Initial cost of equipment
Project and equipment life
Salvage value of equipment
Working capital requirement
Depreciation method
Depreciation expense
Discount rate
Tax rate

	Base case	
Unit sales		10,000
Price per unit	\$	125.00
Variable cost per unit	\$	75.00
Fixed costs	\$	250,000.00

Best Case

	Solution
Revenues	$\$ 1,512,500$
Variable cost	742,500
Fixed Expenses	225,000
Gross profit	$\$ 545,000$
Depreciation	100,000
Net operating income	$\$ 445,000$
Income tax expense	151,300
Net income	$\$ 293,700$
Cash flow	$\$ 393,700$

|NPV
Expected Case

		Solution
Revenues		$\$ 1,250,000$
Variable cost	750,000	
Fixed Expenses		250,000
Gross profit	$\$ 250,000$	
Depreciation	100,000	
Net operating income	$\$ 150,000$	
Income tax expense	51,000	
NOPAT	$\$ 99,000$	
plus: Depreciation	100,000	
less: CAPEX	-	
less: Working capital investment		-
		$\$ 199,000$

NPV
Worst Case

	Assuming the negative tax credit ${ }^{\prime}$
Revenues	Solution
Variable cost	$\$ 1,012,500.00$
Fixed Expenses	$\$ 742,500.00$
Gross profit	$\$ 275,000.00$
Depreciation	$-\$ 5,000.00$
Net operating income	$\$ 100,000.00$
Income tax expense	$-\$ 105,000.00$
Net income	$-\$ 35,700.00$
Cash flow	$-\$ 69,300.00$

NPV=PV(E12,E7,D50)-E6 NPV

Problem 3-1

Given
$\$ 1,000,000.00$
10
0
0
Straight-Line
$\$ 100,000.00$
10.00%
34.00%

Worst case	Best Case
9000	11000
$\$ 112.50$	$\$ 137.50$
$\$ 82.50$	$\$ 67.50$
$\$ 275,000.00$	$\$ 225,000.00$

Excel formula in previous column	F17*F18
	F17*F19
	F20
	D25-D26-D27
	E11
	D28-D29
D30* E13	
D30-D31	
	D32+D29

$\$ 1,419,116.07$

Excel formula	d17*d18
d17*d19	
d20	
	D25-D26-D27
E11	
D28-D29	
D46* 13	
D30-D31	
	D32+D29

obtained here can used somewhere else or carried forward

	Excel formula in previous column
	E17*E18
	E20
	D42-D43-D44
	E11
D45-D46	
D47*E13	
D47-D48	
	D32+D29

Solution Legend
= Value given in problem
= Formula/Calculation/Analysis required
= Qualitative analysis or Short answer required
= Goal Seek or Solver cell
= Crystal Ball Input
= Crystal Ball Output

Problem 3-2

Initial cost of equipment Project and equipment life
Salvage value of equipment
Working capital requirement
Depreciation method
Depreciation expense
Discount rate
Tax rate

Unit sales	Base case	
		11,000
Price per unit	\$	125.00
Variable cost per unit	\$	75.00
Fixed costs	\$	250,000.00

Part a.

NPV
Part b.
Part c.
Breakeven unit annual sales
8,901
Breakeven unit price (unit sales $+15 \%$) \$
113.70

Given
$\$ \$ 1,000,000.00$
10
0
0
Straight-Line
$\$ 100,000.00$
10.00%
34.00%

Worst case	Best Case
9900	
$\$ 112.50$	$\$ 137.50$
$\$ 82.50$	$\$ 67.50$
$\$ 275,000.00$	$\$ 225,000.00$

Excel formula	d17*d18
d17*d19	
d20	
	D25-D26-D27
E11	
	D28-D29
	D46* 13
D30-D31	
	D32+D29

Solution Legend

= Value given in problem
= Formula/Calculation/Analysis required
= Qualitative analysis or Short answer required
= Goal Seek or Solver cell
= Crystal Ball Input
= Crystal Ball Output

Problem 3-3

Given:

| | Expected
 Values | |
| :--- | ---: | :---: | Distributional Assumptions | | 100,000 | Uniform |
| :--- | ---: | :--- |
| Sales units | $\$$ | 50 |
| Unit price | Normal | |
| Fixed operating costs | | 120,000 |
| Variable operating costs per unit | 35 | NA |
| Tax rate | 30% | Triangular |
| Depreciation expense | $\$$ | 60,000 |
| CAPEX | 75,000 | NA |
| Working capital investment | | 20,000 |

a.

