2}$
d. $\frac{17 \sqrt{3}}{3}$
e. $\frac{17}{2}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

\qquad 6. Graph the following parabola.
$f(x)=-\frac{1}{3} x^{2}-2$
a.

d.

b.

e. None of the above.
c.

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

\qquad 7. Find the distance between the two points $(-7,-5)$ and $(5,11)$.
a. 40
b. 20
c. 17
d. 60
e. 37
8. Determine two coterminal angles (one positive and one negative) for $\theta=-506^{\circ}$.
a. $124^{\circ},-236^{\circ}$
b. $304^{\circ},-416^{\circ}$
c. $124^{\circ},-326^{\circ}$
d. $214^{\circ},-146^{\circ}$
e. $214^{\circ},-326^{\circ}$
9. Determine which of the following points is located in quadrant 4.
a. $(-6,-4)$
b. $(-4,6)$
c. $(6,4)$
d. $(4,-6)$
e. $(-6,4)$
10. Which of the following points lies on the unit circle?
a. $\left(\frac{9}{13}, \frac{-2 \sqrt{10}}{13}\right)$
b. $\left(\frac{-7}{11}, \frac{2 \sqrt{10}}{11}\right)$
c. $\left(\frac{9}{11}, \frac{2 \sqrt{10}}{11}\right)$
d. $\left(\frac{7}{15}, \frac{2 \sqrt{10}}{15}\right)$
e. None of the above.

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

11. Given $\sin 30^{\circ}=\frac{1}{2}$ and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$, determine the following:
$\tan 30^{\circ}$
a. $\quad \tan 30^{\circ}=\sqrt{3}$
b. $\tan 30^{\circ}=1$
c. $\tan 30^{\circ}=\frac{\sqrt{2}}{2}$
d. $\tan 30^{\circ}=\frac{\sqrt{3}}{3}$
e. undefined
12. Given the figure below, determine the value of $\sin \theta$.

a. $\sin \theta=-\frac{5}{13}$
b. $\sin \theta=\frac{12}{5}$
c. $\sin \theta=\frac{12}{13}$
d. $\sin \theta=-\frac{5}{12}$
e. $\sin \theta=\frac{5}{12}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

13. The point $(5,12)$ is on the terminal side of an angle in standard position. Determine the exact value of $\sec \theta$.
a. $\sec \theta=-\frac{5}{13}$
b. $\sec \theta=\frac{5}{12}$
c. $\sec \theta=\frac{12}{5}$
d. $\sec \theta=-\frac{5}{12}$
e. $\sec \theta=\frac{13}{5}$
14. Indicate the two quadrants θ could terminate in if $\tan \theta=-\frac{21}{31}$.
a. Quadrants I and III
d. Quadrants II and IV
b. Quadrants II and III
e. Quadrants III and IV
c. Quadrants I and IV
15. Evaluate $\sin 150^{\circ}$.
a. $\frac{\sqrt{2}}{2}$
b. $\frac{\sqrt{3}}{2}$
c. $\frac{-\sqrt{3}}{2}$
d. $\frac{1}{2}$
e. $\frac{-1}{2}$
16. Find $\sin \theta$ if $\csc \theta=\frac{-19}{17}$.
a. $\frac{-17}{19}$
b. $\frac{-2}{19}$
d. $\frac{2}{19}$
e. $\frac{2}{17}$
C. $\frac{17}{19}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

17. Find $\tan \theta$ if $\sec \theta=\frac{\sqrt{218}}{7}$ and $\csc \theta=\frac{\sqrt{218}}{13}$.
a. $\frac{218}{91}$
b. $\frac{13}{7}$
c. $\frac{7}{13}$
d. $-\frac{7}{13}$
e. $\frac{91}{218}$
18. If $\sin \theta=\frac{-6}{\sqrt{85}}$ and θ terminates in QIV, find $\cos \theta$.
a. $\frac{-6}{7}$
b. $\frac{-7}{\sqrt{85}}$
d. $\frac{6}{7}$
e. $\frac{\sqrt{85}}{49}$
c.

$$
\frac{7}{\sqrt{85}}
$$

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

19. Suppose $\csc \theta=15$ and θ terminates in QII. Find the remaining trigonometric ratios of θ.
a. $\sin \theta=\frac{-4 \sqrt{14}}{15}$
d. $\sin \theta=\frac{-4 \sqrt{14}}{15}$
$\cos \theta=\frac{1}{15}$
$\tan \theta=\frac{-1}{4 \sqrt{14}}$
$\tan \theta=-4 \sqrt{14}$
$\sec \theta=\frac{-15}{4 \sqrt{14}}$
$\cot \theta=-4 \sqrt{14}$
$\sec \theta=\frac{-15}{4 \sqrt{14}}$
$\cot \theta=\frac{-1}{4 \sqrt{14}}$
b. $\sin \theta=\frac{1}{15}$
e. $\sin \theta=\frac{1}{15}$
$\cos \theta=\frac{4 \sqrt{14}}{15}$
$\cos \theta=\frac{-4 \sqrt{14}}{15}$
$\tan \theta=\frac{1}{4 \sqrt{14}}$
$\tan \theta=\frac{-1}{4 \sqrt{14}}$
$\sec \theta=\frac{15}{4 \sqrt{14}}$
$\cot \theta=4 \sqrt{14}$
$\sec \theta=\frac{-15}{4 \sqrt{14}}$
$\cot \theta=-4 \sqrt{14}$
c. $\sin \theta=\frac{1}{15}$
$\cos \theta=\frac{-4 \sqrt{14}}{15}$
$\tan \theta=-4 \sqrt{14}$
$\sec \theta=\frac{-15}{4 \sqrt{14}}$
$\cot \theta=\frac{-1}{4 \sqrt{14}}$
20. If $\csc \theta=-12$, find $\csc ^{3} \theta$.
a. $\frac{-1}{36}$
b. $\frac{-1}{1,728}$
c. $-1,728$
d. -36
e. 1,728

