Visit TestBankDeal.com to get complete for all chapters

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=3.30 \mathrm{kN}, \quad \alpha=66.6^{\circ}
$$

$$
\mathbf{R}=3.30 \mathrm{kN} \mathbb{L}^{\square} 66.6^{\circ}
$$

PROBLEM 2.2

The cable stays $A B$ and $A D$ help support pole $A C$. Knowing that the tension is 120 lb in $A B$ and 40 lb in $A D$, determine graphically the magnitude and direction of the resultant of the forces exerted by the stays at A using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

We measure:

$$
\begin{aligned}
& \alpha=51.3^{\circ} \\
& \beta=59.0^{\circ}
\end{aligned}
$$

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=139.1 \mathrm{lb}, \quad \gamma=67.0^{\circ}
$$

$$
R=139.1 \mathrm{lb}>67.0^{\circ}
$$

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=20.1 \mathrm{kN}, \quad \alpha=21.2^{\circ}
$$

$$
\mathbf{R}=20.1 \mathrm{kN} \supsetneq 21.2^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=8.03 \mathrm{kips}, \quad \alpha=3.8^{\circ}
$$

$$
\mathbf{R}=8.03 \mathrm{kips}>3.8^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.5

A stake is being pulled out of the ground by means of two ropes as shown. Knowing that $\alpha=30^{\circ}$, determine by trigonometry (a) the magnitude of the force \mathbf{P} so that the resultant force exerted on the stake is vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\frac{120 \mathrm{~N}}{\sin 30^{\circ}}=\frac{P}{\sin 25^{\circ}}
$$

$$
P=101.4 \mathrm{~N}
$$

(b)

$$
\begin{array}{rlr}
30^{\circ}+\beta+25^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-25^{\circ}-30^{\circ} \\
& =125^{\circ} & \\
\frac{120 \mathrm{~N}}{\sin 30^{\circ}} & =\frac{R}{\sin 125^{\circ}} \quad R=196.6 \mathrm{~N}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.6

A trolley that moves along a horizontal beam is acted upon by two forces as shown. (a) Knowing that $\alpha=25^{\circ}$, determine by trigonometry the magnitude of the force \mathbf{P} so that the resultant force exerted on the trolley is vertical. (b) What is the corresponding magnitude of the resultant?

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\frac{1600 \mathrm{~N}}{\sin 25^{\circ}}=\frac{P}{\sin 75^{\circ}}
$$

$$
P=3660 \mathrm{~N}
$$

(b)

$$
\begin{aligned}
25^{\circ}+\beta+75^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-25^{\circ}-75^{\circ} \\
& =80^{\circ} \\
\frac{1600 \mathrm{~N}}{\sin 25^{\circ}} & =\frac{R}{\sin 80^{\circ}}
\end{aligned}
$$

$$
R=3730 \mathrm{~N}
$$

PROBLEM 2.7

A trolley that moves along a horizontal beam is acted upon by two forces as shown. Determine by trigonometry the magnitude and direction of the force \mathbf{P} so that the resultant is a vertical force of 2500 N .

SOLUTION

Using the law of cosines:

$$
\begin{aligned}
P^{2} & =(1600 \mathrm{~N})^{2}+(2500 \mathrm{~N})^{2}-2(1600 \mathrm{~N})(2500 \mathrm{~N}) \cos 75^{\circ} \\
P & =2596 \mathrm{~N}
\end{aligned}
$$

Using the law of sines: $\quad \frac{\sin \alpha}{1600 \mathrm{~N}}=\frac{\sin 75^{\circ}}{2596 \mathrm{~N}}$

$$
\alpha=36.5^{\circ}
$$

P is directed $90^{\circ}-36.5^{\circ}$ or 53.5° below the horizontal.
$\mathbf{P}=2600 \mathrm{~N}\left\ulcorner 53.5^{\circ}\right.$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.8

A telephone cable is clamped at A to the pole $A B$. Knowing that the tension in the left-hand portion of the cable is $T_{1}=800 \mathrm{lb}$, determine by trigonometry (a) the required tension T_{2} in the right-hand portion if the resultant \mathbf{R} of the forces exerted by the cable at A is to be vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{aligned}
75^{\circ}+40^{\circ}+\alpha & =180^{\circ} \\
\alpha & =180^{\circ}-75^{\circ}-40^{\circ} \\
& =65^{\circ}
\end{aligned}
$$

$$
\frac{800 \mathrm{lb}}{\sin 65^{\circ}}=\frac{T_{2}}{\sin 75^{\circ}}
$$

$$
T_{2}=853 \mathrm{lb}
$$

(b)

$$
\frac{800 \mathrm{lb}}{\sin 65^{\circ}}=\frac{R}{\sin 40^{\circ}}
$$

$$
R=567 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.9

A telephone cable is clamped at A to the pole $A B$. Knowing that the tension in the right-hand portion of the cable is $T_{2}=1000 \mathrm{lb}$, determine by trigonometry (a) the required tension T_{1} in the left-hand portion if the resultant \mathbf{R} of the forces exerted by the cable at A is to be vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

Using the triangle rule and the law of sines:

$$
\begin{align*}
75^{\circ}+40^{\circ}+\beta & =180^{\circ} \tag{a}\\
\beta & =180^{\circ}-75^{\circ}-40^{\circ} \\
& =65^{\circ}
\end{align*}
$$

$$
\frac{1000 \mathrm{lb}}{\sin 75^{\circ}}=\frac{T_{1}}{\sin 65^{\circ}}
$$

$$
T_{1}=938 \mathrm{lb}
$$

(b)

$$
\frac{1000 \mathrm{lb}}{\sin 75^{\circ}}=\frac{R}{\sin 40^{\circ}}
$$

$$
R=665 \mathrm{lb}
$$

SOLUTION

Using the triangle rule and law of sines:
(a)

$$
\begin{aligned}
\frac{\sin \alpha}{50 \mathrm{~N}} & =\frac{\sin 25^{\circ}}{35 \mathrm{~N}} \\
\sin \alpha & =0.60374 \\
\alpha & =37.138^{\circ}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\alpha+\beta+25^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-25^{\circ}-37.138^{\circ} \\
& =117.862^{\circ} \\
\frac{R}{\sin 117.862^{\circ}} & =\frac{35 \mathrm{~N}}{\sin 25^{\circ}}
\end{aligned}
$$

$$
R=73.2 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.11

A steel tank is to be positioned in an excavation. Knowing that $\alpha=20^{\circ}$, determine by trigonometry (a) the required magnitude of the force \mathbf{P} if the resultant \mathbf{R} of the two forces applied at A is to be vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{aligned}
\beta+50^{\circ}+60^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-50^{\circ}-60^{\circ} \\
& =70^{\circ}
\end{aligned}
$$

$$
\frac{425 \mathrm{lb}}{\sin 70^{\circ}}=\frac{P}{\sin 60^{\circ}}
$$

$$
P=392 \mathrm{lb}
$$

(b)

$$
\frac{425 \mathrm{lb}}{\sin 70^{\circ}}=\frac{R}{\sin 50^{\circ}}
$$

$$
R=346 \mathrm{lb}
$$

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{array}{rlrl}
\left(\alpha+30^{\circ}\right)+60^{\circ}+\beta & =180^{\circ} & & \\
\beta & =180^{\circ}-\left(\alpha+30^{\circ}\right)-60^{\circ} & \\
\beta & =90^{\circ}-\alpha & & \\
\frac{\sin \left(90^{\circ}-\alpha\right)}{425 \mathrm{lb}} & =\frac{\sin 60^{\circ}}{500 \mathrm{lb}} & & \alpha=42.6^{\circ} \\
90^{\circ}-\alpha & =47.402^{\circ} & R=551 \mathrm{lb}
\end{array}
$$

(b)

PROBLEM 2.13

A steel tank is to be positioned in an excavation. Determine by trigonometry (a) the magnitude and direction of the smallest force \mathbf{P} for which the resultant \mathbf{R} of the two forces applied at A is vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

The smallest force P will be perpendicular to R.
(a) $P=(425 \mathrm{lb}) \cos 30^{\circ}$
(b) $\quad R=(425 \mathrm{lb}) \sin 30^{\circ}$

$$
\begin{array}{r}
\mathbf{P}=368 \mathrm{lb} \longrightarrow \\
R=213 \mathrm{lb}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

The smallest force P will be perpendicular to R.
(a) $\quad P=(50 \mathrm{~N}) \sin 25^{\circ}$
(b) $\quad R=(50 \mathrm{~N}) \cos 25^{\circ}$

$$
\begin{gathered}
\mathbf{P}=21.1 \mathrm{~N} \\
R=45.3 \mathrm{~N}
\end{gathered}
$$

PROBLEM 2.15

Solve Problem 2.2 by trigonometry.
PROBLEM 2.2 The cable stays $A B$ and $A D$ help support pole $A C$. Knowing that the tension is 120 lb in $A B$ and 40 lb in $A D$, determine graphically the magnitude and direction of the resultant of the forces exerted by the stays at A using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

$$
\begin{aligned}
\tan \alpha & =\frac{8}{10} \\
\alpha & =38.66^{\circ} \\
\tan \beta & =\frac{6}{10} \\
\beta & =30.96^{\circ}
\end{aligned}
$$

Using the triangle rule:

$$
\alpha+\beta+\psi=180^{\circ}
$$

$$
38.66^{\circ}+30.96^{\circ}+\psi=180^{\circ}
$$

$$
\psi=110.38^{\circ}
$$

Using the law of cosines:

$$
\begin{aligned}
R^{2} & =(120 \mathrm{lb})^{2}+(40 \mathrm{lb})^{2}-2(120 \mathrm{lb})(40 \mathrm{lb}) \cos 110.38^{\circ} \\
R & =139.08 \mathrm{lb}
\end{aligned}
$$

Using the law of sines:

$$
\frac{\sin \gamma}{40 \mathrm{lb}}=\frac{\sin 110.38^{\circ}}{139.08 \mathrm{lb}}
$$

$$
\gamma=15.64^{\circ}
$$

$$
\phi=\left(90^{\circ}-\alpha\right)+\gamma
$$

$$
\phi=\left(90^{\circ}-38.66^{\circ}\right)+15.64^{\circ}
$$

$\phi=66.98^{\circ} \quad \mathbf{R}=139.1 \mathrm{lb}>67.0^{\circ}$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Using the force triangle and the laws of cosines and sines:
We have:

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(50^{\circ}+25^{\circ}\right) \\
& =105^{\circ}
\end{aligned}
$$

Then

And

$$
\begin{aligned}
R^{2} & =(4 \mathrm{kips})^{2}+(6 \mathrm{kips})^{2}-2(4 \mathrm{kips})(6 \mathrm{kips}) \cos 105^{\circ} \\
& =64.423 \mathrm{kips}^{2} \\
R & =8.0264 \mathrm{kips}
\end{aligned}
$$

$$
\begin{aligned}
\frac{4 \mathrm{kips}}{\sin \left(25^{\circ}+\alpha\right)} & =\frac{8.0264 \mathrm{kips}}{\sin 105^{\circ}} \\
\sin \left(25^{\circ}+\alpha\right) & =0.48137 \\
25^{\circ}+\alpha & =28.775^{\circ} \\
\alpha & =3.775^{\circ}
\end{aligned}
$$

PROBLEM 2.17

For the stake of Prob. 2.5, knowing that the tension in one rope is 120 N , determine by trigonometry the magnitude and direction of the force \mathbf{P} so that the resultant is a vertical force of 160 N .

PROBLEM 2.5 A stake is being pulled out of the ground by means of two ropes as shown. Knowing that $\alpha=30^{\circ}$, determine by trigonometry (a) the magnitude of the force \mathbf{P} so that the resultant force exerted on the stake is vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

Using the laws of cosines and sines:

$$
\begin{aligned}
P^{2} & =(120 \mathrm{~N})^{2}+(160 \mathrm{~N})^{2}-2(120 \mathrm{~N})(160 \mathrm{~N}) \cos 25^{\circ} \\
P & =72.096 \mathrm{~N}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\sin \alpha}{120 \mathrm{~N}} & =\frac{\sin 25^{\circ}}{72.096 \mathrm{~N}} \\
\sin \alpha & =0.70343 \\
\alpha & =44.703^{\circ}
\end{aligned}
$$

$$
\mathbf{P}=72.1 \mathrm{~N} b^{\prime} 44.7^{\circ}
$$

SOLUTION

Using the force triangle and the laws of cosines and sines:
We have

$$
\begin{aligned}
\beta & =180^{\circ}-\left(50^{\circ}+25^{\circ}\right) \\
& =105^{\circ}
\end{aligned}
$$

Then

$$
\begin{aligned}
R^{2}= & (75 \mathrm{~N})^{2}+(50 \mathrm{~N})^{2} \\
& -2(75 \mathrm{~N})(50 \mathrm{~N}) \cos 105^{\circ} \\
R^{2}= & 10,066.1 \mathrm{~N}^{2} \\
R= & 100.330 \mathrm{~N}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\sin \gamma}{75 \mathrm{~N}} & =\frac{\sin 105^{\circ}}{100.330 \mathrm{~N}} \\
\sin \gamma & =0.72206 \\
\gamma & =46.225^{\circ}
\end{aligned}
$$

Hence:

$$
\gamma-25^{\circ}=46.225^{\circ}-25^{\circ}=21.225^{\circ}
$$

$$
\mathbf{R}=100.3 \mathrm{~N} \square 21.2^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.19

Two forces \mathbf{P} and \mathbf{Q} are applied to the lid of a storage bin as shown. Knowing that $P=48 \mathrm{~N}$ and $Q=60 \mathrm{~N}$, determine by trigonometry the magnitude and direction of the resultant of the two forces.

SOLUTION

Using the force triangle and the laws of cosines and sines:
We have

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(20^{\circ}+10^{\circ}\right) \\
& =150^{\circ}
\end{aligned}
$$

Then

$$
R^{2}=(48 \mathrm{~N})^{2}+(60 \mathrm{~N})^{2}
$$

$$
-2(48 \mathrm{~N})(60 \mathrm{~N}) \cos 150^{\circ}
$$

$$
R=104.366 \mathrm{~N}
$$

and

$$
\begin{aligned}
\frac{48 \mathrm{~N}}{\sin \alpha} & =\frac{104.366 \mathrm{~N}}{\sin 150^{\circ}} \\
\sin \alpha & =0.22996 \\
\alpha & =13.2947^{\circ} \\
\phi & =180^{\circ}-\alpha-80^{\circ} \\
& =180^{\circ}-13.2947^{\circ}-80^{\circ} \\
& =86.705^{\circ}
\end{aligned}
$$

Hence:

$$
\mathbf{R}=104.4 \mathrm{~N} \quad \searrow 86.7^{\circ}
$$

SOLUTION

Using the force triangle and the laws of cosines and sines:
We have

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(20^{\circ}+10^{\circ}\right) \\
& =150^{\circ}
\end{aligned}
$$

Then

$$
\begin{aligned}
R^{2}= & (60 \mathrm{~N})^{2}+(48 \mathrm{~N})^{2} \\
& -2(60 \mathrm{~N})(48 \mathrm{~N}) \cos 150^{\circ} \\
R= & 104.366 \mathrm{~N}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{60 \mathrm{~N}}{\sin \alpha} & =\frac{104.366 \mathrm{~N}}{\sin 150^{\circ}} \\
\sin \alpha & =0.28745 \\
\alpha & =16.7054^{\circ}
\end{aligned}
$$

Hence:

$$
\begin{aligned}
\phi & =180^{\circ}-\alpha-180^{\circ} \\
& =180^{\circ}-16.7054^{\circ}-80^{\circ} \\
& =83.295^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=104.4 \mathrm{~N} \xrightarrow{\lambda} 83.3^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

80-N Force:	$F_{x}=+(80 \mathrm{~N}) \cos 40^{\circ}$ 120-N Force: $F_{y}=+(80 \mathrm{~N}) \sin 40^{\circ}$ 150-N Force: $F_{x}=+(120 \mathrm{~N}) \cos 70^{\circ}$ $F_{y}=+(120 \mathrm{~N}) \sin 70^{\circ}$ $F_{x}=-(150 \mathrm{~N}) \cos 35^{\circ}$
$F_{y}=+(150 \mathrm{~N}) \sin 35^{\circ}$	

$$
\begin{gathered}
F_{x}=61.3 \mathrm{~N} \\
F_{y}=51.4 \mathrm{~N} \\
F_{x}=41.0 \mathrm{~N} \\
F_{y}=112.8 \mathrm{~N} \\
F_{x}=-122.9 \mathrm{~N} \\
F_{y}=86.0 \mathrm{~N}
\end{gathered}
$$

PROBLEM 2.22

Determine the x and y components of each of the forces shown.

SOLUTION

40-lb Force:
$F_{x}=+(40 \mathrm{lb}) \cos 60^{\circ}$
$F_{x}=20.0 \mathrm{lb}$
$F_{y}=-(40 \mathrm{lb}) \sin 60^{\circ}$
$F_{y}=-34.6 \mathrm{lb}$
50-lb Force:
$F_{x}=-(50 \mathrm{lb}) \sin 50^{\circ}$
$F_{y}=-(50 \mathrm{lb}) \cos 50^{\circ}$
60-lb Force:
$F_{x}=+(60 \mathrm{lb}) \cos 25^{\circ}$
$F_{x}=54.4 \mathrm{lb}$
$F_{y}=+(60 \mathrm{lb}) \sin 25^{\circ}$

$$
F_{y}=25.4 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.23

Determine the x and y components of each of the forces shown.

SOLUTION

Compute the following distances:

$$
\begin{aligned}
O A & =\sqrt{(600)^{2}+(800)^{2}} \\
& =1000 \mathrm{~mm} \\
O B & =\sqrt{(560)^{2}+(900)^{2}} \\
& =1060 \mathrm{~mm} \\
O C & =\sqrt{(480)^{2}+(900)^{2}} \\
& =1020 \mathrm{~mm}
\end{aligned}
$$

800-N Force:

$$
\begin{aligned}
& F_{x}=+(800 \mathrm{~N}) \frac{800}{1000} \\
& F_{y}=+(800 \mathrm{~N}) \frac{600}{1000}
\end{aligned}
$$

$$
F_{x}=+640 \mathrm{~N}
$$

$$
F_{y}=+480 \mathrm{~N}
$$

424-N Force:

$$
F_{x}=-(424 \mathrm{~N}) \frac{560}{1060}
$$

$$
F_{y}=-(424 \mathrm{~N}) \frac{900}{1060}
$$

,

$$
F_{x}=-224 \mathrm{~N}
$$

408-N Force:

$$
\begin{aligned}
& F_{x}=+(408 \mathrm{~N}) \frac{480}{1020} \\
& F_{y}=-(408 \mathrm{~N}) \frac{900}{1020}
\end{aligned}
$$

$$
\begin{gathered}
F_{x}=+192.0 \mathrm{~N} \\
F_{y}=-360 \mathrm{~N}
\end{gathered}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.24

Determine the x and y components of each of the forces shown.

SOLUTION

Compute the following distances:

$$
\begin{aligned}
O A & =\sqrt{(24 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}} \\
& =51.0 \mathrm{in} . \\
O B & =\sqrt{(28 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}} \\
& =53.0 \mathrm{in} . \\
O C & =\sqrt{(40 \mathrm{in} .)^{2}+(30 \mathrm{in} .)^{2}} \\
& =50.0 \mathrm{in} .
\end{aligned}
$$

102-lb Force:

$$
\begin{aligned}
F_{x} & =-102 \mathrm{lb} \frac{24 \mathrm{in} .}{51.0 \mathrm{in} .} \\
F_{y} & =+102 \mathrm{lb} \frac{45 \mathrm{in}}{51.0 \mathrm{in}}
\end{aligned}
$$

$$
F_{x}=-48.0 \mathrm{lb}
$$

$$
F_{y}=+90.0 \mathrm{lb}
$$

106-lb Force:

$$
F_{x}=+106 \mathrm{lb} \frac{28 \mathrm{in} .}{53.0 \mathrm{in}}
$$

$$
F_{x}=+56.0 \mathrm{lb}
$$

$$
F_{y}=+106 \mathrm{lb} \frac{45 \mathrm{in}}{53.0 \mathrm{in}}
$$

$$
F_{y}=+90.0 \mathrm{lb}
$$

200-lb Force:

$$
\begin{array}{ll}
F_{x}=-200 \mathrm{lb} \frac{40 \mathrm{in} .}{50.0 \mathrm{in} .} & F_{x}=-160.0 \mathrm{lb} \\
F_{y}=-200 \mathrm{lb} \frac{30 \mathrm{in} .}{50.0 \mathrm{in.}} & F_{y}=-120.0 \mathrm{lb}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.25

The hydraulic cylinder $B D$ exerts on member $A B C$ a force \mathbf{P} directed along line $B D$. Knowing that \mathbf{P} must have a $750-\mathrm{N}$ component perpendicular to member $A B C$, determine (a) the magnitude of the force $\mathbf{P},(b)$ its component parallel to $A B C$.

SOLUTION

(a)
(b)

$$
\begin{aligned}
750 \mathrm{~N} & =P \sin 20^{\circ} \\
P & =2192.9 \mathrm{~N}
\end{aligned}
$$

$$
P=2190 \mathrm{~N}
$$

$$
P_{A B C}=P \cos 20^{\circ}
$$

$$
=(2192.9 \mathrm{~N}) \cos 20^{\circ}
$$

$$
P_{A B C}=2060 \mathrm{~N}
$$

SOLUTION

SOLUTION

(a)

$$
\begin{aligned}
P & =\frac{P_{y}}{\cos 55^{\circ}} \\
& =\frac{350 \mathrm{lb}}{\cos 55^{\circ}} \\
& =610.21 \mathrm{lb}
\end{aligned}
$$

$$
P=610 \mathrm{lb}
$$

(b)

$$
\begin{array}{rlr}
P_{x} & =P \sin 55^{\circ} \\
& =(610.21 \mathrm{lb}) \sin 55^{\circ} & \\
& =499.85 \mathrm{lb} & P_{x}=500 \mathrm{lb}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.27

Member $B C$ exerts on member $A C$ a force \mathbf{P} directed along line $B C$. Knowing that \mathbf{P} must have a $325-\mathrm{N}$ horizontal component, determine (a) the magnitude of the force $\mathbf{P},(b)$ its vertical component.