Sales
less: Variable operating costs
less:
less: Fixed operating costs
Net Operating Profit
less: Taxes
NOPAT
plus: Depreciation expense
less: CAPEX
less: Working capital investment Free cash flow

$\$ \$$	$5,000,000$
	$(3,500,000)$
	$(60,000)$
	$(120,000)$
$\$$	$1,320,000$
	$(396,000)$
$\$$	924,000
	60,000
	$(75,000)$
	$(20,000)$
$\$$	889,000

b.

$|D|-$ Intinity \quad Certaınty: $14.20 \quad 1 \%$

Parameter Estimates
$\max =150,000 ; \operatorname{Min}=50,000$
Meam $=\$ 50$, standard deviation $=\$ 10$
NA
$\min =\$ 30 ;$ most likely $=\$ 35 ; \max =\$ 40$
NA
NA
$\min =\$ 60,000 ; \max =\$ 90,000$
$\min =\$ 18,000 ;$ most likely $=\$ 20,000 ; \max =\$ 22,000$

A armanan

Solution Legend

ren in problem
Calculation/Analysis required
ve analysis or Short answer required
:k or Solver cell
3all Input
3all Output

Given		
EBITDA (Year 1)	$\$$	200,000
Growth Rate in EBITDA		5%
Initial investment	$\$$	800,000
Depreciation (Straight line) over		5 years
Estimated salvage value	$\$$	-
Tax rate		35%
Cost of capital	12%	

uring Company

Solution Legend
= Value given in problem
= Formula/Calculation/Analysis required
= Qualitative analysis or Short answer required
= Goal Seek or Solver cell
= Crystal Ball Input = Crystal Ball Output

Years					
3		4		5	
\$	220,500	\$	231,525	\$	243,101
	$(160,000)$		$(160,000)$		$(160,000)$
\$	60,500	\$	71,525	\$	83,101
	$(21,175)$		$(25,034)$		$(29,085)$
\$	39,325	\$	46,491	\$	54,016
	160,000		160,000		160,000
	-		-		-
	-		-		
\$	199,325	\$	206,491	\$	214,016

PROBLEM 3-5: Breakeven Sensitivit

	Given					
Investment (enter with "-" sign)	\$	$(4,000,000)$				
Plant life		5	Yea			
Salvage value	\$	400,000				
Variable Cost \%		45\%				
Fixed operating cost	\$	1,000,000				
Tax rate		38\%				
Working capital		10\%	$\begin{aligned} & \text { (Per } \\ & \text { expe } \\ & \text { char } \\ & \text { reve } \\ & \text { the } \end{aligned}$	cent of the ected ge in nues for year)		
Required Rate of Return		15\%				
Sales volume multiple		1.00				
		0		1		2
Sales volume			\$	1,000,000	\$	1,500,000
Unit price				2.00		2.00
Revenues				2,000,000		3,000,000
Variable Operating Costs				$(900,000)$		$(1,350,000)$
Fixed Operating Costs				$(1,000,000)$		$(1,000,000)$
Depreciation Expense				$(800,000)$		$(800,000)$
Net Operating Income			\$	$(700,000)$	\$	$(150,000)$
Less: Taxes				266,000		57,000
NOPAT			\$	$(434,000)$	\$	$(93,000)$
Plus: Depreciation				800,000		800,000
Less: CAPEX		$(4,000,000)$		-		-
Less: Working Capital		$(200,000)$		$(100,000)$		$(450,000)$
Free Cash Flow	\$	$(4,200,000)$	\$	266,000	\$	$\underline{257,000}$
NPV	\$	419,435				
IRR		18\%				
Equivalent Annual Cost	\$	125,124				

Solution

a. What are the key sources of risk that you see in this project?