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

21. Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent.
$\sin \alpha(\csc \alpha-\sin \alpha)$
a. $1-\sin ^{2} \alpha$
b. $\frac{\csc ^{2} \alpha-1}{\csc ^{2} \alpha}$
c. $\frac{\csc ^{2} \alpha-\sec ^{2} \alpha+\tan ^{2} \alpha}{\csc ^{2} \alpha}$
d. $1-\cot ^{2} \alpha$
e. $\cos ^{2} \alpha$
22. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.
$(\tan x+1)^{2}$
a. $\tan ^{2} x+1$
b. $\sec ^{2} x+2 \tan x$
c. $\frac{1+2 \sin x \cos x}{\cos ^{2} x}$
d. $\tan ^{2} x+2 \tan x+1$
e. $\sec ^{2} x(1+2 \sin x \cos x)$
23. Which of the following is equivalent to the given expression?
$\frac{\sin ^{2} x}{1-\cos x}$
a. $\tan x+\sin x$
b. $1+\cos x$
c. $\csc x+\cot x$
d. $\tan x \cot x-\cos x$
e. $\cot x \sin x+\tan x$
24. Simplify the expression $\sqrt{x^{2}+6}$ as much as possible after substituting $\sqrt{6} \tan \theta$ for x.
a. $\quad 6|\sec \theta|$
b. $\sqrt{6}|\sec \theta|$
c. $\sqrt{6}|\sin \theta|$
d. $6|\csc \theta|$
e. $\sqrt{6}|\csc \theta|$

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

25. Simplify the expression $\sqrt{70-7 x^{2}}$ as much as possible after substituting $\sqrt{10} \sin \theta$ for x.
a. $\sqrt{70}|\tan \theta|$
b. $\sqrt{70}|\cos \theta|$
c. $70|\cos \theta|$
d. $\sqrt{70}|\csc \theta|$
e. $70|\csc \theta|$

McKeague/Turner Trigonometry 8e - Chapter 2 Form B

Answer Section

1. A
2. C
3. E
4. E
5. B
6. C
7. B
8. D
9. D
10. C
11. D
12. C
13. E
14. D
15. D
16. A
17. B
18. C
19. E
20. C
21. D
22. A
23. B
24. B
25. B

McKeague/Turner Trigonometry 8e - Chapter 2 Form C

Multiple Choice/Short Answer

Identify the choice that best completes the statement or answers the question/Use the space provided to write your answer.
\qquad 1. Find the complement and supplement of the angle 54°.
a. Complement: 36°
d. Complement: 144°
Supplement: 126°
Supplement: 234°
b. Complement: 126°
e. Complement: 126°
Supplement: 306°
Supplement: 36°
c. Complement: 46°
Supplement: 146°
2. Determine two coterminal angles (one positive and one negative) for $\theta=-457^{\circ}$.
3. Let triangle $A B C$ be a right triangle with $C=90^{\circ}$. If $c=19$ and $a=6$, find b.
a. $\sqrt{13}$
d. $5 \sqrt{13}$
b. $\sqrt{397}$
e. None of the above.
c. 13
4. Solve for x in the following right triangle:

a. 9
b. 6
c. 5
d. 8
e. 7

McKeague/Turner Trigonometry 8e - Chapter 2 Form C

\qquad 5. Find the lengths of the shortest two sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, if the length of the longest side is 16 .
a. $4, \frac{8}{\sqrt{3}}$
b. $4,4 \sqrt{3}$
c. $8,8 \sqrt{3}$
d. $4, \frac{4}{\sqrt{3}}$
e. $8, \frac{8}{\sqrt{3}}$
6. Find the length of the shorter sides of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle if the length of the hypotenuse is 21 .
a. $\frac{21 \sqrt{2}}{2}$
b. $\frac{21 \sqrt{2}}{4}$
c. $\frac{21}{2}$
d. $\frac{21 \sqrt{3}}{3}$
e. $\frac{21 \sqrt{3}}{2}$
7. Given the figure below, determine the value of $\sin \theta$.

McKeague/Turner Trigonometry 8e - Chapter 2 Form C

\qquad 8. Graph the following parabola.
$f(x)=-\frac{1}{3} x^{2}-2$
a.

b.

c.

d.

e. None of the above.
-

McKeague/Turner Trigonometry 8e - Chapter 2 Form C

9. Find the distance between the two points $(-5,8)$ and $(19,53)$.
a. 102
b. 51
c. 48
d. 153
e. 99
10. Determine which of the following points is located in quadrant 4 .
a. $(-6,3)$
b. $(-3,6)$
c. $(3,6)$
d. $(-3,-6)$
e. $(6,-3)$
11. Which of the following points lies on the unit circle?
a. $\left(\frac{-5}{13}, \frac{-4 \sqrt{2}}{13}\right)$
b. $\left(\frac{-7}{11}, \frac{4 \sqrt{2}}{11}\right)$
c. $\left(\frac{5}{9}, \frac{-4 \sqrt{2}}{9}\right)$
d. $\left(\frac{-7}{9}, \frac{-4 \sqrt{2}}{9}\right)$
e. None of the above.
12. Given $\sin 30^{\circ}=\frac{1}{2}$ and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$, determine the following: $\sec 30^{\circ}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form C