SOLUTION

(a)

$$
\begin{aligned}
B C & =\sqrt{(650 \mathrm{~mm})^{2}+(720 \mathrm{~mm})^{2}} \\
& =970 \mathrm{~mm}
\end{aligned}
$$

$$
P_{x}=P\left(\frac{650}{970}\right)
$$

or

$$
\begin{aligned}
P & =P_{x}\left(\frac{970}{650}\right) \\
& =325 \mathrm{~N}\left(\frac{970}{650}\right) \\
& =485 \mathrm{~N}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P_{y} & =P\left(\frac{720}{970}\right) \\
& =485 \mathrm{~N}\left(\frac{720}{970}\right) \\
& =360 \mathrm{~N}
\end{aligned}
$$

$$
P_{y}=970 \mathrm{~N}
$$

SOLUTION

(a)

$$
P=\frac{P_{y}}{\sin 40^{\circ}}=\frac{240 \mathrm{lb}}{\sin 40^{\circ}}
$$

or $P=373 \mathrm{lb}$
(b) $P_{x}=\frac{P_{y}}{\tan 40^{\circ}}=\frac{240 \mathrm{lb}}{\tan 40^{\circ}}$
or $P_{x}=286 \mathrm{lb}$

PROBLEM 2.29

The guy wire $B D$ exerts on the telephone pole $A C$ a force \mathbf{P} directed along $B D$. Knowing that \mathbf{P} must have a $720-\mathrm{N}$ component perpendicular to the pole $A C$, determine (a) the magnitude of the force $\mathbf{P},(b)$ its component along line $A C$.

SOLUTION

(a)

$$
\begin{aligned}
P & =\frac{37}{12} P_{x} \\
& =\frac{37}{12}(720 \mathrm{~N}) \\
& =2220 \mathrm{~N}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P_{y} & =\frac{35}{12} P_{x} \\
& =\frac{35}{12}(720 \mathrm{~N}) \\
& =2100 \mathrm{~N}
\end{aligned}
$$

$$
P=2.22 \mathrm{kN}
$$

$$
P_{y}=2.10 \mathrm{kN}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.30

The hydraulic cylinder $B C$ exerts on member $A B$ a force \mathbf{P} directed along line $B C$. Knowing that \mathbf{P} must have a $600-\mathrm{N}$ component perpendicular to member $A B$, determine (a) the magnitude of the force $\mathbf{P},(b)$ its component along line $A B$.

SOLUTION

(a)

$$
\begin{aligned}
180^{\circ} & =45^{\circ}+\alpha+90^{\circ}+30^{\circ} \\
\alpha & =180^{\circ}-45^{\circ}-90^{\circ}-30^{\circ} \\
& =15^{\circ}
\end{aligned}
$$

$$
\cos \alpha=\frac{P_{x}}{P}
$$

$$
P=\frac{P_{x}}{\cos \alpha}
$$

$$
=\frac{600 \mathrm{~N}}{\cos 15^{\circ}}
$$

$$
=621.17 \mathrm{~N}
$$

$$
A
$$

(b)

$$
\begin{aligned}
\tan \alpha & =\frac{P_{y}}{P_{x}} \\
P_{y} & =P_{x} \tan \alpha \\
& =(600 \mathrm{~N}) \tan 15^{\circ} \\
& =160.770 \mathrm{~N}
\end{aligned}
$$

$$
P_{y}=160.8 \mathrm{~N}
$$

SOLUTION

Components of the forces were determined in Problem 2.23:

Force	x Comp. (N)	y Comp. (N)
800 lb	+640	+480
424 lb	-224	-360
408 lb	+192	-360

$$
\begin{aligned}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(608 \mathrm{lb}) \mathbf{i}+(-240 \mathrm{lb}) \mathbf{j}
\end{aligned}
$$

$$
\tan \alpha=\frac{R_{y}}{R_{x}}
$$

$$
=\frac{240}{608}
$$

$$
\alpha=21.541^{\circ}
$$

$$
R=\frac{240 \mathrm{~N}}{\sin \left(21.541^{\circ}\right)}
$$

$$
=653.65 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Components of the forces were determined in Problem 2.21:

Force	x Comp. (N)	y Comp. (N)
80 N	+61.3	+51.4
120 N	+41.0	+112.8
150 N	-122.9	+86.0

$$
\begin{aligned}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(-20.6 \mathrm{~N}) \mathbf{i}+(250.2 \mathrm{~N}) \mathbf{j} \\
\tan \alpha & =\frac{R_{y}}{R_{x}} \\
\tan \alpha & =\frac{250.2 \mathrm{~N}}{20.6 \mathrm{~N}} \\
\tan \alpha & =12.1456 \\
\alpha & =85.293^{\circ} \\
R & =\frac{250.2 \mathrm{~N}}{\sin 85.293^{\circ}}
\end{aligned}
$$

$$
\mathbf{R}=251 \mathrm{~N} \triangle 85.3^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.33

Determine the resultant of the three forces of Problem 2.22.

PROBLEM 2.22 Determine the x and y components of each of the forces shown.

SOLUTION

Force	x Comp. (lb)	y Comp. (lb)
40 lb	+20.00	-34.64
50 lb	-38.30	-32.14
60 lb	+54.38	+25.36
	$R_{x}=+36.08$	$R_{y}=-41.42$

$$
\begin{aligned}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(+36.08 \mathrm{lb}) \mathbf{i}+(-41.42 \mathrm{lb}) \mathbf{j} \\
\tan \alpha & =\frac{R_{y}}{R_{x}} \\
\tan \alpha & =\frac{41.42 \mathrm{lb}}{36.08 \mathrm{lb}} \\
\tan \alpha & =1.14800 \\
\alpha & =48.942^{\circ} \\
R & =\frac{41.42 \mathrm{lb}}{\sin 48.942^{\circ}}
\end{aligned}
$$

$$
\mathbf{R}=54.9 \mathrm{lb} \vee 48.9^{\circ}
$$

PROBLEM 2.34

Determine the resultant of the three forces of Problem 2.24.
PROBLEM 2.24 Determine the x and y components of each of the forces shown.

SOLUTION

Components of the forces were determined in Problem 2.24:

Force	x Comp. (lb)	y Comp. (lb)
102 lb	-48.0	+90.0
106 lb	+56.0	+90.0
200 lb	-160.0	-120.0

$$
\begin{aligned}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(-152 \mathrm{lb}) \mathbf{i}+(60.0 \mathrm{lb}) \mathbf{j} \\
\tan \alpha & =\frac{R_{y}}{R_{x}} \\
\tan \alpha & =\frac{60.0 \mathrm{lb}}{152.0 \mathrm{lb}} \\
\tan \alpha & =0.39474 \\
\alpha & =21.541^{\circ} \\
R & =\frac{60.0 \mathrm{lb}}{\sin 21.541^{\circ}}
\end{aligned}
$$

$$
\mathbf{R}=163.4 \mathrm{lb} \searrow 21.5^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.35

Knowing that $\alpha=35^{\circ}$, determine the resultant of the three forces shown.

SOLUTION

100-N Force:

$$
\begin{aligned}
& F_{x}=+(100 \mathrm{~N}) \cos 35^{\circ}=+81.915 \mathrm{~N} \\
& F_{y}=-(100 \mathrm{~N}) \sin 35^{\circ}=-57.358 \mathrm{~N}
\end{aligned}
$$

150-N Force:
$F_{x}=+(150 \mathrm{~N}) \cos 65^{\circ}=+63.393 \mathrm{~N}$
$F_{y}=-(150 \mathrm{~N}) \sin 65^{\circ}=-135.946 \mathrm{~N}$
200-N Force:

$$
\begin{aligned}
& F_{x}=-(200 \mathrm{~N}) \cos 35^{\circ}=-163.830 \mathrm{~N} \\
& F_{y}=-(200 \mathrm{~N}) \sin 35^{\circ}=-114.715 \mathrm{~N}
\end{aligned}
$$

Force	x Comp. (N)	y Comp. (N)
100 N	+81.915	-57.358
150 N	+63.393	-135.946
200 N	-163.830	-114.715
	$R_{x}=-18.522$	$R_{y}=-308.02$

$$
\begin{aligned}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(-18.522 \mathrm{~N}) \mathbf{i}+(-308.02 \mathrm{~N}) \mathbf{j}
\end{aligned}
$$

$\tan \alpha=\frac{R_{y}}{R_{x}}$

$$
=\frac{308.02}{18.522}
$$

$$
\alpha=86.559^{\circ}
$$

$$
R=\frac{308.02 \mathrm{~N}}{\sin 86.559}
$$

$$
\mathbf{R}=309 \mathrm{~N} \square 86.6^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.36

Knowing that the tension in rope $A C$ is 365 N , determine the resultant of the three forces exerted at point C of post $B C$.

SOLUTION

Determine force components:
Cable force $A C: \quad F_{x}=-(365 \mathrm{~N}) \frac{960}{1460}=-240 \mathrm{~N}$

$$
F_{y}=-(365 \mathrm{~N}) \frac{1100}{1460}=-275 \mathrm{~N}
$$

500-N Force:

$$
\begin{aligned}
& F_{x}=(500 \mathrm{~N}) \frac{24}{25}=480 \mathrm{~N} \\
& F_{y}=(500 \mathrm{~N}) \frac{7}{25}=140 \mathrm{~N}
\end{aligned}
$$

200-N Force: $\quad F_{x}=(200 \mathrm{~N}) \frac{4}{5}=160 \mathrm{~N}$

$$
F_{y}=-(200 \mathrm{~N}) \frac{3}{5}=-120 \mathrm{~N}
$$

and

$$
\begin{aligned}
R_{x} & =\Sigma F_{x}=-240 \mathrm{~N}+480 \mathrm{~N}+160 \mathrm{~N}=400 \mathrm{~N} \\
R_{y} & =\Sigma F_{y}=-275 \mathrm{~N}+140 \mathrm{~N}-120 \mathrm{~N}=-255 \mathrm{~N} \\
R & =\sqrt{R_{x}^{2}+R_{y}^{2}} \\
& =\sqrt{(400 \mathrm{~N})^{2}+(-255 \mathrm{~N})^{2}} \\
& =474.37 \mathrm{~N}
\end{aligned}
$$

Further:

$$
\begin{aligned}
\tan \alpha & =\frac{255}{400} \\
\alpha & =32.5^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=474 \mathrm{~N}\left\ulcorner 32.5^{\circ}\right.
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.37

Knowing that $\alpha=40^{\circ}$, determine the resultant of the three forces shown.

SOLUTION

60-lb Force:

$$
\begin{aligned}
& F_{x}=(60 \mathrm{lb}) \cos 20^{\circ}=56.382 \mathrm{lb} \\
& F_{y}=(60 \mathrm{lb}) \sin 20^{\circ}=20.521 \mathrm{lb}
\end{aligned}
$$

80-lb Force:

120-lb Force:

$$
\begin{aligned}
& F_{x}=(80 \mathrm{lb}) \cos 60^{\circ}=40.000 \mathrm{lb} \\
& F_{y}=(80 \mathrm{lb}) \sin 60^{\circ}=69.282 \mathrm{lb}
\end{aligned}
$$

$F_{x}=(120 \mathrm{lb}) \cos 30^{\circ}=103.923 \mathrm{lb}$
$F_{y}=-(120 \mathrm{lb}) \sin 30^{\circ}=-60.000 \mathrm{lb}$

and
$R_{x}=\Sigma F_{x}=200.305 \mathrm{lb}$
$R_{y}=\Sigma F_{y}=29.803 \mathrm{lb}$
$R=\sqrt{(200.305 \mathrm{lb})^{2}+(29.803 \mathrm{lb})^{2}}$

$$
=202.510 \mathrm{lb}
$$

Further:

$$
\begin{aligned}
\tan \alpha & =\frac{29.803}{200.305} \\
\alpha & =\tan ^{-1} \frac{29.803}{200.305} \\
& =8.46^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=203 \mathrm{lb}\left\langle\mathrm{Cl}^{\prime} 8.46^{\circ}\right.
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.38

Knowing that $\alpha=75^{\circ}$, determine the resultant of the three forces shown.

SOLUTION

60-lb Force:

$$
\begin{aligned}
& F_{x}=(60 \mathrm{lb}) \cos 20^{\circ}=56.382 \mathrm{lb} \\
& F_{y}=(60 \mathrm{lb}) \sin 20^{\circ}=20.521 \mathrm{lb}
\end{aligned}
$$

80-lb Force:

$$
\begin{aligned}
& F_{x}=(80 \mathrm{lb}) \cos 95^{\circ}=-6.9725 \mathrm{lb} \\
& F_{y}=(80 \mathrm{lb}) \sin 95^{\circ}=79.696 \mathrm{lb}
\end{aligned}
$$

120-lb Force:

$$
F_{x}=(120 \mathrm{lb}) \cos 5^{\circ}=119.543 \mathrm{lb}
$$

$$
F_{y}=(120 \mathrm{lb}) \sin 5^{\circ}=10.459 \mathrm{lb}
$$

Then

$$
\begin{aligned}
& R_{x}=\Sigma F_{x}=168.953 \mathrm{lb} \\
& R_{y}=\Sigma F_{y}=110.676 \mathrm{lb}
\end{aligned}
$$

and

$$
\begin{aligned}
R & =\sqrt{(168.953 \mathrm{lb})^{2}+(110.676 \mathrm{lb})^{2}} \\
& =201.976 \mathrm{lb}
\end{aligned}
$$

$$
\tan \alpha=\frac{110.676}{168.953}
$$

$$
\tan \alpha=0.65507
$$

$$
\alpha=33.228^{\circ}
$$

$$
\mathbf{R}=202 \mathrm{lb} \ll 33.2^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.39

For the collar of Problem 2.35, determine (a) the required value of α if the resultant of the three forces shown is to be vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
R_{x} & =\Sigma F_{x} \\
& =(100 \mathrm{~N}) \cos \alpha+(150 \mathrm{~N}) \cos \left(\alpha+30^{\circ}\right)-(200 \mathrm{~N}) \cos \alpha \\
R_{x} & =-(100 \mathrm{~N}) \cos \alpha+(150 \mathrm{~N}) \cos \left(\alpha+30^{\circ}\right) \tag{1}\\
R_{y} & =\Sigma F_{y} \\
& =-(100 \mathrm{~N}) \sin \alpha-(150 \mathrm{~N}) \sin \left(\alpha+30^{\circ}\right)-(200 \mathrm{~N}) \sin \alpha \\
R_{y} & =-(300 \mathrm{~N}) \sin \alpha-(150 \mathrm{~N}) \sin \left(\alpha+30^{\circ}\right) \tag{2}
\end{align*}
$$

(a) For \mathbf{R} to be vertical, we must have $R_{x}=0$. We make $R_{x}=0$ in Eq. (1):

$$
\begin{aligned}
-100 \cos \alpha+150 \cos \left(\alpha+30^{\circ}\right) & =0 \\
-100 \cos \alpha+150\left(\cos \alpha \cos 30^{\circ}-\sin \alpha \sin 30^{\circ}\right) & =0 \\
29.904 \cos \alpha & =75 \sin \alpha \\
\tan \alpha & =\frac{29.904}{75} \\
& =0.39872 \\
\alpha & =21.738^{\circ}
\end{aligned}
$$

(b) Substituting for α in Eq. (2):

$$
\begin{aligned}
R_{y} & =-300 \sin 21.738^{\circ}-150 \sin 51.738^{\circ} \\
& =-228.89 \mathrm{~N}
\end{aligned}
$$

$$
R=\left|R_{y}\right|=228.89 \mathrm{~N} \quad R=229 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.40

For the post of Prob. 2.36, determine (a) the required tension in rope $A C$ if the resultant of the three forces exerted at point C is to be horizontal, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
& R_{x}=\Sigma F_{x}=-\frac{960}{1460} T_{A C}+\frac{24}{25}(500 \mathrm{~N})+\frac{4}{5}(200 \mathrm{~N}) \\
& R_{x}=-\frac{48}{73} T_{A C}+640 \mathrm{~N} \tag{1}\\
& R_{y}=\Sigma F_{y}=-\frac{1100}{1460} T_{A C}+\frac{7}{25}(500 \mathrm{~N})-\frac{3}{5}(200 \mathrm{~N}) \\
& R_{y}=-\frac{55}{73} T_{A C}+20 \mathrm{~N} \tag{2}
\end{align*}
$$

(a) For \mathbf{R} to be horizontal, we must have $R_{y}=0$.

Set $R_{y}=0$ in Eq. (2):

$$
\begin{aligned}
-\frac{55}{73} T_{A C}+20 \mathrm{~N} & =0 \\
T_{A C} & =26.545 \mathrm{~N}
\end{aligned} T_{A C}=26.5 \mathrm{~N}
$$

(b) Substituting for $T_{A C}$ into Eq. (1) gives

$$
\begin{aligned}
R_{x} & =-\frac{48}{73}(26.545 \mathrm{~N})+640 \mathrm{~N} \\
R_{x} & =622.55 \mathrm{~N} \\
R & =R_{x}
\end{aligned}=623 \mathrm{~N} \quad R=623 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.41

A hoist trolley is subjected to the three forces shown. Knowing that $\alpha=40^{\circ}$, determine (a) the required magnitude of the force \mathbf{P} if the resultant of the three forces is to be vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
R_{x} & =+\Sigma F_{x}=P+(200 \mathrm{lb}) \sin 40^{\circ}-(400 \mathrm{lb}) \cos 40^{\circ} \\
R_{x} & =P-177.860 \mathrm{lb} \tag{1}\\
R_{y} & =+\downarrow \Sigma F_{y}=(200 \mathrm{lb}) \cos 40^{\circ}+(400 \mathrm{lb}) \sin 40^{\circ} \\
R_{y} & =410.32 \mathrm{lb} \tag{2}
\end{align*}
$$

(a) For \mathbf{R} to be vertical, we must have $R_{x}=0$.

Set

$$
\begin{aligned}
R_{x} & =0 \text { in Eq. } \\
0 & =P-177.860 \mathrm{lb} \\
P & =177.860 \mathrm{lb}
\end{aligned}
$$

$$
P=177.9 \mathrm{lb}
$$

(b) Since \mathbf{R} is to be vertical:

$$
R=R_{y}=410 \mathrm{lb} \quad R=410 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.42

A hoist trolley is subjected to the three forces shown. Knowing that $P=250 \mathrm{lb}$, determine (a) the required value of α if the resultant of the three forces is to be vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
R_{x} & =\xrightarrow{+} \Sigma F_{x}=250 \mathrm{lb}+(200 \mathrm{lb}) \sin \alpha-(400 \mathrm{lb}) \cos \alpha \\
R_{x} & =250 \mathrm{lb}+(200 \mathrm{lb}) \sin \alpha-(400 \mathrm{lb}) \cos \alpha \tag{1}\\
R_{y} & =+{ }_{\downarrow} \Sigma F_{y}=(200 \mathrm{lb}) \cos \alpha+(400 \mathrm{lb}) \sin \alpha
\end{align*}
$$

(a) For \mathbf{R} to be vertical, we must have $R_{x}=0$.

$$
\begin{aligned}
R_{x} & =0 \mathrm{in} \mathrm{Eq.} \text { (1) } \\
0 & =250 \mathrm{lb}+(200 \mathrm{lb}) \sin \alpha-(400 \mathrm{lb}) \cos \alpha \\
(400 \mathrm{lb}) \cos \alpha & =(200 \mathrm{lb}) \sin \alpha+250 \mathrm{lb} \\
2 \cos \alpha & =\sin \alpha+1.25 \\
4 \cos ^{2} \alpha & =\sin ^{2} \alpha+2.5 \sin \alpha+1.5625 \\
4\left(1-\sin ^{2} \alpha\right) & =\sin ^{2} \alpha+2.5 \sin \alpha+1.5625 \\
0 & =5 \sin ^{2} \alpha+2.5 \sin \alpha-2.4375
\end{aligned}
$$

Using the quadratic formula to solve for the roots gives
or

$$
\begin{aligned}
\sin \alpha & =0.49162 \\
\alpha & =29.447^{\circ} \quad \alpha=29.4^{\circ}
\end{aligned}
$$

(b) Since \mathbf{R} is to be vertical:

$$
R=R_{y}=(200 \mathrm{lb}) \cos 29.447^{\circ}+(400 \mathrm{lb}) \sin 29.447^{\circ} \quad \mathbf{R}=371 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.43

Two cables are tied together at C and are loaded as shown. Determine the tension (a) in cable $A C$, (b) in cable $B C$.

SOLUTION

Free-Body Diagram

$\tan \alpha=\frac{1100}{960}$
$\alpha=48.888^{\circ}$
$\tan \beta=\frac{400}{960}$
$\beta=22.620^{\circ}$

Force Triangle

Law of sines:
$\frac{T_{A C}}{\sin 22.620^{\circ}}=\frac{T_{B C}}{\sin 48.888^{\circ}}=\frac{15.696 \mathrm{kN}}{\sin 108.492^{\circ}}$

(a)

$$
\begin{array}{ll}
T_{A C}=\frac{15.696 \mathrm{kN}}{\sin 108.492^{\circ}}\left(\sin 22.620^{\circ}\right) & T_{A C}=6.37 \mathrm{kN} \\
T_{B C}=\frac{15.696 \mathrm{kN}}{\sin 108.492^{\circ}}\left(\sin 48.888^{\circ}\right) & T_{B C}=12.47 \mathrm{kN}
\end{array}
$$

(b)

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

$$
\begin{aligned}
\tan \alpha & =\frac{3}{2.25} \\
\alpha & =53.130^{\circ} \\
\tan \beta & =\frac{1.4}{2.25} \\
\beta & =31.891^{\circ}
\end{aligned}
$$

Free-Body Diagram

Force-Triangle

(a)

$$
T_{A C}=\frac{660 \mathrm{~N}}{\sin 94.979^{\circ}}\left(\sin 31.891^{\circ}\right) \quad T_{A C}=350 \mathrm{~N}
$$

$$
T_{B C}=\frac{660 \mathrm{~N}}{\sin 94.979^{\circ}}\left(\sin 53.130^{\circ}\right)
$$

$$
T_{B C}=530 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.45

Knowing that $\alpha=20^{\circ}$, determine the tension (a) in cable $A C$, (b) in rope $B C$.

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:

$$
\frac{T_{A C}}{\sin 110^{\circ}}=\frac{T_{B C}}{\sin 5^{\circ}}=\frac{1200 \mathrm{lb}}{\sin 65^{\circ}}
$$

(a)

$$
T_{A C}=\frac{1200 \mathrm{lb}}{\sin 65^{\circ}} \sin 110^{\circ}
$$

$$
T_{A C}=1244 \mathrm{lb}
$$

(b)

$$
T_{B C}=\frac{1200 \mathrm{lb}}{\sin 65^{\circ}} \sin 5^{\circ}
$$

$$
T_{B C}=115.4 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:

$$
\frac{F_{A C}}{\sin 35^{\circ}}=\frac{T_{B C}}{\sin 50^{\circ}}=\frac{300 \mathrm{lb}}{\sin 95^{\circ}}
$$

(a)
(b)

$$
\begin{array}{ll}
F_{A C}=\frac{300 \mathrm{lb}}{\sin 95^{\circ}} \sin 35^{\circ} & F_{A C}=172.7 \mathrm{lb} \\
T_{B C}=\frac{300 \mathrm{lb}}{\sin 95^{\circ}} \sin 50^{\circ} & T_{B C}=231 \mathrm{lb}
\end{array}
$$

PROBLEM 2.47

Two cables are tied together at C and loaded as shown. Determine the tension (a) in cable $A C,(b)$ in cable $B C$.