The "given" data or parameters capture the variables that are uncertain in the analysis.
However, the sensitivity analysis is designed to identify the key sources of uncertainty that are most crucial.
b. Breakeven sensitivity analysis

	Estimated	Breakeven
Variable	Value	Percent
Value	Difference	

Initial Capex
Variable Cost as a \% of Sales
Working Capital \% of new Sales
Sales volume multiplier

$\$(4,000,000)$	$\$$	$(4,419,435)$	10%
45%	49%	9%	
10%	27%	170%	
1	0.92	-8%	

c. Discuss results of part b.

The initial capital cost, variable cost as a percent of sales and the sales volume are all roughly equally important in terms of their significance in driving the results of the investment. The kinds of things that can be done to control these costs entail careful cost contracting for the initial capital cost, and closely monitoring both the variable cost \% and sales volume. It would also be helpful to know what "options" the firm might have with regard to reducing output or shutting down should the forecasts of sales volume or variable costs prove to be

d. Should you always seek to reduce project risk?

This should provide an interesting discussion since most students are taught that risk is bad. In fact, firms "choose" to assume risks for which they feel particularly well suited to manage. For example, most traditional E\&P firms do not attempt to hedge the price risk of their oil and gas reserves but choose to assume this risk as a risk of doing business in an industry where their specialized knowledge and skills make the cost of bearing this risk less than for outsiders that might wish to assume this risk (for a price!).

Analysis

$=$ Value given in F

$=$ Formula/Calculi

$=$ Qualitative anal

$=$ Goal Seek or Sc

$=$ Crystal Ball Inp

Solution Legend

= Value given in problem
= Formula/Calculation/Analysis required
= Qualitative analysis or Short answer required
= Goal Seek or Solver cell
= Crystal Ball Input
= Crystal Ball Output

Solution Legend

sroblem
ation/Analysis required
lysis or Short answer required
olver cell
ut
tput

PROBLEM 3-6ab: Bridgeway Pharmaceutic

	Given	
	$\$$	$(400,000)$
Investment cost (today)		5
Project life	$\$$	80,000
Depreciation expense	$\$$	18,000
Waste disposal cost savings per year	$\$$	40,000
Labor cost savings per year	$\$$	200,000
Sale of reclaimed waste		20%
Required rate of return	35%	
Tax rate		

	Solution					
Part a.						Y
Cash flow estimation		0		1		2
Investment	\$	$(400,000)$				
Waste disposal cost savings per year				18,000		18,000
Labor cost savings per year				40,000		40,000
Proceeds from sale of reclaimed waste materials				200,000		200,000
EBITDA			\$	258,000	\$	258,000
Less: Depreciation				$(80,000)$		$(80,000)$
Additional EBIT			\$	178,000	\$	178,000
Less: Taxes				$(62,300)$		$(62,300)$
NOPAT			\$	115,700	\$	115,700
Plus: Depreciation				80,000		80,000
Less: Capex				-		
Less: Additional working capital						
FCF	\$	$(400,000)$	\$	195,700	\$	195,700
NPV	\$	185,263				
IRR		39.74\%				
Analysis		oject appe	ars to	a good one	with a	expected I
b.						
If sale of reclaimed waste drops in half, NPV	\$	$(9,127)$	\longleftarrow	To answer pain	part b	mply subs
Critical B-E for sale of waste materials	\$	104,695		of r		
Critical B-E Price decline in salvage materials c. See next worksheet		47.65\%		Solver has Details give	been en in tex	ed to find t box above

The terminal period growth rates were estimated such that the intrinsic valuation of the firm's equity would equal the current market capitalization of the firm using the "Goal Seek" function.

= Value giver
= Formula/Ca
= Qualitative
= Goal Seek (
= Crystal Ball
= Crystal Ball

JPV of over \$185,000.
stitute $\$ 100,000$ for the
0.
his answer.
э.