13. Indicate the two quadrants θ could terminate in if $\tan \theta=-\frac{17}{25}$.
a. Quadrants III and IV
d. Quadrants II and III
b. Quadrants I and III
e. Quadrants II and IV
c. Quadrants I and IV
14. Evaluate $\sin 300^{\circ}$.
a. $\frac{1}{2}$
b. $\frac{-\sqrt{2}}{2}$
c. $\frac{-1}{2}$
d. $\frac{-\sqrt{3}}{2}$
e. $\frac{\sqrt{3}}{2}$
15. Find $\sin \theta$ if $\csc \theta=\frac{-19}{17}$.
a. $\frac{-2}{19}$
b. $\frac{-17}{19}$
c. $\frac{17}{19}$
d. $\frac{2}{17}$
e. $\frac{2}{19}$
16. Find $\tan \theta$ if $\sec \theta=\frac{\sqrt{290}}{11}$ and $\csc \theta=\frac{\sqrt{290}}{13}$.
a. $-\frac{11}{13}$
b. $\frac{13}{11}$
c. $\frac{290}{143}$
d. $\frac{143}{290}$
e. $\frac{11}{13}$
17. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. $(2-2 \cos x)(2+2 \cos x)$
a. $4-\cos ^{2} x$
b. $4-4 \cos ^{2} x$
c. $4 \sin ^{2} x$
d. $\frac{4}{\csc ^{2} x}$
e. $\frac{4}{1+\cot ^{2} x}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form C

18. If $\sin \theta=\frac{-8}{\sqrt{89}}$ and θ terminates in QIV, find $\cos \theta$.
a. $\frac{5}{8}$
b. $\frac{-5}{8}$
c. $\frac{-5}{\sqrt{89}}$
d. $\frac{5}{\sqrt{89}}$
e. $\frac{\sqrt{89}}{25}$
19. The point (7,24) is on the terminal side of an angle in standard position. Determine the exact value of $\sin \theta$.

McKeague/Turner Trigonometry 8e - Chapter 2 Form C

20. Suppose $\csc \theta=7$ and θ terminates in QII. Find the remaining trigonometric ratios of θ.
a. $\sin \theta=\frac{1}{7}$
d. $\sin \theta=\frac{-4 \sqrt{3}}{7}$
$\cos \theta=\frac{1}{7}$
$\tan \theta=\frac{1}{4 \sqrt{3}}$
$\tan \theta=\frac{-1}{4 \sqrt{3}}$
$\sec \theta=\frac{7}{4 \sqrt{3}}$
$\cot \theta=4 \sqrt{3}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=-4 \sqrt{3}$
b. $\sin \theta=\frac{1}{7}$
e. $\sin \theta=\frac{1}{7}$
$\cos \theta=\frac{-4 \sqrt{3}}{7}$
$\tan \theta=\frac{-1}{4 \sqrt{3}}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=-4 \sqrt{3}$
$\cos \theta=\frac{-4 \sqrt{3}}{7}$
$\tan \theta=-4 \sqrt{3}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=\frac{-1}{4 \sqrt{3}}$
c.

$$
\begin{aligned}
& \sin \theta=\frac{-4 \sqrt{3}}{7} \\
& \cos \theta=\frac{1}{7}
\end{aligned}
$$

$$
\tan \theta=-4 \sqrt{3}
$$

$$
\sec \theta=\frac{-7}{4 \sqrt{3}}
$$

$$
\cot \theta=\frac{-1}{4 \sqrt{3}}
$$

21. If $\csc \theta=-14$, find $\csc ^{3} \theta$.
a. $\frac{-1}{42}$
b. $\frac{-1}{2,744}$
c. 2,744
d. $-2,744$
e. -42

McKeague/Turner Trigonometry 8e - Chapter 2 Form C

22. Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent.
$\sec \phi\left(\frac{\sin \phi}{\tan \phi}\right)$
a. $\sec ^{2} \phi-\tan ^{2} \phi$
b. $\sin ^{2} \phi+\cos ^{2} \phi$
c. $\csc ^{2} \phi-\cot ^{2} \phi$
d. $\cos ^{2} \phi-\sin ^{2} \phi$
e. 1
23. Simplify the expression $\sqrt{x^{2}+11}$ as much as possible after substituting $\sqrt{11} \tan \theta$ for x.
a. $\sqrt{11}|\sec \theta|$
b. $11|\sec \theta|$
c. $\sqrt{11}|\csc \theta|$
d. $\sqrt{11}|\sin \theta|$
e. $11|\csc \theta|$
24. Simplify the expression $\sqrt{30-10 x^{2}}$ as much as possible after substituting $\sqrt{3} \sin \theta$ for x.
a. $30|\cos \theta|$
b. $\sqrt{30}|\cos \theta|$
c. $\sqrt{30}|\csc \theta|$
d. $\sqrt{30}|\tan \theta|$
e. $30|\csc \theta|$
25. Which of the following is equivalent to the given expression?
$\frac{\cot ^{2} x}{\csc x+1}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form C

Answer Section

1. A
2. $263^{\circ},-97^{\circ}$
3. D
4. B
5. C
6. A
7. $\sin \theta=-\frac{4}{5}$
8. D
9. B
10. E
11. D
12. $\sec 30^{\circ}=\frac{2 \sqrt{3}}{3}$
13. E
14. D
15. B
16. B
17. A
18. D
19. $\sin \theta=\frac{24}{25}$
20. B
21. D
22. D
23. A
24. B
25. $\csc x-1$

McKeague/Turner Trigonometry 8e - Chapter 2 Form D

Multiple Choice/Short Answer

Identify the choice that best completes the statement or answers the question/Use the space provided to write your answer.