SOLUTION

Free-Body Diagram

$$
\begin{aligned}
\tan \alpha & =\frac{1.4}{4.8} \\
\alpha & =16.2602^{\circ} \\
\tan \beta & =\frac{1.6}{3} \\
\beta & =28.073^{\circ}
\end{aligned}
$$

Force Triangle

(a)
(b)

$$
\begin{array}{ll}
T_{A C}=\frac{1.98 \mathrm{kN}}{\sin 44.333^{\circ}} \sin 61.927^{\circ} & T_{A C}=2.50 \mathrm{kN} \\
T_{B C}=\frac{1.98 \mathrm{kN}}{\sin 44.333^{\circ}} \sin 73.740^{\circ} & T_{B C}=2.72 \mathrm{kN}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:

$$
\frac{T_{A C}}{\sin 35^{\circ}}=\frac{T_{B C}}{\sin 75^{\circ}}=\frac{500 \mathrm{~N}}{\sin 70^{\circ}}
$$

(a)
(b)

$$
\begin{array}{ll}
T_{A C}=\frac{500 \mathrm{~N}}{\sin 70^{\circ}} \sin 35^{\circ} & T_{A C}=305 \mathrm{~N} \\
T_{B C}=\frac{500 \mathrm{~N}}{\sin 70^{\circ}} \sin 75^{\circ} & T_{B C}=514 \mathrm{~N}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.49

Two forces of magnitude $T_{A}=8 \mathrm{kips}$ and $T_{B}=15 \mathrm{kips}$ are applied as shown to a welded connection. Knowing that the connection is in equilibrium, determine the magnitudes of the forces T_{C} and T_{D}.

SOLUTION

$$
\begin{aligned}
(9.1379 \mathrm{kips}) \sin 40^{\circ}-T_{C} & =0 \\
T_{C} & =5.8737 \mathrm{kips}
\end{aligned}
$$

$$
\begin{aligned}
T_{C} & =5.87 \mathrm{kips} \\
T_{D} & =9.14 \mathrm{kips}
\end{aligned}
$$

SOLUTION

$$
\begin{align*}
+\Sigma F_{x} & =0 \tag{1}\\
\uparrow \Sigma F_{y} & =0
\end{align*}
$$

$$
T_{B}-6 \mathrm{kips}-T_{D} \cos 40^{\circ}=0
$$

$$
T_{D} \sin 40^{\circ}-9 \mathrm{kips}=0
$$

$$
T_{D}=\frac{9 \mathrm{kips}}{\sin 40^{\circ}}
$$

$$
T_{D}=14.0015 \mathrm{kips}
$$

Substituting for T_{D} into Eq. (1) gives:

$$
\begin{aligned}
T_{B}-6 \mathrm{kips}-(14.0015 \mathrm{kips}) \cos 40^{\circ} & =0 \\
T_{B} & =16.7258 \mathrm{kips}
\end{aligned}
$$

$$
\begin{aligned}
T_{B} & =16.73 \mathrm{kips} \\
T_{D} & =14.00 \mathrm{kips}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.51

Two cables are tied together at C and loaded as shown. Knowing that $P=360 \mathrm{~N}$, determine the tension (a) in cable $A C$, (b) in cable $B C$.

SOLUTION

Free Body: C

(a)

$$
\Sigma \mathbf{F}_{x}=0: \quad-\frac{12}{13} T_{A C}+\frac{4}{5}(360 \mathrm{~N})=0
$$

$$
T_{A C}=312 \mathrm{~N}
$$

(b)

$$
\begin{array}{cc}
\Sigma \mathbf{F}_{y}=0: & \frac{5}{13}(312 \mathrm{~N})+T_{B C}+\frac{3}{5}(360 \mathrm{~N})-480 \mathrm{~N}=0 \\
& \\
T_{B C}=480 \mathrm{~N}-120 \mathrm{~N}-216 \mathrm{~N} & T_{B C}=144 \mathrm{~N}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Free Body: C

$$
\begin{align*}
& \Sigma \mathbf{F}_{x}=0:-\frac{12}{13} T_{A C}+\frac{4}{5} \mathbf{P}=0 \\
& T_{A C}=\frac{13}{15} P \tag{1}\\
& \Sigma \mathbf{F}_{y}=0: \quad \frac{5}{13} T_{A C}+T_{B C}+\frac{3}{5} P-480 \mathrm{~N}=0
\end{align*}
$$

Substitute for $T_{A C}$ from (1):

$$
\begin{align*}
\left(\frac{5}{13}\right)\left(\frac{13}{15}\right) P+T_{B C}+\frac{3}{5} P-480 \mathrm{~N} & =0 \\
T_{B C} & =480 \mathrm{~N}-\frac{14}{15} P \tag{2}
\end{align*}
$$

From (1), $T_{A C}>0$ requires $P>0$.
From (2), $T_{B C}>0$ requires $\frac{14}{15} P<480 \mathrm{~N}, \quad P<514.29 \mathrm{~N}$
Allowable range:
$0<P<514 \mathrm{~N}$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.53

A sailor is being rescued using a boatswain's chair that is suspended from a pulley that can roll freely on the support cable $A C B$ and is pulled at a constant speed by cable $C D$. Knowing that $\alpha=30^{\circ}$ and $\beta=10^{\circ}$ and that the combined weight of the boatswain's chair and the sailor is 900 N , determine the tension (a) in the support cable $A C B,(b)$ in the traction cable $C D$.

SOLUTION

Free-Body Diagram

$$
\begin{align*}
& +T_{C D}=0.137158 T_{A C B} \\
& +\Sigma F_{x}=0: \quad T_{A C B} \cos 10^{\circ}-T_{A C B} \cos 30^{\circ}-T_{C D} \cos 30^{\circ}=0 \\
& +\hat{A} \Sigma F_{y}=0: \quad T_{A C B} \sin 10^{\circ}+T_{A C B} \sin 30^{\circ}+T_{C D} \sin 30^{\circ}-900=0 \tag{1}\\
& 0.67365 T_{A C B}+0.5 T_{C D}=900
\end{align*}
$$

(a) Substitute (1) into (2): $0.67365 T_{A C B}+0.5\left(0.137158 T_{A C B}\right)=900$

$$
T_{A C B}=1212.56 \mathrm{~N} \quad T_{A C B}=1213 \mathrm{~N}
$$

(b) From (1):
$T_{C D}=0.137158(1212.56 \mathrm{~N})$
$T_{C D}=166.3 \mathrm{~N}$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Free-Body Diagram

$$
\begin{aligned}
& \text { (TACB } \\
& \xrightarrow{+} \Sigma F_{x}=0: \quad T_{A C B} \cos 15^{\circ}-T_{A C B} \cos 25^{\circ}-(80 \mathrm{~N}) \cos 25^{\circ}=0 \\
& T_{A C B}=1216.15 \mathrm{~N} \\
& +\uparrow \Sigma F_{y}=0: \quad(1216.15 \mathrm{~N}) \sin 15^{\circ}+(1216.15 \mathrm{~N}) \sin 25^{\circ} \\
& +(80 \mathrm{~N}) \sin 25^{\circ}-W=0 \\
& W=862.54 \mathrm{~N}
\end{aligned}
$$

(a) $\quad W=863 \mathrm{~N}$
(b) $T_{A C B}=1216 \mathrm{~N}$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.55

Two forces \mathbf{P} and \mathbf{Q} are applied as shown to an aircraft connection. Knowing that the connection is in equilibrium and that $P=500 \mathrm{lb}$ and $Q=650 \mathrm{lb}$, determine the magnitudes of the forces exerted on the rods A and B.

SOLUTION

Free-Body Diagram

Resolving the forces into x - and y-directions:

$$
\mathbf{R}=\mathbf{P}+\mathbf{Q}+\mathbf{F}_{A}+\mathbf{F}_{B}=0
$$

Substituting components:

$$
\begin{aligned}
\mathbf{R}= & -(500 \mathrm{lb}) \mathbf{j}+\left[(650 \mathrm{lb}) \cos 50^{\circ}\right] \mathbf{i} \\
& -\left[(650 \mathrm{lb}) \sin 50^{\circ}\right] \mathbf{j} \\
& +F_{B} \mathbf{i}-\left(F_{A} \cos 50^{\circ}\right) \mathbf{i}+\left(F_{A} \sin 50^{\circ}\right) \mathbf{j}=0
\end{aligned}
$$

In the y-direction (one unknown force):

$$
-500 \mathrm{lb}-(650 \mathrm{lb}) \sin 50^{\circ}+F_{A} \sin 50^{\circ}=0
$$

Thus,

$$
F_{A}=\frac{500 \mathrm{lb}+(650 \mathrm{lb}) \sin 50^{\circ}}{\sin 50^{\circ}}
$$

$$
=1302.70 \mathrm{lb} \quad F_{A}=1303 \mathrm{lb}
$$

In the x-direction:

$$
(650 \mathrm{lb}) \cos 50^{\circ}+F_{B}-F_{A} \cos 50^{\circ}=0
$$

Thus,

$$
\begin{aligned}
F_{B} & =F_{A} \cos 50^{\circ}-(650 \mathrm{lb}) \cos 50^{\circ} \\
& =(1302.70 \mathrm{lb}) \cos 50^{\circ}-(650 \mathrm{lb}) \cos 50^{\circ} \\
& =419.55 \mathrm{lb}
\end{aligned}
$$

$$
F_{B}=420 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Resolving the forces into x - and y-directions:

$$
\mathbf{R}=\mathbf{P}+\mathbf{Q}+\mathbf{F}_{A}+\mathbf{F}_{B}=0
$$

Substituting components:

$$
\begin{aligned}
\mathbf{R}= & -P \mathbf{j}+Q \cos 50^{\circ} \mathbf{i}-Q \sin 50^{\circ} \mathbf{j} \\
& -\left[(750 \mathrm{lb}) \cos 50^{\circ}\right] \mathbf{i} \\
& +\left[(750 \mathrm{lb}) \sin 50^{\circ}\right] \mathbf{j}+(400 \mathrm{lb}) \mathbf{i}
\end{aligned}
$$

In the x-direction (one unknown force):

In the y-direction:

$$
-P-Q \sin 50^{\circ}+(750 \mathrm{lb}) \sin 50^{\circ}=0
$$

$$
\begin{aligned}
P & =-Q \sin 50^{\circ}+(750 \mathrm{lb}) \sin 50^{\circ} \\
& =-(127.710 \mathrm{lb}) \sin 50^{\circ}+(750 \mathrm{lb}) \sin 50^{\circ} \\
& =476.70 \mathrm{lb}
\end{aligned}
$$

$$
P=477 \mathrm{lb} ; \quad Q=127.7 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& Q \cos 50^{\circ}-\left[(750 \mathrm{lb}) \cos 50^{\circ}\right]+400 \mathrm{lb}=0 \\
& Q=\frac{(750 \mathrm{lb}) \cos 50^{\circ}-400 \mathrm{lb}}{\cos 50^{\circ}} \\
& =127.710 \mathrm{lb}
\end{aligned}
$$

PROBLEM 2.57

Two cables tied together at C are loaded as shown. Knowing that the maximum allowable tension in each cable is 800 N , determine (a) the magnitude of the largest force \mathbf{P} that can be applied at C, (b) the corresponding value of α.

SOLUTION

Free-Body Diagram: C

Force Triangle

Force triangle is isosceles with
(a)

$$
\begin{aligned}
2 \beta & =180^{\circ}-85^{\circ} \\
\beta & =47.5^{\circ}
\end{aligned}
$$

$P=2(800 \mathrm{~N}) \cos 47.5^{\circ}=1081 \mathrm{~N}$
Since $P>0$, the solution is correct.
(b)
$\alpha=180^{\circ}-50^{\circ}-47.5^{\circ}=82.5^{\circ}$

$$
P=1081 \mathrm{~N}
$$

$\alpha=82.5^{\circ}$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.58

Two cables tied together at C are loaded as shown. Knowing that the maximum allowable tension is 1200 N in cable $A C$ and 600 N in cable $B C$, determine (a) the magnitude of the largest force \mathbf{P} that can be applied at $C,(b)$ the corresponding value of α.

SOLUTION

Free-Body Diagram

Force Triangle

(a) Law of cosines: $\quad P^{2}=(1200 \mathrm{~N})^{2}+(600 \mathrm{~N})^{2}-2(1200 \mathrm{~N})(600 \mathrm{~N}) \cos 85^{\circ}$

$$
P=1294.02 \mathrm{~N}
$$

Since $P>1200 \mathrm{~N}$, the solution is correct.

$$
P=1294 \mathrm{~N}
$$

(b) Law of sines:

$$
\begin{aligned}
\frac{\sin \beta}{1200 \mathrm{~N}} & =\frac{\sin 85^{\circ}}{1294.02 \mathrm{~N}} \\
\beta & =67.5^{\circ} \\
\alpha & =180^{\circ}-50^{\circ}-67.5^{\circ}
\end{aligned} \quad \alpha=62.5^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.59

For the situation described in Figure P2.45, determine (a) the value of α for which the tension in rope $B C$ is as small as possible, (b) the corresponding value of the tension.

PROBLEM 2.45 Knowing that $\alpha=20^{\circ}$, determine the tension (a) in cable $A C,(b)$ in rope $B C$.

SOLUTION

Free-Body Diagram

Force Triangle

路

To be smallest, $T_{B C}$ must be perpendicular to the direction of $T_{A C}$.
(a) Thus,

$$
\alpha=5^{\circ}
$$

$\alpha=5.00^{\circ}$
(b)
$T_{B C}=(1200 \mathrm{lb}) \sin 5^{\circ}$
$T_{B C}=104.6 \mathrm{lb}$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.60

For the structure and loading of Problem 2.46, determine (a) the value of α for which the tension in cable $B C$ is as small as possible, (b) the corresponding value of the tension.

SOLUTION

$T_{B C}$ must be perpendicular to $F_{A C}$ to be as small as possible.

Free-Body Diagram: C

Force Triangle is a right triangle

To be a minimum, $T_{B C}$ must be perpendicular to $F_{A C}$.
(a) We observe:

$$
\alpha=90^{\circ}-30^{\circ}
$$

$$
\alpha=60.0^{\circ}
$$

(b)

$$
T_{B C}=(300 \mathrm{lb}) \sin 50^{\circ}
$$

or

$$
T_{B C}=229.81 \mathrm{lb}
$$

$$
T_{B C}=230 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.61

For the cables of Problem 2.48, it is known that the maximum allowable tension is 600 N in cable $A C$ and 750 N in cable $B C$. Determine (a) the maximum force \mathbf{P} that can be applied at C, (b) the corresponding value of α.

SOLUTION

Free-Body Diagram

Force Triangle

(a) Law of cosines

$$
P^{2}=(600)^{2}+(750)^{2}-2(600)(750) \cos \left(25^{\circ}+45^{\circ}\right)
$$

$$
P=784.02 \mathrm{~N}
$$

$$
P=784 \mathrm{~N}
$$

(b) Law of sines

$$
\begin{aligned}
\frac{\sin \beta}{600 \mathrm{~N}} & =\frac{\sin \left(25^{\circ}+45^{\circ}\right)}{784.02 \mathrm{~N}} \\
\beta & =46.0^{\circ} \quad \therefore \quad \alpha=46.0^{\circ}+25^{\circ} \quad \alpha=71.0^{\circ}
\end{aligned}
$$

PROBLEM 2.62

A movable bin and its contents have a combined weight of 2.8 kN . Determine the shortest chain sling $A C B$ that can be used to lift the loaded bin if the tension in the chain is not to exceed 5 kN .

SOLUTION

Free-Body Diagram

Isosceles Force Triangle

Law of $\operatorname{sines:~} \sin \alpha=\frac{\frac{1}{2}(2.8 \mathrm{kN})}{T_{A C}}$

$$
\begin{aligned}
T_{A C} & =5 \mathrm{kN} \\
\sin \alpha & =\frac{\frac{1}{2}(2.8 \mathrm{kN})}{5 \mathrm{kN}}
\end{aligned}
$$

$$
\alpha=16.2602^{\circ}
$$

From Eq. (1): $\tan 16.2602^{\circ}=\frac{h}{0.6 \mathrm{~m}} \quad \therefore \quad h=0.175000 \mathrm{~m}$
Half length of chain $=A C=\sqrt{(0.6 \mathrm{~m})^{2}+(0.175 \mathrm{~m})^{2}}$

$$
=0.625 \mathrm{~m}
$$

Total length:

$$
=2 \times 0.625 \mathrm{~m}
$$

PROBLEM 2.63

Collar A is connected as shown to a $50-\mathrm{lb}$ load and can slide on a frictionless horizontal rod. Determine the magnitude of the force \mathbf{P} required to maintain the equilibrium of the collar when (a) $x=4.5$ in., (b) $x=15$ in.

SOLUTION

(a) Free Body: Collar \boldsymbol{A}

Force Triangle

$$
\frac{P}{4.5}=\frac{50 \mathrm{lb}}{20.5}
$$

$$
P=10.98 \mathrm{lb}
$$

Force Triangle

$$
\frac{P}{15}=\frac{50 \mathrm{lb}}{25} \quad P=30.0 \mathrm{lb}
$$

SOLUTION

Free Body: Collar A

Force Triangle

$$
\begin{aligned}
N^{2} & =(50)^{2}-(48)^{2}=196 \\
N & =14.00 \mathrm{lb}
\end{aligned}
$$

Similar Triangles

$$
\frac{x}{20 \mathrm{in} .}=\frac{48 \mathrm{lb}}{14 \mathrm{lb}}
$$

$$
x=68.6 \mathrm{in} .
$$

PROBLEM 2.65

Three forces are applied to a bracket as shown. The directions of the two $150-\mathrm{N}$ forces may vary, but the angle between these forces is always 50°. Determine the range of values of α for which the magnitude of the resultant of the forces acting at A is less than 600 N .

SOLUTION

Combine the two $150-\mathrm{N}$ forces into a resultant force Q :

Equivalent loading at A :

Using the law of cosines:

$$
\begin{aligned}
(600 \mathrm{~N})^{2} & =(500 \mathrm{~N})^{2}+(271.89 \mathrm{~N})^{2}+2(500 \mathrm{~N})(271.89 \mathrm{~N}) \cos \left(55^{\circ}+\alpha\right) \\
\cos \left(55^{\circ}+\alpha\right) & =0.132685
\end{aligned}
$$

Two values for $\alpha: \quad 55^{\circ}+\alpha=82.375$

$$
\alpha=27.4^{\circ}
$$

or

$$
\begin{aligned}
55^{\circ}+\alpha & =-82.375^{\circ} \\
55^{\circ}+\alpha & =360^{\circ}-82.375^{\circ} \\
\alpha & =222.6^{\circ}
\end{aligned}
$$

For $R<600 \mathrm{lb}$: $27.4^{\circ}<\alpha<222.6$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.66

A $200-\mathrm{kg}$ crate is to be supported by the rope-and-pulley arrangement shown. Determine the magnitude and direction of the force \mathbf{P} that must be exerted on the free end of the rope to maintain equilibrium. (Hint: The tension in the rope is the same on each side of a simple pulley. This can be proved by the methods of Ch. 4.)

SOLUTION

Free-Body Diagram: Pulley A

$$
\begin{aligned}
\xrightarrow{+} \Sigma F_{x} & =0: \quad-2 P\left(\frac{5}{\sqrt{281}}\right)+P \cos \alpha=0 \\
\cos \alpha & =0.59655 \\
\alpha & = \pm 53.377^{\circ}
\end{aligned}
$$

For $\alpha=+53.377^{\circ}$:
$+\uparrow \Sigma F_{y}=0: \quad 2 P\left(\frac{16}{\sqrt{281}}\right)+P \sin 53.377^{\circ}-1962 \mathrm{~N}=0$ $\mathbf{P}=724 \mathrm{~N} \subset 53.4^{\circ}$

For $\alpha=-53.377^{\circ}$:
$+\uparrow \Sigma F_{y}=0: \quad 2 P\left(\frac{16}{\sqrt{281}}\right)+P \sin \left(-53.377^{\circ}\right)-1962 \mathrm{~N}=0$

$$
\mathbf{P}=1773\left\ulcorner 53.4^{\circ}\right.
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Free-Body Diagram of Pulley

(a)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 2 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{2}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=300 \mathrm{lb}
$$

(b)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 2 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{2}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=300 \mathrm{lb}
$$

(c)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 3 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{3}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=200 \mathrm{lb}
$$

(d)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 3 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{3}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=200 \mathrm{lb}
$$

(e)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 4 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{4}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=150.0 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.68

Solve Parts b and d of Problem 2.67, assuming that the free end of the rope is attached to the crate.

PROBLEM 2.67 A 600-lb crate is supported by several rope-and-pulley arrangements as shown. Determine for each arrangement the tension in the rope. (See the hint for Problem 2.66.)

SOLUTION

Free-Body Diagram of Pulley and Crate

(b)

(d)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 3 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{3}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=200 \mathrm{lb}
$$

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 4 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{4}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=150.0 \mathrm{lb}
$$

PROBLEM 2.69

A load \mathbf{Q} is applied to the pulley C, which can roll on the cable $A C B$. The pulley is held in the position shown by a second cable $C A D$, which passes over the pulley A and supports a load \mathbf{P}. Knowing that $P=750 \mathrm{~N}$, determine (a) the tension in cable $A C B$, (b) the magnitude of load \mathbf{Q}.

SOLUTION

Free-Body Diagram: Pulley C

(a) $\xrightarrow{+} \Sigma F_{x}=0: \quad T_{A C B}\left(\cos 25^{\circ}-\cos 55^{\circ}\right)-(750 \mathrm{~N}) \cos 55^{\circ}=0$

$$
\text { Hence: } \quad T_{A C B}=1292.88 \mathrm{~N}
$$

$$
T_{A C B}=1293 \mathrm{~N}
$$

(b)

$$
\begin{array}{r}
+\ \Sigma F_{y}=0: \quad T_{A C B}\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+(750 \mathrm{~N}) \sin 55^{\circ}-Q=0 \\
(1292.88 \mathrm{~N})\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+(750 \mathrm{~N}) \sin 55^{\circ}-Q=0
\end{array}
$$

or

$$
Q=2219.8 \mathrm{~N} \quad Q=2220 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.70

An 1800-N load \mathbf{Q} is applied to the pulley C, which can roll on the cable $A C B$. The pulley is held in the position shown by a second cable $C A D$, which passes over the pulley A and supports a load \mathbf{P}. Determine (a) the tension in cable $A C B$, (b) the magnitude of load \mathbf{P}.