Solution Legend

1 in problem
Ilculation/Analysis required
analysis or Short answer required
or Solver cell
I Input
I Output

PROBLEM 3-6c: Bridgeway

Given	
Investment cost (today)	$\$$
Project life	$(400,000)$
Depreciation expense	$\$$
5	80,000
Waste disposal cost savings per year	$\$$
18,000	
Labor cost savings per year	$\$$
Sale of reclaimed waste	40,000
Required rate of return	200,000
Tax rate	20%
Correlation (Year to year) in Proceeds from reclaimed waste	35%

$D \$ 150,000$	Certain

Pharmaceuticals

Solution Legend

= Value given in problem

= Formula/Calculation/Analysis required
= Qualitative analysis or Short answer required
= Goal Seek or Solver cell
= Crystal Ball Input
= Crystal Ball Output

sults from the simulation experiment will differ slightly from those reported u did not use the same "seed" value for the random number generator. In not "fix" the same seed value for each simulation your results will differ ne simulation of the same problem to another (see Run ampling).

| $\$ 600,000$ | $\$ 800,000$ | $\$ 1,000,000$ | 0 |
| :--- | :--- | :--- | :--- | :--- |
| ity: $\sqrt[65.90]{65}$ | $\searrow \sqrt{\text { Infinity }}$ | | |

	Given	
	Estimates	
Assumptions and Predictions	$\$$	
Price per unit		
Market share (\%)	$\$, 895$	
Market size (Year 1)	$\mathbf{1 5 . 0 0 \%}$	
Growth rate in market size beginning in Year 2	200,000 units	
Unit variable cost	$\$$	
Fixed cost	$\$.00 \%$	
Tax rate	4,250	
Cost of capital		
	$9,000,000$	
	50.00%	
Investment in NWC	18.00%	
Initial investment in PP\&E		
Depreciation (5 year life w/no salvage)		
	$\$$	

	Solution		
	0		1
Investment	(7,000,000)		
Revenue			46,850,000
Variable Cost			(27,500,000)
Fixed cost			$(9,000,000)$
Depreciation			$(1,400,000)$
EBT(Net Operating Income)		\$	8,950,000
Tax			$(4,475,000)$
Net Operating Profit after Tax (NOPAT)		\$	4,475,000
Plus: Depreciation expense			1,400,000
Less: Capex	$(7,000,000)$		
Less: Change in NWC	$(7,342,500)$		$(367,125)$
Free Cash Flow	$(14,342,500)$	\$	5,507,875
Net Present Value	9,526,209		
Internal Rate of Return	39.82\%		
Units Sold			30,000
a. If the market share is only 5% then the project's NPV = b. If market share $=15 \%$ and the price of the PTV falls to $\$ 4,500$ the NPV =			
Breakeven Sensitivity Analysis	Critical \% Change	Critical Value	
Price per unit	-3.88\%	\$	4,705
Market share (\%)	-33.53\%		9.97\%
Market size (Year 1)	-33.53\%	\$	132,936
Growth rate in market size beginning in Year 2	-496.00\%		-19.80\%
Unit variable cost	4.40\%	\$	4,437

Fixed cost
Tax rate
Cost of capital
Investment in NWC
Analysis:

67.69%	$\$$
57.20%	$15,092,541$
121.22%	78.60%
212.00%	39.82%

The above analysis suggests that the two k

Part b. Substitute $\$ 4,500$ for the price per unit.
Part a. Substitute 5\% for market share (\%).

Year							
2			3		4		5
154,192,500			161,902,125		169,997,231		178,497,093
$(133,875,000)$			$(140,568,750)$		$(147,597,188)$		$(154,977,047)$
$(9,000,000)$			$(9,000,000)$		$(9,000,000)$		$(9,000,000)$
$(1,400,000)$			$(1,400,000)$		$(1,400,000)$		$(1,400,000)$
\$	9,917,500	\$	10,933,375	\$	12,000,044	\$	13,120,046
	$(4,958,750)$		$(5,466,688)$		$(6,000,022)$		$(6,560,023)$
\$	4,958,750	\$	5,466,688	\$	6,000,022	\$	6,560,023
	1,400,000		1,400,000		1,400,000		1,400,000
	-		-		-		-
	$(385,481)$		$(404,755)$		$(424,993)$		8,924,855
\$	5,973,269	\$	6,461,932	\$	6,975,029	\$	16,884,878

	31,500
$\$$	$(9,413,430)$
$\$$	$(10,261,801)$

ey value drivers are price per unit and unit variable cost!