1. Determine two coterminal angles (one positive and one negative) for $\theta=-477^{\circ}$.
2. Find the complement and supplement of the angle 59°.
a. Complement: 121°
Supplement: 301°
d. Complement: 121°
Supplement: 31°
e. Complement: 31°
b. Complement: 41°
Supplement: 141°
c. Complement: 149°

Supplement: 239°
\qquad 3. Let triangle $A B C$ be a right triangle with $C=90^{\circ}$. If $c=19$ and $a=2$, find b.
a. 17
d. $\sqrt{17}$
b. $\sqrt{365}$
e. None of the above.
c. $\sqrt{357}$
4. Solve for x in the following right triangle:

a. 1
b. 5
c. 4
d. 3
e. 2

McKeague/Turner Trigonometry 8e - Chapter 2 Form D

\qquad 5. Find the lengths of the shortest two sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, if the length of the longest side is 16 .
a. $4, \frac{4}{\sqrt{3}}$
b. $4,4 \sqrt{3}$
c. $8,8 \sqrt{3}$
d. $4, \frac{8}{\sqrt{3}}$
e. $8, \frac{8}{\sqrt{3}}$
6. The point $(8,15)$ is on the terminal side of an angle in standard position. Determine the exact value of $\cot \theta$.
7. Find the length of the shorter sides of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle if the length of the hypotenuse is 17 .
a. $\frac{17 \sqrt{3}}{3}$
b. $\frac{17 \sqrt{3}}{2}$
c. $\frac{17}{2}$
d. $\frac{17 \sqrt{2}}{4}$
e. $\frac{17 \sqrt{2}}{2}$
8. Given the figure below, determine the value of $\sin \theta$.

McKeague/Turner Trigonometry 8e - Chapter 2 Form D

\qquad 9. Graph the following parabola.
$f(x)=-\frac{1}{3} x^{2}-2$
a.

d.

b.

c.

e. None of the above.

McKeague/Turner Trigonometry 8e - Chapter 2 Form D

10. Determine which of the following points is located in quadrant 4 .
a. $(6,4)$
b. $(-6,-4)$
c. $(4,-6)$
d. $(-6,4)$
e. $(-4,6)$
11. Find $\tan \theta$ if $\sec \theta=\frac{\sqrt{530}}{13}$ and $\csc \theta=\frac{\sqrt{530}}{19}$.
a. $\frac{530}{247}$
b. $\frac{13}{19}$
c. $\frac{19}{13}$
d. $-\frac{13}{19}$
e. $\frac{247}{530}$
12. Which of the following points lies on the unit circle?
a. $\left(\frac{-7}{11}, \frac{2 \sqrt{10}}{11}\right)$
b. $\left(\frac{7}{15}, \frac{2 \sqrt{10}}{15}\right)$
c. $\left(\frac{9}{11}, \frac{2 \sqrt{10}}{11}\right)$
d. $\left(\frac{9}{13}, \frac{-2 \sqrt{10}}{13}\right)$
e. None of the above.
13. Given $\sin 30^{\circ}=\frac{1}{2}$ and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$, determine the following: $\csc 30^{\circ}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form D

14. Which of the following is equivalent to the given expression?
$\frac{\cos ^{2} x}{1+\sin x}$
a. $\tan x+\cos x$
b. $1-\sin x$
c. $\csc x+\cot x$
d. $\tan x \cot x-\sin x$
e. $\cot x \cos x+\tan x$
15. Evaluate $\sin 240^{\circ}$.
a. $\frac{-\sqrt{2}}{2}$
b. $\frac{1}{2}$
c. $\frac{-1}{2}$
d. $\frac{-\sqrt{3}}{2}$
e. $\frac{\sqrt{3}}{2}$
16. Indicate the two quadrants θ could terminate in if $\tan \theta=-\frac{21}{31}$.
a. Quadrants I and III
d. Quadrants II and III
b. Quadrants II and IV
e. Quadrants III and IV
c. Quadrants I and IV
17. Find $\sin \theta$ if $\csc \theta=\frac{-17}{13}$.
a. $\frac{13}{17}$
b. $\frac{-4}{17}$
c. $\frac{-13}{17}$
d. $\frac{4}{13}$
e. $\frac{4}{17}$
18. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.

$$
(\tan x+1)^{2}
$$

a. $\tan ^{2} x+1$
b. $\sec ^{2} x+2 \tan x$
c. $\frac{1+2 \sin x \cos x}{\cos ^{2} x}$
d. $\tan ^{2} x+2 \tan x+1$
e. $\sec ^{2} x(1+2 \sin x \cos x)$