SOLUTION

Free-Body Diagram: Pulley C

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad T_{A C B}\left(\cos 25^{\circ}-\cos 55^{\circ}\right)-P \cos 55^{\circ}=0
$$

or

$$
\begin{equation*}
+\dagger \Sigma F_{y}=0: \quad T_{A C B}\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+P \sin 55^{\circ}-1800 \mathrm{~N}=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
1.24177 T_{A C B}+0.81915 P=1800 \mathrm{~N} \tag{2}
\end{equation*}
$$

(a) Substitute Equation (1) into Equation (2):

$$
\begin{aligned}
& 1.24177 T_{A C B}+0.81915\left(0.58010 T_{A C B}\right)=1800 \mathrm{~N} \\
& \text { Hence: } \quad T_{A C B}=1048.37 \mathrm{~N} \\
& \\
& \quad T_{A C B}=1048 \mathrm{~N}
\end{aligned}
$$

(b) \quad Using (1),$\quad P=0.58010(1048.37 \mathrm{~N})=608.16 \mathrm{~N}$

$$
P=608 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

$$
\begin{aligned}
F_{h} & =F \cos 65^{\circ} \\
& =(900 \mathrm{~N}) \cos 65^{\circ} \\
F_{h} & =380.36 \mathrm{~N}
\end{aligned}
$$

(a)

$$
\begin{aligned}
F_{x} & =F_{h} \sin 20^{\circ} \\
& =(380.36 \mathrm{~N}) \sin 20^{\circ}
\end{aligned}
$$

$$
F_{x}=-130.091 \mathrm{~N}, \quad F_{x}=-130.1 \mathrm{~N}
$$

$$
F_{y}=F \sin 65^{\circ}
$$

$$
=(900 \mathrm{~N}) \sin 65^{\circ}
$$

$$
F_{y}=+815.68 \mathrm{~N},
$$

$$
F_{y}=+816 \mathrm{~N}
$$

$$
F_{z}=F_{h} \cos 20^{\circ}
$$

$$
=(380.36 \mathrm{~N}) \cos 20^{\circ}
$$

$$
F_{z}=+357.42 \mathrm{~N}
$$

$$
F_{z}=+357 \mathrm{~N}
$$

(b)
$\cos \theta_{x}=\frac{F_{x}}{F}=\frac{-130.091 \mathrm{~N}}{900 \mathrm{~N}}$

$$
\theta_{x}=98.3^{\circ}
$$

$\cos \theta_{y}=\frac{F_{y}}{F}=\frac{+815.68 \mathrm{~N}}{900 \mathrm{~N}}$

$$
\theta_{y}=25.0^{\circ}
$$

$\cos \theta_{z}=\frac{F_{z}}{F}=\frac{+357.42 \mathrm{~N}}{900 \mathrm{~N}}$

$$
\theta_{z}=66.6^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

$$
\begin{aligned}
F_{h} & =F \sin 35^{\circ} \\
& =(750 \mathrm{~N}) \sin 35^{\circ} \\
F_{h} & =430.18 \mathrm{~N}
\end{aligned}
$$

(a)

$$
\begin{aligned}
F_{x} & =F_{h} \cos 25^{\circ} \\
& =(430.18 \mathrm{~N}) \cos 25^{\circ}
\end{aligned}
$$

$$
F_{x}=+389.88 \mathrm{~N}, \quad F_{x}=+390 \mathrm{~N}
$$

$$
F_{y}=F \cos 35^{\circ}
$$

$$
=(750 \mathrm{~N}) \cos 35^{\circ}
$$

$$
F_{y}=+614.36 \mathrm{~N},
$$

$$
F_{y}=+614 \mathrm{~N}
$$

$F_{z}=F_{h} \sin 25^{\circ}$

$$
=(430.18 \mathrm{~N}) \sin 25^{\circ}
$$

$$
F_{z}=+181.8 \mathrm{~N}
$$

$$
F_{z}=+181.802 \mathrm{~N}
$$

(b)
$\cos \theta_{x}=\frac{F_{x}}{F}=\frac{+389.88 \mathrm{~N}}{750 \mathrm{~N}}$

$$
\theta_{x}=58.7^{\circ}
$$

$\cos \theta_{y}=\frac{F_{y}}{F}=\frac{+614.36 \mathrm{~N}}{750 \mathrm{~N}}$
$\theta_{y}=35.0^{\circ}$
$\cos \theta_{z}=\frac{F_{z}}{F}=\frac{+181.802 \mathrm{~N}}{750 \mathrm{~N}}$
$\theta_{z}=76.0^{\circ}$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.73

A gun is aimed at a point A located 35° east of north. Knowing that the barrel of the gun forms an angle of 40° with the horizontal and that the maximum recoil force is 400 N , determine (a) the x, y, and z components of that force, (b) the values of the angles θ_{x}, θ_{y}, and θ_{z} defining the direction of the recoil force. (Assume that the x, y, and z axes are directed, respectively, east, up, and south.)

SOLUTION

Recoil force

$$
\begin{aligned}
F & =400 \mathrm{~N} \\
\therefore \quad F_{H} & =(400 \mathrm{~N}) \cos 40^{\circ} \\
& =306.42 \mathrm{~N}
\end{aligned}
$$

(a)

$$
\begin{aligned}
F_{x} & =-F_{H} \sin 35^{\circ} & \\
& =-(306.42 \mathrm{~N}) \sin 35^{\circ} & F_{x}=-175.8 \mathrm{~N} \\
& =-175.755 \mathrm{~N} & \\
F_{y} & =-F \sin 40^{\circ} & \\
& =-(400 \mathrm{~N}) \sin 40^{\circ} & F_{y}=-257 \mathrm{~N}
\end{aligned}
$$

$$
F_{z}=+F_{H} \cos 35^{\circ}
$$

$$
=+(306.42 \mathrm{~N}) \cos 35^{\circ}
$$

$$
=+251.00 \mathrm{~N}
$$

(b)

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{F_{x}}{F}=\frac{-175.755 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{x}=116.1^{\circ} \\
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{-257.12 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{y}=130.0^{\circ} \\
\cos \theta_{z}=\frac{F_{z}}{F}=\frac{251.00 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{z}=51.1^{\circ}
\end{array}
$$

$$
F_{z}=+251 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.74

Solve Problem 2.73, assuming that point A is located 15° north of west and that the barrel of the gun forms an angle of 25° with the horizontal.

PROBLEM 2.73 A gun is aimed at a point A located 35° east of north. Knowing that the barrel of the gun forms an angle of 40° with the horizontal and that the maximum recoil force is 400 N , determine (a) the x, y, and z components of that force, (b) the values of the angles θ_{x}, θ_{y}, and θ_{z} defining the direction of the recoil force. (Assume that the x, y, and z axes are directed, respectively, east, up, and south.)

SOLUTION

Recoil force

$$
\begin{aligned}
F & =400 \mathrm{~N} \\
\therefore \quad F_{H} & =(400 \mathrm{~N}) \cos 25^{\circ} \\
& =362.52 \mathrm{~N}
\end{aligned}
$$

(a)
(b)

$$
\begin{aligned}
F_{x} & =+F_{H} \cos 15^{\circ} & \\
& =+(362.52 \mathrm{~N}) \cos 15^{\circ} & F_{x}=+350 \mathrm{~N} \\
& =+350.17 \mathrm{~N} & \\
F_{y} & =-F \sin 25^{\circ} & \\
& =-(400 \mathrm{~N}) \sin 25^{\circ} & F_{y}=-169.0 \mathrm{~N} \\
& =-169.047 \mathrm{~N} & \\
F_{z} & =+F_{H} \sin 15^{\circ} & \\
& =+(362.52 \mathrm{~N}) \sin 15^{\circ} & F_{z}=+93.8 \mathrm{~N} \\
& =+93.827 \mathrm{~N} & \theta_{x}=28.9^{\circ} \\
\cos \theta_{x} & =\frac{F_{x}}{F}=\frac{+350.17 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{y}=115.0^{\circ} \\
\cos \theta_{y} & =\frac{F_{y}}{F}=\frac{-169.047 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{z}=76.4^{\circ}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.76

Cable $A C$ is 70 ft long, and the tension in that cable is 5250 lb . Determine (a) the x, y, and z components of the force exerted by the cable on the anchor $C,(b)$ the angles θ_{x}, θ_{y}, and θ_{z} defining the direction of that force.

SOLUTION

In triangle $A O B$:

$$
\begin{aligned}
A C & =70 \mathrm{ft} \\
O A & =56 \mathrm{ft} \\
F & =5250 \mathrm{lb} \\
\cos \theta_{y} & =\frac{56 \mathrm{ft}}{70 \mathrm{ft}} \\
\theta_{y} & =36.870^{\circ} \\
F_{H} & =F \sin \theta_{y} \\
& =(5250 \mathrm{lb}) \sin 36.870^{\circ} \\
& =3150.0 \mathrm{lb}
\end{aligned}
$$

(a) $F_{x}=-F_{H} \sin 50^{\circ}=-(3150.0 \mathrm{lb}) \sin 50^{\circ}=-2413.04 \mathrm{lb}$
$F_{x}=-2413 \mathrm{lb}$
$F_{y}=+F \cos \theta_{y}=+(5250 \mathrm{lb}) \cos 36.870^{\circ}=+4200.0 \mathrm{lb}$
$F_{y}=+4200 \mathrm{lb}$
$F_{z}=-F_{H} \cos 50^{\circ}=-3150 \cos 50^{\circ}=-2024.8 \mathrm{lb}$
$F_{z}=-2025 \mathrm{lb}$
(b) $\quad \cos \theta_{x}=\frac{F_{x}}{F}=\frac{-2413.04 \mathrm{lb}}{5250 \mathrm{lb}}$

$$
\theta_{x}=117.4^{\circ}
$$

From above: $\quad \theta_{y}=36.870^{\circ}$

$$
\theta_{y}=36.9^{\circ}
$$

$$
\theta_{z}=\frac{F_{z}}{F}=\frac{-2024.8 \mathrm{lb}}{5250 \mathrm{lb}}
$$

$$
\theta_{z}=112.7^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.77

The end of the coaxial cable $A E$ is attached to the pole $A B$, which is strengthened by the guy wires $A C$ and $A D$. Knowing that the tension in wire $A C$ is 120 lb , determine (a) the components of the force exerted by this wire on the pole, (b) the angles θ_{x}, θ_{y}, and θ_{z} that the force forms with the coordinate axes.

SOLUTION

(a)

$$
F_{x}=(120 \mathrm{lb}) \cos 60^{\circ} \cos 20^{\circ}
$$

$$
F_{x}=56.382 \mathrm{lb} \quad F_{x}=+56.4 \mathrm{lb}
$$

$$
F_{y}=-(120 \mathrm{lb}) \sin 60^{\circ}
$$

$$
F_{y}=-103.923 \mathrm{lb}
$$

$$
F_{y}=-103.9 \mathrm{lb}
$$

$$
F_{z}=-(120 \mathrm{lb}) \cos 60^{\circ} \sin 20^{\circ}
$$

$$
F_{z}=-20.521 \mathrm{lb}
$$

$$
F_{z}=-20.5 \mathrm{lb}
$$

(b)
$\cos \theta_{x}=\frac{F_{x}}{F}=\frac{56.382 \mathrm{lb}}{120 \mathrm{lb}}$

$$
\theta_{x}=62.0^{\circ}
$$

$\cos \theta_{y}=\frac{F_{y}}{F}=\frac{-103.923 \mathrm{lb}}{120 \mathrm{lb}}$

$$
\theta_{y}=150.0^{\circ}
$$

$\cos \theta_{z}=\frac{F_{z}}{F}=\frac{-20.52 \mathrm{lb}}{120 \mathrm{lb}}$

$$
\theta_{z}=99.8^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.78

The end of the coaxial cable $A E$ is attached to the pole $A B$, which is strengthened by the guy wires $A C$ and $A D$. Knowing that the tension in wire $A D$ is 85 lb , determine (a) the components of the force exerted by this wire on the pole, (b) the angles θ_{x}, θ_{y}, and θ_{z} that the force forms with the coordinate axes.

SOLUTION

(a)

$$
\begin{array}{rlrl}
F_{x} & =(85 \mathrm{lb}) \sin 36^{\circ} \sin 48^{\circ} & \\
& =37.129 \mathrm{lb} & F_{x}=37.1 \mathrm{lb} \\
F_{y} & =-(85 \mathrm{lb}) \cos 36^{\circ} & & \\
& =-68.766 \mathrm{lb} & F_{y}=-68.8 \mathrm{lb}
\end{array}
$$

$$
F_{z}=(85 \mathrm{lb}) \sin 36^{\circ} \cos 48^{\circ}
$$

$$
=33.431 \mathrm{lb}
$$

$$
F_{z}=33.4 \mathrm{lb}
$$

(b)

$$
\begin{array}{lr}
\cos \theta_{x}=\frac{F_{x}}{F}=\frac{37.129 \mathrm{lb}}{85 \mathrm{lb}} & \theta_{x}=64.1^{\circ} \\
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{-68.766 \mathrm{lb}}{85 \mathrm{lb}} & \theta_{y}=144.0^{\circ} \\
\cos \theta_{z}=\frac{F_{z}}{F}=\frac{33.431 \mathrm{lb}}{85 \mathrm{lb}} & \theta_{z}=66.8^{\circ}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.79

Determine the magnitude and direction of the force $\mathbf{F}=(690 \mathrm{lb}) \mathbf{i}+(300 \mathrm{lb}) \mathbf{j}-(580 \mathrm{lb}) \mathbf{k}$.

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{F} & =(690 \mathrm{~N}) \mathbf{i}+(300 \mathrm{~N}) \mathbf{j}-(580 \mathrm{~N}) \mathbf{k} & \\
F & =\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}} & \\
& =\sqrt{(690 \mathrm{~N})^{2}+(300 \mathrm{~N})^{2}+(-580 \mathrm{~N})^{2}} & \\
& =950 \mathrm{~N} & F=950 \mathrm{~N} \\
\cos \theta_{x} & =\frac{F_{x}}{F}=\frac{690 \mathrm{~N}}{950 \mathrm{~N}} & \theta_{x}=43.4^{\circ} \\
\cos \theta_{y} & =\frac{F_{y}}{F}=\frac{300 \mathrm{~N}}{950 \mathrm{~N}} & \theta_{y}=71.6^{\circ} \\
\cos \theta_{z} & =\frac{F_{z}}{F}=\frac{-580 \mathrm{~N}}{950 \mathrm{~N}} & \theta_{z}=127.6^{\circ}
\end{array}
$$

PROBLEM 2.80

Determine the magnitude and direction of the force $\mathbf{F}=(650 \mathrm{~N}) \mathbf{i}-(320 \mathrm{~N}) \mathbf{j}+(760 \mathrm{~N}) \mathbf{k}$.

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{F} & =(650 \mathrm{~N}) \mathbf{i}-(320 \mathrm{~N}) \mathbf{j}+(760 \mathrm{~N}) \mathbf{k} & \\
F & =\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}} & & \\
& =\sqrt{(650 \mathrm{~N})^{2}+(-320 \mathrm{~N})^{2}+(760 \mathrm{~N})^{2}} & F=1050 \mathrm{~N} \\
\cos \theta_{x} & =\frac{F_{x}}{F}=\frac{650 \mathrm{~N}}{1050 \mathrm{~N}} & \theta_{x}=51.8^{\circ} \\
\cos \theta_{y} & =\frac{F_{y}}{F}=\frac{-320 \mathrm{~N}}{1050 \mathrm{~N}} & \theta_{y}=107.7^{\circ} \\
\cos \theta_{z} & =\frac{F_{z}}{F}=\frac{760 \mathrm{~N}}{1050 \mathrm{~N}} & \theta_{z}=43.6^{\circ}
\end{array}
$$

PROBLEM 2.81

A force acts at the origin of a coordinate system in a direction defined by the angles $\theta_{x}=75^{\circ}$ and $\theta_{z}=130^{\circ}$. Knowing that the y component of the force is +300 lb , determine (a) the angle θ_{y}, (b) the other components and the magnitude of the force.

SOLUTION

$$
\begin{aligned}
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z} & =1 \\
\cos ^{2}\left(75^{\circ}\right)+\cos ^{2} \theta_{y}+\cos ^{2}\left(130^{\circ}\right) & =1 \\
\cos \theta_{y} & = \pm 0.72100
\end{aligned}
$$

(a) Since $F_{y}>0$, we choose $\cos \theta_{y}=+0.72100$ $\therefore \quad \theta_{y}=43.9^{\circ}$
(b)

$$
\begin{array}{rlrl}
F_{y} & =F \cos \theta_{y} & \\
300 \mathrm{lb} & =F(0.72100) & \\
F & =416.09 \mathrm{lb} & F=416 \mathrm{lb} \\
F_{x} & =F \cos \theta_{x}=416.09 \mathrm{lb} \cos 75^{\circ} & F_{x}=+107.7 \mathrm{lb} \\
F_{z} & =F \cos \theta_{z}=416.09 \mathrm{lb} \cos 130^{\circ} & F_{z}=-267 \mathrm{lb}
\end{array}
$$

PROBLEM 2.82

A force acts at the origin of a coordinate system in a direction defined by the angles $\theta_{y}=55^{\circ}$ and $\theta_{z}=45^{\circ}$. Knowing that the x component of the force is -500 N , determine (a) the angle $\theta_{x},(b)$ the other components and the magnitude of the force.

SOLUTION

$$
\begin{aligned}
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z} & =1 \\
\cos ^{2} \theta_{x}+\cos ^{2} 55^{\circ}+\cos ^{2} 45^{\circ} & =1 \\
\cos \theta_{x} & = \pm 0.41353
\end{aligned}
$$

(a) Since $F_{y}<0$, we choose $\cos \theta_{x}=-0.41353$ $\therefore \quad \theta_{x}=114.4^{\circ}$
(b)

$$
\begin{array}{rlrl}
F_{x} & =F \cos \theta_{x} & \\
-500 \mathrm{~N} & =F(-0.41353) & \\
F & =1209.10 \mathrm{~N} & F=1209.1 \mathrm{~N} \\
F_{y} & =F \cos \theta_{y}=1209.10 \mathrm{~N} \cos 55^{\circ} & F_{y}=+694 \mathrm{~N} \\
F_{z} & =F \cos \theta_{z}=1209.10 \mathrm{~N} \cos 45^{\circ} & F_{z}=+855 \mathrm{~N}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.83

A force \mathbf{F} of magnitude 230 N acts at the origin of a coordinate system. Knowing that $\theta_{x}=32.5^{\circ}, F_{y}=-60 \mathrm{~N}$, and $F_{z}>0$, determine (a) the components F_{x} and $F_{z},(b)$ the angles θ_{y} and θ_{z}.

SOLUTION

(a) We have

$$
F_{x}=F \cos \theta_{x}=(230 \mathrm{~N}) \cos 32.5^{\circ}
$$

$$
F_{x}=-194.0 \mathrm{~N}
$$

Then:

$$
F_{x}=193.980 \mathrm{~N}
$$

$$
F^{2}=F_{x}^{2}+F_{y}^{2}+F_{z}^{2}
$$

So:

$$
(230 \mathrm{~N})^{2}=(193.980 \mathrm{~N})^{2}+(-60 \mathrm{~N})^{2}+F_{z}^{2}
$$

Hence:

$$
\begin{aligned}
F_{z} & =+\sqrt{(230 \mathrm{~N})^{2}-(193.980 \mathrm{~N})^{2}-(-60 \mathrm{~N})^{2}} & F_{z}=108.0 \mathrm{~N} \\
F_{z} & =108.036 \mathrm{~N} & \\
\cos \theta_{y} & =\frac{F_{y}}{F}=\frac{-60 \mathrm{~N}}{230 \mathrm{~N}}=-0.26087 & \theta_{y}=105.1^{\circ} \\
\cos \theta_{z} & =\frac{F_{z}}{F}=\frac{108.036 \mathrm{~N}}{230 \mathrm{~N}}=0.46972 & \theta_{z}=62.0^{\circ}
\end{aligned}
$$

(b)

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.84

A force \mathbf{F} of magnitude 210 N acts at the origin of a coordinate system. Knowing that $F_{x}=80 \mathrm{~N}, \theta_{z}=151.2^{\circ}$, and $F_{y}<0$, determine (a) the components F_{y} and $F_{z},(b)$ the angles θ_{x} and θ_{y}.

SOLUTION

(a)

$$
\begin{array}{rlr}
F_{z}=F \cos \theta_{z} & =(210 \mathrm{~N}) \cos 151.2^{\circ} & \\
& =-184.024 \mathrm{~N} & F_{z}=-184.0 \mathrm{~N}
\end{array}
$$

Then:

$$
F^{2}=F_{x}^{2}+F_{y}^{2}+F_{z}^{2}
$$

So:

$$
(210 \mathrm{~N})^{2}=(80 \mathrm{~N})^{2}+\left(F_{y}\right)^{2}+(184.024 \mathrm{~N})^{2}
$$

Hence:

$$
\begin{aligned}
F_{y} & =-\sqrt{(210 \mathrm{~N})^{2}-(80 \mathrm{~N})^{2}-(184.024 \mathrm{~N})^{2}} & \\
& =-61.929 \mathrm{~N} & F_{y}=-62.0 \mathrm{lb}
\end{aligned}
$$

(b)

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{F_{x}}{F}=\frac{80 \mathrm{~N}}{210 \mathrm{~N}}=0.38095 & \theta_{x}=67.6^{\circ} \\
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{61.929 \mathrm{~N}}{210 \mathrm{~N}}=-0.29490 & \theta_{y}=107.2^{\circ}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.85

In order to move a wrecked truck, two cables are attached at A and pulled by winches B and C as shown. Knowing that the tension in cable $A B$ is 2 kips, determine the components of the force exerted at A by the cable.

SOLUTION

Cable $A B$:

$$
\begin{aligned}
& \lambda_{A B}=\frac{\overrightarrow{A B}}{A B}=\frac{(-46.765 \mathrm{ft}) \mathbf{i}+(45 \mathrm{ft}) \mathbf{j}+(36 \mathrm{ft}) \mathbf{k}}{74.216 \mathrm{ft}} \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=\frac{-46.765 \mathbf{i}+45 \mathbf{j}+36 \mathbf{k}}{74.216}
\end{aligned}
$$

$$
\begin{aligned}
& \left(T_{A B}\right)_{x}=-1.260 \mathrm{kips} \\
& \left(T_{A B}\right)_{y}=+1.213 \mathrm{kips}
\end{aligned}
$$

$$
\left(T_{A B}\right)_{z}=+0.970 \mathrm{kips}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.86

In order to move a wrecked truck, two cables are attached at A and pulled by winches B and C as shown. Knowing that the tension in cable $A C$ is 1.5 kips , determine the components of the force exerted at A by the cable.