PROBLEM 3

Given			
Assumptions and Predictions	Estimates		
Price per unit	\$	4,895	
Market share (\%)		15.00\%	
Market size (Year 1)		200,000	
Growth rate in market size beginning in Year 2		5.00\%	
Unit variable cost	\$	4,250	
Fixed cost	\$	9,000,000	
Tax rate		50.0\%	
Cost of capital		18.00\%	
Investment in NWC		5.00\%	of the predicted change in firm revenues.
Initial investment in pp\&e	\$	7,000,000	
Depreciation (5 year life w/no salvage)	\$	1,400,000	

-8: TitMar Motor Company

Solution Legend
= Value given in problem
= Formula/Calculation/Analysis required
= Qualitative analysis or Short answer required
= Goal Seek or Solver cell
= Crystal Ball Input
= Crystal Ball Output

1,000 Trials	Frequency View	1,000 Displayed
NPV (problem 3-8)		
0.03	IIIIII	Use $\left\lvert\, \begin{aligned} & -32 \\ & -28 \\ & 24\end{aligned}\right.$

PROBLEM 3-9: Earthilizer Problem--Decision Tree

Given		
EPA after-tax cost	$\$$	80,000
Abandonment Value	$\$$	350,000
Probability of Good EPA Ruling		80%

Solution								
Panel a. No Option to Abandon								
Favorable EPA Ruling--Expected Project FCFs NPV (Favorable EPA Ruling) =	2007		2008		2009		2010	
	\$	$(580,000)$	\$	87,600	\$	78,420	\$	93,320
	\$	43,062						
Unfavorable EPA Ruling--Expected FCFs NPV (Unfavorable EPA Ruling)	\$	$(580,000)$	\$	7,600	\$	$(1,580)$	\$	13,320
	\$	$(236,608)$						
Revised Expected Project FCFs E[NPV] with No Option to Abandon	\$	$(580,000)$	\$	71,600	\$	62,420	\$	77,320
	\$	$(12,872)$						
Panel b. Option to Abandon								
Project Not Abandoned (Favorable EPA) NPV (Favorable EPA Ruling) =		2007		2008		2009		2010
	\$	$(580,000)$	\$	87,600	\$	78,420	\$	93,320
	\$	43,062						
Project Abandoned (Unfavorable EPA) NPV (Unfavorable EPA Ruling)	\$	$(580,000)$	\$	437,600	\$	-	\$	-
	\$	$(193,598)$						
Revised Expected Project FCFs E[NPV] with the Option to Abandon	\$	$(580,000)$	\$	157,600	\$	62,736	\$	74,656
	\$	$(4,270)$						
Analysis:	Reducing the abandonment value to $\$ 350,000$ reduces the with the abandonment option to $\$(4,270)$. The break-even a makes the expected NPV of the proposed investment zero							

	2011		2012
\$	109,710	\$	658,770
\$	29,710	\$	578,770
\$	93,710	\$	642,770
	2011		2012
\$	109,710	\$	658,770
\$	-	\$	-
\$	87,768		527,016
expected NPV of the project abandonment value that is $\$ 374,177$.			

Solution Legend

= Value given in problem
= Formula/Calculation/Analysis requirec
= Qualitative analysis or Short answer ri
= Goal Seek or Solver cell
= Crystal Ball Input
= Crystal Ball Output
equired

PROBLEM 3-10: Introductory Simulation Analysis Exercises
a. Jason Enterprises

	Given		
Gross Profit/Sales			25%
Sales (upper limit)		$\$$	$10,000,000$
Sales (lower limit)		$\$$	$7,000,000$
	Solution		
Forecasted Sales		$\$$	$8,500,000$
Gross profits		$\$$	$2,125,000$

b. Aggiebear Dog Snacks, Inc.