McKeague/Turner Trigonometry 8e - Chapter 2 Form D

19. If $\sin \theta=\frac{-6}{\sqrt{85}}$ and θ terminates in QIV, find $\cos \theta$.
a. $\frac{7}{\sqrt{85}}$
b. $\frac{6}{7}$
c. $\frac{\sqrt{85}}{49}$
d. $\frac{-7}{\sqrt{85}}$
e. $\frac{-6}{7}$
20. Find the distance between the two points $(-7,-4)$ and $(41,16)$.
a. 104
b. 52
c. 49
d. 156
e. 101

McKeague/Turner Trigonometry 8e - Chapter 2 Form D

21. Suppose $\csc \theta=9$ and θ terminates in QII. Find the remaining trigonometric ratios of θ.
a. $\sin \theta=\frac{1}{9}$
$\cos \theta=\frac{4 \sqrt{5}}{9}$
$\tan \theta=\frac{1}{4 \sqrt{5}}$
d. $\sin \theta=\frac{-4 \sqrt{5}}{9}$
$\cos \theta=\frac{1}{9}$
$\tan \theta=\frac{-1}{4 \sqrt{5}}$
$\sec \theta=\frac{9}{4 \sqrt{5}}$
$\sec \theta=\frac{-9}{4 \sqrt{5}}$
$\cot \theta=4 \sqrt{5}$
$\cot \theta=-4 \sqrt{5}$
b. $\sin \theta=\frac{1}{9}$
e. $\sin \theta=\frac{1}{9}$
$\cos \theta=\frac{-4 \sqrt{5}}{9}$
$\tan \theta=\frac{-1}{4 \sqrt{5}}$
$\sec \theta=\frac{-9}{4 \sqrt{5}}$
$\cot \theta=-4 \sqrt{5}$
$\cos \theta=\frac{-4 \sqrt{5}}{9}$
$\tan \theta=-4 \sqrt{5}$
$\sec \theta=\frac{-9}{4 \sqrt{5}}$
$\cot \theta=\frac{-1}{4 \sqrt{5}}$
c.
$\sin \theta=\frac{-4 \sqrt{5}}{9}$
$\cos \theta=\frac{1}{9}$
$\tan \theta=-4 \sqrt{5}$
$\sec \theta=\frac{-9}{4 \sqrt{5}}$
$\cot \theta=\frac{-1}{4 \sqrt{5}}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form D

22. If $\csc \theta=-12$, find $\csc ^{3} \theta$.
a. 1,728
d. $-1,728$
b. -36
e. $\frac{-1}{36}$
c. $\frac{-1}{1,728}$
23. Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent.
$\sin \alpha(\csc \alpha-\sin \alpha)$
a. $1-\sin ^{2} \alpha$
b. $\frac{\csc ^{2} \alpha-1}{\csc ^{2} \alpha}$
c. $\frac{\csc ^{2} \alpha-\sec ^{2} \alpha+\tan ^{2} \alpha}{\csc ^{2} \alpha}$
d. $1-\cot ^{2} \alpha$
e. $\cos ^{2} \alpha$
24. Simplify the expression $\sqrt{x^{2}+10}$ as much as possible after substituting $\sqrt{10} \tan \theta$ for x.
a. $\sqrt{10}|\csc \theta|$
b. $\sqrt{10}|\sec \theta|$
c. $10|\sec \theta|$
d. $10|\csc \theta|$
e. $\sqrt{10}|\sin \theta|$
25. Simplify the expression $\sqrt{66-11 x^{2}}$ as much as possible after substituting $\sqrt{6} \sin \theta$ for x.
a. $66|\csc \theta|$
b. $66|\cos \theta|$
c. $\sqrt{66}|\tan \theta|$
d. $\sqrt{66}|\csc \theta|$
e. $\sqrt{66}|\cos \theta|$

McKeague/Turner Trigonometry 8e - Chapter 2 Form D

Answer Section

1. $243^{\circ},-117^{\circ}$
2. E
3. C
4. E
5. C
6. $\cot \theta=\frac{8}{15}$
7. E
8. $\sin \theta=-\frac{4}{5}$
9. A
10. C
11. C
12. C
13. $\csc 30^{\circ}=2$
14. B
15. D
16. B
17. C
18. A
19. A
20. B
21. B
22. D
23. D
24. B
25. E

McKeague/Turner Trigonometry 8e - Chapter 2 Form E

Multiple Choice/Short Answer

Identify the choice that best completes the statement or answers the question/Use the space provided to write your answer.
\qquad 1. Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent.
$\csc \rho \tan \rho+\sec \rho$
a. $\frac{2 \tan \rho}{\sin \rho}$
b. $\frac{\csc \rho \sin \rho+\sec \rho \cos \rho}{\cos \rho}$
c. $\tan \rho \cos \rho+\sin \rho$
$\sin \rho \cos \rho$
d. $2 \sin \rho$
e. $\frac{2}{\cos \rho}$
2. Find the complement and supplement of the angle 59°.
a. Complement: 121°
Supplement: 31°
d. Complement: 41°
Supplement: 141°
b. Complement: 31°
Supplement: 121°
e. Complement: 149°
Supplement: 239°
c. Complement: 121°

Supplement: 301°
3. Determine which of the following points is located in quadrant 4.
a. $(-3,-6)$
b. $(-6,3)$
c. $(3,6)$
d. $(-3,6)$
e. $(6,-3)$

McKeague/Turner Trigonometry 8e - Chapter 2 Form E

4. Which of the following points lies on the unit circle?
a. $\left(\frac{-7}{11}, \frac{-4 \sqrt{2}}{11}\right)$
b. $\left(\frac{-7}{9}, \frac{4 \sqrt{2}}{9}\right)$
c. $\left(\frac{5}{9}, \frac{4 \sqrt{2}}{9}\right)$
d. $\left(\frac{-5}{13}, \frac{4 \sqrt{2}}{13}\right)$
e. None of the above.
5. Let triangle $A B C$ be a right triangle with $C=90^{\circ}$. If $c=19$ and $a=2$, find b.
a. $\sqrt{357}$
d. 17
b. $\sqrt{365}$
e. None of the above.
c. $\sqrt{17}$
6. Determine two coterminal angles (one positive and one negative) for $g=-453^{\circ}$.