SOLUTION

Cable $A B$:

$$
\begin{aligned}
\lambda_{A C} & =\frac{\overrightarrow{A C}}{A C}=\frac{(-46.765 \mathrm{ft}) \mathbf{i}+(55.8 \mathrm{ft}) \mathbf{j}+(-45 \mathrm{ft}) \mathbf{k}}{85.590 \mathrm{ft}} \\
\mathbf{T}_{A C} & =T_{A C} \boldsymbol{\lambda}_{A C}=(1.5 \mathrm{kips}) \frac{-46.765 \mathbf{i}+55.8 \mathbf{j}-45 \mathbf{k}}{85.590}
\end{aligned}
$$

$$
\begin{aligned}
& \left(T_{A C}\right)_{x}=-0.820 \mathrm{kips} \\
& \left(T_{A C}\right)_{y}=+0.978 \mathrm{kips} \\
& \left(T_{A C}\right)_{z}=-0.789 \mathrm{kips}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

$$
\begin{aligned}
\overrightarrow{B A} & =-(900 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} \\
B A & =\sqrt{(900 \mathrm{~mm})^{2}+(600 \mathrm{~mm})^{2}+(360 \mathrm{~mm})^{2}} \\
& =1140 \mathrm{~mm} \\
\mathbf{T}_{B A} & =T_{B A} \lambda_{B A} \\
& =T_{B A} \frac{\overrightarrow{B A}}{B A} \\
\mathbf{T}_{B A} & =\frac{1425 \mathrm{~N}}{1140 \mathrm{~mm}}[-(900 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k}] \\
& =-(1125 \mathrm{~N}) \mathbf{i}+(750 \mathrm{~N}) \mathbf{j}+(450 \mathrm{~N}) \mathbf{k} \\
& \quad\left(T_{B A}\right)_{x}=-1125 \mathrm{~N}, \quad\left(T_{B A}\right)_{y}=750 \mathrm{~N}, \quad\left(T_{B A}\right)_{z}=450 \mathrm{~N}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.88

Knowing that the tension in cable $A C$ is 2130 N , determine the components of the force exerted on the plate at C.

SOLUTION

$$
\begin{aligned}
& \overrightarrow{C A}=-(900 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}-(920 \mathrm{~mm}) \mathbf{k} \\
& C A=\sqrt{(900 \mathrm{~mm})^{2}+(600 \mathrm{~mm})^{2}+(920 \mathrm{~mm})^{2}} \\
&=1420 \mathrm{~mm} \\
& \mathbf{T}_{C A}=T_{C A} \lambda_{C A} \\
&=T_{C A} \frac{\overrightarrow{C A}}{C A} \\
& \mathbf{T}_{C A}=\frac{2130 \mathrm{~N}}{1420 \mathrm{~mm}}[-(900 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}-(920 \mathrm{~mm}) \mathbf{k}] \\
&=-(1350 \mathrm{~N}) \mathbf{i}+(900 \mathrm{~N}) \mathbf{j}-(1380 \mathrm{~N}) \mathbf{k} \\
& \qquad\left(T_{C A}\right)_{x}=-1350 \mathrm{~N}, \quad\left(T_{C A}\right)_{y}=900 \mathrm{~N}, \quad\left(T_{C A}\right)_{z}=-1380 \mathrm{~N}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.89

A frame $A B C$ is supported in part by cable $D B E$ that passes through a frictionless ring at B. Knowing that the tension in the cable is 385 N , determine the components of the force exerted by the cable on the support at D.

SOLUTION

$$
\begin{aligned}
\overrightarrow{D B} & =(480 \mathrm{~mm}) \mathbf{i}-(510 \mathrm{~mm}) \mathbf{j}+(320 \mathrm{~mm}) \mathbf{k} \\
D B & =\sqrt{(480 \mathrm{~mm})^{2}+\left(510 \mathrm{~mm}^{2}\right)+(320 \mathrm{~mm})^{2}} \\
& =770 \mathrm{~mm} \\
\mathbf{F} & =F \lambda_{D B} \\
& =F \frac{\overrightarrow{D B}}{D B} \\
& =\frac{385 \mathrm{~N}}{770 \mathrm{~mm}}[(480 \mathrm{~mm}) \mathbf{i}-(510 \mathrm{~mm}) \mathbf{j}+(320 \mathrm{~mm}) \mathbf{k}] \\
& =(240 \mathrm{~N}) \mathbf{i}-(255 \mathrm{~N}) \mathbf{j}+(160 \mathrm{~N}) \mathbf{k} \\
& F_{x}=+240 \mathrm{~N}, \quad F_{y}=-255 \mathrm{~N}, \quad F_{z}=+160.0 \mathrm{~N}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.90

For the frame and cable of Problem 2.89, determine the components of the force exerted by the cable on the support at E.

PROBLEM 2.89 A frame $A B C$ is supported in part by cable $D B E$ that passes through a frictionless ring at B. Knowing that the tension in the cable is 385 N , determine the components of the force exerted by the cable on the support at D.

SOLUTION

$$
\begin{aligned}
\overrightarrow{E B} & =(270 \mathrm{~mm}) \mathbf{i}-(400 \mathrm{~mm}) \mathbf{j}+(600 \mathrm{~mm}) \mathbf{k} \\
E B & =\sqrt{(270 \mathrm{~mm})^{2}+(400 \mathrm{~mm})^{2}+(600 \mathrm{~mm})^{2}} \\
& =770 \mathrm{~mm} \\
\mathbf{F} & =F \boldsymbol{\lambda}_{E B} \\
& =F \frac{\overrightarrow{E B}}{E B} \\
& =\frac{385 \mathrm{~N}}{770 \mathrm{~mm}}[(270 \mathrm{~mm}) \mathbf{i}-(400 \mathrm{~mm}) \mathbf{j}+(600 \mathrm{~mm}) \mathbf{k}] \\
\mathbf{F} & =(135 \mathrm{~N}) \mathbf{i}-(200 \mathrm{~N}) \mathbf{j}+(300 \mathrm{~N}) \mathbf{k}
\end{aligned}
$$

$$
F_{x}=+135.0 \mathrm{~N}, \quad F_{y}=-200 \mathrm{~N}, \quad F_{z}=+300 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{P} & =(600 \mathrm{~N})\left[\sin 40^{\circ} \sin 25^{\circ} \mathbf{i}+\cos 40^{\circ} \mathbf{j}+\sin 40^{\circ} \cos 25^{\circ} \mathbf{k}\right] & & \\
& =(162.992 \mathrm{~N}) \mathbf{i}+(459.63 \mathrm{~N}) \mathbf{j}+(349.54 \mathrm{~N}) \mathbf{k} & \\
\mathbf{Q} & =(450 \mathrm{~N})\left[\cos 55^{\circ} \cos 30^{\circ} \mathbf{i}+\sin 55^{\circ} \mathbf{j}-\cos 55^{\circ} \sin 30^{\circ} \mathbf{k}\right] & & \\
& =(223.53 \mathrm{~N}) \mathbf{i}+(368.62 \mathrm{~N}) \mathbf{j}-(129.055 \mathrm{~N}) \mathbf{k} & & \\
\mathbf{R} & =\mathbf{P}+\mathbf{Q} & & R=940 \mathrm{~N} \\
& =(386.52 \mathrm{~N}) \mathbf{i}+(828.25 \mathrm{~N}) \mathbf{j}+(220.49 \mathrm{~N}) \mathbf{k} & \theta_{x}=65.7^{\circ} \\
R & =\sqrt{(386.52 \mathrm{~N})^{2}+(828.25 \mathrm{~N})^{2}+(220.49 \mathrm{~N})^{2}} & & \\
& =940.22 \mathrm{~N} & \theta_{y}=28.2^{\circ} \\
\cos \theta_{x} & =\frac{R_{x}}{R}=\frac{386.52 \mathrm{~N}}{940.22 \mathrm{~N}} & & \theta_{z}=76.4^{\circ} \\
\cos \theta_{y} & =\frac{R_{y}}{R}=\frac{828.25 \mathrm{~N}}{940.22 \mathrm{~N}} & & \\
\cos \theta_{z} & =\frac{R_{z}}{R}=\frac{220.49 \mathrm{~N}}{940.22 \mathrm{~N}} & &
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.92

Find the magnitude and direction of the resultant of the two forces shown knowing that $P=450 \mathrm{~N}$ and $Q=600 \mathrm{~N}$.

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{P} & =(450 \mathrm{~N})\left[\sin 40^{\circ} \sin 25^{\circ} \mathbf{i}+\cos 40^{\circ} \mathbf{j}+\sin 40^{\circ} \cos 25^{\circ} \mathbf{k}\right] & \\
& =(122.244 \mathrm{~N}) \mathbf{i}+(344.72 \mathrm{~N}) \mathbf{j}+(262.154 \mathrm{~N}) \mathbf{k} & \\
\mathbf{Q} & =(600 \mathrm{~N})\left[\cos 55^{\circ} \cos 30^{\circ} \mathbf{i}+\sin 55^{\circ} \mathbf{j}-\cos 55^{\circ} \sin 30^{\circ} \mathbf{k}\right] & & \\
& =(298.04 \mathrm{~N}) \mathbf{i}+(491.49 \mathrm{~N}) \mathbf{j}-(172.073 \mathrm{~N}) \mathbf{k} & & \\
\mathbf{R} & =\mathbf{P}+\mathbf{Q} & & R=940 \mathrm{~N} \\
& =(420.28 \mathrm{~N}) \mathbf{i}+(836.21 \mathrm{~N}) \mathbf{j}+(90.081 \mathrm{~N}) \mathbf{k} & \\
R & =\sqrt{(420.28 \mathrm{~N})^{2}+(836.21 \mathrm{~N})^{2}+(90.081 \mathrm{~N})^{2}} & \theta_{x}=63.4^{\circ} \\
& =940.21 \mathrm{~N} & & \theta_{y}=27.2^{\circ} \\
\cos \theta_{x} & =\frac{R_{x}}{R}=\frac{420.28}{940.21} & & \theta_{z}=84.5^{\circ} \\
\cos \theta_{y} & =\frac{R_{y}}{R}=\frac{836.21}{940.21} & & \\
\cos \theta_{z} & =\frac{R_{z}}{R}=\frac{90.081}{940.21} &
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.93

Knowing that the tension is 425 lb in cable $A B$ and 510 lb in cable $A C$, determine the magnitude and direction of the resultant of the forces exerted at A by the two cables.

SOLUTION

$$
\begin{aligned}
\overrightarrow{A B} & =(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
A B & =\sqrt{(40 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}}=85 \mathrm{in} . \\
\overrightarrow{A C} & =(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
A C & =\sqrt{(100 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}}=125 \mathrm{in} . \\
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=(425 \mathrm{lb})\left[\frac{(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{85 \mathrm{in} .}\right] \\
\mathbf{T}_{A B} & =(200 \mathrm{lb}) \mathbf{i}-(225 \mathrm{lb}) \mathbf{j}+(300 \mathrm{lb}) \mathbf{k} \\
\mathbf{T}_{A C} & =T_{A C} \boldsymbol{\lambda}_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=(510 \mathrm{lb})\left[\frac{(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{125 \mathrm{in} .}\right] \\
\mathbf{T}_{A C} & =(408 \mathrm{lb}) \mathbf{i}-(183.6 \mathrm{lb}) \mathbf{j}+(244.8 \mathrm{lb}) \mathbf{k} \\
\mathbf{R} & =\mathbf{T}_{A B}+\mathbf{T}_{A C}=(608) \mathbf{i}-(408.6 \mathrm{lb}) \mathbf{j}+(544.8 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

Then:

$$
R=912.92 \mathrm{lb}
$$

$$
R=913 \mathrm{lb}
$$

and

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{608 \mathrm{lb}}{912.92 \mathrm{lb}}=0.66599 & \theta_{x}=48.2^{\circ} \\
\cos \theta_{y}=\frac{408.6 \mathrm{lb}}{912.92 \mathrm{lb}}=-0.44757 & \theta_{y}=116.6^{\circ} \\
\cos \theta_{z}=\frac{544.8 \mathrm{lb}}{912.92 \mathrm{lb}}=0.59677 & \theta_{z}=53.4^{\circ}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.94

Knowing that the tension is 510 lb in cable $A B$ and 425 lb in cable $A C$, determine the magnitude and direction of the resultant of the forces exerted at A by the two cables.

SOLUTION

$$
\begin{aligned}
\overrightarrow{A B} & =(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
A B & =\sqrt{(40 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}}=85 \mathrm{in} . \\
\overrightarrow{A C} & =(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
A C & =\sqrt{(100 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}}=125 \mathrm{in} . \\
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=(510 \mathrm{lb})\left[\frac{(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{85 \mathrm{in} .}\right] \\
\mathbf{T}_{A B} & =(240 \mathrm{lb}) \mathbf{i}-(270 \mathrm{lb}) \mathbf{j}+(360 \mathrm{lb}) \mathbf{k} \\
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=(425 \mathrm{lb})\left[\frac{(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{125 \mathrm{in} .}\right] \\
\mathbf{T}_{A C} & =(340 \mathrm{lb}) \mathbf{i}-(153 \mathrm{lb}) \mathbf{j}+(204 \mathrm{lb}) \mathbf{k} \\
\mathbf{R} & =\mathbf{T}_{A B}+\mathbf{T}_{A C}=(580 \mathrm{lb}) \mathbf{i}-(423 \mathrm{lb}) \mathbf{j}+(564 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

Then:

$$
R=912.92 \mathrm{lb}
$$

$$
R=913 \mathrm{lb}
$$

and

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{580 \mathrm{lb}}{912.92 \mathrm{lb}}=0.63532 & \theta_{x}=50.6^{\circ} \\
\cos \theta_{y}=\frac{-423 \mathrm{lb}}{912.92 \mathrm{lb}}=-0.46335 & \theta_{y}=117.6^{\circ} \\
\cos \theta_{z}=\frac{564 \mathrm{lb}}{912.92 \mathrm{lb}}=0.61780 & \theta_{z}=51.8^{\circ}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.95

For the frame of Problem 2.89, determine the magnitude and direction of the resultant of the forces exerted by the cable at B knowing that the tension in the cable is 385 N .

PROBLEM 2.89 A frame $A B C$ is supported in part by cable $D B E$ that passes through a frictionless ring at B. Knowing that the tension in the cable is 385 N , determine the components of the force exerted by the cable on the support at D.

SOLUTION

$$
\begin{array}{rlrl}
\overrightarrow{B D} & =-(480 \mathrm{~mm}) \mathbf{i}+(510 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \\
B D & =\sqrt{(480 \mathrm{~mm})^{2}+(510 \mathrm{~mm})^{2}+(320 \mathrm{~mm})^{2}}=770 \mathrm{~mm} \\
\mathbf{F}_{B D} & =T_{B D} \lambda_{B D}=T_{B D} \frac{\overrightarrow{B D}}{B D} \\
& =\frac{(385 \mathrm{~N})}{(770 \mathrm{~mm})}[-(480 \mathrm{~mm}) \mathbf{i}+(510 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k}] \\
& =-(240 \mathrm{~N}) \mathbf{i}+(255 \mathrm{~N}) \mathbf{j}-(160 \mathrm{~N}) \mathbf{k} \\
\overrightarrow{B E} & =-(270 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}-(600 \mathrm{~mm}) \mathbf{k} \\
B E & =\sqrt{(270 \mathrm{~mm})^{2}+(400 \mathrm{~mm})^{2}+(600 \mathrm{~mm})^{2}}=770 \mathrm{~mm} \\
\mathbf{F}_{B E} & =T_{B E} \lambda_{B E}=T_{B E} \frac{\overrightarrow{B E}}{B E} \\
& =\frac{(385 \mathrm{~N})}{(770 \mathrm{~mm})}[-(270 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}-(600 \mathrm{~mm}) \mathbf{k}] \\
& =-(135 \mathrm{~N}) \mathbf{i}+(200 \mathrm{~N}) \mathbf{j}-(300 \mathrm{~N}) \mathbf{k} \\
\mathbf{R} & =\mathbf{F}_{B D}+\mathbf{F}_{B E}=-(375 \mathrm{~N}) \mathbf{i}+(455 \mathrm{~N}) \mathbf{j}-(460 \mathrm{~N}) \mathbf{k} \\
R & =\sqrt{(375 \mathrm{~N})^{2}+(455 \mathrm{~N})^{2}+(460 \mathrm{~N})^{2}}=747.83 \mathrm{~N} \\
\cos \theta_{x} & =\frac{-375 \mathrm{~N}}{747.83 \mathrm{~N}} & { }^{\cos } \\
\cos \theta_{y} & =\frac{455 \mathrm{~N}}{747.83 \mathrm{~N}} & \theta_{x}=748 \mathrm{~N} \\
\cos \theta_{z} & =\frac{-460 \mathrm{~N}}{747.83 \mathrm{~N}} & \theta_{y}=52.5^{\circ} \\
\hline
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.96

For the cables of Problem 2.87, knowing that the tension is 1425 N in cable $A B$ and 2130 N in cable $A C$, determine the magnitude and direction of the resultant of the forces exerted at A by the two cables.

SOLUTION

$$
\begin{aligned}
T_{A B} & =-T_{B A} \quad(\text { use results of Problem 2.87) } \\
\left(T_{A B}\right)_{x} & =+1125 \mathrm{~N} \quad\left(T_{A B}\right)_{y}=-750 \mathrm{~N} \quad\left(T_{A B}\right)_{z}=-450 \mathrm{~N} \\
T_{A C} & =-T_{C A} \quad(\text { use results of Problem } 2.88) \\
\left(T_{A C}\right)_{x} & =+1350 \mathrm{~N} \quad\left(T_{A C}\right)_{y}=-900 \mathrm{~N} \quad\left(T_{A C}\right)_{z}=+1380 \mathrm{~N}
\end{aligned}
$$

Resultant:

$$
\begin{aligned}
R_{x} & =\Sigma F_{x}=+1125+1350=+2475 \mathrm{~N} \\
R_{y} & =\Sigma F_{y}=-750-900=-1650 \mathrm{~N} \\
R_{z} & =\Sigma F_{z}=-450+1380=+930 \mathrm{~N} \\
R & =\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}} \\
& =\sqrt{(+2475)^{2}+(-1650)^{2}+(+930)^{2}} \\
& =3116.6 \mathrm{~N}
\end{aligned}
$$

$$
R=3120 \mathrm{~N}
$$

$\cos \theta_{x}=\frac{R_{x}}{R}=\frac{+2475}{3116.6}$

$$
\theta_{x}=37.4^{\circ}
$$

$\cos \theta_{y}=\frac{R_{y}}{R}=\frac{-1650}{3116.6}$

$$
\theta_{y}=122.0^{\circ}
$$

$\cos \theta_{z}=\frac{R_{z}}{R}=\frac{+930}{3116.6}$

$$
\theta_{z}=72.6^{\circ}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.97

The boom $O A$ carries a load \mathbf{P} and is supported by two cables as shown. Knowing that the tension in cable $A B$ is 183 lb and that the resultant of the load \mathbf{P} and of the forces exerted at A by the two cables must be directed along $O A$, determine the tension in cable $A C$.

SOLUTION

Cable $A B$:

$$
\begin{aligned}
& T_{A B}=183 \mathrm{lb} \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=(183 \mathrm{lb}) \frac{(-48 \mathrm{in} .) \mathbf{i}+(29 \mathrm{in} .) \mathbf{j}+(24 \mathrm{in} .) \mathbf{k}}{61 \mathrm{in} .} \\
& \mathbf{T}_{A B}=-(144 \mathrm{lb}) \mathbf{i}+(87 \mathrm{lb}) \mathbf{j}+(72 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

Cable $A C$:

$$
\begin{aligned}
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=T_{A C} \frac{(-48 \mathrm{in} .) \mathbf{i}+(25 \mathrm{in} .) \mathbf{j}+(-36 \mathrm{in} .) \mathbf{k}}{65 \mathrm{in} .} \\
& \mathbf{T}_{A C}=-\frac{48}{65} T_{A C} \mathbf{i}+\frac{25}{65} T_{A C} \mathbf{j}-\frac{36}{65} T_{A C} \mathbf{k}
\end{aligned}
$$

$\operatorname{Load} P: \quad \mathbf{P}=P \mathbf{j}$
For resultant to be directed along $O A$, i.e., x-axis

$$
R_{z}=0: \quad \Sigma F_{z}=(72 \mathrm{lb})-\frac{36}{65} T_{A C}^{\prime}=0 \quad T_{A C}=130.0 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.98

For the boom and loading of Problem. 2.97, determine the magnitude of the load \mathbf{P}.

PROBLEM 2.97 The boom $O A$ carries a load \mathbf{P} and is supported by two cables as shown. Knowing that the tension in cable $A B$ is 183 lb and that the resultant of the load \mathbf{P} and of the forces exerted at A by the two cables must be directed along $O A$, determine the tension in cable $A C$.

SOLUTION

See Problem 2.97. Since resultant must be directed along $O A$, i.e., the x-axis, we write

$$
R_{y}=0: \quad \Sigma F_{y}=(87 \mathrm{lb})+\frac{25}{65} T_{A C}-P=0
$$

$T_{A C}=130.0 \mathrm{lb}$ from Problem 2.97.

Then
$(87 \mathrm{lb})+\frac{25}{65}(130.0 \mathrm{lb})-P=0$

$$
P=137.0 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.99

A container is supported by three cables that are attached to a ceiling as shown. Determine the weight W of the container, knowing that the tension in cable $A B$ is 6 kN .