Revenues	Given		
	Minimum	$\$$	$18,000,000$
	Most likely	$\$$	$25,000,000$
Cost of Goods sold/Revenues	Maximum	$\$$	$35,000,000$
	Minimum		70%
	Maximum	80%	

	Solution	
	$\$$	$26,000,000$
Forecasted Sales		
Cost of Goods Sold/Sales		0.75
Part i-iii. Sales Less: Gross Profit	$\$$	$26,000,000$
$(19,500,000)$		

Solution Legend
in problem
culation/Analysis required
nalysis or Short answer required
r Solver cell
Input
Output

Given	
ConocoPhillips's Cost of Capital for project	15.00%
Project life	10 years

Notes: Current Values column represents values of changing cells at time Scenario Summary Repor

3. Breakeven Sensitivity Analsyis

Students should use Goal Seek in Excel to answer this question.
a.

Breakeven nautral gas price for an NPV $=0$
b.

Breakeven natural gas volume in Year 1 for an NPV $=0$

c.

Breakeven investment for an NPV $=0$
\$ 1,573,795

4. Student answers will vary but most will probably recommend the project.

The problem is intentionally set up to illustrate the risk of natural gas prices because the price is very suggest students go to the internet and look at current natural gas prices. A good website to suggest http://www.wtrg.com. On November 29, 2007, the NYMEX price for natural gas was $\$ 7.56$. At higher prices, this project is very profitable. However, in subsequent years the price fell to below $\$ 3.00$.

ocoPhillips Natural Gas Wellhead Project

\$	1,261,440	\$	1,009,152	\$	807,322	\$	645,857	\$	516,686		413,349	\$	330,679
	630,720		504,576		403,661		322,929		258,343		206,674		165,339
	136,656		109,325		87,460		69,968		55,974		44,779		35,824
	209,880		149,880		107,160		107,160		107,160		53,400		
\$	284,184	\$	245,371	\$	209,041	\$	145,801	\$	95,209	\$	108,495	\$	129,516
	$(113,674)$		$(98,148)$		$(83,616)$		$(58,320)$		$(38,083)$		$(43,398)$		$(51,806)$
	170,510	\$	147,223	\$	125,425	\$	87,480	\$	57,125	\$	65,097	\$	77,710
	209,880		149,880		107,160		107,160		107,160		53,400		

| $\$$ | 380,390 | $\$$ | 297,103 | $\$$ | 232,585 | $\$$ | 194,640 | $\$$ | 164,285 | $\$$ | 118,497 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad \$ \quad 77,710$

Worst Case

```
70
```

$\$$	$(645,791)$
	-2.34%

t was created.
volatile. We is
natural gas

10	
6121	
\$3.00	
0.65	
\$	264,543
	132,272
	28,659
	-
\$	103,613
	$(41,445)$
\$	62,168
	-
	145,000
\$	207,168

Solution Legend

= Value given in problem
= Formula/Calculation/Analysis required
= Qualitative analysis or Short answer required
= Goal Seek or Solver cell
= Crystal Ball Input
= Crystal Ball Output
(

PROBLEM 3-13: Blended Profile Applied, per

		Given			
Purchase Cost (pre-installed) \$00	$\$$	$(700,000)$	Airframe Maintenance Cost	$\$$	$(2,100)$
Installation \$000	$\$$	$(56,000)$	Useful Life (yrs) Average	20	
Downtime Dass (installation)		1	Runway Savings	$\$$	500
Downtime Cost/Day $\$ 000$	$\$$	$(5,000)$	Facility cost	$\$, 200$	
Salvage $\%$	15.00%	Depreciation	MACRS (see		
Gen. Escalation	3.00%	Fuel Price (all-in)	$\$$	0.80	
Marginal Tax Rate	39.00%	Fuel (gallons saved)	178,500		
Discount Rate	9.28%				

		0		1		2		3		4
Winglet Purchase	\$	$(700,000)$								
Winglet Installation	\$	$(56,000)$								
Install. Downtime costs	\$	$(5,000)$								
Airport Reconfiguration	\$	$(1,200)$								
Fuel Savings			\$	142,800	\$	142,800	\$	142,800	\$	142,800
Airframe Maint. Costs				$(2,100)$		$(2,163)$		$(2,228)$		$(2,295)$
Reduced restrictions (inflated 3\%/yr)				500		515		530		546
Less: depreciation				$(432,016)$		$(92,572)$		$(66,112)$		$(47,212)$
EBIT			\$	$(290,816)$	\$	48,580	\$	74,990	\$	93,839
Less: Income Tax				$(113,418)$		18,946		29,246		36,597
Net Income			\$	$(177,398)$	\$	29,634	\$	45,744	\$	57,242
Plus: Depreciation				432,016		92,572		66,112		47,212
Operating Cash Flow			\$	254,618	\$	122,206	\$	111,856	\$	104,454
Salvage Value										
Tax on Salvage Value										
Total Project Cash Flow	\$	(762,200)	\$	254,618	\$	122,206	\$	111,856	\$	104,454

b.