McKeague/Turner Trigonometry 8e - Chapter 2 Form E

7. Solve for x in the following right triangle:

a. 6
b. 7
c. 5
d. 3
e. 4
8. Find the lengths of the shortest two sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, if the length of the longest side is 20 .
a. $10,10 \sqrt{3}$
b. $10, \frac{10}{\sqrt{3}}$
d. $5,5 \sqrt{3}$
e. $5, \frac{5}{\sqrt{3}}$
c. $5, \frac{10}{\sqrt{3}}$
9. Given the figure below, determine the value of $\sin \theta$.

McKeague/Turner Trigonometry 8e - Chapter 2 Form E

10. Indicate the two quadrants θ could terminate in if $\tan \theta=-\frac{17}{25}$.
a. Quadrants III and IV
d. Quadrants I and IV
b. Quadrants II and IV
e. Quadrants II and III
c. Quadrants I and III
11. Evaluate $\sin 300^{\circ}$.
a. $\frac{-\sqrt{3}}{2}$
b. $\frac{-1}{2}$
c. $\frac{1}{2}$
d. $\frac{\sqrt{3}}{2}$
e. $\frac{-\sqrt{2}}{2}$
12. The point $(8,15)$ is on the terminal side of an angle in standard position. Determine the exact value of $\cot \theta$.
13. Find $\sin \theta$ if $\csc \theta=\frac{-37}{31}$.
a. $\frac{6}{37}$
b. $\frac{-6}{37}$
c. $\frac{-31}{37}$
d. $\frac{6}{31}$
e. $\frac{31}{37}$
14. Find $\tan \theta$ if $\sec \theta=\frac{\sqrt{410}}{11}$ and $\csc \theta=\frac{\sqrt{410}}{17}$.
a. $\frac{410}{187}$
b. $\frac{187}{410}$
c. $-\frac{11}{17}$
d. $\frac{17}{11}$
e. $\frac{11}{17}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form E

15. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.
$(2-2 \cos x)(2+2 \cos x)$
a. $4-\cos ^{2} x$
b. $4-4 \cos ^{2} x$
c. $4 \sin ^{2} x$
d. $\frac{4}{\csc ^{2} x}$
e. $\frac{4}{1+\cot ^{2} x}$
16. If $\sin \theta=\frac{-8}{\sqrt{113}}$ and θ terminates in QIII, find $\cos \theta$.
a. $\frac{-7}{\sqrt{113}}$
d. $\frac{7}{\sqrt{113}}$
b. $\frac{-7}{8}$
e. $\frac{-\sqrt{113}}{49}$
c. $\frac{7}{8}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form E

17. Suppose $\csc \theta=9$ and θ terminates in QII. Find the remaining trigonometric ratios of θ.
a. $\sin \theta=\frac{1}{9}$
d. $\sin \theta=\frac{1}{9}$
$\cos \theta=\frac{-4 \sqrt{5}}{9}$
$\cos \theta=\frac{4 \sqrt{5}}{9}$
$\tan \theta=-4 \sqrt{5}$
$\tan \theta=\frac{1}{4 \sqrt{5}}$
$\sec \theta=\frac{-9}{4 \sqrt{5}}$
$\cot \theta=\frac{-1}{4 \sqrt{5}}$
$\sec \theta=\frac{9}{4 \sqrt{5}}$
$\cot \theta=4 \sqrt{5}$
b. $\sin \theta=\frac{-4 \sqrt{5}}{9}$
e. $\sin \theta=\frac{1}{9}$
$\cos \theta=\frac{1}{9}$
$\cos \theta=\frac{-4 \sqrt{5}}{9}$
$\tan \theta=\frac{-1}{4 \sqrt{5}}$
$\tan \theta=\frac{-1}{4 \sqrt{5}}$
$\sec \theta=\frac{-9}{4 \sqrt{5}}$
$\cot \theta=-4 \sqrt{5}$
$\sec \theta=\frac{-9}{4 \sqrt{5}}$
$\cot \theta=-4 \sqrt{5}$
c.
$\sin \theta=\frac{-4 \sqrt{5}}{9}$
$\cos \theta=\frac{1}{9}$
$\tan \theta=-4 \sqrt{5}$
$\sec \theta=\frac{-9}{4 \sqrt{5}}$
$\cot \theta=\frac{-1}{4 \sqrt{5}}$
18. If $\csc \theta=-11$, find $\csc ^{3} \theta$.
a. -33
b. $\frac{-1}{33}$
c. $\frac{-1}{1,331}$
d. $-1,331$
e. 1,331

McKeague/Turner Trigonometry 8e - Chapter 2 Form E

19. Find the length of the shorter sides of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle if the length of the hypotenuse is 19 .
a. $\frac{19 \sqrt{3}}{2}$
b. $\frac{19 \sqrt{3}}{3}$
d. $\frac{19}{2}$
e. $\frac{19 \sqrt{2}}{4}$
c. $\frac{19 \sqrt{2}}{2}$

McKeague/Turner Trigonometry 8e - Chapter 2 Form E

20. Graph the following parabola.
$f(x)=-\frac{1}{2} x^{2}-2$
a.

d.

b.