SOLUTION

Free-Body Diagram at A:

The forces applied at A are:

$$
\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D}, \text { and } \mathbf{W}
$$

where $\mathbf{W}=W \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write
and

$$
\begin{array}{ll}
\overrightarrow{A B}=-(450 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j} & A B=750 \mathrm{~mm} \\
\overrightarrow{A C}=+(600 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} & A C=680 \mathrm{~mm} \\
\overrightarrow{A D}=+(500 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A D=860 \mathrm{~mm}
\end{array}
$$

$$
\begin{aligned}
\mathbf{T}_{A B}=\lambda_{A B} T_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B} & =T_{A B} \frac{(-450 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}}{750 \mathrm{~mm}} \\
& =\left(-\frac{45}{75} \mathbf{i}+\frac{60}{75} \mathbf{j}\right) T_{A B} \\
\mathbf{T}_{A C}=\lambda_{A C} T_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C} & =T_{A C} \frac{(600 \mathrm{~mm}) \mathbf{i}-(320 \mathrm{~mm}) \mathbf{j}}{680 \mathrm{~mm}} \\
& =\left(\frac{60}{68} \mathbf{j}-\frac{32}{68} \mathbf{k}\right) T_{A C} \\
\mathbf{T}_{A D}=\lambda_{A D} T_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D} & =T_{A D} \frac{(500 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k}}{860 \mathrm{~mm}} \\
& =\left(\frac{50}{86} \mathbf{i}+\frac{60}{86} \mathbf{j}+\frac{36}{86} \mathbf{k}\right) T_{A D}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.99 (Continued)

Equilibrium condition:

$$
\Sigma F=0: \quad \therefore \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+\mathbf{W}=0
$$

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$; factoring \mathbf{i}, \mathbf{j}, and \mathbf{k}; and equating each of the coefficients to zero gives the following equations:

From i:

$$
\begin{equation*}
-\frac{45}{75} T_{A B}+\frac{50}{86} T_{A D}=0 \tag{1}
\end{equation*}
$$

From j:

$$
\begin{equation*}
\frac{60}{75} T_{A B}+\frac{60}{68} T_{A C}+\frac{60}{86} T_{A D}-W=0 \tag{2}
\end{equation*}
$$

From \mathbf{k} :

$$
\begin{equation*}
-\frac{32}{68} T_{A C}+\frac{36}{86} T_{A D}=0 \tag{3}
\end{equation*}
$$

Setting $T_{A B}=6 \mathrm{kN}$ in (1) and (2), and solving the resulting set of equations gives

$$
\begin{aligned}
& T_{A C}=6.1920 \mathrm{kN} \\
& T_{A C}=5.5080 \mathrm{kN} \quad W=13.98 \mathrm{kN}
\end{aligned}
$$

PROBLEM 2.100

A container is supported by three cables that are attached to a ceiling as shown. Determine the weight W of the container, knowing that the tension in cable $A D$ is 4.3 kN .

SOLUTION

See Problem 2.99 for the figure and analysis leading to the following set of linear algebraic equations:

$$
\begin{align*}
-\frac{45}{75} T_{A B}+\frac{50}{86} T_{A D} & =0 \tag{1}\\
\frac{60}{75} T_{A B}+\frac{60}{68} T_{A C}+\frac{60}{86} T_{A D}-W & =0 \tag{2}\\
-\frac{32}{68} T_{A C}+\frac{36}{86} T_{A D} & =0 \tag{3}
\end{align*}
$$

Setting $T_{A D}=4.3 \mathrm{kN}$ into the above equations gives

$$
\begin{aligned}
& T_{A B}=4.1667 \mathrm{kN} \\
& T_{A C}=3.8250 \mathrm{kN}
\end{aligned}
$$

$$
W=9.71 \mathrm{kN}
$$

SOLUTION

The forces applied at A are:

$$
\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D} \text {, and } \mathbf{P}
$$

where $\mathbf{P}=P \mathbf{j}$. To express the other forces in terms of the unit vectors \mathbf{i}, \mathbf{j}, \mathbf{k}, we write
and

$$
\begin{array}{ll}
\overrightarrow{A B}=-(4.20 \mathrm{~m}) \mathbf{i}-(5.60 \mathrm{~m}) \mathbf{j} & A B=7.00 \mathrm{~m} \\
\overrightarrow{A C}=(2.40 \mathrm{~m}) \mathbf{i}-(5.60 \mathrm{~m}) \mathbf{j}+(4.20 \mathrm{~m}) \mathbf{k} & A C=7.40 \mathrm{~m} \\
\overrightarrow{A D}=-(5.60 \mathrm{~m}) \mathbf{j}-(3.30 \mathrm{~m}) \mathbf{k} & A D=6.50 \mathrm{~m}
\end{array}
$$

$$
\begin{aligned}
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=(-0.6 \mathbf{i}-0.8 \mathbf{j}) T_{A B} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=(0.32432 \mathbf{i}-0.75676 \mathbf{j}+0.56757 \mathbf{k}) T_{A C} \\
& \mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D}=(-0.86154 \mathbf{j}-0.50769 \mathbf{k}) T_{A D}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.101 (Continued)

Equilibrium condition:

$$
\Sigma F=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0
$$

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{gathered}
\left(-0.6 T_{A B}+0.32432 T_{A C}\right) \mathbf{i}+\left(-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P\right) \mathbf{j} \\
+\left(0.56757 T_{A C}-0.50769 T_{A D}\right) \mathbf{k}=0
\end{gathered}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{align*}
-0.6 T_{A B}+0.32432 T_{A C} & =0 \tag{1}\\
-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P & =0 \tag{2}\\
0.56757 T_{A C}-0.50769 T_{A D} & =0 \tag{3}
\end{align*}
$$

Setting $T_{A D}=481 \mathrm{~N}$ in (2) and (3), and solving the resulting set of equations gives

$$
\begin{aligned}
& T_{A C}=430.26 \mathrm{~N} \\
& T_{A D}=232.57 \mathrm{~N}
\end{aligned}
$$

$$
\mathbf{P}=926 \mathrm{~N} \uparrow\langle
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

See Problem 2.101 for the figure and analysis leading to the linear algebraic Equations (1), (2), and (3).

$$
\begin{align*}
-0.6 T_{A B}+0.32432 T_{A C} & =0 \tag{1}\\
-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P & =0 \tag{2}\\
0.56757 T_{A C}-0.50769 T_{A D} & =0 \tag{3}
\end{align*}
$$

From Eq. (1):

$$
T_{A B}=0.54053 T_{A C}
$$

From Eq. (3):

$$
T_{A D}=1.11795 T_{A C}
$$

Substituting for $T_{A B}$ and $T_{A D}$ in terms of $T_{A C}$ into Eq. (2) gives

$$
\begin{aligned}
&-0.8\left(0.54053 T_{A C}\right)-0.75676 T_{A C}-0.86154\left(1.11795 T_{A C}\right)+P=0 \\
& 2.1523 T_{A C}=P ; \quad P=800 \mathrm{~N} \\
& T_{A C}=\frac{800 \mathrm{~N}}{2.1523} \\
&=371.69 \mathrm{~N}
\end{aligned}
$$

Substituting into expressions for $T_{A B}$ and $T_{A D}$ gives

$$
\begin{aligned}
T_{A B} & =0.54053(371.69 \mathrm{~N}) \\
T_{A D} & =1.11795(371.69 \mathrm{~N})
\end{aligned}
$$

$$
T_{A B}=201 \mathrm{~N}, \quad T_{A C}=372 \mathrm{~N}, \quad T_{A D}=416 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.103

A crate is supported by three cables as shown. Determine the weight of the crate knowing that the tension in cable $A B$ is 750 lb .

SOLUTION

The forces applied at A are:

$$
\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D} \text { and } \mathbf{W}
$$

where $\mathbf{P}=P \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write

$$
\begin{aligned}
& \overrightarrow{A B}=-(36 \mathrm{in}) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}-(27 \mathrm{in} .) \mathbf{k} \\
& A B=75 \mathrm{in} . \\
& \overrightarrow{A C}=(60 \mathrm{in} .) \mathbf{j}+(32 \mathrm{in} .) \mathbf{k} \\
& A C=68 \mathrm{in} . \\
& \overrightarrow{A D}=(40 \mathrm{in}) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}-(27 \mathrm{in} .) \mathbf{k} \\
& A D=77 \mathrm{in} .
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B} \\
& =(-0.48 \mathbf{i}+0.8 \mathbf{j}-0.36 \mathbf{k}) T_{A B} \\
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C} \\
& =(0.88235 \mathbf{j}+0.47059 \mathbf{k}) T_{A C} \\
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D} \\
& =(0.51948 \mathbf{i}+0.77922 \mathbf{j}-0.35065 \mathbf{k}) T_{A D}
\end{aligned}
$$

Equilibrium Condition with $\quad \mathbf{W}=-W \mathbf{j}$

$$
\Sigma F=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}-W \mathbf{j}=0
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.103 (Continued)

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{aligned}
\left(-0.48 T_{A B}\right. & \left.+0.51948 T_{A D}\right) \mathbf{i}+\left(0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W\right) \mathbf{j} \\
& +\left(-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D}\right) \mathbf{k}=0
\end{aligned}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{aligned}
-0.48 T_{A B}+0.51948 T_{A D} & =0 \\
0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W & =0 \\
-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D} & =0
\end{aligned}
$$

Substituting $T_{A B}=750 \mathrm{lb}$ in Equations (1), (2), and (3) and solving the resulting set of equations, using conventional algorithms for solving linear algebraic equations, gives:

$$
\begin{array}{ll}
T_{A C} & =1090.1 \mathrm{lb} \\
T_{A D} & =693 \mathrm{lb}
\end{array} \quad W=2100 \mathrm{lb}
$$

PROBLEM 2.104

A crate is supported by three cables as shown. Determine the weight of the crate knowing that the tension in cable $A D$ is 616 lb .

SOLUTION

See Problem 2.103 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{array}{r}
-0.48 T_{A B}+0.51948 T_{A D}=0 \\
0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W=0 \\
-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D}=0 \tag{3}
\end{array}
$$

Substituting $T_{A D}=616 \mathrm{lb}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms, gives:

$$
\begin{aligned}
& T_{A B}=667.67 \mathrm{lb} \\
& T_{A C}=969.00 \mathrm{lb}
\end{aligned} \quad W=1868 \mathrm{lb}
$$

PROBLEM 2.105

A crate is supported by three cables as shown. Determine the weight of the crate knowing that the tension in cable $A C$ is 544 lb .

SOLUTION

See Problem 2.103 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-0.48 T_{A B}+0.51948 T_{A D} & =0 \tag{1}\\
0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W & =0 \tag{2}\\
-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D} & =0 \tag{3}
\end{align*}
$$

Substituting $T_{A C}=544 \mathrm{lb}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms, gives:

$$
\begin{aligned}
& T_{A B}=374.27 \mathrm{lb} \\
& T_{A D}=345.82 \mathrm{lb}
\end{aligned} \quad W=1049 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.106

A $1600-\mathrm{lb}$ crate is supported by three cables as shown. Determine the tension in each cable.

SOLUTION

See Problem 2.103 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{array}{r}
-0.48 T_{A B}+0.51948 T_{A D}=0 \\
0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W=0 \\
-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D}=0 \tag{3}
\end{array}
$$

Substituting $W=1600 \mathrm{lb}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms, gives

$$
\begin{aligned}
& T_{A B}=571 \mathrm{lb} \\
& T_{A C}=830 \mathrm{lb} \\
& T_{A D}=528 \mathrm{lb}
\end{aligned}
$$

PROBLEM 2.107

Three cables are connected at A, where the forces \mathbf{P} and \mathbf{Q} are applied as shown. Knowing that $Q=0$, find the value of P for which the tension in cable $A D$ is 305 N .

SOLUTION

$$
\begin{aligned}
& \Sigma \mathbf{F}_{A}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+\mathbf{P}=0 \quad \text { where } \quad \mathbf{P}=P \mathbf{i} \\
& \overrightarrow{A B}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}+(380 \mathrm{~mm}) \mathbf{k} \quad A B=1060 \mathrm{~mm} \\
& \overrightarrow{A C}
\end{aligned}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \quad A C=1040 \mathrm{~mm}, \quad \begin{aligned}
& \overrightarrow{A D}=-(960 \mathrm{~mm}) \mathbf{i}+(720 \mathrm{~mm}) \mathbf{j}-(220 \mathrm{~mm}) \mathbf{k} \quad A D=1220 \mathrm{~mm} \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=T_{A B}\left(-\frac{48}{53} \mathbf{i}-\frac{12}{53} \mathbf{j}+\frac{19}{53} \mathbf{k}\right) \\
& \begin{aligned}
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}
\end{aligned}=T_{A C} \frac{\overrightarrow{A C}}{A C}=T_{A C}\left(-\frac{12}{13} \mathbf{i}-\frac{3}{13} \mathbf{j}-\frac{4}{13} \mathbf{k}\right) \\
& \begin{aligned}
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}
\end{aligned}=\frac{305 \mathrm{~N}}{1220 \mathrm{~mm}}[(-960 \mathrm{~mm}) \mathbf{i}+(720 \mathrm{~mm}) \mathbf{j}-(220 \mathrm{~mm}) \mathbf{k}] \\
&=-(240 \mathrm{~N}) \mathbf{i}+(180 \mathrm{~N}) \mathbf{j}-(55 \mathrm{~N}) \mathbf{k}
\end{aligned}
$$

Substituting into $\Sigma \mathbf{F}_{A}=0$, factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$, and setting each coefficient equal to ϕ gives:

$$
\begin{align*}
& \mathbf{i}: \quad P=\frac{48}{53} T_{A B}+\frac{12}{13} T_{A C}+240 \mathrm{~N} \tag{1}\\
& \mathbf{j}: \quad \frac{12}{53} T_{A B}+\frac{3}{13} T_{A C}=180 \mathrm{~N} \tag{2}\\
& \mathbf{k}: \quad \frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}=55 \mathrm{~N} \tag{3}
\end{align*}
$$

Solving the system of linear equations using conventional algorithms gives:

$$
\begin{array}{ll}
T_{A B}=446.71 \mathrm{~N} & \\
T_{A C}=341.71 \mathrm{~N} & P=960 \mathrm{~N}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.108

Three cables are connected at A, where the forces \mathbf{P} and \mathbf{Q} are applied as shown. Knowing that $P=1200$ N, determine the values of Q for which cable $A D$ is taut.

SOLUTION

We assume that $T_{A D}=0$ and write $\quad \Sigma \mathbf{F}_{A}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+Q \mathbf{j}+(1200 \mathrm{~N}) \mathbf{i}=0$

$$
\begin{aligned}
& \overrightarrow{A B}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}+(380 \mathrm{~mm}) \mathbf{k} \quad A B=1060 \mathrm{~mm} \\
& \overrightarrow{A C}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \quad A C=1040 \mathrm{~mm} \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=\left(-\frac{48}{53} \mathbf{i}-\frac{12}{53} \mathbf{j}+\frac{19}{53} \mathbf{k}\right) T_{A B} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=\left(-\frac{12}{13} \mathbf{i}-\frac{3}{13} \mathbf{j}-\frac{4}{13} \mathbf{k}\right) T_{A C}
\end{aligned}
$$

Substituting into $\Sigma \mathbf{F}_{A}=0$, factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$, and setting each coefficient equal to ϕ gives:

$$
\begin{align*}
& \mathbf{i}: \quad-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}+1200 \mathrm{~N}=0 \tag{1}\\
& \mathbf{j}: \quad-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+Q=0 \tag{2}\\
& \mathbf{k}: \quad \frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}=0 \tag{3}
\end{align*}
$$

Solving the resulting system of linear equations using conventional algorithms gives:

$$
\begin{aligned}
T_{A B} & =605.71 \mathrm{~N} \\
T_{A C} & =705.71 \mathrm{~N} \\
Q & =300.00 \mathrm{~N}
\end{aligned}
$$

$$
0 \leq Q<300 \mathrm{~N}
$$

Note: This solution assumes that Q is directed upward as shown ($Q \geq 0$), if negative values of Q are considered, cable $A D$ remains taut, but $A C$ becomes slack for $Q=-460 \mathrm{~N}$.

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Dimensions in mm

PROBLEM 2.109

A rectangular plate is supported by three cables as shown. Knowing that the tension in cable $A C$ is 60 N , determine the weight of the plate.

SOLUTION

We note that the weight of the plate is equal in magnitude to the force \mathbf{P} exerted by the support on Point A.
Free Body A:

$$
\Sigma F=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0
$$

We have:

$$
\begin{array}{ll}
\overrightarrow{A B}=-(320 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A B=680 \mathrm{~mm} \\
\overrightarrow{A C}=(450 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A C=750 \mathrm{~mm} \\
\overrightarrow{A D}=(250 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}-(360 \mathrm{~mm}) \mathbf{k} & A D=650 \mathrm{~mm}
\end{array}
$$

Thus:

$$
\begin{aligned}
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=\left(-\frac{8}{17} \mathbf{i}-\frac{12}{17} \mathbf{j}+\frac{9}{17} \mathbf{k}\right) T_{A B} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=(0.6 \mathbf{i}-0.64 \mathbf{j}+0.48 \mathbf{k}) T_{A C} \\
& \mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D}=\left(\frac{5}{13} \mathbf{i}-\frac{9.6}{13} \mathbf{j}-\frac{7.2}{13} \mathbf{k}\right) T_{A D}
\end{aligned}
$$

Dimensions in mm

Substituting into the Eq. $\Sigma F=0$ and factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{aligned}
& \left(-\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D}\right) \mathbf{i} \\
& +\left(-\frac{12}{17} T_{A B}-0.64 T_{A C}-\frac{9.6}{13} T_{A D}+P\right) \mathbf{j} \\
& +\left(\frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D}\right) \mathbf{k}=0
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.109 (Continued)

Setting the coefficient of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to zero:

$$
\begin{array}{ll}
\mathbf{i}: & -\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D}=0 \\
\text { j: } & -\frac{12}{7} T_{A B}-0.64 T_{A C}-\frac{9.6}{13} T_{A D}+P=0 \\
\text { k: } & \frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D}=0 \tag{3}
\end{array}
$$

Making $T_{A C}=60 \mathrm{~N}$ in (1) and (3):

$$
\begin{align*}
-\frac{8}{17} T_{A B}+36 \mathrm{~N}+\frac{5}{13} T_{A D} & =0 \tag{1'}\\
\frac{9}{17} T_{A B}+28.8 \mathrm{~N}-\frac{7.2}{13} T_{A D} & =0 \tag{3'}
\end{align*}
$$

Multiply (1^{\prime}) by 9 , (3^{\prime}) by 8 , and add:

$$
554.4 \mathrm{~N}-\frac{12.6}{13} T_{A D}=0 \quad T_{A D}=572.0 \mathrm{~N}
$$

Substitute into (1^{\prime}) and solve for $T_{A B}$:

$$
T_{A B}=\frac{17}{8}\left(36+\frac{5}{13} \times 572\right) \quad T_{A B}=544.0 \mathrm{~N}
$$

Substitute for the tensions in Eq. (2) and solve for P :

$$
\begin{aligned}
P & =\frac{12}{17}(544 \mathrm{~N})+0.64(60 \mathrm{~N})+\frac{9.6}{13}(572 \mathrm{~N}) \\
& =844.8 \mathrm{~N}
\end{aligned}
$$

PROBLEM 2.110

A rectangular plate is supported by three cables as shown. Knowing that the tension in cable $A D$ is 520 N , determine the weight of the plate.

SOLUTION

See Problem 2.109 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D} & =0 \tag{1}\\
-\frac{12}{17} T_{A B}+0.64 T_{A C}-\frac{9.6}{13} T_{A D}+P & =0 \tag{2}\\
\frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D} & =0 \tag{3}
\end{align*}
$$

Making $T_{A D}=520 \mathrm{~N}$ in Eqs. (1) and (3):

$$
\begin{align*}
& -\frac{8}{17} T_{A B}+0.6 T_{A C}+200 \mathrm{~N}=0 \\
& \frac{9}{17} T_{A B}+0.48 T_{A C}-288 \mathrm{~N}=0
\end{align*}
$$

Multiply (1^{\prime}) by $9,\left(3^{\prime}\right)$ by 8 , and add:

$$
9.24 T_{A C}-504 \mathrm{~N}=0 \quad T_{A C}=54.5455 \mathrm{~N}
$$

Substitute into (1') and solve for $T_{A B}$:

$$
T_{A B}=\frac{17}{8}(0.6 \times 54.5455+200) \quad T_{A B}=494.545 \mathrm{~N}
$$

Substitute for the tensions in Eq. (2) and solve for P :

$$
\begin{aligned}
P & =\frac{12}{17}(494.545 \mathrm{~N})+0.64(54.5455 \mathrm{~N})+\frac{9.6}{13}(520 \mathrm{~N}) \\
& =768.00 \mathrm{~N} \quad \text { Weight of plate }=P=768 \mathrm{~N}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.111

A transmission tower is held by three guy wires attached to a pin at A and anchored by bolts at B, C, and D. If the tension in wire $A B$ is 630 lb , determine the vertical force \mathbf{P} exerted by the tower on the pin at A.

SOLUTION

Free Body \boldsymbol{A} :

$$
\begin{array}{ll}
\Sigma \mathbf{F}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0 \\
\overrightarrow{A B}=-45 \mathbf{i}-90 \mathbf{j}+30 \mathbf{k} & A B=105 \mathrm{ft} \\
\overrightarrow{A C}=30 \mathbf{i}-90 \mathbf{j}+65 \mathbf{k} & A C=115 \mathrm{ft} \\
\overrightarrow{A D}=20 \mathbf{i}-90 \mathbf{j}-60 \mathbf{k} & A D=110 \mathrm{ft}
\end{array}
$$

We write

$$
\begin{aligned}
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B} \\
& =\left(-\frac{3}{7} \mathbf{i}-\frac{6}{7} \mathbf{j}+\frac{2}{7} \mathbf{k}\right) T_{A B} \\
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C} \\
& =\left(\frac{6}{23} \mathbf{i}-\frac{18}{23} \mathbf{j}+\frac{13}{23} \mathbf{k}\right) T_{A C} \\
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D} \\
& =\left(\frac{2}{11} \mathbf{i}-\frac{9}{11} \mathbf{j}-\frac{6}{11} \mathbf{k}\right) T_{A D}
\end{aligned}
$$

Substituting into the Eq. $\Sigma \mathbf{F}=0$ and factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{aligned}
\left(-\frac{3}{7} T_{A B}\right. & \left.+\frac{6}{23} T_{A C}+\frac{2}{11} T_{A D}\right) \mathbf{i} \\
& +\left(-\frac{6}{7} T_{A B}-\frac{18}{23} T_{A C}-\frac{9}{11} T_{A D}+P\right) \mathbf{j} \\
& +\left(\frac{2}{7} T_{A B}+\frac{13}{23} T_{A C}-\frac{6}{11} T_{A D}\right) \mathbf{k}=0
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.111 (Continued)

Setting the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$, equal to zero:

$$
\begin{array}{ll}
\mathbf{i}: & -\frac{3}{7} T_{A B}+\frac{6}{23} T_{A C}+\frac{2}{11} T_{A D}=0 \\
\mathbf{j}: & -\frac{6}{7} T_{A B}-\frac{18}{23} T_{A C}-\frac{9}{11} T_{A D}+P=0 \\
\mathbf{k}: & \frac{2}{7} T_{A B}+\frac{13}{23} T_{A C}-\frac{6}{11} T_{A D}=0 \tag{3}
\end{array}
$$

Set $T_{A B}=630 \mathrm{lb}$ in Eqs. (1) - (3):

$$
\begin{array}{r}
-270 \mathrm{lb}+\frac{6}{23} T_{A C}+\frac{2}{11} T_{A D}=0 \\
-540 \mathrm{lb}-\frac{18}{23} T_{A C}-\frac{9}{11} T_{A D}+P=0 \\
180 \mathrm{lb}+\frac{13}{23} T_{A C}-\frac{6}{11} T_{A D}=0
\end{array}
$$

Solving, $\quad T_{A C}=467.42 \mathrm{lb} \quad T_{A D}=814.35 \mathrm{lb} \quad P=1572.10 \mathrm{lb}$ $P=1572 \mathrm{lb}$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.112

A transmission tower is held by three guy wires attached to a pin at A and anchored by bolts at B, C, and D. If the tension in wire $A C$ is 920 lb , determine the vertical force \mathbf{P} exerted by the tower on the pin at A.