NPV	\$	260,980
IRR		15.0%
MIRR	10.9%	

MACRS Table	Normal Table		DEPRECIATION DETAILS Normal Year 1(a)			
	1	14.29\%	7.15\%	50.00\%	57.15\%	\$ 756,000
	2	24.49\%	12.25\%		12.25\%	756,000
	3	17.49\%	8.75\%		8.75\%	756,000
	4	12.49\%	6.25\%		6.25\%	756,000
	5	8.93\%	4.47\%		4.47\%	756,000
	6	8.92\%	4.46\%		4.46\%	756,000
	7	8.93\%	4.47\%		4.47\%	756,000
	8	4.46\%	2.23\%		2.23\%	756,000

[^0]c.

Breakeven fuel cost Breakeven fuel savings

$\$ \quad 0.53$ per gallon	
	118,742 gallons

d.

	Current Values		Best Case		Worst Case	
Changing Cells						
Fuel Price	\$	0.80	\$	1.10	\$	0.50
Gallons Saved		178,500		214,000		142,000
Result Cells						
NPV	\$	260,980	\$	766,489	\$	(130,981)
IRR		15.00\%		24.70\%		6.00\%
MIRR		10.90\%		13.10\%		8.30\%

Notes: Current Values column represents values of changing cells at time Scenario Summary Report was created.
e. Students should try to think of all possible qualitative and quantitative aspects of the project not already options excluded from the project: Southwest Airlines may be able to enter into new markets since the jets refueling. The jets can also carry more cargo with the greater fuel savings. It will make the airline more pr prices are high, especially when compared to their competitors with less fuel efficient jets. Potential risks, increased accidents because the jets handle differently and the wingspan is wider. There are other potenti students are encouraged to "brainstorm" these.
f. Impact on NPV and IRR if winglets have no salvage value.

NPV	$\$$	250,123
IRR	$\$$	14.89

Aircraft B737-700

		Solution							
5	6	7	8	9	Year				

\$	142,800	\$	142,800		42,800	\$	142,800	\$	142,800		142,800		142,800	\$ 142,800	
	$(2,364)$		$(2,434)$		$(2,508)$		$(2,583)$		$(2,660)$		$(2,740)$		$(2,822)$		(2,907)
	563		580		597		615		633		652		672		692
	$(33,755)$		$(33,718)$		$(33,755)$		$(16,859)$								
\$	107,244	\$	107,228	\$	107,134	\$	123,973	\$	140,773		140,712		140,650		140,585
	41,825		41,819		41,782		48,350		54,902		54,878		54,853		54,828
\$	65,419	\$	65,409	\$	65,352	\$	75,624	\$	85,872	\$	85,835	\$	85,796		85,757
	33,755		33,718		33,755		16,859								
\$	99,174	\$	99,126	\$	99,107	\$	92,483	\$	85,872	\$	85,835	\$	85,796	\$	85,757

$\$$	99,174	$\$$	99,126	$\$$	99,107	$\$$	92,483	$\$$	85,872	$\$$	85,835	$\$ 85,796$

Tax Depr

	\$ax	432,016
		92,572
	66,12	
	47,212	
	33,755	
	33,718	
		33,755
	16,859	
	$\mathbf{7 5 6 , 0 0 0}$	

included. The are real ; can fly further without ice competitive when jet fuel although remote, would be al risks and benefits, and

```
Solution Legend
mn in problem
`alculation/Analysis required
e analysis or Short answer required
: or Solver cell
ill Input
ill Output
```


[^0]: (a) Job Creation and Worker Assistance Act of 2002