C.

e. None of the above.

McKeague/Turner Trigonometry 8e - Chapter 2 Form E

21. Given $\sin 30^{\circ}=\frac{1}{2}$ and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$, determine the following: $\tan 30^{\circ}$
22. Find the distance between the two points $(9,4)$ and $(49,79)$.
a. 170
b. 85
c. 82
d. 255
e. 167
23. Simplify the expression $\sqrt{x^{2}+10}$ as much as possible after substituting $\sqrt{10} \tan \theta$ for x.
a. $\sqrt{10}|\sec \theta|$
b. $\sqrt{10}|\sin \theta|$
c. $\sqrt{10}|\csc \theta|$
d. $10|\csc \theta|$
e. $10|\sec \theta|$
24. Simplify the expression $\sqrt{30-6 x^{2}}$ as much as possible after substituting $\sqrt{5} \sin \theta$ for x.
a. $30|\csc \theta|$
b. $\sqrt{30}|\csc \theta|$
c. $\sqrt{30}|\tan \theta|$
d. $30|\cos \theta|$
e. $\sqrt{30}|\cos \theta|$
25. Which of the following is equivalent to the given expression?
$\frac{\sin ^{2} x}{1-\cos x}$
a. $\tan x+\sin x$
b. $1+\cos x$
c. $\csc x+\cot x$
d. $\tan x \cot x-\cos x$
e. $\cot x \sin x+\tan x$

McKeague/Turner Trigonometry 8e - Chapter 2 Form E

Answer Section

1. D
2. B
3. E
4. B
5. A
6. $267^{\circ},-93^{\circ}$
7. E
8. A
9. $\sin \theta=-\frac{4}{5}$
10. B
11. A
12. $\cot \theta=\frac{8}{15}$
13. C
14. D
15. A
16. A
17. E
18. D
19. C
20. B
21. $\tan 30^{\circ}=\frac{\sqrt{3}}{3}$
22. B
23. A
24. E
25. B

McKeague/Turner Trigonometry Chapter 2 Form F

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent.
$\cot \beta \sec \beta$
a. $\frac{1}{\sin \beta}$
b. $\frac{\sec \beta}{\tan \beta}$
c. $\frac{1}{\cos \beta \tan \beta}$
d. $\sec \beta$
e. $\csc \beta$
\qquad 2. Find the complement and supplement of the angle 55°.
a. Complement: 45°
d. Complement: 35°
Supplement: 145°
Supplement: 125°
b. Complement: 125°
e. Complement: 125°
Supplement: 35°
Supplement: 305°
c. Complement: 145°

Supplement: 235°
\qquad 3. Determine which of the following points is located in quadrant 4.
a. $(-5,-6)$
b. $(6,-5)$
c. $(5,6)$
d. $(-6,5)$
e. $(-5,6)$
4. Which of the following points lies on the unit circle?
a. $\left(\frac{-5}{7}, \frac{2 \sqrt{6}}{7}\right)$
b. $\left(\frac{-5}{9}, \frac{-2 \sqrt{6}}{9}\right)$
c. $\left(\frac{3}{7}, \frac{2 \sqrt{6}}{7}\right)$
d. $\left(\frac{-3}{11}, \frac{2 \sqrt{6}}{11}\right)$
e. None of the above.

McKeague/Turner Trigonometry Chapter 2 Form F

5. Determine two coterminal angles (one positive and one negative) for $\theta=-526^{\circ}$.
6. Let triangle $A B C$ be a right triangle with $C=90^{\circ}$. If $c=19$ and $a=6$, find b.
a. $\sqrt{13}$
d. $5 \sqrt{13}$
b. $\sqrt{397}$
e. None of the above.
c. 13
7. Solve for x in the following right triangle:

a. 8
b. 9
c. 6
d. 7
e. 10
8. Find the lengths of the shortest two sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, if the length of the longest side is 16 .
a. $4, \frac{8}{\sqrt{3}}$
b. $4,4 \sqrt{3}$
c. $8, \frac{8}{\sqrt{3}}$
d. $4, \frac{4}{\sqrt{3}}$
e. $8,8 \sqrt{3}$

McKeague/Turner Trigonometry Chapter 2 Form F

9. Indicate the two quadrants θ could terminate in if $\tan \theta=-\frac{13}{23}$.
a. Quadrants I and III
d. Quadrants I and IV
b. Quadrants III and IV
e. Quadrants II and IV
c. Quadrants II and III
10. Evaluate $\sin 240^{\circ}$.
a. $\frac{-1}{2}$
b. $\frac{1}{2}$
c. $\frac{\sqrt{3}}{2}$
d. $\frac{-\sqrt{2}}{2}$
e. $\frac{-\sqrt{3}}{2}$
11. The point (7,24) is on the terminal side of an angle in standard position. Determine the exact value of $\csc \theta$.
12. Find $\sin \theta$ if $\csc \theta=\frac{-17}{13}$.
a. $\frac{-13}{17}$
b. $\frac{4}{13}$
d. $\frac{13}{17}$
e. $\frac{-4}{17}$
C. $\frac{4}{17}$
13. Find $\tan \theta$ if $\sec \theta=\frac{\sqrt{410}}{11}$ and $\csc \theta=\frac{\sqrt{410}}{17}$.
a. $\frac{11}{17}$
b. $\frac{17}{11}$
c. $-\frac{11}{17}$
d. $\frac{187}{410}$
e. $\frac{410}{187}$