SOLUTION

See Problem 2.111 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{3}{7} T_{A B}+\frac{6}{23} T_{A C}+\frac{2}{11} T_{A D} & =0 \tag{1}\\
-\frac{6}{7} T_{A B}-\frac{18}{23} T_{A C}-\frac{9}{11} T_{A D}+P & =0 \tag{2}\\
\frac{2}{7} T_{A B}+\frac{13}{23} T_{A C}-\frac{6}{11} T_{A D} & =0 \tag{3}
\end{align*}
$$

Substituting for $T_{A C}=920 \mathrm{lb}$ in Equations (1), (2), and (3) above and solving the resulting set of equations using conventional algorithms gives:

$$
\begin{align*}
-\frac{3}{7} T_{A B}+240 \mathrm{lb}+\frac{2}{11} T_{A D} & =0 \\
-\frac{6}{7} T_{A B}-720 \mathrm{lb}-\frac{9}{11} T_{A D}+P & =0 \\
\frac{2}{7} T_{A B}+520 \mathrm{lb}-\frac{6}{11} T_{A D} & =0
\end{align*}
$$

Solving,

$$
\begin{aligned}
T_{A B} & =1240.00 \mathrm{lb} \\
T_{A D} & =1602.86 \mathrm{lb} \\
P & =3094.3 \mathrm{lb}
\end{aligned}
$$

$$
P=3090 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.113

In trying to move across a slippery icy surface, a $180-\mathrm{lb}$ man uses two ropes $A B$ and $A C$. Knowing that the force exerted on the man by the icy surface is perpendicular to that surface, determine the tension in each rope.

SOLUTION

Free-Body Diagram at A

$$
\begin{aligned}
\mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C} & =T_{A C} \frac{(-30 \mathrm{ft}) \mathbf{i}+(20 \mathrm{ft}) \mathbf{j}-(12 \mathrm{ft}) \mathbf{k}}{38 \mathrm{ft}} \\
& =T_{A C}\left(-\frac{15}{19} \mathbf{i}+\frac{10}{19} \mathbf{j}-\frac{6}{19} \mathbf{k}\right) \\
\mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B} & =T_{A B} \frac{(-30 \mathrm{ft}) \mathbf{i}+(24 \mathrm{ft}) \mathbf{j}+(32 \mathrm{ft}) \mathbf{k}}{50 \mathrm{ft}} \\
& =T_{A B}\left(-\frac{15}{25} \mathbf{i}+\frac{12}{25} \mathbf{j}+\frac{16}{25} \mathbf{k}\right)
\end{aligned}
$$

Equilibrium condition: $\Sigma \mathbf{F}=0$

$$
\mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{N}+\mathbf{W}=0
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.113 (Continued)

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{N}$, and \mathbf{W}; factoring \mathbf{i}, \mathbf{j}, and \mathbf{k}; and equating each of the coefficients to zero gives the following equations:

From i:

$$
\begin{equation*}
-\frac{15}{25} T_{A B}-\frac{15}{19} T_{A C}+\frac{16}{34} N=0 \tag{1}
\end{equation*}
$$

From j: $\quad \frac{12}{25} T_{A B}+\frac{10}{19} T_{A C}+\frac{30}{34} N-(180 \mathrm{lb})=0$

From \mathbf{k} :

$$
\begin{equation*}
\frac{16}{25} T_{A B}-\frac{6}{19} T_{A C}=0 \tag{3}
\end{equation*}
$$

Solving the resulting set of equations gives:

$$
T_{A B}=31.7 \mathrm{lb} ; T_{A C}=64.3 \mathrm{lb}
$$

PROBLEM 2.114

Solve Problem 2.113, assuming that a friend is helping the man at A by pulling on him with a force $\mathbf{P}=-(60 \mathrm{lb}) \mathbf{k}$.

PROBLEM 2.113 In trying to move across a slippery icy surface, a $180-\mathrm{lb}$ man uses two ropes $A B$ and $A C$. Knowing that the force exerted on the man by the icy surface is perpendicular to that surface, determine the tension in each rope.

SOLUTION

Refer to Problem 2.113 for the figure and analysis leading to the following set of equations, Equation (3) being modified to include the additional force $\mathbf{P}=(-60 \mathrm{lb}) \mathbf{k}$.

$$
\begin{align*}
-\frac{15}{25} T_{A B}-\frac{15}{19} T_{A C}+\frac{16}{34} N & =0 \tag{1}\\
\frac{12}{25} T_{A B}+\frac{10}{19} T_{A C}+\frac{30}{34} N-(180 \mathrm{lb}) & =0 \tag{2}\\
\frac{16}{25} T_{A B}-\frac{6}{19} T_{A C}-(60 \mathrm{lb}) & =0 \tag{3}
\end{align*}
$$

Solving the resulting set of equations simultaneously gives:

$$
\begin{gathered}
T_{A B}=99.0 \mathrm{lb} \\
T_{A C}=10.55 \mathrm{lb}
\end{gathered}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.115

For the rectangular plate of Problems 2.109 and 2.110, determine the tension in each of the three cables knowing that the weight of the plate is 792 N .

SOLUTION

See Problem 2.109 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below. Setting $P=792$ N gives:

$$
\begin{align*}
-\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D} & =0 \tag{1}\\
-\frac{12}{17} T_{A B}-0.64 T_{A C}-\frac{9.6}{13} T_{A D}+792 \mathrm{~N} & =0 \tag{2}\\
\frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D} & =0 \tag{3}
\end{align*}
$$

Solving Equations (1), (2), and (3) by conventional algorithms gives

$$
\begin{array}{ll}
T_{A B}=510.00 \mathrm{~N} & T_{A B}=510 \mathrm{~N} \\
T_{A C}=56.250 \mathrm{~N} & T_{A C}=56.2 \mathrm{~N} \\
T_{A D}=536.25 \mathrm{~N} & T_{A D}=536 \mathrm{~N}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.116

For the cable system of Problems 2.107 and 2.108 , determine the tension in each cable knowing that $P=2880 \mathrm{~N}$ and $Q=0$.

SOLUTION

$$
\Sigma \mathbf{F}_{A}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+\mathbf{P}+\mathbf{Q}=0
$$

Where

$$
\begin{aligned}
\mathbf{P} & =P \mathbf{i} \text { and } \mathbf{Q}=Q \mathbf{j} \\
\overrightarrow{A B} & =-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}+(380 \mathrm{~mm}) \mathbf{k} \quad A B=1060 \mathrm{~mm} \\
\overrightarrow{A C} & =-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \quad A C=1040 \mathrm{~mm} \\
\overrightarrow{A D} & =-(960 \mathrm{~mm}) \mathbf{i}+(720 \mathrm{~mm}) \mathbf{j}-(220 \mathrm{~mm}) \mathbf{k} \quad A D=1220 \mathrm{~mm} \\
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=T_{A B}\left(-\frac{48}{53} \mathbf{i}-\frac{12}{53} \mathbf{j}+\frac{19}{53} \mathbf{k}\right) \\
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=T_{A C}\left(-\frac{12}{13} \mathbf{i}-\frac{3}{13} \mathbf{j}-\frac{4}{13} \mathbf{k}\right) \\
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D}=T_{A D}\left(-\frac{48}{61} \mathbf{i}+\frac{36}{61} \mathbf{j}-\frac{11}{61} \mathbf{k}\right)
\end{aligned}
$$

Substituting into $\Sigma \mathbf{F}_{A}=0$, setting $P=(2880 \mathrm{~N}) \mathbf{i}$ and $Q=0$, and setting the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to 0 , we obtain the following three equilibrium equations:

$$
\begin{align*}
& \mathbf{i}:-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}-\frac{48}{61} T_{A D}+2880 \mathrm{~N}=0 \tag{1}\\
& \mathbf{j}:-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+\frac{36}{61} T_{A D}=0 \tag{2}\\
& \mathbf{k}: \frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}-\frac{11}{61} T_{A D}=0 \tag{3}
\end{align*}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.116 (Continued)

Solving the system of linear equations using conventional algorithms gives:

$$
\begin{aligned}
& T_{A B}=1340.14 \mathrm{~N} \\
& T_{A C}=1025.12 \mathrm{~N} \\
& T_{A D}=915.03 \mathrm{~N}
\end{aligned}
$$

$$
\begin{gathered}
T_{A B}=1340 \mathrm{~N} \\
T_{A C}=1025 \mathrm{~N} \\
T_{A D}=915 \mathrm{~N}
\end{gathered}
$$

SOLUTION

See Problem 2.116 for the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}-\frac{48}{61} T_{A D}+P & =0 \tag{1}\\
-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+\frac{36}{61} T_{A D}+Q & =0 \tag{2}\\
\frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}-\frac{11}{61} T_{A D} & =0 \tag{3}
\end{align*}
$$

Setting $P=2880 \mathrm{~N}$ and $Q=576 \mathrm{~N}$ gives:

$$
\begin{align*}
-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}-\frac{48}{61} T_{A D}+2880 \mathrm{~N} & =0 \tag{1'}\\
-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+\frac{36}{61} T_{A D}+576 \mathrm{~N} & =0 \\
\frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}-\frac{11}{61} T_{A D} & =0
\end{align*}
$$

Solving the resulting set of equations using conventional algorithms gives:

$$
\begin{aligned}
& T_{A B}=1431.00 \mathrm{~N} \\
& T_{A C}=1560.00 \mathrm{~N} \\
& T_{A D}=183.010 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
T_{A B} & =1431 \mathrm{~N} \\
T_{A C} & =1560 \mathrm{~N} \\
T_{A D} & =183.0 \mathrm{~N}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.118

For the cable system of Problems 2.107 and 2.108, determine the tension in each cable knowing that $P=2880 \mathrm{~N}$ and $Q=-576 \mathrm{~N}$. (\mathbf{Q} is directed downward).

SOLUTION

See Problem 2.116 for the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}-\frac{48}{61} T_{A D}+P & =0 \tag{1}\\
-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+\frac{36}{61} T_{A D}+Q & =0 \tag{2}\\
\frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}-\frac{11}{61} T_{A D} & =0 \tag{3}
\end{align*}
$$

Setting $P=2880 \mathrm{~N}$ and $Q=-576 \mathrm{~N}$ gives:

$$
\begin{align*}
-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}-\frac{48}{61} T_{A D}+2880 \mathrm{~N} & =0 \\
-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+\frac{36}{6} T_{A D}-576 \mathrm{~N} & =0 \\
\frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}-\frac{11}{61} T_{A D} & =0 \tag{3'}
\end{align*}
$$

Solving the resulting set of equations using conventional algorithms gives:

$$
\begin{aligned}
T_{A B} & =1249.29 \mathrm{~N} \\
T_{A C} & =490.31 \mathrm{~N} \\
T_{A D} & =1646.97 \mathrm{~N}
\end{aligned}
$$

$$
\begin{gathered}
T_{A B}=1249 \mathrm{~N} \\
T_{A C}=490 \mathrm{~N} \\
T_{A D}=1647 \mathrm{~N}
\end{gathered}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.119

For the transmission tower of Problems 2.111 and 2.112, determine the tension in each guy wire knowing that the tower exerts on the pin at A an upward vertical force of 2100 lb .

SOLUTION

See Problem 2.111 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{3}{7} T_{A B}+\frac{6}{23} T_{A C}+\frac{2}{11} T_{A D} & =0 \tag{1}\\
-\frac{6}{7} T_{A B}-\frac{18}{23} T_{A C}-\frac{9}{11} T_{A D}+P & =0 \tag{2}\\
\frac{2}{7} T_{A B}+\frac{13}{23} T_{A C}-\frac{6}{11} T_{A D} & =0 \tag{3}
\end{align*}
$$

Substituting for $P=2100 \mathrm{lb}$ in Equations (1), (2), and (3) above and solving the resulting set of equations using conventional algorithms gives:

$$
\begin{align*}
-\frac{3}{7} T_{A B}+\frac{6}{23} T_{A C}+\frac{2}{11} T_{A D} & =0 \\
-\frac{6}{7} T_{A B}-\frac{18}{23} T_{A C}-\frac{9}{11} T_{A D}+2100 \mathrm{lb} & =0 \\
\frac{2}{7} T_{A B}+\frac{13}{23} T_{A C}-\frac{6}{11} T_{A D} & =0 \\
T_{A B} & =841.55 \mathrm{lb} \\
T_{A C} & =624.38 \mathrm{lb} \\
T_{A D} & =1087.81 \mathrm{lb}
\end{align*}
$$

$$
\begin{gathered}
T_{A B}=842 \mathrm{lb} \\
T_{A C}=624 \mathrm{lb} \\
T_{A D}=1088 \mathrm{lb}
\end{gathered}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.120

A horizontal circular plate weighing 60 lb is suspended as shown from three wires that are attached to a support at D and form 30° angles with the vertical. Determine the tension in each wire.

SOLUTION

$$
\begin{aligned}
& \Sigma F_{x}=0 \\
& \quad-T_{A D}\left(\sin 30^{\circ}\right)\left(\sin 50^{\circ}\right)+T_{B D}\left(\sin 30^{\circ}\right)\left(\cos 40^{\circ}\right)+T_{C D}\left(\sin 30^{\circ}\right)\left(\cos 60^{\circ}\right)=0
\end{aligned}
$$

Dividing through by $\sin 30^{\circ}$ and evaluating:

$$
\begin{equation*}
-0.76604 T_{A D}+0.76604 T_{B D}+0.5 T_{C D}=0 \tag{1}
\end{equation*}
$$

$\Sigma F_{y}=0:-T_{A D}\left(\cos 30^{\circ}\right)-T_{B D}\left(\cos 30^{\circ}\right)-T_{C D}\left(\cos 30^{\circ}\right)+60 \mathrm{lb}=0$
or

$$
\begin{equation*}
T_{A D}+T_{B D}+T_{C D}=69.282 \mathrm{lb} \tag{2}
\end{equation*}
$$

$\Sigma F_{z}=0: \quad T_{A D} \sin 30^{\circ} \cos 50^{\circ}+T_{B D} \sin 30^{\circ} \sin 40^{\circ}-T_{C D} \sin 30^{\circ} \sin 60^{\circ}=0$
or

$$
\begin{equation*}
0.64279 T_{A D}+0.64279 T_{B D}-0.86603 T_{C D}=0 \tag{3}
\end{equation*}
$$

Solving Equations (1), (2), and (3) simultaneously:

$$
\begin{gathered}
T_{A D}=29.5 \mathrm{lb} \\
T_{B D}=10.25 \mathrm{lb} \\
T_{C D}=29.5 \mathrm{lb}
\end{gathered}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.121

Cable $B A C$ passes through a frictionless ring A and is attached to fixed supports at B and C, while cables $A D$ and $A E$ are both tied to the ring and are attached, respectively, to supports at D and E. Knowing that a $200-\mathrm{lb}$ vertical load \mathbf{P} is applied to ring A, determine the tension in each of the three cables.

SOLUTION

$$
\text { Free Body Diagram at } A \text { : }
$$

Since $T_{B A C}=$ tension in cable $B A C$, it follows that

$$
\begin{aligned}
& T_{A B}=T_{A C}=T_{B A C} \\
& \mathbf{T}_{A B}=T_{B A C} \lambda_{A B}=T_{B A C} \frac{(-17.5 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}}{62.5 \mathrm{in} .}=T_{B A C}\left(\frac{-17.5}{62.5} \mathbf{i}+\frac{60}{62.5} \mathbf{j}\right) \\
& \mathbf{T}_{A C}=T_{B A C} \lambda_{A C}=T_{B A C} \frac{(60 \mathrm{in.}) \mathbf{i}+(25 \mathrm{in} .) \mathbf{k}}{65 \mathrm{in} .}=T_{B A C}\left(\frac{60}{65} \mathbf{j}+\frac{25}{65} \mathbf{k}\right) \\
& \mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{(80 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}}{100 \mathrm{in} .}=T_{A D}\left(\frac{4}{5} \mathbf{i}+\frac{3}{5} \mathbf{j}\right) \\
& \mathbf{T}_{A E}=T_{A E} \lambda_{A E}=T_{A E} \frac{(60 \mathrm{in} .) \mathbf{j}-(45 \mathrm{in} .) \mathbf{k}}{75 \mathrm{in} .}=T_{A E}\left(\frac{4}{5} \mathbf{j}-\frac{3}{5} \mathbf{k}\right)
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.121 (Continued)

Substituting into $\Sigma \mathbf{F}_{A}=0$, setting $\mathbf{P}=(-200 \mathrm{lb}) \mathbf{j}$, and setting the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to ϕ, we obtain the following three equilibrium equations:

From i: $-\frac{17.5}{62.5} T_{B A C}+\frac{4}{5} T_{A D}=0$

From
$\mathbf{j}:\left(\frac{60}{62.5}+\frac{60}{65}\right) T_{B A C}+\frac{3}{5} T_{A D}+\frac{4}{5} T_{A E}-200 \mathrm{lb}=0$
From

$$
\begin{equation*}
\mathbf{k}: \frac{25}{65} T_{B A C}-\frac{3}{5} T_{A E}=0 \tag{3}
\end{equation*}
$$

Solving the system of linear equations using convential acgorithms gives:

$$
T_{B A C}=76.7 \mathrm{lb} ; T_{A D}=26.9 \mathrm{lb} ; T_{A E}=49.2 \mathrm{lb}
$$

PROBLEM 2.122

Knowing that the tension in cable $A E$ of Prob. 2.121 is 75 lb , determine (a) the magnitude of the load \mathbf{P}, (b) the tension in cables $B A C$ and $A D$.

PROBLEM 2.121 Cable $B A C$ passes through a frictionless ring A and is attached to fixed supports at B and C, while cables $A D$ and $A E$ are both tied to the ring and are attached, respectively, to supports at D and E. Knowing that a $200-\mathrm{lb}$ vertical $\operatorname{load} \mathbf{P}$ is applied to ring A, determine the tension in each of the three cables.

SOLUTION

Refer to the solution to Problem 2.121 for the figure and analysis leading to the following set of equilibrium equations, Equation (2) being modified to include $P \mathbf{j}$ as an unknown quantity:

$$
\begin{align*}
& -\frac{17.5}{62.5} T_{B A C}+\frac{4}{5} T_{A D}=0 \\
& \left(\frac{60}{62.5}+\frac{60}{65}\right) T_{B A C}+\frac{3}{5} T_{A D}+\frac{4}{5} T_{A E}-P=0 \\
& \frac{25}{65} T_{B A C}-\frac{3}{5} T_{A E}=0 \tag{3}
\end{align*}
$$

Substituting for $T_{A E}=75 \mathrm{lb}$ and solving simultaneously gives:

$$
P=305 \mathrm{lb} ; T_{B A C}=117.0 \mathrm{lb} ; T_{A D}=40.9 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.123

A container of weight W is suspended from ring A. Cable $B A C$ passes through the ring and is attached to fixed supports at B and C. Two forces $\mathbf{P}=P \mathbf{i}$ and $\mathbf{Q}=Q \mathbf{k}$ are applied to the ring to maintain the container in the position shown. Knowing that $W=376 \mathrm{~N}$, determine P and Q. (Hint: The tension is the same in both portions of cable $B A C$.)

SOLUTION

$$
\begin{aligned}
\mathbf{T}_{A B} & =T \lambda_{A B} \\
& =T \frac{\overline{A B}}{A B} \\
& =T \frac{(-130 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}+(160 \mathrm{~mm}) \mathbf{k}}{450 \mathrm{~mm}} \\
& =T\left(-\frac{13}{45} \mathbf{i}+\frac{40}{45} \mathbf{j}+\frac{16}{45} \mathbf{k}\right) \\
\mathbf{T}_{A C} & =T \lambda_{A C} \\
& =T \frac{\overline{A C}}{A C} \\
& =T \frac{(-150 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}+(-240 \mathrm{~mm}) \mathbf{k}}{490 \mathrm{~mm}} \\
& =T\left(-\frac{15}{49} \mathbf{i}+\frac{40}{49} \mathbf{j}-\frac{24}{49} \mathbf{k}\right) \\
\Sigma F & =0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{Q}+\mathbf{P}+\mathbf{W}=0
\end{aligned}
$$

Free-Body A :

Setting coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to zero:

$$
\begin{array}{ll}
\mathbf{i}:-\frac{13}{45} T-\frac{15}{49} T+P=0 & 0.59501 T=P \\
\mathbf{j}:+\frac{40}{45} T+\frac{40}{49} T-W=0 & 1.70521 T=W \\
\mathbf{k}:+\frac{16}{45} T-\frac{24}{49} T+Q=0 & 0.134240 T=Q \tag{3}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.123 (Continued)

Data:

$$
\begin{array}{rlrl}
W & =376 \mathrm{~N} & 1.70521 T=376 \mathrm{~N} & T=220.50 \mathrm{~N} \\
0.59501(220.50 \mathrm{~N}) & =P & & P=131.2 \mathrm{~N} \\
0.134240(220.50 \mathrm{~N}) & =Q & & Q=29.6 \mathrm{~N}
\end{array}
$$

PROBLEM 2.124

For the system of Problem 2.123, determine W and Q knowing that $P=164 \mathrm{~N}$.

PROBLEM 2.123 A container of weight W is suspended from ring A. Cable $B A C$ passes through the ring and is attached to fixed supports at B and C. Two forces $\mathbf{P}=P \mathbf{i}$ and $\mathbf{Q}=Q \mathbf{k}$ are applied to the ring to maintain the container in the position shown. Knowing that $W=376$ N, determine P and Q. (Hint: The tension is the same in both portions of cable BAC.)

SOLUTION

Refer to Problem 2.123 for the figure and analysis resulting in Equations (1), (2), and (3) for P, W, and Q in terms of T below. Setting $P=164 \mathrm{~N}$ we have:

Eq. (1):

$$
0.59501 T=164 \mathrm{~N}
$$

$$
T=275.63 \mathrm{~N}
$$

Eq. (2):
$1.70521(275.63 \mathrm{~N})=W$

$$
W=470 \mathrm{~N}
$$

Eq. (3):

$$
0.134240(275.63 \mathrm{~N})=Q
$$

$$
Q=37.0 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.125

Collars A and B are connected by a $525-\mathrm{mm}$-long wire and can slide freely on frictionless rods. If a force $\mathbf{P}=(341 \mathrm{~N}) \mathbf{j}$ is applied to collar A, determine (a) the tension in the wire when $y=155 \mathrm{~mm}$, (b) the magnitude of the force \mathbf{Q} required to maintain the equilibrium of the system.

SOLUTION

For both Problems 2.125 and 2.126:

$$
(A B)^{2}=x^{2}+y^{2}+z^{2}
$$

Here

$$
(0.525 \mathrm{~m})^{2}=(0.20 \mathrm{~m})^{2}+y^{2}+z^{2}
$$

or

$$
y^{2}+z^{2}=0.23563 \mathrm{~m}^{2}
$$

Thus, when y given, z is determined,

Now

$$
\begin{aligned}
\lambda_{A B} & =\frac{\overrightarrow{A B}}{A B} \\
& =\frac{1}{0.525 \mathrm{~m}}(0.20 \mathbf{i}-y \mathbf{j}+z \mathbf{k}) \mathrm{m} \\
& =0.38095 \mathbf{i}-1.90476 y \mathbf{j}+1.90476 \mathbf{z} \mathbf{k}
\end{aligned}
$$

Where y and z are in units of meters, m.
From the F.B. Diagram of collar $A: \quad \Sigma \mathbf{F}=0: \quad N_{x} \mathbf{i}+N_{z} \mathbf{k}+P \mathbf{j}+T_{A B} \lambda_{A B}=0$
Setting the \mathbf{j} coefficient to zero gives $\quad P-(1.90476 y) T_{A B}=0$
With

$$
\begin{aligned}
P & =341 \mathrm{~N} \\
T_{A B} & =\frac{341 \mathrm{~N}}{1.90476 y}
\end{aligned}
$$

Now, from the free body diagram of collar $B: \quad \Sigma \mathbf{F}=0: \quad N_{x} \mathbf{i}+N_{y} \mathbf{j}+Q \mathbf{k}-T_{A B} \lambda_{A B}=0$
Setting the \mathbf{k} coefficient to zero gives

$$
Q-T_{A B}(1.90476 z)=0
$$

And using the above result for $T_{A B}$, we have

$$
Q=T_{A B} z=\frac{341 \mathrm{~N}}{(1.90476) y}(1.90476 z)=\frac{(341 \mathrm{~N})(z)}{y}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.125 (Continued)

Then from the specifications of the problem, $y=155 \mathrm{~mm}=0.155 \mathrm{~m}$

$$
\begin{aligned}
z^{2} & =0.23563 \mathrm{~m}^{2}-(0.155 \mathrm{~m})^{2} \\
z & =0.46 \mathrm{~m}
\end{aligned}
$$

and
(a)

$$
\begin{aligned}
T_{A B} & =\frac{341 \mathrm{~N}}{0.155(1.90476)} \\
& =1155.00 \mathrm{~N}
\end{aligned}
$$

or

$$
T_{A B}=1155 \mathrm{~N}
$$

and
(b)

$$
\begin{aligned}
Q & =\frac{341 \mathrm{~N}(0.46 \mathrm{~m})(0.866)}{(0.155 \mathrm{~m})} \\
& =(1012.00 \mathrm{~N})
\end{aligned}
$$

or

PROBLEM 2.126

Solve Problem 2.125 assuming that $y=275 \mathrm{~mm}$.
PROBLEM 2.125 Collars A and B are connected by a $525-\mathrm{mm}$-long wire and can slide freely on frictionless rods. If a force $\mathbf{P}=(341 \mathrm{~N}) \mathbf{j}$ is applied to collar A, determine (a) the tension in the wire when $y=155 \mathrm{~mm}$, (b) the magnitude of the force \mathbf{Q} required to maintain the equilibrium of the system.

SOLUTION

From the analysis of Problem 2.125, particularly the results:

$$
\begin{aligned}
y^{2}+z^{2} & =0.23563 \mathrm{~m}^{2} \\
T_{A B} & =\frac{341 \mathrm{~N}}{1.90476 y} \\
Q & =\frac{341 \mathrm{~N}}{y} z
\end{aligned}
$$

With $y=275 \mathrm{~mm}=0.275 \mathrm{~m}$, we obtain:

$$
\begin{aligned}
z^{2} & =0.23563 \mathrm{~m}^{2}-(0.275 \mathrm{~m})^{2} \\
z & =0.40 \mathrm{~m}
\end{aligned}
$$

and
(a)

$$
T_{A B}=\frac{341 \mathrm{~N}}{(1.90476)(0.275 \mathrm{~m})}=651.00
$$

or
$T_{A B}=651 \mathrm{~N}$
and
(b)

$$
Q=\frac{341 \mathrm{~N}(0.40 \mathrm{~m})}{(0.275 \mathrm{~m})}
$$

or
$Q=496 \mathrm{~N}$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.127

Two structural members A and B are bolted to a bracket as shown. Knowing that both members are in compression and that the force is 15 kN in member A and 10 kN in member B, determine by trigonometry the magnitude and direction of the resultant of the forces applied to the bracket by members A and B.

SOLUTION

Using the force triangle and the laws of cosines and sines, we have

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(40^{\circ}+20^{\circ}\right) \\
& =120^{\circ}
\end{aligned}
$$

Then

$$
\begin{aligned}
R^{2}= & (15 \mathrm{kN})^{2}+(10 \mathrm{kN})^{2} \\
& -2(15 \mathrm{kN})(10 \mathrm{kN}) \cos 120^{\circ} \\
= & 475 \mathrm{kN}^{2} \\
R= & 21.794 \mathrm{kN}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{10 \mathrm{kN}}{\sin \alpha} & =\frac{21.794 \mathrm{kN}}{\sin 120^{\circ}} \\
\sin \alpha & =\left(\frac{10 \mathrm{kN}}{21.794 \mathrm{kN}}\right) \sin 120^{\circ} \\
& =0.39737 \\
\alpha & =23.414
\end{aligned}
$$

Hence:

$$
\phi=\alpha+50^{\circ}=73.414
$$

$$
\mathbf{R}=21.8 \mathrm{kN}\left\ulcorner 73.4^{\circ}\right.
$$

SOLUTION

solution

(a)

$$
\begin{aligned}
P \sin 35^{\circ} & =300 \mathrm{lb} \\
P & =\frac{300 \mathrm{lb}}{\sin 35^{\circ}}
\end{aligned} \quad P=523 \mathrm{lb}
$$

(b) Vertical component

$$
\begin{aligned}
P_{v} & =P \cos 35^{\circ} \\
& =(523 \mathrm{lb}) \cos 35^{\circ} \quad P_{v}=428 \mathrm{lb}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Using the x and y axes shown:

$$
\begin{align*}
R_{x}=\Sigma F_{x} & =T_{A C} \sin 10^{\circ}+(50 \mathrm{lb}) \cos 35^{\circ}+(75 \mathrm{lb}) \cos 60^{\circ} \\
& =T_{A C} \sin 10^{\circ}+78.458 \mathrm{lb} \tag{1}\\
R_{y}=\Sigma F_{y} & =(50 \mathrm{lb}) \sin 35^{\circ}+(75 \mathrm{lb}) \sin 60^{\circ}-T_{A C} \cos 10^{\circ} \\
R_{y}= & 93.631 \mathrm{lb}-T_{A C} \cos 10^{\circ} \tag{2}
\end{align*}
$$

(a) $\operatorname{Set} R_{y}=0$ in Eq. (2):

$$
\begin{aligned}
93.631 \mathrm{lb}-T_{A C} \cos 10^{\circ} & =0 \\
T_{A C} & =95.075 \mathrm{lb}
\end{aligned}
$$

$$
T_{A C}=95.1 \mathrm{lb}
$$

(b) Substituting for $T_{A C}$ in Eq. (1):

$$
\begin{array}{rlr}
R_{x} & =(95.075 \mathrm{lb}) \sin 10^{\circ}+78.458 \mathrm{lb} & \\
& =94.968 \mathrm{lb} \\
R & =R_{x} & R=95.0 \mathrm{lb}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Free-Body Diagram

$$
\begin{aligned}
W & =\mathrm{mg} \\
& =(200 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =1962 \mathrm{~N}
\end{aligned}
$$

Force Triangle

Law of sines:

$$
\frac{T_{A C}}{\sin 15^{\circ}}=\frac{T_{B C}}{\sin 105^{\circ}}=\frac{1962 \mathrm{~N}}{\sin 60^{\circ}}
$$

(a)

$$
T_{A C}=\frac{(1962 \mathrm{~N}) \sin 15^{\circ}}{\sin 60^{\circ}}
$$

(b)

$$
T_{B C}=\frac{(1962 \mathrm{~N}) \sin 105^{\circ}}{\sin 60^{\circ}}
$$

$$
T_{B C}=2190 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.131

A welded connection is in equilibrium under the action of the four forces shown. Knowing that $F_{A}=8 \mathrm{kN}$ and $F_{B}=16 \mathrm{kN}$, determine the magnitudes of the other two forces.

SOLUTION

Free-Body Diagram of Connection

$$
\Sigma F_{x}=0: \frac{3}{5} F_{B}-F_{C}-\frac{3}{5} F_{A}=0
$$

With

$$
\begin{aligned}
F_{A} & =8 \mathrm{kN} \\
F_{B} & =16 \mathrm{kN} \\
F_{C} & =\frac{4}{5}(16 \mathrm{kN})-\frac{4}{5}(8 \mathrm{kN}) \\
\Sigma F_{y} & =0:-F_{D}+\frac{3}{5} F_{B}-\frac{3}{5} F_{A}=0
\end{aligned}
$$

With F_{A} and F_{B} as above: $\quad F_{D}=\frac{3}{5}(16 \mathrm{kN})-\frac{3}{5}(8 \mathrm{kN})$

$$
F_{C}=6.40 \mathrm{kN}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Free-Body Diagram

$$
\begin{array}{ll}
\Sigma F_{x}=0: & -T_{B C}-Q \cos 60^{\circ}+75 \mathrm{lb}=0 \\
& T_{B C}=75 \mathrm{lb}-Q \cos 60^{\circ} \\
\Sigma F_{y}=0: & T_{A C}-Q \sin 60^{\circ}=0 \\
& T_{A C}=Q \sin 60^{\circ} \tag{2}
\end{array}
$$

Requirement:

$$
T_{A C} \leq 60 \mathrm{lb}:
$$

From Eq. (2):

$$
Q \sin 60^{\circ} \leq 60 \mathrm{lb}
$$

$$
Q \leq 69.3 \mathrm{lb}
$$

Requirement:

$$
T_{B C} \leq 60 \mathrm{lb}:
$$

From Eq. (1): $\quad 75 \mathrm{lb}-Q \sin 60^{\circ} \leq 60 \mathrm{lb}$

$$
Q \geq 30.0 \mathrm{lb} \quad 30.0 \mathrm{lb} \leq Q \leq 69.3 \mathrm{lb}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.133

A horizontal circular plate is suspended as shown from three wires that are attached to a support at D and form 30° angles with the vertical. Knowing that the x component of the force exerted by wire $A D$ on the plate is 110.3 N , determine (a) the tension in wire $A D,(b)$ the angles θ_{x}, θ_{y}, and θ_{z} that the force exerted at A forms with the coordinate axes.

SOLUTION

(a)

$$
\begin{array}{rlrl}
F_{x} & =F \sin 30^{\circ} \sin 50^{\circ}=110.3 \mathrm{~N} & \text { (Given) } & \\
F & =\frac{110.3 \mathrm{~N}}{\sin 30^{\circ} \sin 50^{\circ}}=287.97 \mathrm{~N} & F=288 \mathrm{~N} \\
\cos \theta_{x} & =\frac{F_{x}}{F}=\frac{110.3 \mathrm{~N}}{287.97 \mathrm{~N}}=0.38303 & \theta_{x}=67.5^{\circ} \\
F_{y} & =F \cos 30^{\circ}=249.39 & \\
\cos \theta_{y} & =\frac{F_{y}}{F}=\frac{249.39 \mathrm{~N}}{287.97 \mathrm{~N}}=0.86603 & \theta_{y}=30.0^{\circ} \\
F_{z} & =-F \sin 30^{\circ} \cos 50^{\circ} & \\
& =-(287.97 \mathrm{~N}) \sin 30^{\circ} \cos 50^{\circ} & \\
& =-92.552 \mathrm{~N} & \theta_{z}=108.7^{\circ} \\
\cos \theta_{z} & =\frac{F_{z}}{F}=\frac{-92.552 \mathrm{~N}}{287.97 \mathrm{~N}}=-0.32139 &
\end{array}
$$

PROBLEM 2.134

A force acts at the origin of a coordinate system in a direction defined by the angles $\theta_{y}=55^{\circ}$ and $\theta_{z}=45^{\circ}$. Knowing that the x component of the force is -500 lb , determine (a) the angle θ_{x}, (b) the other components and the magnitude of the force.

SOLUTION

(a) We have

$$
\left(\cos \theta_{x}\right)^{2}+\left(\cos \theta_{y}\right)^{2}+\left(\cos \theta_{z}\right)^{2}=1 \Rightarrow\left(\cos \theta_{y}\right)^{2}=1-\left(\cos \theta_{y}\right)^{2}-\left(\cos \theta_{z}\right)^{2}
$$

Since $F_{x}<0$, we must have $\cos \theta_{x}<0$.
Thus, taking the negative square root, from above, we have

$$
\cos \theta_{x}=-\sqrt{1-(\cos 55)^{2}-(\cos 45)^{2}}=0.41353 \quad \theta_{x}=114.4^{\circ}
$$

(b) Then

$$
F=\frac{F_{x}}{\cos \theta_{x}}=\frac{500 \mathrm{lb}}{0.41353}=1209.10 \mathrm{lb}
$$

$$
F=1209 \mathrm{lb}
$$

and

$$
\begin{array}{ll}
F_{y}=F \cos \theta_{y}=(1209.10 \mathrm{lb}) \cos 55^{\circ} & F_{y}=694 \mathrm{lb} \\
F_{z}=F \cos \theta_{z}=(1209.10 \mathrm{lb}) \cos 45^{\circ} & F_{z}=855 \mathrm{lb}
\end{array}
$$

PROBLEM 2.135

Find the magnitude and direction of the resultant of the two forces shown knowing that $P=300 \mathrm{~N}$ and $Q=400 \mathrm{~N}$.

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{P} & =(300 \mathrm{~N})\left[-\cos 30^{\circ} \sin 15^{\circ} \mathbf{i}+\sin 30^{\circ} \mathbf{j}+\cos 30^{\circ} \cos 15^{\circ} \mathbf{k}\right] & & \\
& =-(67.243 \mathrm{~N}) \mathbf{i}+(150 \mathrm{~N}) \mathbf{j}+(250.95 \mathrm{~N}) \mathbf{k} & \\
\mathbf{Q} & =(400 \mathrm{~N})\left[\cos 50^{\circ} \cos 20^{\circ} \mathbf{i}+\sin 50^{\circ} \mathbf{j}-\cos 50^{\circ} \sin 20^{\circ} \mathbf{k}\right] & & \\
& =(400 \mathrm{~N})[0.60402 \mathbf{i}+0.76604 \mathbf{j}-0.21985] & & \\
& =(241.61 \mathrm{~N}) \mathbf{i}+(306.42 \mathrm{~N}) \mathbf{j}-(87.939 \mathrm{~N}) \mathbf{k} & & \\
\mathbf{R} & =\mathbf{P}+\mathbf{Q} & & R=515 \mathrm{~N} \\
& =(174.367 \mathrm{~N}) \mathbf{i}+(456.42 \mathrm{~N}) \mathbf{j}+(163.011 \mathrm{~N}) \mathbf{k} & \\
R & =\sqrt{(174.367 \mathrm{~N})^{2}+(456.42 \mathrm{~N})^{2}+(163.011 \mathrm{~N})^{2}} & & \theta_{x}=70.2^{\circ} \\
& =515.07 \mathrm{~N} & & \theta_{y}=27.6^{\circ} \\
\cos \theta_{x} & =\frac{R_{x}}{R}=\frac{174.367 \mathrm{~N}}{515.07 \mathrm{~N}}=0.33853 & & \theta_{z}=71.5^{\circ} \\
\cos \theta_{y} & =\frac{R_{y}}{R}=\frac{456.42 \mathrm{~N}}{515.07 \mathrm{~N}}=0.88613 & & \\
\cos \theta_{z} & =\frac{R_{z}}{R}=\frac{163.011 \mathrm{~N}}{515.07 \mathrm{~N}}=0.31648 & &
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.136

Three cables are used to tether a balloon as shown. Determine the vertical force \mathbf{P} exerted by the balloon at A knowing that the tension in cable $A C$ is 444 N .

SOLUTION

See Problem 2.101 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{array}{r}
-0.6 T_{A B}+0.32432 T_{A C}=0 \\
-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P=0 \\
0.56757 T_{A C}-0.50769 T_{A D}=0 \tag{3}
\end{array}
$$

Substituting $T_{A C}=444 \mathrm{~N}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms gives

$$
\left.\begin{array}{l}
T_{A B}=240 \mathrm{~N} \\
T_{A D}=496.36 \mathrm{~N}
\end{array} \quad \mathbf{P}=956 \mathrm{~N} \uparrow\right\}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.137

Collars A and B are connected by a $25-\mathrm{in}$.-long wire and can slide freely on frictionless rods. If a $60-1 \mathrm{~b}$ force \mathbf{Q} is applied to collar B as shown, determine (a) the tension in the wire when $x=9$ in., (b) the corresponding magnitude of the force \mathbf{P} required to maintain the equilibrium of the system.

SOLUTION

Free-Body Diagrams of Collars:

A:

B :

$$
\lambda_{A B}=\frac{\overrightarrow{A B}}{A B}=\frac{-x \mathbf{i}-(20 \mathrm{in} .) \mathbf{j}+z \mathbf{k}}{25 \mathrm{in} .}
$$

Collar A:

$$
\Sigma \mathbf{F}=0: \quad P \mathbf{i}+N_{y} \mathbf{j}+N_{z} \mathbf{k}+T_{A B} \lambda_{A B}=0
$$

Substitute for $\lambda_{A B}$ and set coefficient of \mathbf{i} equal to zero:

$$
\begin{equation*}
P-\frac{T_{A B} x}{25 \text { in. }}=0 \tag{1}
\end{equation*}
$$

Collar B:

$$
\Sigma \mathbf{F}=0: \quad(60 \mathrm{lb}) \mathbf{k}+N_{x}^{\prime} \mathbf{i}+N_{y}^{\prime} \mathbf{j}-T_{A B} \lambda_{A B}=0
$$

Substitute for $\boldsymbol{\lambda}_{A B}$ and set coefficient of \mathbf{k} equal to zero:

$$
\begin{equation*}
60 \mathrm{lb}-\frac{T_{A B} z}{25 \mathrm{in} .}=0 \tag{2}
\end{equation*}
$$

(a)

$$
x=9 \mathrm{in} .
$$

$$
\begin{aligned}
(9 \mathrm{in} .)^{2}+(20 \mathrm{in} .)^{2}+z^{2} & =(25 \mathrm{in} .)^{2} \\
z & =12 \mathrm{in} .
\end{aligned}
$$

From Eq. (2):
(b) From Eq. (1):

$$
\begin{array}{lr}
\frac{60 \mathrm{lb}-T_{A B}(12 \mathrm{in} .)}{25 \mathrm{in} .} & T_{A B}=125.0 \mathrm{lb} \\
P=\frac{(125.0 \mathrm{lb})(9 \mathrm{in} .)}{25 \mathrm{in} .} & P=45.0 \mathrm{lb}
\end{array}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.138

Collars A and B are connected by a 25 -in.-long wire and can slide freely on frictionless rods. Determine the distances x and z for which the equilibrium of the system is maintained when $P=120 \mathrm{lb}$ and $Q=60 \mathrm{lb}$.

SOLUTION

See Problem 2.137 for the diagrams and analysis leading to Equations (1) and (2) below:

$$
\begin{array}{r}
P=\frac{T_{A B} x}{25 \mathrm{in.}}=0 \\
60 \mathrm{lb}-\frac{T_{A B} z}{25 \mathrm{in.}}=0 \tag{2}
\end{array}
$$

For $P=120 \mathrm{lb}$, Eq. (1) yields

$$
\begin{align*}
& T_{A B} x=(25 \mathrm{in} .)(20 \mathrm{lb}) \\
& T_{A B} z=(25 \mathrm{in} .)(60 \mathrm{lb})
\end{align*}
$$

From Eq. (2):

$$
\begin{equation*}
\frac{x}{z}=2 \tag{3}
\end{equation*}
$$

Now write

$$
\begin{equation*}
x^{2}+z^{2}+(20 \mathrm{in} .)^{2}=(25 \mathrm{in} .)^{2} \tag{4}
\end{equation*}
$$

Solving (3) and (4) simultaneously,

From Eq. (3):

$$
\begin{aligned}
4 z^{2}+z^{2}+400 & =625 \\
z^{2} & =45 \\
z & =6.7082 \mathrm{in} . \\
x & =2 z=2(6.7082 \mathrm{in} .) \\
& =13.4164 \mathrm{in.}
\end{aligned}
$$

$$
x=13.42 \mathrm{in} ., \quad z=6.71 \mathrm{in} .
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2F1

Two cables are tied together at C and loaded as shown. Draw the freebody diagram needed to determine the tension in $A C$ and $B C$.

SOLUTION

Free-Body Diagram of Point C :

SOLUTION

Free-Body Diagram of Point B :

$W_{E}=250 \mathrm{~N}+765 \mathrm{~N}=1015 \mathrm{~N}$
$\theta_{A B}=\tan ^{-1} \frac{8.25}{14}=30.510^{\circ}$
$\theta_{B C}=\tan ^{-1} \frac{10}{24}=22.620^{\circ}$
Use this free body to determine $T_{A B}$ and $T_{B C}$.

Free-Body Diagram of Point C :

$\theta_{C D}=\tan ^{-1} \frac{1.1}{6}=10.3889^{\circ}$
Use this free body to determine $T_{C D}$ and W_{F}.
Then weight of skier W_{S} is found by

$$
W_{S}=W_{F}-250 \mathrm{~N}
$$

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

SOLUTION

Free-Body Diagram of Point A :

SOLUTION

Free-Body Diagram of Point D :

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

SOLUTION

Free-Body Diagram of Point C :

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.F7

Three cables are connected at point D, which is located 18 in. below the T-shaped pipe support $A B C$. The cables support a $180-\mathrm{lb}$ cylinder as shown. Draw the free-body diagram needed to determine the tension in each cable.

SOLUTION

Free-Body Diagram of Point D :

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

PROBLEM 2.F8

A $100-\mathrm{kg}$ container is suspended from ring A, to which cables $A C$ and $A E$ are attached. A force P is applied to end F of a third cable that passes over a pulley at B and through ring A and then is attached to a support at D. Draw the free-body diagram needed to determine the magnitude of P. (Hint: The tension is the same in all portions of cable $F B A D$.)

SOLUTION

Free-Body Diagram of Ring A :

PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