McKeague/Turner Trigonometry Chapter 2 Form F

14. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.
$(\tan x+1)^{2}$
a. $\tan ^{2} x+1$
b. $\sec ^{2} x+2 \tan x$
c. $\frac{1+2 \sin x \cos x}{\cos ^{2} x}$
d. $\tan ^{2} x+2 \tan x+1$
e. $\sec ^{2} x(1+2 \sin x \cos x)$
15. If $\sin \theta=\frac{-6}{\sqrt{157}}$ and θ terminates in QIII, find $\cos \theta$.
a. $\frac{11}{\sqrt{157}}$
b. $\frac{-\sqrt{157}}{121}$
c. $\frac{-11}{\sqrt{157}}$
d. $\frac{-6}{11}$
e. $\frac{6}{11}$

McKeague/Turner Trigonometry Chapter 2 Form F

16. Suppose $\csc \theta=7$ and θ terminates in QII. Find the remaining trigonometric ratios of θ.
a. $\sin \theta=\frac{1}{7}$
$\cos \theta=\frac{-4 \sqrt{3}}{7}$
d. $\sin \theta=\frac{1}{7}$
$\cos \theta=\frac{-4 \sqrt{3}}{7}$
$\tan \theta=-4 \sqrt{3}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=\frac{-1}{4 \sqrt{3}}$
b. $\sin \theta=\frac{-4 \sqrt{3}}{7}$
$\cos \theta=\frac{1}{7}$
$\tan \theta=-4 \sqrt{3}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=\frac{-1}{4 \sqrt{3}}$
$\tan \theta=\frac{-1}{4 \sqrt{3}}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=-4 \sqrt{3}$
e. $\sin \theta=\frac{-4 \sqrt{3}}{7}$
$\cos \theta=\frac{1}{7}$
$\tan \theta=\frac{-1}{4 \sqrt{3}}$
$\sec \theta=\frac{-7}{4 \sqrt{3}}$
$\cot \theta=-4 \sqrt{3}$
c. $\sin \theta=\frac{1}{7}$
$\cos \theta=\frac{4 \sqrt{3}}{7}$
$\tan \theta=\frac{1}{4 \sqrt{3}}$
$\sec \theta=\frac{7}{4 \sqrt{3}}$
$\cot \theta=4 \sqrt{3}$
17. Given $\sin 30^{\circ}=\frac{1}{2}$ and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$, determine the following: $\sec 30^{\circ}$

McKeague/Turner Trigonometry Chapter 2 Form F

18. If $\csc \theta=-11$, find $\csc ^{3} \theta$.
a. -33
b. $\frac{-1}{1,331}$
c. $-1,331$
d. $\frac{-1}{33}$
e. 1,331
19. Find the length of the shorter sides of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle if the length of the hypotenuse is 17 .
a. $\frac{17}{2}$
b. $\frac{17 \sqrt{3}}{3}$
d. $\frac{17 \sqrt{3}}{2}$
e. $\frac{17 \sqrt{2}}{2}$
c. $\frac{17 \sqrt{2}}{4}$
20. Given the figure below, determine the value of $\sin \theta$.

McKeague/Turner Trigonometry Chapter 2 Form F

21. Graph the following parabola.
$f(x)=-\frac{1}{2} x^{2}-2$
a.

d.

b.

e. None of the above.
c.

McKeague/Turner Trigonometry Chapter 2 Form F

22. Find the distance between the two points (4, 2) and (10, 10).
a. 20
b. 10
c. 7
d. 30
e. 17
23. Which of the following is equivalent to the given expression?
$\frac{\cos ^{2} x}{1+\sin x}$
a. $\tan x+\cos \pi$
b. $1-\sin x$
c. $\csc x+\cot x$
d. $\tan x \cot x-\sin x$
e. $\cot x \cos x+\tan x$
24. Simplify the expression $\sqrt{x^{2}+13}$ as much as possible after substituting $\sqrt{13} \tan \theta$ for x.
a. $\sqrt{13}|\csc \theta|$
b. $\sqrt{13}|\sin \theta|$
c. $\sqrt{13}|\sec \theta|$
d. $13|\csc \theta|$
e. $13|\sec \theta|$
25. Simplify the expression $\sqrt{30-6 x^{2}}$ as much as possible after substituting $\sqrt{5} \sin \theta$ for x.
a. $\sqrt{30}|\tan \theta|$
b. $30|\csc \theta|$
c. $\sqrt{30}|\cos \theta|$
d. $\sqrt{30}|\csc \theta|$
e. $30|\cos \theta|$

McKeague/Turner Trigonometry Chapter 2 Form F

McKeague/Turner Trigonometry Chapter 2 Form F
 Answer Section

1. D
2. D
3. B
4. A
5. $194^{\circ},-166^{\circ}$
6. D
7. D
8. E
9. E
10. E
11. $\csc \theta=\frac{25}{24}$
12. A
13. B
14. A
15. C
16. D
17. $\sec 30^{\circ}=\frac{2 \sqrt{3}}{3}$
18. C
19. E
20. $\sin \theta=-\frac{4}{5}$
21. B
22. B
23. B
24. C
25. C
